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Abstract

Applications and Extensions of Boij-Söderberg Theory

by

Daniel Max Erman

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor David Eisenbud, Chair

Boij-Söderberg theory represents a breakthrough in our understanding of free resolutions.
In [BS08a], Boij and Söderberg proposed the radical perspective that the numerics of graded
free resolutions are best understood “up to scalar multiplication.” The conjectures of Boij
and Söderberg were then proven in a series of papers [EFW08,ES09a,BS08b,ES09b]. Further,
[ES09a] describes the cone of cohomology tables of vector bundles on Pn by illustrating a
duality with the cone of free resolutions. We use the phrase Boij-Söderberg theory to refer to
the study of these two cones and the corresponding decomposition theorems.

Applications of graded free resolutions appear throughout algebraic geometry, commu-
tative algebra, topology, combinatorics, and more; since Boij-Söderberg theory provides a
structure theorem about the shapes of graded free resolutions, we might hope to apply the
theory widely. One such application arose instantly, leading to a proof of the Herzog-Huneke-
Srinivasan Multiplicity Conjecture, which had been open for decades.

However, Boij-Söderberg theory is such a radical departure from usual approaches to
free resolutions that it is not immediately applicable to many of the situations where free
resolutions arise. Boij-Söderberg theory is almost orthogonal to all previous approaches to
understanding graded free resolutions, as the theory uses the combinatorial structure of Betti
diagrams to group modules into families, whereas more traditional approaches use flatness to
understand families of modules. The overarching goal of this thesis is thus to connect Boij-
Söderberg theory with some of the previous avenues of research where graded free resolutions
have arisen, and we pursue this theme in several directions.

Chapter 2 builds a framework for overcoming the limitation of working “up to scalar
multiplication”. Namely, we apply Boij-Söderberg theoretic results about the cone of Betti
diagrams in order to investigate the integral structure of the semigroup of Betti diagrams.
Our main results show that this semigroup is locally finitely generated, but that it can
otherwise be quite pathological. In addition, we construct a number of nontrivial obstructions
which prevent a diagram in the cone of Betti diagrams from belonging to the semigroup of
Betti diagrams.
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In Chapter 3, we consider the question of whether the Boij-Söderberg decomposition of a
Betti diagram of a module is related to a flat deformation of the module. This is an essential
mystery raised by Boij-Söderberg theory, and we provide the first results in this direction by
producing large families where the Boij-Söderberg decomposition of a Betti diagram closely
reflects a special filtration of the module. These results suggest that Boij-Söderberg theory
might have deeper, as yet undiscovered, consequences for free resolutions. In addition, we
provide applications to the classification of very singular spaces of matrices. This chapter is
based on joint work with David Eisenbud and Frank-Olaf Schreyer.

In Chapter 4, we apply Boij-Söderberg theory to prove a special case of a famous
conjecture in commutative algebra: the Buchsbaum-Eisenbud-Horrocks Rank Conjecture.
Whereas the Multiplicity Conjecture is about the possible shapes of graded free resolutions,
the Buchsbaum-Eisenbud-Horrocks Rank Conjecture is about the possible sizes of graded
free resolutions. The conjecture is closely related to a topological conjecture of Carlsson
about certain finite group actions on products of spheres. We prove a broad new case of the
rank conjecture, and our method of proof–which involves a combination of Boij-Söderberg
theory and optimization–is essentially unrelated to any previous work on the conjecture.

Finally, in Chapter 5, we apply Boij-Söderberg theory to the study of the asymptotics of
free resolutions. Namely, we provide a lower bound for the Betti numbers of I t when I is an
ideal generated in a single degree. This builds on recent studies of asymptotic Castelnuovo-
Mumford regularity, by Cutkosky, Herzog, Kodiyalam, Trung, and Wang.



i

To Katie,
whose strength is a continual inspiration.



ii

Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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Chapter 1

Introduction

1.1 Overview

The use of graded free resolutions in algebra is based on a straightforward idea: we
replace a complicated object of interest, such as a module or algebra, with a larger object
built of simple pieces, namely a complex of free modules. By studying the complex, we hope
to discover subtle properties of the original object. Due to their flexibility and power, graded
free resolutions have become a fundamental algebraic tool.

Boij and Söderberg recently proposed the radical notion that the numerics of graded free
resolutions are easier to understand if one worked “up to scalar multiplication” [BS08a].
The subsequent proof of their conjectures [EFW08,ES09a,BS08b,ES09b] has produced new
structure theorems for graded free resolutions. In fact, [ES09a,BS08b] explicitly describe the
cone of graded free resolutions, thus providing a complete structure theorem for the numerics
of graded free resolutions, up to scalar multiplication. Further, [ES09a] describes the cone
of cohomology tables of vector bundles on Pn by illustrating a duality with the cone of free
resolutions. We use the phrase Boij-Söderberg theory to refer to the study of these two cones
and the corresponding decomposition theorems.

Graded free resolutions arise throughout mathematics and have been an essential tool
in many important results. For instance, Stanley’s proof of the Upper Bound Conjecture
is a combinatorial result about triangulations of spheres which relies on the use of graded
free resolutions: Stanley first attaches a graded algebra to a given triangulation, and then
he relates properties of the free resolution of the algebra to properties of the triangulation,
via work of Reiner [Sta75, Cor. 5.3]. Sullivan’s results on rational homotopy also rely on
a variant of free resolutions [Sul77]: to each topological space X, Sullivan first attaches a
differential graded algebra, and then he essentially resolves this complicated algebra with a
huge differential free graded algebra now called the minimal Sullivan algebra. Graded free
resolutions even play an important role in computational algebraic geometry: as illustrated
in [BM93], the Castelnuovo-Mumford regularity of a graded module, which is a numerical
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invariant of the graded free resolution of the module, provides an essential measure of com-
plexity for Gröbner basis computations involving the module. Further, the above examples
are just a small sample of the subjects where graded free resolutions have been used.

As a powerful new structure theorem for graded free resolutions, Boij-Söderberg theory
offers the potential for exciting applications. One such application arose instantly, and in fact
provided the original inspiration for Boij and Söderberg’s conjectures. The Herzog-Huneke-
Srinivasan Multiplicity Conjecture states that one can use the shape of the minimal free
resolution of a graded module to bound the multiplicity (a.k.a. the degree) of that module.
Despite an immense amount of work on the conjecture (see [FS07] for an overview of the
past literature), it remained open for decades. Then Boij-Söderberg theory instantly led to
a proof of the Multiplicity Conjecture (see [ES09a, Cor. 0.3] and [BS08b, Thm. 3]), as well
as proof of an analogous bound for the slopes of vector bundles (see [ES09a, Cor. 0.6]).

One might hope to produce similarly powerful applications in other situations where
graded free resolutions arise; however, Boij-Söderberg theory is such a radical departure from
classical approaches to free resolutions that it is not immediately applicable to most of these
situations. The theory is almost orthogonal to all previous approaches to understanding
graded free resolutions, as it uses the combinatorial structure of Betti diagrams (defined
below) to organize modules into families, whereas more traditional approaches use flatness
to understand families of modules. The overarching goal of this thesis is thus to connect Boij-
Söderberg theory with some of the previous avenues of research where graded free resolutions
have arisen, and to begin exploring and building methods for applying Boij-Söderberg theory.

To illustrate the challenge of applying the theory, let us consider an example from alge-
braic geometry. We fix notation which will be used throughout. Let S := k[x1, . . . , xn] be
the polynomial ring over a field k, and fix a finitely generated graded module M . By the
graded version of Nakayama’s Lemma, we may choose a minimal free resolution of M (c.f.
[Eis05, §1B]), i.e. a free resolution

0 // Fn
φn // . . . φ2 // F1

φ1 // F0
// M // 0

where each free module Fi is chosen to have minimal possible rank. We define the graded
Betti numbers βi,j(M) by the formula

Fi =
⊕
j∈Z

S(−j)βi,j(M).

The Betti diagram of M , denoted β(M), is an element of the infinite dimensional Q-vector
space V := ⊕ni=0 ⊕j∈Z Q, and we write β(M) as a matrix

β(M) =


...

...
. . .

...
β0,0 β1,1 . . . βn,n

β0,1 β1,2 . . .
...

...
...

. . .

 .
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In order to simplify notation when working with examples, we will follow a few conventions.
First, we will assume that the upper left entry of each Betti diagram corresponds to degree
0, unless specifically noted otherwise. Second, we will only write down the finite portion
of the Betti diagram which contains nonzero entries. Third, we will write a − for an entry
which equals zero.

We now turn to our example. Fix a non-hyperelliptic genus 5 curve C embedded in P4
C

via the canonical embedding. Let IC ⊆ S = C[x0, . . . , x4] be the ideal of functions which
vanish on C, and let SC be the quotient algebra SC := S/IC .

Green’s Conjecture [Eis05, Conj. 9.6], which has been mostly proven [Voi02,Voi05], illus-
trates that important algebro-geometric information about C can be read off directly from
β(SC). In this case, β(SC) has the following form [Eis05, p. 183]:

β(SC) =


1 − − −
− 3 ∗ −
− ∗ 3 −
− − − 1

 (1.1.1)

for some ∗ ∈ N. The value of ∗ determines the gonality of C. Namely, ∗ is nonzero if and
only the curve C admits a degree 3 map to P1. The shape of the Betti diagram β(SC) thus
captures information about the existence or nonexistence or special line bundles on the curve
C. Green’s Conjecture states that this holds in general: for a curve C of arbitrary genus,
the shape of β(SC) encodes the Clifford index of C (which is closely related to the gonality
of C).

To prove even this special case of Green’s Conjecture, one must understand the possible
values that ∗ can attain. This is actually a somewhat delicate question, and the answer
is that ∗ must equal 0 or 2, but it cannot equal 1. Geometrically, this means that if C is
not a complete intersection then it must lie on a rational normal scroll. There are several
approaches to proving that ∗ cannot equal 1, but these all require rather specialized algebraic
or geometric facts.

By contrast, if we are willing to work “up to scalar multiplication,” then Boij-Söderberg
provides a pleasantly simple description for the possible values of ∗. Let M be a graded
module such that

β(M) is a scalar multiple of


1 − −
− 3 ∗ −
− ∗ 3 −
− − − 1

 .

Boij-Söderberg implies that ∗ can attain any rational value between 0 and 8
3
. The simplicity of

the Boij-Söderberg theoretic answer stems from the fact that Boij-Söderberg theory provides
an explicit description of the cone of graded free resolutions, and we use the boundary of
the cone to derive to the desired inequalities. However, this approach would fail to answer
the analogous question for a given fixed scalar multiple, since that would require integral
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information. In the example of our curve of genus 5, we would thus be unable to use Boij-
Söderberg to conclude that ∗ cannot equal 1.

This illustrates an essential obstacle to applying Boij-Söderberg theory widely: applica-
tions of graded free resolutions often require integral information.

Our goal in Chapter 2 is thus to build a framework for overcoming the limitation of
working “up to scalar multiple”. We apply Boij-Söderberg theoretic results about the cone
of Betti diagrams in order to investigate the integral structure of the semigroup of Betti
diagrams. Our main results show that this semigroup is locally finitely generated, but that
it can otherwise be quite pathological. In addition, we construct a number of nontrivial
obstructions which prevent a diagram in the cone of Betti diagrams from belonging to the
semigroup of Betti diagrams. These results originally appeared in [Erm09a].

In Chapter 3, we consider an essential mystery raised by Boij-Söderberg theory: is the
Boij-Söderberg decomposition of a Betti diagram of a module related to a flat deformation of
the module? We provide the first results in this direction by producing large families where
the Boij-Söderberg decomposition of a Betti diagram closely reflects a special filtration of
the module. These results have strong implications for the integral investigations considered
in Chapter 2, and they also suggest that Boij-Söderberg theory might have deeper, as yet
undiscovered, consequences for free resolutions. In addition, we provide applications to the
classification of very singular spaces of matrices; this application is related to questions about
classifying vector spaces of low rank matrices and torsion-free sheaves on projective spaces,
as in [Atk83,AL80,Bea87,EH88]. This chapter is based on joint work with David Eisenbud
and Frank-Olaf Schreyer which originally appeared in [EES10].

Chapters 4 and 5 illustrate how the precise numerics of Boij-Söderberg theory, when
combined with even a small amount of integrality requirements, can lead to new applications
in the study of graded free resolutions. In Chapter 4, we apply Boij-Söderberg theory to prove
a special case of a famous conjecture in commutative algebra: the Buchsbaum-Eisenbud-
Horrocks Rank Conjecture. Like the Multiplicity Conjecture, there has been a huge amount
of research on the Buchsbaum-Eisenbud-Horrocks Rank Conjecture (c.f [Cha97, Cha00,
Cha91, CEM90, EG88, Dug00, HR05, HU87, San90]). The conjecture also has implications
for topology, as it is closely related to a conjecture of Carlsson about certain finite group
actions on products of n-spheres [Car86, Conj. I.3 and II.2]. Our Theorem 1.5.2 covers a
broad new case of the conjecture, and our method of proof–which involves a combination of
Boij-Söderberg theory and optimization–is essentially unrelated to any previous work on the
conjecture.

Finally, in Chapter 5, we apply Boij-Söderberg theory to the study of the asymptotics
of free resolutions. Our Theorem 5.2.1 builds on recent studies of asymptotic Castelnuovo-
Mumford regularity [Kod00, TW05, CHT99] and is based on the techniques developed in
Chapter 4. The results of Chapter 4 and 5 originally appeared in [Erm09b].
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1.2 Background on Boij-Söderberg Theory

Boij-Söderberg theory involves a duality between the cone of graded free resolutions over
a polynomial ring, and the cone of cohomology tables on projective space. In this thesis,
we focus exclusively on the free resolution side of this duality. The main Boij-Söderberg
theoretic result about graded free resolutions is a description of the cone of Betti diagrams.
This describes the shapes of all possible graded free resolutions, at least if we are willing to
work with free resolutions “up to scalar multiple”.

Let k be a field, S := k[x1, . . . , xn] with the grading deg(xi) = 1. Let M be a graded
finitely generated module. Recall our notation for Betti diagrams from §1.1.

As an example of our notation, consider the cyclic module M := k[x1, x2]/(x2
1, x1x2, x

2
2).

The free resolution of M is given by:

0 // S(−3)2

 
x2 0
−x1 x2
−x1 0

!
// S(−2)3

(x2
1 x1x2 x2

2 )
// S1 // M // 0

We write simply:

β(M) =

(
1 − −
− 3 2

)
.

By observing that β(M ⊕ M ′) = β(M) + β(M ′), we may think of β(−) as a map of
semigroups

{ fin. generated graded S −modules} β→ V.

The image of this map is thus a semigroup.

Definition 1.2.1. The following three definitions will be used throughout:

1. The semigroup of Betti diagrams Bmod is the subsemigroup of V generated by β(M) for
all possible finitely generated, graded S-modules M .

2. The cone of Betti diagrams BQ is defined as the positive cone over Bmod in V.

3. The semigroup of virtual Betti diagrams Bint is the semigroup of lattice points in BQ.

In [ES09a,BS08b], a complete description of this cone is given in terms of extremal rays
and facet equations. The extremal rays of BQ correspond to pure diagrams, which we now
define.

Given d = (d0, . . . , dt) ∈ Zt+1, we say that d is a degree sequence if di+1 > di for all i.
When 0 ≤ t ≤ n, each degree sequence in Zt+1 defines a unique ray in V where all diagrams
D on the ray satisfy

βi,j(D) 6= 0 ⇐⇒ j = di,
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BQ •

•

•

•

•

•

•

•

•

•

•

•

•

•

Bint ◦

•

•

◦

•

•

•

◦

◦

•

•

•

•

•

Bmod

Figure 1.1: The cone of Betti diagrams BQ is a polyhedral cone which admits a decomposition
into a simplicial fan that reflects the partial order on degree sequences; this simplicial fan
decomposition is described explicitly in [ES09a] and [BS08b]. This explicit description can
be used to understand the integral structure of the semigroup of virtual Betti diagrams Bint.
The semigroup of Betti diagrams Bmod is more mysterious.

Extremal rays
correspond to
pure diagrams. BQ◦πd0

Figure 1.2: The extremal rays of BQ correspond to pure diagrams.

and where the nonzero entries of D are, up to scalar multiple, given by the formula

βi,di
(D) =

∏
i′ 6=i

1

|di − di′ |
. (1.2.1)

We say that D ∈ V is a pure diagram of type d if D belongs to this ray. We use the notation
πd to represent the first integral point on the ray, even though πd may not belong to Bmod.
However, [EFW08, Thms. 1,2] and [ES09a, Thm. 0.1] imply that some integral multiple of
πd belongs to Bmod.

For Cohen-Macaulay modules, the following theorem was first conjectured in [BS08a]
and proven in [ES09a]. It was later shown in [BS08b] that Boij-Söderberg’s conjecture and
Eisenbud-Schreyer’s proof extended to the non-Cohen-Macaulay case.

Theorem 1.2.2 (Eisenbud-Schreyer, Boij-Söderberg). The extremal rays of BQ are precisely
the rays spanned by pure diagrams.
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BQ ∆(d0, d1, d2)◦πd0
◦ πd1

•
πd2

Figure 1.3: The cone BQ is a simplicial fan. The simplex corresponding to a maximal
sequence d0 < d1 < d2 is highlighted in gray.

Theorem 1.2.2 thus provides a complete structure theorem for Betti diagrams, up to
scalar multiple. An immediate corollary of this theorem is that every Betti diagram may be
a written as a positive, rational sum of pure diagrams. Further, if we introduce a particular
partial order on the set of degree sequences, then this decomposition is unique.

Definition 1.2.3. Let d = (d0, . . . , dt) ∈ Zt+1 and d′ = (d′0, . . . , d
′
s) ∈ Zs+1 be degree se-

quences. We say that d ≤ d′ if t > s or if t = s and di ≤ d′i for all i.

Corollary 1.2.4 (Eisenbud-Schreyer, Boij-Söderberg). Let M be a graded S-module. There
exists a unique chain of degree sequences d0 < · · · < ds and unique positive rational numbers
ci such that

β(M) =
s∑
i=0

ciπdi .

In other words, the pure diagrams are the essential building blocks of all graded free
resolutions. In the following subsection, we will see that there is a simple algorithm for
decomposing a Betti diagram into pure diagrams.

Another immediate corollary of this theorem is a proof of the Multiplicity Conjecture of
Herzog-Huneke-Srinivasan (c.f. [ES09a, Cor. 0.3], [BS08b, Thm. 3]), which had been open
for more than 20 years.

1.2.1 Examples of Boij-Söderberg Decomposition

The cone BQ admits a natural decomposition as a simplicial fan. This simplicial decop-
mosition is essential to the proof of Corollary 1.2.4. Let ∆ = (d0, . . . , ds) be a chain of degree
sequences d0 < d1 < · · · < ds. Consider the simplicial cone BQ(∆) which is the cone spanned
by πdi for di ∈ ∆. The cone BQ decomposes as the union of all such BQ(∆) by [ES09a, Thm.
0.2] and [BS08b, Prop. 3]. We use the notation Bint(∆) and Bmod(∆) for the restrictions of
Bint and Bmod to ∆.
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The decomposition algorithm of [ES09a, §1] provides a method for writing any D ∈
BQ(∆) uniquely as

D =
s∑
i=0

ciπdi

with ci ∈ Q>0. We refer to this as the Boij-Söderberg decomposition of D. We refer to c0πd0

as the first step of the Boij-Söderberg decomposition, and so on.
We illustrate two examples of this decomposition algorithm. These examples illustrate

how the decomposition algorithm enables us to determine when a diagram D belongs to BQ.

Example 1.2.5. This example illustrates the decomposition algorithm in the case when
D ∈ BQ. Let

D :=

(
1 2 1 −
− 1 2 1

)
.

Note that D is the Betti diagram of k[x, y, z]/(x, y, z2), so that D certainly belongs to BQ.
To decompose D as a sum of pure diagrams, we first identify the degree sequence corre-

sponding to the top strand of D, where the top strand is simply the first nonzero entry in
each column:

D :=

(
1 2 1 −
− 1 2 1

)
.

The bold entries correspond to the degree sequence d0 = (0, 1, 2, 4). By (1.2.1), we compute
that

π(0,1,2,4) =

(
3 8 6 −
− − − 1

)
.

Now, we will substract a scalar multiple of π(0,1,2,4) from D. To determine the appropriate
scalar multiple, we use a greedy algorithm. Namely, we set c(0,1,2,4) to be the maximal rational
number such that the diagram D− c(0,1,2,4)π(0,1,2,4) continues to have nonnegative entries. In
our example, this will be c(0,1,2,4) = 1

6
and thus

D − 1

6
π(0,1,2,4) =

(
1
2

2
3
− −

− 1 2 5
6

)
.

We iterate the process for this new diagram, whose top strand corresponds to the degree
sequence (0, 1, 3, 4). Since

π(0,1,3,4) =

(
1 2 − −
− − 2 1

)
,

we see that c(0,1,3,4) = 1
3
. We then have:

D − 1

6
π(0,1,2,4) −

1

3
π(0,1,3,4) =

(
1
6
− − −

− 1 4
3

1
2

)
.
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This equals 1
6
π(0,2,3,4), and thus we have completed our Boij-Söderberg decomposition of D,

namely:

D =
1

6
π(0,1,2,4) +

1

3
π(0,1,3,4) +

1

6
π(0,2,3,4).

Example 1.2.6. We next consider the case when D /∈ BQ. Let

D :=

(
1 2 2 −
− 2 2 1

)
.

The top strand of D corresponds to the degree sequence (0, 1, 2, 4). We have

π(0,1,2,4) =

(
3 8 6 −
− − − 1

)
.

We compute that c(0,1,2,4) = 1
4

in this case. We then have

D − 1

4
π(0,1,2,4) =

(
1
4
− 1

2
−

− 2 2 3
4

)
.

Now consider the top strand of this new diagram(
1
4
− 1

2
−

− 2 2 3
4

)
.

This corresponds to the sequence (0, 2, 2, 4), which is not a degree sequence, since the entries
are not strictly increasing. As we cannot continue decomposing D, we conclude that D /∈ BQ.
In other words, there does not exist any module M such that β(M) is a scalar multiple of D.

1.3 The semigroup of Betti diagrams

This chapter considers the integral structure of Betti diagrams from the perspective of
Boij-Söderberg theory, and begins to survey this new landscape. In particular, we consider
several fundamental questions about the structure of the semigroup of Betti diagrams.

Note that Theorem 1.2.2 provides a complete structure theorem for the possible shapes
of graded free resolutions, but only up to scalar multiple. Chapter 2 of this thesis focuses on
the more classical question of which diagrams actually arise as the Betti diagram of some
graded module. Namely, what can we say about Bmod?

A naive hope would be that the semigroup Bmod is simply equal to the semigroup Bint.
But a quick search yields virtual Betti diagrams which cannot equal the Betti diagram of a
module. Take for example the following pure diagram of type (0, 1, 3, 4)

D1 := π(0,1,3,4) =

(
1 2 − −
− − 2 1

)
. (1.3.1)
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This diagram belongs to the semigroup of virtual Betti diagrams. However, D1 cannot equal
the Betti diagram of an actual module as the two first syzygies would satisfy a linear Koszul
relation which does not appear in the diagram D1.

Since Bint 6= Bmod, it is thus natural to compare these two semigroups.

Question 1.3.1. We will consider the following questions about the semigroup of Betti
diagrams:

(a) Is Bmod locally finitely generated?

(b) Does Bmod = Bint in some special cases?

(c) Is Bmod a saturated semigroup?

(d) Is Bint \Bmod a finite set?

(e) On a single ray, can we have consecutive points of Bint which fail to belong to
Bmod? Nonconsecutive points?

In Section 2.2, we answer Question 1.3.1(a) affirmatively:

Theorem 1.3.2. The semigroup of Betti diagrams Bmod is locally finitely generated. Namely,
Bmod(∆) is finitely generated for any ∆.

Sections 2.3 and 2.4 develop obstructions which prevent a virtual Betti diagram from
being the diagram of some module. This is the technical heart of Chapter 2, as these
obstructions are our tools for answering the rest of Question 1.3.1. In Section 2.5, we
consider Question 1.3.1(b), and prove the following:

Proposition 1.3.3. Bint = Bmod for modules of projective dimension 1 and for level modules
of projective dimension 2.

Our proof of Proposition 1.3.3 rests heavily on [Söd06], which shows the existence of level
modules of embedding dimension 2 and with a given Hilbert function.

In Section 2.6, we answer Questions 1.3.1(c-e). Here we show that the semigroup of Betti
diagrams can have rather complicated behavior (see also Figure 1.3):

Theorem 1.3.4. Each of the following occurs in the semigroup of Betti diagrams:

1. Bmod is not necessarily a saturated semigroup.

2. The set |Bint \Bmod| is not necessarily finite.

3. There exist rays of Bint which are missing at least (dimS−2) consecutive lattice points.

4. There exist rays of Bint where the points of Bmod are nonconsecutive lattice points.
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•
0

◦
•
•
•
•

Nonsaturated

•
0

◦
◦
◦
◦
•

Missing Consecutive Points

•
0

◦
•
◦
•

Nonconsecutive Points

Figure 1.4: There exist rays which exhibit each of the above behaviors.

1.4 Pure filtrations

Boij-Söderberg theory shows that the Betti diagram of a module decomposes as a positive
rational linear combination of a pure diagrams. A natural question is whether this numerical
decomposition of Betti diagrams is a consequence of some undiscovered structure theorem
for graded minimal free resolutions. For instance, we might ask the following rather vague
question.

Question 1.4.1. Let M be a graded module. Does the Boij-Söderberg decomposition of β(M)
correspond to any sort of module-theoretic decomposition of the minimal free resolution of
M?

We will show that Question 1.4.1 has an affirmative answer in many surprising cases.
Namely, on certain lower-dimensional faces of the cone of Betti diagrams, the decomposition
of the Betti diagram β(M) can lead to a filtration of the minimal free resolution of M .

We say that a module M admits a pure filtration if there exists a filtration

M = M0 ) M1 ) M2 ) · · · ) Mt = 0

which extends to a filtration of the minimal free resolution of M , and where each Mi/Mi+1

has a pure resolution (see below for the definition of a pure resolution). In other words, a
pure filtration is a filtration of M which strongly reflects the Boij-Söderberg decomposition
of β(M). We say that M admits a pure splitting if M admits a pure filtration which also
admits a splitting.

Our main result is a proof that, if β(M) sits on certain lower-dimensional faces of the cone
of Betti diagrams, then M always admits a pure filtration (c.f. Figure 1.5). An immediate
corollary of this result is that, on these lower-dimensional faces, every Betti diagram of a
module decomposes as a positive integral linear combination of pure diagrams.

To illustrate this result, we consider an example. Let M be a graded module with Betti
diagram

β(M) =


6 − − − − −
− 60 128 90 32 −
− 32 90 128 60 −
− − − − − 6

 . (1.4.1)
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BQ

Figure 1.5: On certain lower-dimensional faces of BQ, every module admits a pure filtration.
Our examples provide the first indication that Boij-Söderberg decomposition of a module
might reflect a decomposition of the module itself.

The decomposition of β(M) into pure summands is given by

β(M) =


3 − − − − −
− 40 96 90 32 −
− − − − − −
− − − − − 1

+


2 − − − − −
− 20 32 − − −
− − − 32 20 −
− − − − − 2

+


1 − − − − −
− − − − − −
− 32 90 96 40 −
− − − − − 3

 .

We will show that any such M admits a pure filtration:

M = M0 ) M1 ) M2 ) M3 = 0

where the Betti diagram of Mi/Mi+1 corresponds to the (2−i)’th pure summand in the above
decomposition. We will also deduce that, although all of the entries of β(M) are divisible by
2, the existence of pure filtrations rules out the possibility of a module with Betti diagram
1
2
β(M).

The existence of pure filtrations leads to several applications. Our first application illus-
trates further pathologies of the semigroup of Betti diagrams Bmod.

Proposition 1.4.2. Let p be any prime. Then there exists a diagram D ∈ Bint such that
cD ∈ Bmod if and only if c is divisible by p. In particular, there is a ray ρ in BQ where only
1
p

of the lattice points along ρ correspond to Betti diagrams of modules.

This result simultaneously strengthens parts (2), (3) and (4) of Theorem 1.3.4
Second, we apply these techniques to classify certain vector spaces of matrices. Namely,

we show that certain very singular spaces of matrices have finite moduli. This result is in
the spirit of [EH88].

Third, we consider the question of minimal generators for Bmod. Although Bmod is always
locally finitely generated by Theorem 1.3.2, the only examples where explicit generators for
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Bmod were previously known came from cases where Bmod = Bint. We consider one of the
simplest cases where Bmod 6= Bint, namely the semigroup of Betti diagrams of codimension
3 and regularity 1. In Proposition 3.6.1, we explicitly compute the minimal generators of
Bmod in this case, thus providing the first example of its kind.

1.5 A special case of the Buchsbaum-Eisenbud-Horrocks

Rank Conjecture

The Buchsbaum-Eisenbud-Horrocks Rank Conjecture (herein the BEH Rank Conjecture)
says roughly that the Koszul complex is the “smallest” possible minimal free resolution.1 The
conjecture was formulated by Buchsbaum and Eisenbud in [BE77, p. 453] and, independently,
the conjecture is implicit in a question of Horrocks [Har79, Problem 24]. Although the
conjecture is most commonly phrased for regular local rings, we consider the graded case.
Recall that for a finitely generated module M , we let

0 // Fp
φp // Fp−1

φp−1 // . . . φ1 // F0
φ0 // M // 0

be the graded minimal free resolution of M . We define βj(M) := rank(Fj).

Conjecture 1.5.1 (Graded BEH Rank Conjecture). Let M be a graded Cohen-Macaulay
S-module of codimension c. Then:

βj(M) ≥
(
c

j

)
for j = 0, . . . , c.

In Chapter 4, we prove a special case of the graded BEH rank conjecture. We do not
require that M is Cohen-Macaulay.

Theorem 1.5.2. Let M be a graded S-module of codimension c, generated in degree ≤ 0,
and let d1(M) be the minimal degree of a first syzygy of M . If reg(M) ≤ 2d1(M)− 2, then

βj(M) ≥ β0(M)

(
c

j

)
for j = 0, . . . , c.

Common generalizations of the BEH rank conjecture include removing the Cohen-Macaulay
hypothesis and/or strengthening the conclusion to the statement that rank(φj) ≥

(
c−1
j−1

)
for

1Terminology for this conjecture is inconsistent in the literature. In some places this conjecture is known
as Horrocks’ Conjecture or as the Syzygy Conjecture.
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

0 1 2 . . . p

0 ∗ − − . . . −
1 − − − . . . −

...
...

...
...

...
...

d1 − 2 − − − . . . −
d1 − 1 − ∗ ∗ . . . ∗

...
...

...
...

...
...

2d1 − 3 − ∗ ∗ . . . ∗
2d1 − 2 − ∗ ∗ . . . ∗


Figure 1.6: If M has a Betti diagram of the above shape, then it satisfies the Buchsbaum-
Eisenbud-Horrocks Rank Conjecture.

j = 1, . . . , c − 1. A different generalization, suggested in [Car86, Conj II.8], replaces the
Betti numbers of a free resolution by the homology ranks of a differential graded module.

The BEH rank conjecture has been shown to hold for all modules of codimension at most
4 [EG88, p. 267]. In codimension at least 5, however, the BEH rank conjecture has only
been settled for families of modules with additional structure.

Theorem 1.5.2 applies to modules whose Castelnuovo-Mumford regularity is small relative
to the degree of the first syzygies of M . Though the literature on special cases of the BEH
rank conjecture is extensive, Theorem 1.5.2 moves in a new direction. The most similar result
in the literature is perhaps [Cha97, Thm. 0.1], which shows that the BEH rank conjecture
holds whenM is a Cohen-Macaulay module annihilated by the square of the maximal ideal m.
Other known cases of the BEH rank conjecture include multigraded modules [Cha91, Thm.
3] and [San90], cyclic modules in the linkage class of a complete intersection [HU87], cyclic
quotients by monomial ideals [EG88, Cor 2.5], and several more [Cha00], [CEM90], [Dug00],
and [HR05]. See [CE92, pp. 25-27] for an expository account of some of this progress.

The method of proof for Theorem 1.5.2 is quite different from previous work on the
BEH rank conjecture, as our proof is an application of Boij-Söderberg theory. At first
glance, it might appear that Boij-Söderberg theory would not apply to Conjecture 1.5.1:
Boij-Söderberg theory is based on the principle of only considering Betti diagrams up to
scalar multiple, whereas the BEH rank conjecture depends on the integral structure of Betti
diagrams. However, if the Betti diagram of M has shape as in Figure 1.5, then this imposes
conditions on the pure diagrams which can appear in the Boij-Söderberg decomposition of
M . This allows us to reduce the proof of Theorem 1.5.2 to a statement about the numerics
of pure diagrams. We then use a multivariable calculus argument to degenerate the relevant
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pure diagrams to a Koszul complex.

1.6 Asymptotic Betti numbers

In our final, brief chapter, we use Boij-Södeberg theory to investigate the asymptotic
behavior of β(S/I t) in the situation where I is generated by forms of a single degree. We
provide estimates for the growth of the individual Betti numbers in this case. This result
is based on asymptotic results about Castelnuovo-Mumford regularity as in [Kod00,TW05,
CHT99].
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Chapter 2

The semigroup of Betti diagrams

2.1 Overview

The main results of this chapter are a proof of the finite generation of Bmod(∆) (The-
orem 1.3.2), the construction of obstructions for diagrams to belong to Bmod (Proposi-
tions 2.3.2 and 2.4.1), and a result illustrating the pathological nature of Bmod (Theo-
rem 1.3.4). The results of this chapter originally appeared in [Erm09a].

This chapter is organized as follows. In Section 2.2, we prove that the semigroup of
Betti diagrams is finitely generated. Sections 2.3 and 2.4 introduce obstructions for a virtual
Betti diagram to be the Betti diagram of some module. The obstructions in Section 2.3 are
based on properties of the Buchsbaum-Rim complex; the obstruction in Section 2.4 focuses
on the linear strand of a resolution and is based on the properties of Buchsbaum-Eisenbud
multiplier ideals. In Section 2.5, we consider the semigroup of Betti diagrams for small
projective dimension, and we prove Proposition 1.3.3. In Section 2.6 we prove Theorem
1.3.4 by constructing explicit examples based on our obstructions.

Note that our work on pure filtrations in Chapter 3 has applications to the study of the
semigroup of Betti diagrams as well. The relevant results appear in §3.4 and §3.6.

2.2 Finite generation of the semigroup of Betti dia-

grams

Before proving Theorem 1.3.2, we first prove a simpler analog for the semigroup of virtual
Betti diagrams Bint.

Lemma 2.2.1. For any ∆ = (d0, . . . , ds), with d0 < · · · < ds, the semigroup Bint(∆) is
finitely generated. There exists an integer m∆ such that every virtual Betti diagram can be
written as a 1

m∆
N-combination of pure diagrams.
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Proof. The semigroup Bint(∆) is generated by pure diagrams πd0 , . . . , πds and by the lattice
points inside the fundamental parallelepiped of ∆. This proves the first claim.

For the second claim of the lemma, let P1, . . . , PN be the minimal generators of Bint(∆).
Every generator can be written as a positive rational sum:

Pi =
∑
j

pij
qij
πdj , pij, qij ∈ N.

We set m∆ to be the least common multiple of all the qij.

We refer to m∆ as a universal denominator for Bint(∆). The existence of this universal
denominator is central to our proof of the finite generation of Bmod. In Remark 2.2.2, we
mention how to compute m∆ explicitly.

Proof of Theorem 1.3.2. Let πd0 , . . . , πds be the pure diagrams defining ∆, and let m∆ be
the universal denominator for Bint(∆).

For i = 0, . . . , s, let ci ∈ N be minimal such that ciπdi belongs to Bmod. The existence of
such a ci is guaranteed by Theorems 0.1 and 0.2 of [EFW08] and Theorem 5.1 of [ES09a].
Let S1 be the semigroup generated by the pure diagrams ciπdi . Let S0 be the semigroup
generated by the pure diagrams 1

m∆
πdi . Then we have the following inclusions of semigroups:

S1 ⊆ Bmod(∆) ⊆ Bint(∆) ⊆ S0.

Passing to semigroup rings gives:

k[S1] ⊆ k[Bmod(∆)] ⊆ k[Bint(∆)] ⊆ k[S0].

Observe that k[S1] and k[S0] are both polynomial rings of dimension s+ 1, and that k[S1] ⊆
k[S0] is a finite extension of rings. This implies that k[S1] ⊆ k[Bmod(∆)] is also a finite
extension, and hence k[Bmod(∆)] is a finitely generated k-algebra. We conclude that Bmod(∆)
is a finitely generated semigroup.

2.2.1 Computing Generators of the semigroup of virtual Betti di-
agrams

Minimal generators of Bint(∆) can be computed explicitly as the generators of the N-
solutions to a certain linear Z-system defined by the πdi and by m∆. For an overview of
relevant algorithms, see the introduction of [PCVT04]. The following example illustrates the
method.

Consider S = k[x, y], d = (0, 1, 4), d = (0, 3, 4). The corresponding cone of Betti diagrams
has several simplices and we choose the simplex ∆ spanned by the maximal chain of degree
sequences:

(0) > (0, 3) > (0, 3, 4) > (0, 2, 4) > (0, 1, 4).
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The corresponding pure diagrams are:1 − −
− − −
− − −

 ,

1 − −
− − −
− 1 −

 ,

1 − −
− − −
− 4 3

 ,

1 − −
− 2 −
− − 1

 ,

3 4 −
− − −
− − 1

 (2.2.1)

First we must compute m∆. To do this, we consider the square matrix Φ whose columns
correspond to the above pure diagrams:

Φ =

(
1 1 1 1 3
0 0 0 0 4
0 0 0 2 0
0 1 4 0 0
0 0 3 1 1

)
(2.2.2)

The columns of Φ are indexed by the pure diagrams in (2.2.1) and the rows of Φ are indexed
by the Betti numbers β0,0, β1,1, β1,2, β1,3 and β2,4 respectively. Since the columns of Φ are
Q-linearly independent, it follows that the cokernel of Φ is entirely torsion. Note that each
minimal generator of Bint(∆) is either a pure diagram or corresponds to a unique nonzero
torsion element of coker(Φ). The annihilator of coker(Φ) is thus the universal denominator
for ∆. A computation in [GS] shows that m∆ = 12 in this case.

We next compute minimal generators of the N-solutions of the following linear Z-system:

Z10

0B@
−12 0 0 0 0 1 1 1 1 3

0 −12 0 0 0 0 0 0 0 4
0 0 −12 0 0 0 0 0 2 0
0 0 0 −12 0 0 1 4 0 0
0 0 0 0 −12 0 0 3 1 1

1CA
→ Z5.

The N-solutions of the above system correspond to elements of Bint(∆) under the correspon-
dence:

(b1, b2, b3, b4, b5, a1, a2, a3, a4, a5) 7→ a1

12
π(0) +

a2

12
π(0,3) +

a3

12
π(0,3,4) +

a4

12
π(0,2,4) +

a5

12
π(0,1,4).

Computation yields that Bint(∆) has 14 minimal semigroup generators.1 These consist of
the 5 pure diagrams from line (2.2.1) plus the following 9 diagrams:1 1 −

− − −
− 1 1

 ,

2 2 −
− 1 −
− − 1

 ,

1 − −
− 1 −
− 2 2

 ,

1 − −
− − −
− 2 1

 ,

2 2 −
− − −
− 1 1

 ,

3 3 −
− − −
− 1 1

 ,

1 − −
− − −
− 3 2

 ,

2 1 −
− 1 −
− 1 1

 ,

1 − −
− 1 −
− 1 1

 ,

It is not difficult to verify that each of these generators is the Betti diagram of some module.
Thus in this case we have Bint(∆) = Bmod(∆).

1We use Algorithm 2.7.3 of [Stu93] for this computation. Also, see [PCVT04] for other relevant algorithms.
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Remark 2.2.2. More generally, for any ∆ = (d0, . . . , ds) we may compute m∆ as follows. Let
Φ∆ : Zs+1 →

⊕n
i=0

⊕
j∈Z Z, where the i’th generator maps to πdi . With this notation, m∆

is simply the generator of the annihilator of coker(Φ∆).

Remark 2.2.3. A better understanding of the combinatorics of Bint and BQ might be useful
for computations or applications involving Boij-Söderberg theory. For instance, let D be
any finite collection of degree sequences, and let BQ(D) be the subcone generated by rays
corresponding to elements of D. Define the polytope P (D) as the intersection of BQ(D) with
the hyperplane

∑n
i=0

∑
j∈Z βi,j = 1.

We may view the set D as a poset via the partial order on degree sequences given in
Definition 1.2.3. We may thus define the order polytope O(D) of D (c.f. [Sta81, Defn.
1.1].) It is natural to wonder whether the polytopes P (D) and O(D) are cominbatorially
equivalent. However, in unpublished computations, Sanyal and Sturmfels have each observed
that P (D) and O(D) are generally not equivalent.

As an example, let D contain all pure diagrams of length 3 which fit into the shape∗ ∗ −
∗ ∗ ∗
− − ∗

 .

Thus D is the following poset of degree sequences:

(1, 2, 4)

(0, 2, 4)(1, 2, 3)

(0, 1, 4)(0, 2, 3)

(0, 1, 3)
.

Computation in [GS] yields that the f -vector of P (D) is (6, 10, 6) , while the f -vector of O(D)
is (6, 9, 5). Further, the boundaries of both P (D) and O(D) are polyhedral 2-spheres, with
the boundary for P (D) subdividing the boundary for O(D). This subdivision is illustrated
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below:

Boundary of O(D)

(0, 2, 4)

(0, 1, 4)

(1, 2, 4)

(0, 2, 3)

(0, 1, 3)

(1, 2, 3)

Boundary of P (D)

(0, 2, 4)

(0, 1, 4)

(1, 2, 4)

(0, 2, 3)

(0, 1, 3)

(1, 2, 3)

.

It would be particularly interesting to investigate the combinatorics of polytopes of the
form P (D), as this might provide more effective tools for working with objects such as
Bint(D).

2.3 Buchsbaum-Rim obstructions to existence of Betti

diagrams

In Proposition 2.3.2 we illustrate obstructions which prevent a virtual Betti diagram from
being the Betti diagram of an actual module. To yield information not contained in the main
results of [ES09a] and [BS08b], these obstructions must be sensitive to scalar multiplication
of diagrams. For simplicity we restrict to the case that M is generated in degree 0, though
all of these obstructions can be extended to the general case.

We say that a diagram D is a Betti diagram if D equals the Betti diagram of some module
M , and we say that D is a virtual Betti diagram if D belongs to the semigroup of virtual
Betti diagrams Bint. Many properties of modules (e.g. codimension, Hilbert function) can be
computed directly from the Betti diagram. We extend such properties to virtual diagrams in
the obvious way. Proposition 2.3.2 only involves quantities which can be determined entirely
from the Betti diagram; thus we may easily test whether an arbitrary virtual Betti diagram
is “obstructed” in the sense of this proposition.

Definition 2.3.1. For any D ∈ V, we define di(D) := min{j|βi,j(D) 6= 0} and we define
di(D) : max{j|βi,j(D) 6= 0}.

Proposition 2.3.2 (Buchsbaum-Rim obstructions). Let M be a graded module of codimen-
sion e ≥ 2 with minimal presentation:

b⊕
`=1

S(−j`)
φ→ Sa →M → 0.

Assume that j1 ≤ j2 ≤ · · · ≤ jb. Then we have the following obstructions:
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1. (Second syzygy obstruction):

d2(M) ≤
a+1∑
`=1

j`

2. (Codimension obstruction)

b =
∑
j

β1,j(M) ≥ e+ a− 1

If we have equality, then β(M) must equal the Betti diagram of the Buchsbaum-Rim
complex of φ.

3. (Regularity obstruction in Cohen-Macaulay case): If M is Cohen-Macaulay then we
also have that

reg(M) + e = de(M) ≤
b∑

`=b−e−a+2

j`.

These obstructions are independent of one another, and each obstruction occurs for some
virtual Betti diagram.

In addition, note that both the weak and strong versions of the Buchsbaum-Eisenbud-
Horrocks rank conjecture about minimal Betti numbers (see [BE77]or [CEM90] for a de-
scription) would lead to similar obstructions. Since each Buchsbaum-Eisenbud-Horrocks
conjecture imposes a condition on each column of the Betti diagram, the corresponding
obstruction would greatly strengthen part (2) of the above proposition.

Remark 2.3.3. For D a diagram, let D∨ be the diagram obtained by rotating D by 180
degrees. When D is the Betti diagram of a Cohen-Macaulay module M of codimension e,
then D∨ is the Betti diagram of some twist of M∨ := ExteS(M,S), which is also a Cohen-
Macaulay module of codimension e. Thus, in the Cohen-Macaulay case, we may apply these
obstructions to D or to D∨.

Given any map φ̃ between free modules F and G, we can construct the Buchsbaum-
Rim complex on this map, which we denote as Buchs•(φ̃). The Betti table of the complex

Buchs•(φ̃) will depend only on the Betti numbers of F and G, and it can be thought of as

an approximation of the Betti diagram of the cokernel of φ̃.
As in the statement of Proposition 2.3.2, let M be a graded S-module of codimension

≥ 2 with minimal presentation

F1 :=
b⊕
`=1

S(−j`)
φ→ Sa →M → 0.
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We will consider free submodules F̃1 ⊆ F1, the induced map φ̃ : F̃1 → Sa, and the
Buchsbaum-Rim complex on φ̃. By varying φ̃ we will produce the obstructions listed in
Proposition 2.3.2.

To prove the first obstruction, we introduce some additional notation. Let the first
syzygies of M be σ1, . . . , σb with degrees deg(σ`) = j`. The first stage of the Buchsbaum-
Rim complex on φ is the complex

a+1∧
F1

ε→ F1 → Sa.

A basis of
∧a+1 F1 is given by eI′ where I ′ is a subset I ′ ⊆ {1, . . . , b} with |I ′| = a+ 1. Let

det(φI′\{i}) be the maximal minor corresponding to the columns I ′ \ {i}. Then the map ε
sends eI′ 7→

∑
i∈I′ ei det(φI′\{i}). We refer to ε(eI′) as a Buchsbaum-Rim second syzygy, and

we denote it by ρI′ . There are
(

b
a+1

)
Buchsbaum-Rim second syzygies. It may happen that

one of these syzygies specializes to 0 in the case of φ. But as we now prove, if ρI′ specializes
to 0 then we can find another related syzygy in lower degree.

Lemma 2.3.4. Let I ′ = {i1, . . . , ia+1} ⊆ {1, . . . , b}, and assume that ρI′ is a trivial second
syzygy. Then M has a second syzygy of degree strictly less than

∑
i∈I′ ji and supported on a

subset of the columns corresponding to I ′.

Proof. Let A be an a× b-matrix representing φ. Let C = {1, . . . , b} index the columns of A,
and let W = {1, . . . , a} index the rows of A. If I ⊆ C and J ⊆ W then we write AI,J for
the corresponding submatrix.

The Buchsbaum-Rim syzygy ρI′ is trivial if and only if all the a× a minors of AI′,W are
zero. Let a′ = rank(AI′,W ) which by assumption is strictly less than a. We may assume
that the upper left a′ × a′ minor of AI′,W is nonzero. We set I ′′ = {i1, . . . , ia′+1} and
J ′′ = {1, . . . , a′}. Let τ be the Buchsbaum-Rim syzygy of AI′′,J ′′ . Then τ 6= 0 because
det(AI′′\{a′+1},J ′′) 6= 0. Also (AI′′,J ′′) · τ = 0. Thus:

(
AI′′,W

)
· τ =

(
AI′′,J

AI′′,W−J ′′

)
· τ =

(
0
∗

)
.

There exists an invertible matrix B ∈ GLa(k(x1, . . . , xn)) such that:

B · AI′′,W =

(
AI′′,J ′′

0

)
.

This gives:
0 = (B · AI′′,W ) · τ = B · (AI′′,W · τ).

Since B is invertible over k(x1, . . . , xn) we conclude that AI′′,W · τ = 0. Thus τ is a syzygy
on the columns of A indexed by I ′′, and therefore τ represents a second syzygy of M . The
degree of τ is

∑
i∈I′′ ji which is strictly less than

∑
i∈I′ ji.
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We may now prove the second syzygy obstruction and the codimension obstruction.

Proof of the second syzygy obstruction in Proposition 2.3.2. Apply Lemma 2.3.4, choosing
I ′ = {1, . . . , a+ 1}.

Proof of codimension obstruction in Proposition 2.3.2. Recall that the module M has min-
imal presentation:

b⊕
`=1

S(−j`)
φ→ Sa →M → 0.

Let Buchs•(φ) be the Buchsbaum-Rim complex of φ. Then we have

codim(M) ≤ pdim(M) ≤ pdim(Buchs•(φ)) = b− a+ 1 =
∑
j

β1,j(M)− a+ 1.

Since M has codimension e, we obtain the desired inequality. In the case of equality, the
maximal minors of φ contain a regular sequence of length e, so we may conclude:

β(M) = β(Buchs•(φ)),

as desired.

Proof of regularity obstruction in Proposition 2.3.2. SinceM is Cohen-Macaulay of codimen-
sion e, we may assume by Artinian reduction that M is finite length. Recall that b =∑

j β1,j(M) and let φ as in the proof of the codimension obstruction. If b = e + a − 1 then
we have that

reg(M) = reg(Buchs•(φ)) =
b∑
`=1

j`.

We are left with the case that b > e + a − 1. Recall that σ1, . . . , σb is a basis of the
syzygies of M . We may change bases on the first syzygies by sending σi 7→

∑
pi`σ` where

deg(pi`) = deg σi−deg σ` = ji−j`, and where the matrix (pi`) is invertible over the polynomial

ring. We choose a generic (pi`) which satisfies these conditions. Let φ̃ be the map defined

by σb, σb−1, . . . , σb−e−a+2. Define M ′ := coker(φ̃). By construction, M ′ has finite length,

β(M ′) = β(Buchs•(φ̃)), and M ′ surjects onto M . Thus we have

f∑
`=b−e−a+2

j` = reg(M ′) ≥ reg(M) = dn(M).

where the inequality follows from Corollary 20.19 of [Eis95].
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Proof of independence of obstructions in Proposition 2.3.2. To show that the obstructions
of Proposition 2.3.2 are independent, we construct an explicit example of a virtual Betti
diagram with precisely one of the obstructions.

For Proposition 2.3.2 (1) consider:

2 · π(0,1,5,6,7,8) + π(0,5,6,7,8,9) =


3 4 − − − −
− − − − − −
− − − − − −
− 70 252 336 200 45

 .

Then d2 = 5 > 4 so this diagram has a Buchsbaum-Rim second syzygy obstruction.
For Proposition 2.3.2 (2) consider:

π(0,1,3,4) =

(
1 2 − −
− − 2 1

)
.

In this case
∑
β1,j(π(0,1,3,4)) = 2 < 3+1−1 = 3. More generally, the pure diagram π(0,1,α,α+1)

has a codimension obstruction for any α ≥ 3.
For the case of equality in Proposition 2.3.2 (2), consider:

π(0,1,6,10) =



6 8 − −
− − − −
− − − −
− − 3 −
− − − −
− − − −
− − − −
− − − 1


.

Since we have
∑
β1,j(π(0,1,6,10)) = 8 = 3 + 6− 1, the diagram π(0,1,6,10) should equal the Betti

table of the Buchsbaum-Rim complex on a map: φ : R(−1)8 → R6. This is not the case.
For Proposition 2.3.2 (3) consider:

2 · π(0,1,4,9,10) =



6 10 − − −
− − − − −
− − 6 − −
− − − − −
− − − − −
− − − − −
− − − 6 4


.

Here we have d4 = 10 > 9 =
∑9

j=1 1.
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2.4 A linear strand obstruction in projective dimen-

sion 3

In this section we build obstructions based on one of Buchsbaum and Eisenbud’s structure
theorems about free resolutions in the special case of codimension 3 (see [BE74].) The
motivation of this section is to explain why the following virtual Betti diagrams do not
belong to Bmod:

D =

(
2 4 3 −
− 3 4 2

)
, D′ =

(
3 6 4 −
− 4 6 3

)
, D′′ =

(
2 3 2 −
− 5 7 3

)
. (2.4.1)

Note that these diagrams do not have any of the Buchsbaum-Rim obstructions in the sense
of Proposition 2.3.2. In fact, there are virtual Betti diagrams similar to each of these which
are Betti diagrams of modules. For instance, all of the following variants of D are Betti
diagrams of modules:(

2 4 1 −
− 1 4 2

)
,

(
2 4 2 −
− 2 4 2

)
,

(
2 4 3 1
− 3 5 2

)
,

(
4 8 6 −
− 6 8 4

)
.

The problem with D must therefore relate to the fact that it has too many linear second
syzygies to not contain a Koszul summand. Yet whatever obstruction exists for D must
disappear upon scaling from D to 2 · D. Incidentally, the theory of matrix pencils could
be used to show that D and D′′ are not Betti diagrams. We do not approach this problem
via matrix pencils because we seek an obstruction which does not depend on the fact that
β0,0 = 2.

Let S = k[x, y, z] and let M be a graded S-module M of finite length. For the rest of
this section, we fix:

∆ := {(0, 1, 2, 3) < (0, 1, 2, 4) < (0, 1, 3, 4) < (0, 2, 3, 4)}.

Further, let M be generated in degree 0 and with regularity 1, so that

β(M) =

(
a b c d
− b′ c′ d′

)
and β(M) ∈ Bmod(∆). Let Ti be the maps along the top row of the resolution of M so that
we have a complex:

0→ S(−3)d → (T3)S(−2)c
(T2)→ S(−1)b

(T1)→ Sa → 0.

Similarly, let Uj stand for matrices which give the maps along the bottom row of the reso-
lution of M . Observe that each Ti and Uj consists entirely of linear forms, and that U1 = 0.
If d 6= 0, then the minimal resolution of M contains a copy of the Koszul complex as a free
summand. Since we may split off this summand, we assume that d = 0.

We then have the following obstruction:
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Proposition 2.4.1 (Maximal minor, codimension 3 obstruction). Let M as defined above,
and continue with the same notation. Then:

b′ − a+ rank(T1) + rank(U3) ≤ c′.

Equivalently c− d′ + rank(T1) + rank(U3) ≤ b.

Proof. By assumption, M has a minimal free resolution given by:

0→ S(−4)d
′

“
Q3

U3

”
→ S(−2)c ⊕ S(−3)c

′

“
T2 Q2

0 U2

”
→ S(−1)b ⊕ S(−2)b

′ (T1 Q1 )→ Sa →M.

Each Qi stands for a matrix of degree 2 polynomials. By [BE74] we know that each maximal
minor of the middle matrix is the product of a corresponding maximal minor from the first
matrix and a corresponding maximal minor from the third matrix.

Let τ = rank(T1) and µ = rank(U3). Since codim(M) 6= 0, the rank of the matrix(
T1 Q1

)
equals a. By thinking of this matrix over the quotient field k(x, y, z), we may

choose a basis of the column space which contains τ columns from T1 and a − τ columns
from Q1. Let D1 be the determinant of the resulting a× a submatrix, and observe that D1

is nonzero. Similarly, we may construct a d′ × d′ minor D3 from the last matrix such that
D3 is nonzero and involves µ rows from U3 and d′ − µ rows from Q3.

Now consider the middle matrix:

( c c′

b T2 Q2

b′ 0 U2

)
.

Note that the columns of this matrix are indexed by the rows of the third matrix, and
the rows of this matrix are indexed by the columns of the first matrix. Choose the unique
maximal submatrix such that the columns repeat none of the choices from D3 and such that
the rows repeat none of the choices from D1. We obtain a matrix of the following shape:

( c− d′ + µ c′ − µ
b− τ ∗ ∗
b′ − a+ τ 0 ∗

)
.

Since M has finite length, the Herzog-Kühl conditions in [HK84] imply that c′ + c − d′ =
b+b′−a, and thus this is a square matrix. If D2 is the determinant of the matrix constructed
above, then D2 = D1D3 by [BE74]. Since D1 6= 0 and D3 6= 0, this implies that the
(b′ − a + τ × c − d′ + µ) block of zeroes in the lower left corner cannot be too large. In
particular,

b′ − a+ τ + c− d′ + µ ≤ b′ + b− a.

By applying the Herzog-Kühl equality c′+c−d′ = b+b′−a, we obtain the desired results.
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We now prove a couple of lemmas which will allow us to use this obstruction to rule
out the virtual Betti diagrams from line (2.4.1). We continue with the same notation, but
without the assumption that d = 0.

Definition 2.4.2. A matrix T is decomposable if there exists a change of coordinates on the
source and target of T such that T becomes block diagonal or such that T contains a column
or row of all zeroes. If T is not decomposable then we say that T is indecomposable.

Lemma 2.4.3. If the Betti diagram

(
a b c d
− b′ c′ d′

)
is Cohen-Macaulay and is a minimal

generator of Bmod, then T1 is indecomposable or b = 0.

Proof. If we project the semigroup Bmod onto its linear strand via(
a b c d
− b′ c′ d′

)
7→
(
a b c d

)
,

then the image equals the semigroup of linear strands in Bmod. By the Herzog-Kühl equa-
tions, the linear strand

(
a b c d

)
of such a Cohen-Macaulay module determines the entire

Betti diagram. Hence the projection induces an isomorphism between the subsemigroup of
Cohen-Macaulay modules of codimension 3 in Bmod and the semigroup of linear strands in
Bmod. The modules with T1 decomposable and b 6= 0 cannot be minimal generators of the
semigroup of linear strands in Bmod.

Lemma 2.4.4. With notation as above we have:

1. If there exists a free submodule F ⊆ S(−1)b such that F ∼= S(−1)3 and such that the
restricted map T1|F has rank 1, then the minimal resolution of M contains a copy of
the Koszul complex as a direct summand.

2. If a = 2, b ≥ 3, and T1 is indecomposable then T1 has rank 2.

Proof. (1) Given the setup of the lemma, we have that T1|F is an a×3 matrix of rank 1 with
linearly independent columns over k. All matrices of linear forms of rank 1 are compression
spaces by [EH88]. Since the columns of T1|F are linearly independent, this means that we
may choose bases such that:

T1|F =


x y z
0 0 0
0 0 0
...

...
...

0 0 0

 . (2.4.2)

The result follows immediately.
(2) Assume that T1 has rank 1 and apply part (1) with F any free submodule isomorphic

to S(−1)3. We may then assume that the first three columns of T1 look like (2.4.2), and
whether b = 3 or b > 3 it quickly follows that T1 is decomposable.
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Proposition 2.4.5. The virtual Betti diagrams

D =

(
2 4 3 −
− 3 4 2

)
, D′ =

(
3 6 4 −
− 4 6 3

)
, D′′ =

(
2 3 2 −
− 5 7 3

)
do not belong to Bmod.

Proof. Assuming D were a Betti diagram, Lemma 2.4.3 implies that the corresponding ma-
trices T1 and U3 are indecomposable. Lemma 2.4.4 (2) implies that for D as in (2.4.2), we
have rankT1 = rankU3 = 2. Observe that D now has a maximal minor obstruction, as
c− d′ + τ + µ = 5 while b = 4.

Next we consider D′. If D′ were a Betti diagram, then the corresponding T1 and U3

would both have to be indecomposable. If also T1 had rank 2, then Theorem 1.1 of [EH88]
would imply that it is a compression space. In particular, T1 would have one of the following
forms: 0 0 0 0 ∗ ∗

0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗

 ,

0 0 0 0 0 ∗
0 0 0 0 0 ∗
∗ ∗ ∗ ∗ ∗ ∗

 , or

0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

 .

The matrix forms on the left and right fail to be indecomposable. The middle form could not
have linearly independent columns, since each ∗ stands for a linear form, and we are working
over k[x, y, z]. Thus T1 and U3 both have rank 3, and it follows that D′ has a maximal minor
obstruction.

In the case of D′′, similar arguments show that the ranks of T1 and U3 must equal 2 and
3 respectively. Thus D′′ also has a maximal minor obstruction.

Example 2.4.6. Note that the diagram 2·D belongs to Bmod. In fact, if N = k[x, y, z]/(x, y, z)2

and N∨ = Ext3(N,S) then:

β(N ⊕N∨(4)) =

(
1 − − −
− 6 8 3

)
+

(
3 8 6 −
− − − 1

)
=

(
4 8 6 −
− 6 8 4

)
= 2 ·D.

This diagram does not have a maximal minor obstruction as rank(T1) = rank(U3) = 3.
Conversely, up to isomorphism the direct sum N ⊕ N∨(4) is the only module M whose

Betti diagram equals 2 · D. The key observation is that for M to avoid having a maximal
minor obstruction, we must have that rank(T1) + rank(U3) ≤ 6. Thus we may assume that
M is determined by a 4 × 8 matrix of linear forms which has rank ≤ 3. Such matrices are
completely classified by [EH88] and an argument as in Proposition 2.4.5 can rule out all
possibilities except that M ∼= N ⊕N∨(4).

In the proof of Theorem 1.3.4 (4), we will show that 3 ·D does not belong to Bmod.
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2.5 Special cases when all virtual Betti diagrams are

actual Betti diagrams

In this section we prove Proposition 1.3.3 in two parts. We first deal with projective
dimension 1.

Proposition 2.5.1. Let S = k[x]. Then Bint = Bmod and the semigroup Bmod is minimally
generated by pure diagrams.

Proof. Let D ∈ Bint be a virtual Betti diagram of projective dimension 1. We may assume
that D is a Cohen-Macaulay diagram of codimension 1. Then the Herzog-Kühl conditions
[HK84] imply that D has the same number of generators and first syzygies. List the degrees
of the generators of D in increasing order α1 ≤ α2 ≤ · · · ≤ αs, and list the degrees of the
syzygies of D in increasing order γ1 ≤ γ2 ≤ · · · ≤ γs. Then D ∈ Bint if and only if we have:

αi + 1 ≤ γi

for i = 1, . . . , s. Choose M to be a direct sum of the modules

Mi := coker(φi : R(−γi)→ R(−αi))

where φi is represented by any element of degree γi − αi in R. Note that β(Mi) equals the
pure diagram π(αi,γi). Thus D ∈ Bmod and D = β(M) =

∑
i π(αi,γi).

Recall the definition of a level module [Boi00]:

Definition 2.5.2. A graded module M is a level module if its generators are concentrated
in a single degree and its socle is concentrated in a single degree.

We now show that in the case of projective dimension 2 level modules, the semigroups
Bint and Bmod are equal.

Proposition 2.5.3. Let S = k[x, y] and fix ∆ = (d0, . . . , ds) such that d0
0 = ds0 and d0

2 = ds2.
Then Bint(∆) = Bmod(∆).

Proof. We may assume that d0
0 = 0, and then we are considering the semigroup of level

modules of projective dimension 2 with socle degree (d0
2 − 2). Let D ∈ Bint and let c be a

positive integer such that cD ∈ Bmod. Let ~h(D) = (h0, h1, . . . ) be the Hilbert function of D.

The main result of [Söd06] shows that ~h(D) is the Hilbert function of some level module of
embedding dimension 2 if and only if hi−1 − 2hi + hi ≤ 0 for all i ≤ d2 − 2.

Since cD ∈ Bmod, we know that ~h(cD) = c~h(D) is the Hilbert function of a level module.
Thus we have:

chi−1 − 2chi + chi ≤ 0.

The same holds when we divide by c, and thus ~h(D) is the Hilbert function of some level
module M . Since M is also a level module, its Betti diagram must equal D.
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We conjecture that the restriction on ∆ is unnecessary:

Conjecture 2.5.4. In projective dimension 2, Bint(∆) = Bmod(∆) for any ∆.

2.6 Pathologies of the semigroup of Betti diagrams

We are now prepared to prove Theorem 1.3.4 and thus show that for projective dimension
greater than 2, the semigroups Bint and Bmod diverge. Recall the statement of Theorem 1.6:

Theorem 1.6: Each of the following occurs in the semigroup of Betti diagrams:

1. Bmod is not necessarily a saturated semigroup.

2. The set |Bint \Bmod| is not necessarily finite.

3. There exist rays of Bint which are missing at least (dimS−2) consecutive lattice points.

4. There exist rays of Bint where the points of Bmod are nonconsecutive lattice points.

The various pieces of the theorem follow from a collection of obstructed virtual Betti
diagrams.

Proof of Part (1) of Theorem 1.3.4. We will show that on the ray corresponding to

D1 =

(
1 2 − −
− − 2 1

)
.

every lattice point except D1 itself belongs to Bmod. We have seen in (1.3.1) that D1 /∈ Bmod.
Certainly 2 ·D1 ∈ Bmod as 2 ·D is the Buchsbaum-Rim complex on a generic 2× 4 matrix of
linear forms. We claim that 3 ·D1 also belongs to Bmod. In fact, if we set S = k[x, y, z] and

M := coker

 x y z 0 0 0
0 0 x y z 0

x+ y 0 0 x y z

 ,

then the Betti diagram of M is 3 ·D1.

Proof of Part (2) of Theorem 1.3.4. We will show that for all α ∈ N, the virtual Betti dia-
gram:

Eα :=

(
2 + α 3 2 −
− 5 + 6α 7 + 8α 3 + 3α

)
does not belong to Bmod.
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Note that E0 /∈ Bmod by Proposition 2.4.5. Imagine now that β(M) = Eα for some α.
Let T1 be the linear part of the presentation matrix of M so that T1 is an (α+ 2)× 3 matrix
of linear forms. Let T2 be the (3× 2) matrix of linear second syzygies and write:

T1 · T2 =

l1,1 l1,2 l1,3
l2,1 l2,2 l2,3
...

...
...

 ·
s1,1 s1,2

s2,1 s2,2

s3,1 s3,2

 .

By Lemma 2.4.4 (1), the rank of T1 must be at least 2. Let T ′1 be the top two rows of T1,
and by shuffling the rows of T1, we may assume that the rank of T ′1 equals 2. So then may
assume that l1,1 and l2,2 are nonzero. Since each column of T2 has at least 2 nonzero entries,
it follows that the syzygies represented by T2 remain nontrivial syzygies on the columns of
T ′1.

It is possible however that columns of T ′1 are not k-linearly independent. But since the
rank of T ′1 equals 2, we know that at least two of the columns are linearly independent. Let
C be the cokernel of T ′1, and let M ′ := C≤1 be the truncation of C in degrees greater than
1. Then we would have:

β(M ′) =

(
2 3 2 −
− 5 7 3

)
or =

(
2 2 2 −
− ∗ ∗ ∗

)
.

The first case is impossible by Example 2.4.5, and the second case does not even belong to
Bint.

The following definition will be useful in the next part of the proof.

Definition 2.6.1. For a degree sequence d = (d0, . . . , dt), we define the normalized pure
diagram of type d, denoted πd, to be the unique pure diagram of type d where β0,d0(πd) = 1.
Note that formula (1.2.1) yields an explicit formula for each Betti number of πd:

βi,di
(πd) =

∏
j 6=0 |dj − d0|∏
j 6=i |dj − di|

.

Proof of Part (3) of Theorem 1.3.4. Fix some prime P ≥ 2 and let S = k[x1, . . . , xP+1].
Consider the degree sequence:

d := (0, 1, P + 1, P + 2, ..., 2P ).

We will show that the first P −1 lattice points of the ray rd have a codimension obstruction.
We claim that:

• β1,1(πd) = 2

• All the entries of β(πd) are positive integers.
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For both claims we use the formula from Definition 2.6.1.

β1,1(πd) =
(P + 1) · · · · · (2P − 1) · (2P )

(P · (P + 1) . . . (2P − 1))
=

2P

P
= 2.

For the other entries of πd we compute:

βi,di
(πd) =

2P · (2P − 1) · · · · · (P + 1)

(i− 2)!(P − i+ 1)!
· 1

P + i− 1
· 1

P + i− 2
=

1

P

(
P + i− 3

i− 2

)(
2P

P − i+ 1

)
Note that

(
2P

P−i+1

)
is divisible by P for all i ≥ 2 and thus βi,di

(πd) is an integer as claimed.
Since β0,0 = 1 and β1,1 = 2, the diagram c · πd hs a codimension obstruction for c =

1, . . . , P − 1. Thus the first P − 1 lattice points of the ray of πd do not correspond to Betti
diagrams.

Proof of Part (4) of Theorem 1.3.4. Consider the ray corresponding to

D2 =

(
2 4 3 −
− 3 4 2

)
.

Proposition 2.4.5 shows that D2 does not belong to Bmod. In Example 2.4.6 we showed that
2 ·D2 does belong to Bmod. Thus, it will be sufficient to show that

3 ·D2 =

(
6 12 9 −
− 9 12 6

)
does not belong to Bmod.

We assume for contradiction that there exists M such that β(M) = 3 · D2. Then the
minimal free resolution of M is as below:

0→ R(−4)6

“
Q3

U3

”
→ R(−2)9 ⊕R(−3)12

“
T2 Q2

0 U2

”
→ R(−1)12 ⊕R(−2)9 (T1 Q1 )→ R6. (2.6.1)

where T1, T2, U2 and U3 are matrices of linear forms. By Proposition 2.4.1 we have that
rank(T1) + rank(U3) ≤ 9. Since the diagram 3 · D2 is Cohen-Macaulay and symmetric, we
may use Remark 2.3.3 to assume that rank(T1) ≤ 4.

We next use the fact that, after a change of coordinates, T2 contains a second syzygy
which involves only 2 of the variables of S. This fact is proven in Lemma 2.6.2 below. Change
coordinates so that the first column of T2 represents this second syzygy and equals:

y
−x
0
...
0

 .
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Since T1 must be indecomposable, we may put T1 into the form:

T1 =


x y z 0 . . . 0
0 0 ∗ ∗ . . . ∗
...

...
0 0 ∗ ∗ . . . ∗

 . (2.6.2)

Now set T̃1 to be the lower right corner of ∗’s in T1. Since rank(T1) ≤ 4 we have that

rank(T̃1) ≤ 3. Matrices of rank ≤ 3 are fully classified, and by applying Corollary 1.4 of

[EH88] we conclude that T̃1 is a compression space. We can rule out the compression spaces

cases where T̃1 has a column or a row equal to zero, or else T1 would have been decomposable.
Thus T̃1 is equivalent to one of the two following forms:

0 0 0 0 0 0 0 0 0 ∗
0 0 0 0 0 0 0 0 0 ∗
0 0 0 0 0 0 0 0 0 ∗
0 0 0 0 0 0 0 0 0 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 or


0 0 0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 .

If we subsitute the matrix on the left into the form for T1 from 2.6.2, then we see that T1

would have 8 k-linearly indepdendent columns which are supported on only the bottom two
rows. Since all entries of T1 are linear forms in k[x, y, z], this is impossible. We can similarly
rule out the possibility of the matrix on the right.

Lemma 2.6.2. If there exists a minimal resolution as in Equation (2.6.1), then the matrix
T2 contains a second syzygy involving only 2 variables of S.

Proof. Assume that this is not the case and quotient by the variable z. Then the quotient
matrices T1 and T2 still multiply to 0. It is possible that after quotienting, some of the
columns of T1 are dependent. However this is not possible for T2. For if some combination
went to 0 after quotienting by z, then there would exist a column of T2, i.e. a second syzygy
of M , which involves only the variable z. This is clearly impossible. Thus the columns of T2

are linearly independent.
Nevertheless, we know that the columns of a 6 × 12 matrix of linear forms over k[x, y]

can satisfy at most 6 independent linear syzygies. By changing coordinates we may arrange
that 3 of the columns of T2 are “trivial” syzygies on T1. By a “trivial” syzygy, we mean a
column of T2 where the nonzero entries of that columns multiply with zero entries of T1. For
an example of how a nontrivial syzygy over k[x, y, z] can become trivial after quotienting by
z, consider: (

x z 0
y 0 z

) z
−x
−y

→ (
x 0 0
y 0 0

) 0
−x
−y


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Change coordinates so that the first 3 columns of T2 represent the trivial syzygies and
are in Kronecker normal form. By assumption, each column of T2 involves both x and y, so
these first 3 columns must consist of combinations of the following Kronecker blocks:

B1 =

(
x
y

)
, B2 =

x 0
y x
0 y

 , B3 =


x 0 0
y x 0
0 y x
0 0 y

 .

Since each nonzero entry in the trivial part of T2 must multiply with a 0 from T1, this forces
certain columns of T1 to equal 0. More precisely, the number of nonzero rows in the trivial
part of T2 is a lower bound for the number of columns of T1 which are identically zero. The
block decomposition shows that the trivial part of T2 has at least 4 nonzero rows, and thus
T1 has at least 4 columns which are identically zero.

But now the nonzero part of T1 is a 6× 8 matrix of linear forms, and this can satisfy at
most 4 linear syzygies. This forces two additional columns of T2 to be trivial syzygies which
in turn forces more columns of T1 to equal zero, and so on.

Working through this iterative process, we eventually conclude that T1 contains 8 columns
which are identically zero. This means that T1 must have contained 8 columns which involved
only z. But since T1 is a 6 × 12 matrix of linear forms with linearly independent columns,
this is impossible.
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Chapter 3

Pure filtrations

3.1 Overview

In this chapter we show that, in certain cases, the Boij-Söderberg decomposition of β(M)
corresponds to a very special type of filtration of M , namely a pure filtration. Recall from
Section 1.4 that a pure filtration is a filtration of the module M that closely reflects the
Boij-Söderberg decomposition. This chapter consists of joint work with David Eisenbud and
Frank-Olaf Schreyer which originally appeared in [EES10].

This chapter is organized as follows. In §3.2, we provide a detailed example which
illustrates our method for obtaining pure filtrations. In §3.3, we prove the steps involved
in this method and explain the conditions under which our method works. These form the
main results of this chapter.

We then turn to applications. In §3.4 we prove Proposition 1.4.2, illustrating certain
pathologies of the Semigroup of Betti diagrams; in §3.5, we apply our methods to the study
of very singular spaces of matrices; and in §3.6, we compute the minimal generators for
a nontrivial example of the semigroup of Betti diagrams. Finally, in §3.7, we touch on
situations where pure filtrations do not exist.

3.2 A step-by-step example

In this section, we illustrate our method for obtaining a pure filtration of a module.
Throughout, we provide references to the relevant results from §3.3.

Let n = 5 so that S = k[x1, . . . , x5]. Let d0 = (0, 2, 3, 4, 5, 8), d1 = (0, 2, 3, 5, 6, 8) and
d2 = (0, 3, 4, 5, 6, 8). Let M be a module such that β(M) = πd0 + 2πd1 + πd2 . Then we have:

β(M) =


6 − − − − −
− 60 128 90 32 −
− 32 90 128 60 −
− − − − − 6

 .
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We will show that there exists a pure filtration of M . Namely, we will produce a filtration:

M = M0 ) M1 ) M2 ) M3 = 0

where β(M0/M1) = πd2 , β(M1/M2) = 2πd1 and β(M2/M3) = πd0 .
Let (F•, φ•) be the minimal free resolution of M . Note that φ1 : F1 → F0 decomposes as(

ψ1 µ1

)
where ψ1 is a 6× 60 matrix with quadratic entries and µ1 is a 6× 32 matrix with

cubic entries. Define N := coker(ψ1).

Step 1: Computing β(N)

A priori, we do not know the Betti diagram of N . In this step, we use Boij-Söderberg
theory to compute β(N). Observe first that

β(N) =


6 − − − − −
− 60 128 90 32 −
− − ∗ ∗ ∗ −
− − ∗ ∗ ∗ ∗
− − ...

...
...

...

 .

This is because columns 0, 1, . . . , 4 of the top strand of β(M) depend only on ψ1, and hence
β(N) must have the same top strand in columns 0, 1, . . . , 4. (See Proposition 3.3.2 below.)

Although we do not yet know the exact value of β(N), we may nevertheless begin com-
puting the Boij-Söderberg decomposition of β(N). To eliminate the 90 and the 32 in the
top row, we may only use pure diagrams of the form πd with d = (0, 2, 3, 4, d4, d5) for some
d4 ≥ 5, d5 ≥ 8, d5 ≥ d4. (We also allow the possibility that the vector d has length 4 or
3, and we think of these as corresponding the cases where d5 = ∞ or d4 = d5 = ∞.) By
applying the formula from equation (1.2.1), we compute that, for all such d,

β3,4(πd)

β4,5(πd)
≥ 90/32,

with equality if and only if d4 = 5 and d5 = 8. Since the decomposition algorithm implies that
we cannot eliminate β3,4(M) before we eliminate β4,5(M), we must eliminate both entries
simultaneously. Thus, the first step of the Boij-Södberg decomposition of β(N) is given by
1 · πd0 = 1 · π(0,2,3,4,5,8). (See Corollary 3.3.5 below.)

We now consider the diagram β(N)−πd0 . Essentially the same argument as above shows
that the next step of the Boij-Söderberg decomposition must be 2πd1 = 2π(0,2,3,5,6,8). Lastly,
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we seek to decompose β(N)− πd0 − 2πd1 , which equals

β(N)− πd0 − 2πd1 =


1 − − − − −
− − − − − −
− − ∗ ∗ ∗ −
− − ∗ ∗ ∗ ∗
− − ...

...
...

...

 .

Since the second column consists of all zeroes, this diagram must equal π(0). Hence, we have
computed that the Boij-Söderberg decomposition of β(N) is πd0 + 2πd1 + π(0).

Step 2: Splitting N

Set N ′ := H0
m(N), the 0’th local cohomology module of N , and consider the exact

sequence:
0→ N ′ → N → N/N ′ → 0.

Based on the Boij-Söderberg decompostion of N , we know that the Hilbert polynomial of N
is the same as the Hilbert polynomial of π(0). Thus N/N ′ has the same Hilbert polynomial
as a free module, is generated in the same degree as S, and has depth(N/N ′) > 0. This
implies that N/N ′ is actually free, so the above sequence splits. (See Proposition 3.3.7.)

Step 3: Lifting to a filtration of M

Recall that we have written φ1 =
(
ψ1 µ1

)
. Since N splits, we may further decompose

ψ1 and write:

φ1 =

(
ψ̃1 µ̃1

0 η̃1

)
,

where ψ̃1 is a 5× 60 matrix.
We then obtain an exact sequence

0→ coker(ψ̃1)→M → coker(η̃1)→ 0.

The map coker(ψ̃1) → M induces an isomorphism along the top strands of the resolutions
of these modules in columns 1, . . . , 4. It then follows from a mapping cone construction that
there exists a (non-minimal) free resolution of coker(η̃1) with the Betti table

1 − − − − − −
− − − − 38 20 −
− 32 90 128 60 − 3
− − − − − 6 −

 .
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To obtain the minimal free resolution of coker(η̃1), each possible cancellation, indicated
in bold above, must actually cancel. Therefore, coker(η̃1) has a pure resolution of type
d2 = (0, 3, 4, 5, 6, 8). (See Proposition 3.3.9.)

We set M1 := coker(ψ̃1). By iterating the above argument for M∨
1 (8), we obtain an exact

sequence:
0→ K →M∨

1 (8)→ Q→ 0

where β(K) = 2πd1 and β(Q) = πd2 . We set M2 := Q∨(8). This yields the desired result:
β(M/M1) = πd2 , β(M1/M2) = β(K∨(8)) = 2πd1 , and β(M2) = πd0 .

Remark 3.2.1. The method of this example generalizes to any diagram which is a combination
of πd0 , πd1 and πd2 . Namely, let ∆ = (d0, d1, d2) and let E

E = a0πd0 + a1πd1 + a2πd2

be an integral diagram E ∈ Bint(∆). The above computations show that, if there exists an
M ′ such that β(M ′) = E, then M ′ admits a pure filtration

M ′ = M ′
0 ) M ′

1 ) M ′
2 ) M ′

3 = 0

where β(M ′
i/M

′
i+1) = a2−iπd2−i . In particular, if ai /∈ Z for some i, then this leads to a

contradiction, and thus E /∈ Bmod(∆). For instance, the diagram:

1

2
πd1 +

1

2
πd2 =


1 − − − − −
− 5 8 − − −
− 16 45 56 25 −
− − − − − 2


is not the Betti diagram of any module.

3.3 Obtaining pure filtrations

Throughout this section, we fix a module M of finite length which has first syzygies in
more than one degree. We set (F•, φ•) to be the minimal free resolution of M , and we assume
that β(M) ∈ Bmod(∆) where ∆ = (d0, . . . , ds). Given this notation, d0

1 is the minimal degree
of a first syzygy of M . Hence, we may write

F1 = S(−d0
1)
β

1,d0
1
(M) ⊕ F ′′1 .

We may then decompose the map φ1 as φ1 =
(
ψ1 η1

)
, where ψ1 : S(−f1)

β
1,d0

1
(M) → F0.

Under these conditions, we define:

L(M) := coker(ψ1).
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For instance, if M has presentation matrix:(
x1 x2 x3

1 0 0x5
2

−x2 x3 0 x4
2 x5

3

)
then L(M) has presentation matrix: (

x1 x2

−x2 x3

)
.

We set N := L(M). Our method for obtaining a pure filtration of M relies on three distinct
steps, as outlined in §3.2.

Proof of Step 1: Computing β(N)

We now show that Boij-Söderberg theoretic conditions on M often enable us to com-
pletely determine the Boij-Söderberg decomposition of N = L(M). This is likely the most
technically involved step of our method for obtaining pure filtrations. In most of our appli-
cations, we will apply Corollary 3.3.5.

We recursively define the second degree strand, σ2(D), as follows. We set f0 := d0
0 and

f1 := min{j|j > d0
1, βi,j(D) 6= 0}. Then we define fi := min{j|j > fi−1, βi,j(D) 6= 0}.

Example 3.3.1. With D as below, σ2(D) = (0, 3, 4, 5, 6, 8), as indicated by the strand of
bold numbers.

D =


6 − − − − −
− 60 128 90 32 −
− 32 90 128 60 −
− − − − − 6


The idea behind the definition of the second degree strand is that the diagrams β(M)

and β(N) will coincide above σ2(β(M)). The following proposition makes this idea more
precise.

Proposition 3.3.2. Let β(M) ∈ Bmod(∆) with ∆ = (d0, . . . , ds) and let σ2(β(M)) =
(f0, . . . , fn). If fi > d0

i for i = 1, . . . `, then the top strands of β(M) and β(N) agree in
columns 0, . . . , `.

Proof. We decompose Fi = F ′i ⊕ F ′′i via

F ′i = ⊕j<fi
S(−j)βi,j(M) and F ′′i = ⊕j≥fi

S(−j)βi,j(M).

Our definition of the fi guarantees that the maps F ′i → F ′′i−1 equal zero. This yields a block
decomposition of each φi

φi =

(F ′i F ′′i
F ′i−1 Ai Bi

F ′′i−1 0 Ci

)
.
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With this notation, N = coker(A1). Note that the complex (F ′•, A•) is a summand of the
free resolution of M by definition.

We claim that the complex (F ′•, A•) is also a summand of the free resolution of N . For
F0 and F1 this follows by definition. For F2, observe that any syzygy on the columns of φ1

of degree less than f2 must be a syzygy on the columns of A1, and conversely. It follows
that A2 encodes precisely the syzygies of A1 of degree strictly less than f2. Iterating this
argument yields the claim.

Since fi > d0
i for i = 1, . . . , `, the top strand of β(M) is the same as the top strand of

(F ′•, A•) in columns 0, . . . , `. The same holds for β(N), which completes the proof.

Remark 3.3.3. With notation as in the previous proposition, the natural map N → M in-
duces a morphism of free resolutions which is an isomorphism along the subcomplex (F ′•, A•).

The previous proposition gave us information about the top strand of the free resolution
of N . The following proposition provides further information about the Boij-Söderberg
decomposition of β(N).

Proposition 3.3.4. Let D ∈ BQ(∆) where ∆ = (d0, . . . , ds).

1. For any i, there exists a d` ∈ ∆ such that

0 < βi,d0
i
(πd`) · βi+1,d0

i+1
(D) ≤ βi+1,d0

i+1
(πd`) · βi,d0

i
(D).

2. Assume further that the above inequality holds only if d` = d0 and assume that in this
case, we actually have an equality. Then the first step of the Boij-Söderberg decompo-
sition for D must simultaneously eliminate βi,d0

i
(D) and βi+1,d0

i+1
(D).

Proof. Proof of (1): Since D ∈ BQ(∆), we may write D =
∑
c`d

` uniquely with c` ∈ Q≥0.
We thus may write the ordered pair:(

βi,d0
i
(D), βi+1,d0

i+1
(D)

)
=
∑
`

c`

(
βi,d0

i
(πd`), βi+1,d0

i+1
(πd`)

)
. (3.3.1)

By convexity, at least one of the summands on the right hand side must satisfy the claimed
inequality.

Proof of (2): Our assumption implies that, for every ` 6= 0, we have either

βi,d0
i
(πd`)

βi+1,d0
i+1

(πd`)
>

βi,d0
i
(D)

βi+1,d0
i+1

(D)
.

or the left hand side is 0
0
. Since we assume that the above ratio is an equality when ` = 0,

we see from equation (3.3.1) that c` 6= 0 only if ` = 0 or if
(
βi,d0

i
(πd`), βi+1,d0

i+1
(πd`)

)
= (0, 0).

It follows that D − c0πd0 satisfies(
βi,d0

i
(D − c0πd0), βi+1,d0

i+1
(D − c0πd0)

)
= (0, 0).
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The first step c0πd0 of the Boij-Söderberg decomposition of D thus simultaneously eliminates
the βi,d0

i
and βi+1,d0

i+1
entries of D.

Corollary 3.3.5. Let D ∈ BQ(∆) with ∆ = (d0, . . . , ds). Assume the following:

1. We have the equality
βi,d0

i
(πd0)

βi+1,d0
i+1

(πd0)
=

βi,d0
i
(D)

βi+1,d0
i+1

(D)
.

2. There exists an i such that:

(i) For all ` where d`i = d0
i , we have d`i′ = d0

i′ for all i′ < i.

(ii) For all ` where d`i > d0
i , we have d`i+1 > d0

i+1.

Then the first step of the Boij-Söderberg decomposition of β(N) must simultaneously elimi-
nate βi,d0

i
(D) and βi+1,d0

i+1
(D).

Remark 3.3.6. Condition (2) of Corollary 3.3.5 is often satisfied for a module whose resolution
contains a linear complex in the top strand. For example, if we have

β(M) =


0 1 2 . . . t t+ 1 . . .

∗ − − . . . − − . . .
− ∗ ∗ . . . ∗ − . . .
− ∗ ∗ . . . ∗ ∗ . . .
...

. . .

,
then condition (2) of Corollary 3.3.5 is satisfied for any i = 1, . . . , t− 1.

Proof of Corollary 3.3.5. It suffices to show that we are in the situation of Proposition 3.3.4(2).
To prove the desired inequalities, we analyze the functions which define the entries of the
pure diagrams πd` . Namely, we let bi be the rational function Rn+1 → R where

bi(d0, . . . , dn) =
∏
j 6=i

1

|dj − di|
. (3.3.2)

Let D be the domain where dj+1 > dj for all j. Since the entries of any pure diagram of type
d` are unique up to scalar multiple, equation (1.2.1) implies that

bi(d
`)

bi+1(d`)
=

bi(d
`
0, . . . , d

`
n)

bi+1(d`0, . . . , d
`
n)

=
βi,d`

i
(πd`)

βi+1,d`
i
(πd`)

.
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To illustrate the hypotheses of Proposition 2, we must show that for ` 6= 0, we either

have
(
βi,d0

i
(πd`), βi+1,d0

i+1
(πd`)

)
= (0, 0) or we have

bi(d
`)

bi+1(d`)
>

βi,d0
i
(D)

βi+1,d0
i+1

(D)
=

bi(d
0)

bi+1(d0)
. (3.3.3)

By (ii), we see that βi,d0
i
(πd`) = 0 implies that βi+1,d0

i+1
(πd`) = 0. Hence, we may restrict

attention to the cases where βi,d0
i
(πd`) 6= 0, i.e. where d`i = d0

i .

Now, assumption (i) implies that the degree sequences d` and d0 satisfy d`i′ = d0
i′ for all

i′ ≤ i. Hence, d` is obtained from d0 by increasing various values of d0
j for j > i. If we can

then show that
∂

∂dj

(
bi

bi+1

)
> 0

in D and for all j > i, this will imply the inequality in (3.3.3). Using equation (3.3.2), we
compute directly that

∂

∂dj

(
bi

bi+1

)
=

∂

∂dj

(
dj − di+1

dj − di

)
=

di+1 − di
(dj − di)2

.

The expression on the right is strictly positive inside the domain D, thus completing the
proof.

Proof of Step 2: Splitting N

Many properties of a module M may be computed directly from the Betti diagram β(M)
(e.g. Hilbert polynomial, projective dimension, depth, etc.). We extend all such notions to
arbitrary diagrams D. If D is a diagram whose Hilbert polynomial equals 0, then we say
that D is a finite length diagram.

The key result in this step is the following:

Proposition 3.3.7. Let N be a module generated in a single degree and such that

β(N) = D0 +Dfree

where D0 is a finite length diagram and Dfree is a diagram of projective dimension 0. Then
N ∼= N0 ⊕Nfree with β(N0) = D0 and β(Nfree) = Dfree.

Proof. Set N ′ := H0
m(N) and consider the exact sequence

0→ N ′ → N → N/N ′ → 0.
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If N/N ′ is free, then we have a splitting N ∼= N ′ ⊕ (N/N ′). It would follow that N/N ′ is
a free module with the same Hilbert polynomial as Dfree, so that β(N/N ′) = Dfree. It thus
suffices to show that N/N ′ is free.

By shifting degrees, we may assume that N , and hence N/N ′, is generated entirely in
degree 0. Let Q = k(x1, . . . , xn) and let r be the rank of N/N ′ ⊗S Q. Since a diagram
of finite length has Hilbert polynomial 0, it follows that Dfree, N, and N/N ′ all have the
same Hilbert polynomial as the free module Sr. By choosing generic degree 0 elements
m1, . . . ,mr ∈ N/N ′, we obtain a basis of N/N ′⊗SQ. The submodule L generated by the mi

is a free submodule of N/N ′. We claim that L ∼= N/N ′. Note that the Hilbert polynomial
of L also equals the Hilbert polynomial of the free module Sr, and thus L is a submodule of
N/N ′ with the same Hilbert polynomial. Thus, if the quotient (N/N ′)/L is nonzero, then it
must have finite length. However, since L is free, the exact sequence:

0→ L→ N/N ′ → (N/N ′)/L→ 0

implies that pdim(N/N ′) = pdim((N/N ′)/L) = n when (N/N ′)/L is nonzero. This is a
contradiction, since depth(N/N ′) > 0 by definition.

Proof of Step 3: Lifting to a filtration of M

Recall that σ2(M) = (f0, . . . , fn) is the second degree strand of M .

Lemma 3.3.8. If N splits as N ′ ⊕ N ′′ with N ′′ a free module, then there exists an exact
sequence:

0→ N ′ →M →M ′′ → 0.

Proof. By definition of N , the presentation matrix φ1 of M may be written as φ1 =
(
ψ1 µ1

)
where ψ1 is the presentation matrix of N . Since N has a free summand, we may rewrite ψ1

as a block matrix ψ1 =

(
ψ̃1

0

)
, where ψ̃1 is the presentation matrix of N ′. This enables us

to rewrite φ1 in upper triangular form:

φ1 =

(
ψ̃1 µ̃1

0 η̃1

)
.

Since M is presented by a block triangular matrix, it follows that M is an extension of
coker(ψ̃1) = N ′ and coker(η̃1). By defining M ′′ := coker(η̃1), the statement follows immedi-
ately.

The next proposition is concerned with extending the filtration of Lemma 3.3.8 to a
filtration of the free resolution of M .
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Proposition 3.3.9. Assume that Proposition 3.3.2 and Lemma 3.3.8 hold. Assume further
that βi,j(N

′) = 0 whenever i ≤ n− 1 and j > fi. Then

β(M) = β(N ′) + β(M ′′).

Proof. Let (G•, ψ•) be the minimal free resolution of N ′. Recalling the notation of the proof
of Proposition 3.3.2, we have that (F ′•, A•) is a summand of the minimal free resolutions of
both M and N . Since N ∼= N ′⊕N ′′ with N ′′ free, the minimal free resolutions of N and N ′

differ only in homological degree 0. The complex (F ′•, A•) thus induces a summand of the
free resolution of N ′ as well. Namely, we obtain a complex (G′•, A

′
•), which is a summand of

(G•, ψ•), and where

G′i
∼=

{
F ′i i > 0

G0 i = 0

and the maps A′i are the natural induced maps. Thus (G′•, A
′
•) is a summand of the free

resolutions of both N ′ and M . Further, as in Remark 3.3.3, the morphism N ′ →M induces
an isomorphism along the subcomplex (G′•, A

′
•).

We write each Gi
∼= G′i ⊕ G′′i for some free module G′′i . Following the notation from

Proposition 3.3.2, we have Fi ∼= G′i⊕F ′′i for all i > 0. We redefine F ′′0 so that F0
∼= G′0⊕F ′′0 .

The mapping cone on the complexes (G•, ψ•) → (F•, φ•) via the map induced by N ′ → M
thus yields a (non-minimal) free resolution of M ′′. Since this map induces an isomorphism
along G′•, we see that, in fact, the induced mapping cone of

((G•, ψ•)/(G
′
•, A

′
•)))
∼= (G′′•, ψ

′′
•)→ (F ′′• , φ

′′
•)
∼= ((F•, φ•)/(G

′
•, A

′
•)) (3.3.4)

also yields a (non-minimal) free resolution of M ′′. If we let (H ′′• , π•) be the minimal free
resolution of M ′′, then this minimal free resolution of M ′′ may be obtained by minimizing
the mapping cone free resolution obtained from (3.3.4)

We claim that H ′′i is a summand of F ′′i for all i, and we proceed by induction. The
beginning of the mapping cone free resolution is given by

G′′0
⊕
F ′′1

→ F ′′0 .

However, since G0
∼= G′0, it follows that G′′0 = 0. This yields the cases i = 0 and i = 1.

For the inductive case, we assume that H ′′i is a summnad of F ′′i . Consider the mapping
cone resolution:

G′′i
⊕
F ′′i+1

→
G′′i−1

⊕
F ′′i

.

By the inudction hypothesis, H ′′i is a summand of F ′′i , which implies that H ′′i is generated
in degree ≥ fi. Since βi,j(N

′) = 0 for j > fi, this implies that G′′i is generated in degree
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≤ fi. Thus, G′′i must also cancel when passing from the mapping cone resolution of M ′′ to
the minimal free resolution of M ′′. This implies that H ′′i+1 is a summand of F ′′i+1, as desired,
thus proving the claim.

Since H ′′i is a summand of F ′′i for all i = 0, . . . , n, this implies that, for i = 0, . . . , n− 1,
G′′i must have totally cancelled in the process of minimizing the mapping cone resolution.
Further, G′′n must also have cancelled in the minimzation process, since the projective di-
mension of M ′′ is n. Using β(−) for the Betti diagram of a (possibly non-minimal) free
resolution, we have thus shown that

β(M ′′) := β(H ′′• ) = β(F ′′• )− β(G′′•)

= (β(F•)− β(G′•))− (β(G•)− β(G′•))

= β(F•)− β(G•)

= β(M)− β(N ′).

Remark 3.3.10. Although our main goal in Proposition 3.3.9 is to produce pure filrations,
there are many cases where the hypotheses of Proposition 3.3.9 are satisfied but where neither
N ′ nor M ′′ have pure resolutions. See Example 3.7.1.

3.4 Application 1: Further Pathologies of the semi-

group of Betti diagrams

Let us reconsider the example from Remark 3.2.1. Let ∆ = (d0, d1, d2) where d0 =
(0, 2, 3, 4, 5, 8), d1 = (0, 2, 3, 5, 6, 8), and d2 = (0, 3, 4, 5, 6, 8). We may parametrize the inte-
gral diagrams E ∈ Bint(∆) by

E =
b0

2
πd0 +

b1

2
πd0 +

b2

2
πd2

where b0 + b1 + b2 ≡ 0 mod 2. (See [Erm09a, pp. 347–9] for details on computing this
parametrization.) Our work in §3.2 implies that any β(M) ∈ Bmod(∆) admits a pure filtra-
tion, which would imply that each bi is divisible by 2. Thus, in some sense, only half of the
elements of Bint(∆) correspond to Betti diagrams of modules.

Proposition 1.4.2 states that, in fact, there are rays where far less than half of the integral
diagrams correspond to Betti diagrams of modules. Further, the proof will show that such
pathologies already arise in codimension 3.

Proof of Proposition 1.4.2. Let S = k[x1, x2, x3] and let p ≥ 5 prime. Set d0 = (0, 1, 2, p), d1 =
(0, bp/2c, dp/2e, p) and d2 = (0, p−2, p−1, p), and set ∆ = (d0, d1, d2). Consider the diagram

D =
1

p
πd0 +

α

p
πd1 +

1

p
πd2
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where α is any positive integer such α + 1 +
(
p−1

2

)
≡ 0 mod p. We claim that D ∈ Bint(∆)

but that cD ∈ Bmod(∆) if and only if c is divisible by p.
We first check the integrality of D. Observe that each Betti number of πd0 is divisible

by p except for the 0’th Betti number; each Betti number of πd2 is divisible by p except for
the 3’rd Betti number; and the Betti numbers of πd1 are (1, p, p, 1). Hence, we only need to
check that β0,0(D) and β3,p(D) are integral. We compute

β0,0(D) =
1

p
β0,0(πd0) +

α

p
β0,0(πd1) +

1

p
β0,0(πd2) =

1

p
+
α

p
+

(
p−1

2

)
p

.

Our assumption on α then implies that β0,0(D) is integral. A symmetric computation works
for β3,p(D).

We next prove that cD ∈ Bmod(∆) only if p divides c by showing that any M such that
β(M) = cD admits a pure filtration. To obtain this pure filtration, consider N := L(M).
Since N satisfies the conditions of Proposition 3.3.2, it follows that N has the same top
strand as M in columns 0, 1 and 2. Then, since N satisfies the conditions of Corollary 3.3.5
with i = 1, the first step of the Boij-Söderberg decomposition of N is given by c

p
πd0 . Since

β(N) − c
p
πd0 has no nonzero entries in column 1, it follows that β(N) − c

p
πd0 must have

projective dimension 0. Applying Proposition 3.3.7, Lemma 3.3.8, and Proposition 3.3.9, we
obtain a short exact sequence:

0→ N ′ →M →M ′′ → 0

where β(N ′) = c
p
πd0 . We could continue by applying a similar argument to M ′′– thus

obtaining a pure filtration of M– but we have already shown that cD ∈ Bmod(∆) only if p
divides c. Namely, since β(N ′) = c

p
πd0 , it follows that c must be divisible by p.

Finally, we show that cD ∈ Bmod(∆) if c divides p. This is because πdi ∈ Bmod(∆) for all
i. In particular, πd2 = β(R) where R := S/(x1, x2, x3)p−2, and πd0 = β(R∨(p)). To see that
πd1 ∈ Bmod(∆), let A be a p× p skew-symmetric matrix of generic linear forms. By [BE77],
the principal Pfaffians of A define an ideal I ⊆ S such that β(S/I) = πd1 .

This completes the proof when p ≥ 5. For the cases p = 2 (respectively 3), we may
choose the diagram D = 1

2
π(0,1,2,4) + 1

2
π(0,2,3,4) (respectively D = 1

3
π(0,1,2,5) + 2

3
π(0,3,4,5)) and

apply similar arguments as above.

3.5 Application 2: Very singular spaces of matrices

Let S = k[x1, . . . , xn] and fix some e > 1. Fix d0 := (0, e, e + 1, . . . , e + n − 1) and let
d1 := (0, 1, . . . , n−1, e+n−1). Let R := S/(x1, . . . , xn)e, ωR := R∨, and ω̃R := ωR(e+n−1).
Note that β(R) = πd1 and β(ω̃R) = πd0 .
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Let M be any module such that β(M) ∈ Bmod(∆) where ∆ = (d0, d1). Then β(M) has
the shape

β(M) =


∗ ∗ . . . ∗ −
− − . . . − −
...

...
− − . . . − −
− ∗ . . . ∗ ∗

 .

Proposition 3.5.1. With notation as above, M admits a pure splitting. Namely, if β(M) =
c0πd0 + c1πd1, then M ∼= ω̃c0R ⊕Rc1.

Proof. To obtain the pure filtration, we first define N := L(M) (see §3.3). Since N satisfies
the conditions of Proposition 3.3.2, it follows that N has the same top strand as M in columns
0, 1, . . . , n − 1. Further, since N satisfies the conditions of Corollary 3.3.5 with i = n − 2,
we see that the first step of the Boij-Söderberg decomposition of N is given by c0πd0 . Now,
since β(M)− c0πd0 has no nonzero entries in column 1, it follows that β(M)− c0πd0 equals
the Betti diagram of the free module Sc1 . Applying Proposition 3.3.7 and Proposition 3.3.9,
we then obtain a short exact sequence:

0→ N ′ →M →M ′′ → 0

where β(N ′) = c0πd0 and β(M ′′) = c1πd1 . Every such N ′ is isomorphic to ω̃c0R and every such
M ′′ is isomorphic to Rc1 . Our exact sequence is thus

0→ ω̃c0R →M → Rc1 → 0.

Considering the above sequence as a sequence of R-modules, we obtain a splitting of M .
This lifts to a splitting of M as S-modules, and thus we obtain our pure splitting of M .

We next apply Proposition 3.5.1 to classify certain vector spaces of matrices. We define
an n-dimensional space of a × b matrices to be a vector space V of a × b matrices over a
field k, with basis V1, . . . , Vn. We say that two spaces of matrices V and W are isomorphic
if there exists a linear change of coordinates of the source and target of V , and a change of
basis of V , such that Vi = Wi for all i.

We may use V to define a graded finite length S-module M(V ) of regularity one as
follows. As a graded vector space, we set

M(V )i :=


ka if i = 0

kb if i = 1

0 if i /∈ {0, 1}
.

To give M(V ) a module structure, we must only define the action of xj on M(V )0 for each
j, and we let xj : M(V )0 →M(V )1 be given by the matrix Vj. If V and W are two spaces
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of matrices, then M(V ) ∼= M(W ) if and only if V ∼= W . Note also that every graded module
N which satisfies Ni = 0 for i /∈ {0, 1} may be written as N = M(V ) for some space of
matrices V .

Definition 3.5.2. Let V be an n-dimensional space of a× b matrices. We say that V is very
singular if the Betti diagram of M(V ) only involves the pure summands π(0,1,...,n−1,n), π(0,1,...,n−1,n+1),
π(0,2,3,...,n+1) and π(1,2,...,n+1).

Corollary 3.5.3. Up to isomorphism, there are only finitely many n-dimensional very sin-
gular spaces of a× b matrices for any a, b, and n. The isomorphism classes of these spaces
are parametrized by non-negative integral solutions (c0, c1, c2, c3) to the system of equations:{

c0 + nc1 + c2 = a

c1 + nc2 + c3 = b
.

Proof. We will show that if V is very singular, then M(V ) admits a pure splitting. We write:

β (M(V )) = c0π(0,1,...,n−1,n) + c1π(0,1,...,n−1,n+1) + c2π(0,2,3,...,n+1) + c3π(1,2,...,n+1). (3.5.1)

If β(M(V )) involves any generator e of degree 1, then since M(V )2 = 0, we have xje = 0 for
all xj. It follows that we can split off precisely c3 summands of k(−1) from M(V ). Applying
a similar argument to M(V )∨, we may split off c0 copies of k from M(V ) whenever M(V )
has a socle element in degree 0. We may thus write M(V ) ∼= kc0 ⊕N ⊕ k(−1)c3 where

β(N) = c1π(0,1,...,n−1,n+1) + c2π(0,2,3,...,n+1).

By setting R := S/(x1, . . . , xn)2 and applying Proposition 3.5.1 to N , we then obtain that:

M(V ) ∼= kc0 ⊕ ω̃c1R ⊕R
c2 ⊕ k(−1)c3 .

Thus, every n-dimensional space of very singular a × b matrices is classified, up to isomor-
phism, by its splitting type as above.

The Hilbert function of M(V ) is (a, b), and thus the Betti diagram of M(V ) has the
form: (

a ∗ . . . ∗ ∗
∗ ∗ . . . ∗ b

)
.

Combining this fact with equation (3.5.1) yields the desired parametrization.

Remark 3.5.4. The κ-vector is an invariant of a vector space of matrices introduced in [EV09]
that provides a generalized notion of rank for a vector space of matrices. The κ-vector of V
encodes the same information as the Betti diagram of M(V ), and thus the κ-vector may be
used to explicitly determine whether a space of matrices is very singular. For instance, let
V = 〈V1, V2, V3〉 be a 3-dimensional vector space of d × d matrices which contains a matrix
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of full rank. Then V is very singular if and only if κ1(V ) = 3
2
d, where κ1(V ) is the rank of

3d× 3d block matrix:  0 V1 −V2

−V1 0 V3

V2 −V3 0

 .

3.6 Application 3: Computing generators of the semi-

group of Betti diagrams

In this section, we compute all minimal generators of Bmod(∆) in a situation where
Bint(∆) 6= Bmod(∆). This provides the first detailed and nontrivial example of the generators
of Bmod(∆). Further, this computation illustrates that the techniques introduced in §3.3 can
be extended to more situations, but at the cost of wrestling with integrality conditions and
precise numerics.

Throughout this section, we set d0 = (0, 1, 2, 3), d1 = (0, 1, 2, 4), d2 = (0, 1, 3, 4), d3 =

(0, 2, 3, 4) and d4 = (1, 2, 3, 4) and we let ∆̃ = (d0, d1, d2, d3, d4). Our goal is to compute the

minimal generators of Bmod(∆̃). If β(M) ∈ Bmod(∆), then β(M) has the shape:

β(M) =

(
β0,0 β1,1 β2,2 β3,3

β0,1 β1,2 β2,3 β3,4

)
.

However, if β3,3(M) (or β0,1(M)) is nonzero, then a copy of the residue field k (or k(−1))
splits from M . It is therefore equivalent to restrict to the case where β3,3 = β0,1 = 0 and to
compute the generators for Bmod(∆) where ∆ = (d1, d2, d3). The result of this computation
is summarized in the following proposition.

Proposition 3.6.1. The semigroup Bmod(∆) has 10 minimal generators. These consist of
the following ten Betti diagrams:(

3 8 6 −
− − − 1

)
,

(
1 − − −
− 6 8 3

)
,

(
1 2 1 −
− 1 2 1

)
,

(
1 1 − −
− 3 5 2

)
,

(
2 5 3 −
− − 1 1

)
,

(
2 4 1 −
− 1 4 2

)
,

(
2 7 3 −
− − 3 2

)
,

(
2 3 − −
− 3 7 3

)
,

(
2 4 − −
− − 4 2

)(
3 6 − −
− − 6 3

)
.

Before proving this proposition, we introduce some simplifying notation. Every element
of Bint(∆) can be represented as:

D =
r

6
π(0,1,2,4) +

s

6
π(0,1,3,4) +

t

6
π(0,2,3,4)

with (r, s, t) ∈ Z3
≥0 (c.f. [Erm09a, pp. 347–9].) However, an arbitrary (r, s, t) ∈ Z3

≥0 will
not induce an element of Bint(∆). The necessary and sufficient conditions to obtain such an
integral point are:
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cπ(0,1,2,4)

cπ(0,2,3,4)

cπ(0,1,3,4)

The region s < 5 The region s ≥ 5

Figure 3.1: Proposition 3.6.1 can be illustrated by considering a slice of the cone BQ(∆)
where r + s+ t = c for some c� 0. In the region where s < 5, roughly half of the points of
Bint belong to Bmod. In the region where s ≥ 5, every point of Bint belongs to Bmod.

• r + s ≡ 0 mod 3

• r + t ≡ 0 mod 3

• r + s+ t ≡ 0 mod 2.

For the rest of this section, we use triplets (r, s, t) to refer to diagrams in Bint(∆), and we
only consider triplets (r, s, t) that satisfy the above congruency conditions. In this nota-
tion, Proposition 3.6.1 amounts to the claim that the following ten (r, s, t) triplets are the
generators of Bmod:

(6, 0, 0), (0, 0, 6), (1, 2, 1), (3, 3, 0), (0, 3, 3),
(1, 8, 1), (3, 9, 0), (0, 9, 3), (0, 12, 0), (0, 18, 0).

Proof of Proposition 3.6.1. We first note that each of the ten diagrams listed in Proposi-
tion 3.6.1 is the Betti diagram of an actual module. When β0,0 = 1 or β3,4 = 1, such
examples are straightforward to construct. Next, we have

β

(
coker

(
x y y + z 0 z2

0 z x y 0

))
=

(
2 4 1 −
− 1 4 2

)
.

Let L be any 2× 3 matrix of linear forms whose columns satisfy no linear syzygies, and let
N := coker(L). Then

β(N/m2N) =

(
2 3 − −
− 3 7 3

)
The Betti diagram of (N/m2N)

∨
then yields the dual diagram. Finally, examples corre-

sponding to (0, 12, 0) and (0, 18, 0) are given in [Erm09a, Proof of Thm. 1.6(1)].
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We must now show that every diagram in Bmod(∆) may be written as a sum of our ten
generators. We proceed by analyzing cases based on the different possible values of s in our
(r, s, t) representation of diagrams.

The case s = 0

Based on Proposition 3.5.1, we conclude that (r, 0, t) corresponds to an element of
Bmod(∆) if and only if both r and t are divisible by 6.

The case s = 1

There are two families of triplets (r, 1, t) satisfying the congruency conditions. The first
family is parametrized by (2 + 6γ, 1, 5 + 6α) for some γ, α ∈ Z≥0, and the second family
is parametrized by (5 + 6γ, 1, 2 + 6α). To prove that none of these diagrams belongs to
Bmod(∆), it suffices (by symmetry under M 7→M∨) to rule out the first family.

We thus assume, for contradiction, that there exists M such that β(M) corresponds to
the triplet (2+6γ, 1, 5+6α) for some α, γ ∈ Z≥0. We apply Proposition 3.3.2 to N := L(M)
and obtain

β(N) =


2 + α + 3γ 3 + 8γ 2 + 6γ −
− − β2,3(N) β3,4(N)
− − β2,4(N) β3,5(N)

− − ...
...

 .

To produce the Boij-Söderberg decomposition, we begin by subtracting c1πd1 for some c1 ≥ 0.
If c1 < γ, then β(N)−c1πd1 would violate Proposition 3.3.4(1). Hence, we must have c1 ≥ γ.

If now c1 = γ, then Proposition 3.3.4(2) applied to β(N)−γπd1 would imply that the next
step of the Boij-Söderberg decomposition must be 1

5
π(0,1,2,5). This would leave nothing left

in column 1, and thus β(N)− γπd1 − 1
5
π(0,1,2,5) would be a diagram of projective dimension

0. But this would contradict the integrality of β(N), since it would imply that β3,5(N) = 1
5
.

The final possibility is that c1 > γ, in which case c1 must equal 1
3

+ γ. After subtracting
(1

3
+ γ)πd1 , we are left with:

β(N)−
(

1

3
+ γ

)
π(d1) =

1 + α 1
3

− −
− − β2,3(N) β3,4(N)− (1

3
+ γ)

− − ...
...

 .

Since β3,4(N)− (1
3

+ γ) is nonzero (it is not an integer), the next step of the Boij-Söderberg
decomposition must eliminate this entry. This means that the next step of the decomposition
must be 1

6
πd2 . However, this would leave a 0 in column 1 and a nonzero entry in column 2,

which is impossible.



52

The case s = 2

There are two families of triplets (r, 2, t) satisfying the congruency conditions. The first
family has the form (1 + 6γ, 2, 1 + 6α) and the second family has the form (4 + 6γ, 2, 4 + 6α),
where γ, α ∈ Z≥0. Every element of the first family is a sum of our proposed generators,
so we must show that no element of the second family belongs to Bmod(∆). We obtain a
contradiction by essentially the same analysis as in the case s = 1.

The case s = 4

There are two families of triplets (r, 4, t) satisfying the congruency conditions, namely
2(+6γ, 4, 2 + 6α) and (5 + 6γ, 4, 5 + 6α). Since every element of the first family is a sum
of our proposed generators, we must show that no element of the second family belongs to
Bmod(∆). A similar, though more involved, analysis as in the case s = 1 then illustrates that
there are no such diagrams.

The cases s = 3, 5, 6

We claim that if D ∈ Bint(∆) corresponds to an (r, s, t)-triplet where s = 3, 5, or 6, then
D ∈ Bmod(∆), with the exception of (0, 6, 0). There are six families to consider in total:
(3 + 6γ, 3, 6α), (6γ, 3, 3 + 6α), (4 + 6γ, 5, 1 + 6α), (1 + 6γ, 5, 4 + 6α), (3 + 6γ, 6, 3 + 6α), and
(6γ, 6, 6α). Any element from any of these families may be written as a sum of our proposed
generators, except for (0, 6, 0). The diagram corrresponding to (0, 6, 0) does not belong to
Bmod by [Erm09a, Proof of Thm. 1.6(1)].

The cases s > 6

One may directly check that all elements of Bint(∆) with s > 6 can be written as an
integral sum of the proposed generators.

3.7 Nonexistence of pure filtrations

Since the Boij-Söderberg decomposition of a module may involve non-integral coefficients,
it is clear that there exist many graded modules which do not admit pure filtrations. For
instance, let n = 2, R = k[x, y]/(x, y)2, and M = k[x, y]/(x, y2). Then:

β(M) =

(
1 1 −
− 1 1

)
=

1

3
β(R) +

1

3
β(ωR(4)).

Clearly M cannot admit a pure filtration; however, we might hope that M⊕3 admits such a
filtration. Unfortunately, this is not the case either [SW09, Ex. 4.5].
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M

M ′

M ′′

π(0,2,3,4,5,8)

2π(0,2,3,5,6,8)

π(0,3,4,5,6,8)

π(0,3,4,6,7,8)

Figure 3.2: A diagram of the “branched” pure filtration from Example 3.7.1.

There does, however, exist a flat deformation M ′ of M⊕3 such that M ′ admits a pure
filtration:

0→ R→M ′ → ωR(4)→ 0.

Namely, we may set M ′ = (S/(x, y2))⊕(S/(x2, y))⊕(S/(x+ y, (x2 − 2y + y2)). This suggests
a more subtle possible affirmative answer to our Question 1.4.1.

Another possibility is the existence of “branched” pure filtrations.

Example 3.7.1. Let E := π(0,2,3,4,5,8)+2π(0,2,3,5,6,8)+π(0,3,4,5,6,8)+π(0,3,4,6,7,8). Note that this is
the diagram D from §3.2 plus an extra π(0,3,4,6,7,8). Let M be a module such that β(M) = E.
Running exactly the same argument as in §3.2, we obtain a filtration

0→M ′ →M →M ′′ → 0

where β(M ′) = π(0,2,3,4,5,8) + 2π(0,2,3,5,6,8) and β(M ′′) = π(0,3,4,5,6,8) + π(0,3,4,6,7,8). Both M ′ and
M ′′ admit pure filtrations. This example is illustrated in Figure 3.2. It would be interesting
to know whether the pure filtrations of M ′ and M ′′ lift to a pure filtration of M .
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Chapter 4

A special case of the
Buchsbaum-Eisenbud-Horrocks Rank
Conjecture

4.1 Overview

The main result of this chapter is Theorem 1.5.2, where we prove a special case of the
Buchsbaum-Eisenbud-Horrocks Rank Conjecture about the minimal size of a graded free
resolution. Our proof is based on Boij-Söderberg theory (namely, Corollary 1.2.4) together
with a detailed analysis of the numerics of pure diagrams. The results of this chapter
originally appeared in [Erm09b].

This chapter is organized as follows. In §4.2, we investigate the numerics of pure diagrams.
This analysis of pure diagrams is the foundation for the proof of Theorem 1.5.2, which appears
in §4.3. In §4.4, we consider applications of Theorem 1.5.2 to geometric examples.

4.2 Ranks of pure diagrams

We now investigate the numerics of normalized pure diagrams. For a degree sequence
d, recall the definition of the normalized pure diagram of type d, denoted πd, from Defini-
tion 2.6.1. We have that πd is the unique pure diagram of type d such that β0,d0(πd) = 1.
The diagram πd may have non-integral entries. For instance

π(0, 1, 2, 4) =

(
1 8

3
2 −

− − − 1
3

)
.

Further, Definition 2.6.1 provides precise formulas for the Betti numbers of πd. We will study
the numerics of these Betti numbers, but restrict attention to the pure diagrams that satisfy
the condition of Theorem 1.5.2.
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We introduce auxiliary functions to simplify the notation. For e = (e1, . . . , es) ∈ Rs, we
define linear functions, Ti, Ui,j, and Vi,j from Rs to R by the following formulas:

Ti(e) := i+ e1 + e2 + · · ·+ ei, for i = 1, . . . , s

Ui,j(e) := (j − i+ 1) + ei + ei+1 + . . . ej, whenever i < j

Vi,j(e) := (i− j) + ej+1 + · · ·+ ei, whenever i > j

Let d : Rs → Rs+1 be the linear map:

dj(e) =

{
0 for j = 0

j +
∑j

i=0 ei, for j = 1, . . . , s.

Note that e ∈ Zs
≥0 if and only if d(e) is a degree sequence with first entry equal to 0.

We define the rational function bj : Rs → R by:

bj(e) :=

(∏s
i=1,i 6=j Ti

)
(∏j−1

i=2 Ui,j

)(∏s
i=j+1 Vi,j

) (4.2.1)

for j = 1, . . . , s. The rational function bj has no poles on Rs
≥0. The purpose of these

definitions is summarized in the following lemma:

Lemma 4.2.1. Let e ∈ Zs
≥0. Then we have:

bj(e) = βj
(
πd(e)

)
Proof. For any degree sequence d of length s, a result of [HK84] can be used to give the
explicit formulas

βj (πd) =
∏

1≤i≤s

i 6=j

|di − d0|
|di − dj|

(c.f. [BS08a, Defn 2.3]). Now let d = d (e) and fix some i 6= j. Observe that |di − d0| = Ti;
further, |di − dj| = Ui,j if i < j and |di − dj| = Vi,j if i > j. This proves the lemma.

Lemma 4.2.2. On the domain e ∈ Rs
≥0, we have ∂

∂e1
bj ≥ 0.

Proof. Consider the expression for bj given in (4.2.1), and observe that the denominator is

not a function of e1. Hence it is sufficient to show that ∂
∂e1

(∏s
i=1,i 6=j Ti

)
≥ 0 when e ∈ Rs

≥0,

and this is immediately verified.

Lemma 4.2.3. Let e ∈ Rs
≥0 and fix some j, k ∈ {1, . . . , s}.



56

1. If k < j then

(
∂

∂ej
− ∂

∂ek

)
bj ≤ 0.

2. If k > j + 1 then

(
∂

∂ej+1

− ∂

∂ek

)
bj ≤ 0.

Proof. Throughout this proof, we restrict all functions to the domain e ∈ Rs
≥0. It is sufficient

to prove the statements for log bj. We may write:

log bj =
∑
1≤i≤s

i 6=j

log Ti −
j−1∑
i=1

logUi,j −
s∑

i=j+1

log Vi,j. (4.2.2)

To prove part (1) of the lemma, we assume that k < j and we fix some i ∈ {1, . . . , s} where
i 6= j. Observe that(

∂

∂ej
− ∂

∂ek

)
log Ti =

(
∂

∂ej
− ∂

∂ek

)
log(i+ e1 + e2 + · · ·+ ei) ≤ 0

with equality if and only if i < k or i > j. Similarly, if i ∈ {1, . . . , j − 1}, then(
∂

∂ej
− ∂

∂ek

)
logUi,j =

(
∂

∂ej
− ∂

∂ek

)
log(j − i+ 1 + ei + ei+1 + · · ·+ ej) ≥ 0

with equality if and only if k < i. Since k < j, we also have that(
∂

∂ej
− ∂

∂ek

)
log Vi,j =

(
∂

∂ej
− ∂

∂ek

)
log(i− j + ej+1 + · · ·+ ei) = 0

for all i ∈ {j + 1, . . . , s}. By combining equation (4.2.2) with the results of these three
computations, we conclude that ( ∂

∂ej
− ∂

∂ek
)(log bj) ≤ 0 as desired.

To prove part (2) of the lemma, we now assume that k > j + 1 and we fix some

i ∈ {1, . . . , s} with i 6= j. Observe first that
(

∂
∂ej+1

− ∂
∂ek

)
logUi,j = 0 for all i; second,

that if i < j + 1 or i ≥ k then
(

∂
∂ej+1

− ∂
∂ek

)
log Ti = 0; and third, that if i ≥ k then(

∂
∂ej+1

− ∂
∂ek

)
log Vi,j = 0. It remains to show that

(
∂

∂ej+1

− ∂

∂ek

) k−1∑
i=j+1

log Ti − log Vi,j ≤ 0.

This follows from the computation:
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(
∂

∂ej+1

− ∂

∂ek

) k−1∑
i=j+1

log Ti − log Vi,j =
k−1∑
i=j+1

1

i+ e1 + · · ·+ ei
− 1

i− j + ej+1 + · · ·+ ei

=
(i− j + ej+1 + · · ·+ ei)− (i+ e1 + · · ·+ ei)

(i+ e1 + · · ·+ ei) (i− j + ej+1 + · · ·+ ei)

=
−j − e1 − · · · − ej

(i+ e1 + · · ·+ ei) (j − i+ ej+1 + · · ·+ ei)
< 0

which completes the proof.

Lemma 4.2.4. Let e ∈ Rs
≥0 with e1 ≥

∑s
j=1 ej. Then

bj(e) ≥
(
s

j

)
.

Proof. By Lemma 4.2.2, it is sufficient to prove the lemma in the case e1 =
∑n

i=2 ei. Fur-
thermore, by Lemma 4.2.3, we may assume that ei = 0 for i /∈ {1, j, j + 1}.

Assume for the moment that j /∈ {1, s} and let ẽ = (e1, ej, ej+1). Under these assumptions
we may write bj as a function of ẽ. Our goal is to show that bj(ẽ) ≥

(
s
j

)
given the constraint

e1 = ej + ej+1 and the domain ẽ ∈ R3
≥0.

We introduce a new variable t and write ej = te1 and ej+1 = (1− t)e1. Under this change
of coordinates, our constrained minimization problem is now equivalent to minimizing the
function:

cj :=
(1 + e1)(2 + e1) · · · (j − 1 + e1) · (j + 1 + 2e1) · · · (n+ 2e1)

(j − 1 + te1) · · · (1 + te1)(1 + (1− t)e1) · · · ((n− j) + (1− t)e1)

over the domain (t, e1) ∈ [0, 1]× [0,∞).
We claim that the minimum of log cj on the domain [0, 1] × [0,∞) occurs when e1 = 0.

The partial derivative
∂ log cj

∂e1
is the sum of the following 4 functions:

• f1 :=
1

1 + e1

+ · · ·+ 1

j − 1 + e1

• f2 :=
2

j + 1 + 2e1

+ · · ·+ 2

n+ 2e1

• f3 := − t

1 + te1

− · · · − t

j − 1 + te1

• f4 := − 1− t
1 + (1− t)e1

− · · · − 1− t
(n− j) + (1− t)e1
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We observe first that:

−f1 − f3 =

j−1∑
i=1

−1

i+ e1

+
t

i+ te1

=

j−1∑
i=1

−(i+ te1) + t(i+ e1)

(i+ e1)(i+ te1)

=

j−1∑
i=1

(−1 + t)i

(i+ e1)(i+ te1)
.

Hence −f1 − f3 ≤ 0 whenever (t, e1) ∈ [0, 1]× [0,∞). We next observe that:

−f2 − f4 =
n∑

i=j+1

−2

i+ 2e1

+
1− t

i+ (1− t)e1

=
n∑

i=j+1

(−2i− 2(1− t)e1) + ((1− t)i+ 2(1− t)e1)

(i+ 2e1)(i+ (1− t)e1)

=
n∑

i=j+1

−i− it
(i+ 2e1)(i+ (1− t)e1)

.

Hence −f2− f4 ≤ 0 whenever (t, e1) ∈ [0, 1]× [0,∞). Combining these two observations, we
have that:

−∂ log cj

∂e1

= −f1 − f2 − f3 − f4 ≤ 0

on the domain [0, 1]× [0,∞). A minimum of the function log cj on the domain [0, 1]× [0,∞)
thus occurs when e1 = 0, and it follows that the same statement holds for the function cj.
Direct computation yields that cj(t, 0) =

(
s
j

)
, which completes the proof when j /∈ {1, s}.

If j = 1, then we may still apply Lemma 4.2.3 and reduce to the case that ei = 0 for
i 6= 1. Then we have:

b1(e1) =
(2 + e1)(3 + e1) · · · (s+ e1)

(s− 1)!

which is at least than
(
s
1

)
whenever e1 ≥ 0. If j = s, we reduce to the case that es = e1 and

we have:

bs(e1, es) =
(1 + e1) · · · (s− 1 + e1)

(s− 1)!

which is at least
(
s
s

)
whenever e1 ≥ 0.

Corollary 4.2.5. Let d ∈ Zs+1 such that d0 ≤ 0 and such that ds − s ≤ 2d1 − 2. Then:

βj(πd) ≥
(
s

j

)
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Proof. Let e = (e1, . . . , es) where ei = di − di−1 − 1, so that d(e) = d. Since ds = d0 + s +∑s
i=1 ei and d1 = d0 + e1 + 1, we have that:

s∑
i=2

ei = (ds − s)− d0 − e1 ≤ (2d1 − 2)− d0 − e1 = d1 − 1 ≤ e1.

The corollary now follows from Lemmas 4.2.1 and 4.2.4.

4.3 Proof of Theorem 1.5.2

We now prove our main result.

Proof of Theorem 1.5.2. By Corollary 1.2.4, we may write the Betti diagram of M as a
positive rational sum of pure diagrams:

β(M) =
t∑
i=0

ciπdi (4.3.1)

By linearity, it is sufficient to show that:

βj(πd) ≥
(
c

j

)
(4.3.2)

for every pure diagram appearing with nonzero coefficient in (4.3.1) and for every j ∈
{1, . . . , c}. Let d = (d0, . . . , dt) be a degree sequence corresponding to such a pure diagram,
and let e = (e1, . . . , et) defined by ei := di− di−1− 1. By Hilbert polynomial considerations,
we see that t ≥ c. Since πd appears with positive coefficient in equation (4.3.1), it must
contribute to the Betti diagram β(M). It follows that d0 ≤ 0 and that

dt − t ≤ reg(M) ≤ 2d1(M)− 2 ≤ 2d1 − 2.

Hence d satisfies the hypotheses of Corollary 4.2.5, and βj(πd) ≥
(
t
j

)
. Since t ≥ c, it follows

that
(
t
j

)
≥
(
c
j

)
, and we obtain inequality (4.3.2).

Remark 4.3.1. With more care, one could show that equality in Theorem 1.5.2 may only
occur in cases where codim(M) ≤ 2 or where there exists m ∈ N such that M ∼= km as a
graded S-module.
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4.4 Examples

In this section, we consider several applications of Theorem 1.5.2, and we remark on the
necessity of the hypothesis that reg(M) ≤ 2d1(M)− 2.

Example 4.4.1. Let V ⊆ Sc be any vector space of forms of degree c with c > 1, and let
I ⊆ S be the ideal V + mc+1. Then S/I satisfies the hypotheses of Theorem 1.5.2. More
generally, if c′ ≤ 2c − 1 and J is the ideal generated by V + mc′, then S/J satisfies the
hypotheses of Theorem 1.5.2.

Example 4.4.2 (Curves of High Degree). Let C ⊆ Pn−1 be a smooth curve of genus embedded
by a complete linear system of degree at least 2g + 1. Let IC ⊆ k[x1, . . . , xn] be the ideal
defining C. Then reg(S/IC) ≤ 2 by [Eis05, Corollary 8.2], and hence S/IC satisifes the
hypotheses of Theorem 1.5.2.

Example 4.4.3 (Toric Surfaces). Let X ⊆ Pn be a toric surface embedded by a complete
linear system |A|. Let IX ⊆ S = k[x0, . . . , xn] be the defining ideal of X. We claim that
S/IX satisfies the hypotheses of Theorem 1.5.2, and hence that βi(S/IX) ≥

(
n−2
i

)
. Since IX

has no generators in degree 1, we must show that reg(S/IX) ≤ 2. It is equivalent to show

that the sheaf IX := ĨX is 3-regular [Eis05, Prop 4.16].
We first check that H1(Pn, IX(2)) = 0. Since X is a toric surface and A is an am-

ple divisor, the corresponding lattice polygon has at least 3 lattice points on its boundary.
From [Sch04, Cor 2.1], we see that X satisfies condition N0, and hence that X is projectively
normal. The surjectivity of the map

H0(Pn,OPn(2))→ H0(X,OX(2))

then implies that H1(Pn, IX(2)) = 0.
Next, we check that H2(Pn, IX(1)) = 0. This follows from the exact sequence:

H1(X,OX(1))→ H2(Pn, IX(1))→ H2(Pn,OPn(1))

and the fact that higher cohomology of ample line bundles vanishes on toric varieties. It
now follows that IX is 3-regular, which implies that S/IX satisfies the hypotheses of Theo-
rem 1.5.2.

Example 4.4.4. Let I be any ideal with minimal degree generator in degree d1 and maximal
degree generator in degree d1. Assume that d1(I) < 2d1(I). Then

reg(S/I t) ≤ td1 + b

for some b and for all t ≥ 1 [CHT99, Thm 1.1(i)]. Since d1(I) < 2d1(I), it follows that,
for all t � 0, td1(I) + b < 2td1(I) − 2. Hence, for all t � 0, the module S/I t satisfies the
hyoptheses of Theorem 1.5.2.
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The method of proof for Theorem 1.5.2 breaks down if one removes the hypothesis that
reg(M) ≤ 2d1(M)− 2. One issue is that the statement:

βj(M) ≥ β0(M)

(
codim(M)

j

)
is not true in general. For example, if S = k[x, y] and N is the cokernel of a generic 2 × 3
matrix of linear forms, then

β1(N) = 3 < 4 = β0(N)

(
codim(N)

1

)
.

There also exist pure diagrams with integral entries which do not satisfy the graded BEH
rank conjecture. For instance, the diagram:

π(0, 1, 2, 3, 5, 6) =

(
1 9

2
15
2

5 − −
− − − − 3

2
1
2

)
does not satisfy any version of Conjecture 1.5.1.
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Chapter 5

Asymptotic Betti numbers

5.1 Overview

The purpose of this brief chapter is to illustrate a technique for applying Boij-Söderberg
theory to obtain numerical information about free resolutions. Our main result is an asymp-
totic lower bound for the Betti numbers of S/I t in the case where I is a graded ideal generated
in a single degree. The basic idea behind our technique was developed in Chapter 4: if we
can bound the shape of the Betti diagram of a graded module M , then, by studying pure
diagrams of the relevant shape, we can obtain numerical information about β(M).

To illustrate this technique, we focus on a case where we can obtain meaningful bounds
on the shape of β(M). Namely, we let I be an ideal generated in a single degree δ, and we
consider β(S/I t) for t � 0. The bounds on the shape of β(S/I t) are derived from [TW05,
Thm 3.2] and [Kod00, Cor 3], which imply that reg(I t) = δt + b for t� 0 and some b ∈ N.
Since I t is generated in degree δt, β(S/I t) thus has the following shape:

β(S/I t) =



0 1 2 . . . p

0 1 − − . . . −
1 − − − . . . −

...
...

...
...

...
...

δt− 2 − − − . . . −
δt− 1 − ∗ ∗ . . . ∗
δt − − ∗ . . . ∗

...
...

...
...

...
...

δt+ b− 2 − − ∗ . . . ∗
δt+ b− 1 − − ∗ . . . ∗



.
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As in Chapter 4, we then consider pure diagrams which fit into this shape, and we use
optimization techniques to provide lower bounds for the Betti numbers of S/I t. In particular,
we show that, for all j ∈ {1, . . . , c}, the function βj(S/I

t) is bounded below by a function of
order tc−1. The main result of this chapter originally appeared in [Erm09b].

5.2 Proof of asymptotic formula

Let I be an ideal generated in a single degree δ. The regularity of I t becomes a linear
function reg(I t) = δt + b for t � 0 (c.f. [TW05, Thm 3.2], [Kod00, Cor 3]). We define b to
be the asymptotic regularity defect of I. The following theorem gives lower bounds for the
Betti numbers of S/I t.

Theorem 5.2.1. Let I be an ideal of codimension c generated in a single degree δ and with
asymptotic regularity defect b. We have the following lower bound on the Betti numbers of
S/I t:

βj(S/I
t) ≥ (b!)2δc−1

(j − 1 + b)!(c− j + b)!
tc−1 +O(tc−2)

for all j = 1, . . . , c and for all t� 0.

Proof. By Corollary 1.2.4 we may write β(S/I t) as a sum of pure diagrams as in equa-
tion (4.3.1). Let d = (d0, . . . , ds) be some degree sequence such that πd appears with nonzero
coefficient in this sum. The equality codim(I t) = codim(I) = c, implies that s ≥ c. Let
e = (e1, . . . , es) defined by ei = di − di−1 − 1. Since I t is generated in degree tδ, we have
e1 = tδ. Let t� 0 so that reg(S/I t) = tδ + b. Since reg(S/I t) = dp(S/I

t)− p we have that∑s
i=2 ei ≤ b.
It is sufficient to prove the lower bound for the Betti numbers of the pure diagram πd.

In fact, it is sufficient to prove the lower bound for the functions bj(e) under the constraints
e1 = tδ and

∑s
i=2 ei ≤ b. Let j ∈ {1, . . . , c}. By Lemma 4.2.3, we may assume that ei = 0

unless i ∈ {1, j, j + 1}. Hence we reduce to the case that ej + ej+1 ≤ b. We now seek to
compute bj.

bj(e) =
(1 + tδ)(2 + tδ) · · · (j − 1 + tδ)(j + 1 + tδ + b) · · · (s+ tδ + b)

(j − 1 + ej) · · · (1 + ej)(1 + ej+1) · · · (s− j + ej+1)

Note that ej and ej+1 only appear in the denominator, and both are positive numbers less
than b. Hence setting ej = ej+1 = b only decreases the right-hand side. This yields:

bj(e) ≥ (1 + tδ)(2 + tδ) · · · (j − 1 + tδ)(j + 1 + tδ + b) · · · (s+ tδ + b)

(j − 1 + b) · · · (1 + b)(1 + b) · · · (s− j + b)
(5.2.1)

Since s ≥ c we may rewrite the right-hand side of (5.2.1) as(
(1 + tδ)(2 + tδ) · · · (j − 1 + tδ)(j + 1 + tδ + b) · · · (c+ tδ + b)

(1 + b) · · · (j − 1 + b)(1 + b) · · · (c− j + b)

)(s−c∏
i=1

(c+ i+ tδ + b)

(c+ i− j + b)

)
.
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Each term of the product on the right is greater than 1, so by deleting this product and
substituting back into (5.2.1), we obtain the inequality:

bj(e) ≥ (1 + tδ)(2 + tδ) · · · (j − 1 + tδ)(j + 1 + tδ + b) · · · (c+ tδ + b)

(1 + b) · · · (j − 1 + b)(1 + b) · · · (c− j + b)

=
(b!)2δc−1

(j − 1 + b)!(c− j + b)!
tc−1 +O(tc−2).

This completes the proof.

Example 5.2.2. Let I = 〈x6, y6, z6, x3y3 + y3z3 + z3x3〉 ⊆ Q[x, y, z]. The asymptotic regu-
larity defect equals 7, and the codimension of I is 3. We thus obtain the following quadratic
bound for β3(S/I t):

β3(S/I t) ≥ (7!)262

(9)!(7)!
t2 +O(tc−2) =

9

14
t2 +O(t).

Computation in [GS] for t ≤ 10 yields that β3(S/I t) = 2t2−2t+2; since 9
14
< 2, this confirms

our lower bound.
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