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ABSTRACT OF THE DISSERTATION

Combinatorics of Crystal Folding

by

John Michael Dusel

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, August 2015

Dr Jacob Greenstein, Chairperson

We study the structure of a Kashiwara crystal of simply-laced Cartan type C under an automorphism

σ, via a process known as folding. We define the category of σ-foldable crystals, which is a monoidal

category and admits a monoidal functor into the category of C σ∨-crystals. Various properties of a

foldable crystal—normality, Weyl group action, etc.—can be transferred to its quotient modulo the

σ-action. On the other hand, the quotient of a foldable highest-weight crystal contains a new type

of crystal, which we call multi-highest-weight.

We consider multi-highest-weight crystals B obtained as foldings of Kashiwara Littelmann

crystals B(λ). The structure of the highest-weight set of B is explained by certain subsets of the

Weyl group we call the balanced parabolic quotients; in many cases the latter parameterizes a

generating set for the highest-weight elements. A balanced parabolic quotient relates the branching

rules, Demazure crystals, and σ-action on B(λ), and is enumerated by a forest graph with self-similar

components.
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Introduction

Some of the most celebrated means of passing from the algebraic subject of representation

theory into the domain of combinatorics are Kashiwara’s theory of crystals [Kas90a,Kas90b,Kas91,

Kas93], and Lusztig’s theory of canonical bases [Lus90a, Lus93]. Independently introduced in the

early 1990s, these theories were shown by Lusztig to coincide whenever the crystal base and canonical

base are both defined [Lus90b]. Crystals are combinatorial analogues of a Lie algebra (or more

generally, a Kac-Moody algebra), its associated quantum group, and their representations, which

are important for a wide variety of research programs in mathematics and physics. This dissertation

is a study of the structure of a crystal under an automorphism σ, via a process known as folding.

Folding allows us to use a portion of a crystal for one type of Lie algebra to study the structure of

another, and has applications to the fixed-point resolution problem in conformal field theory [FSS96].

This dissertation establishes foundational results on the structure of a crystal modulo the

action of the automorphism σ, with a focus on the crystal B(∞) associated to a quantum group

of simply-laced type. Remarkably, the quotient of B(∞) by the σ-action contains a new type of

multiply-laced crystal, which we call multi-highest-weight. This crystal parameterizes a basis of

a natural subalgebra of the quantum group, and is related to the representation theory of certain

foldings of the latter [BG11]. A principal goal of this dissertation is to understand the structure of

this crystal, with a view towards providing a representation-theoretic interpretation.

Owing to their representation-theoretic origin, crystals are primarily studied via their al-

gebraic counterparts; however, little is known about the algebraic objects to which a multi-highest-

weight crystal corresponds. In this dissertation we invert that paradigm by using a purely combina-

torial approach to ‘reverse engineer’ results.
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Foldable crystals

Crystal graphs

The essential combinatorial datum for our purposes is a symmetric matrix A = (aij)i,j∈I

such that aii = 2 and aij ∈ {−1, 0} if i 6= j. That is to say, A is the Cartan matrix of a Kac-Moody

Lie algebra g(A) of simply-laced type. An A-crystal graph B is a countable digraph with I-colored

edges such that

1. Removing all edges, except those with a particular label, results in a disjoint union of linear

graphs.

2. There is a weight function wt : B → Z⊕I with the property that wt(b)−wt(b′) = i if b
i−→ b′.

This function is monotonic on each linear graph from (1).

The dependency of this construction on A comes from the pairing 〈·, ·〉 : Z⊕I ⊗Z Z⊕I → Z given by

extending 〈i, j〉 := aij . Note that this definition, taken from [Jos09], is equivalent to the original

definitions of Kashiwara and Lusztig (see section 1.3).

As an example we consider the matrix A3 =


2 −1 0

−1 2 −1

0 −1 2

, which is the Cartan matrix

of the Lie algebra g(A3) = sl4(C) of traceless 4× 4 matrices with complex entries. Figure 0.1 shows

a crystal graph associated to this matrix; more precisely this is the crystal graph of the simple

finite-dimensional sl4(C) module of highest weight $1 +$3.

• 3 // • 3 // • 2
((•

2 66

3
((

• 1
((•

1 66

3 ((
• 2 // • 2 // •

3 66

1 ((
•

• 1

66

2 ((
• 3

66

•
1
// •

1
// • 2

66

Figure 0.1: An A3-crystal graph

Foldability

In the folding situation we consider permutations σ of I satisfying σ[A] = A, with the

additional technical requirement that aij = 0 whenever i, j belong to the same σ-orbit. Note that σ

2



acts on Z⊕I by permuting its free generators, and 〈i, j〉 = 〈σ(i), σ(j)〉. Such permutations are called

admissible automorphisms of C , after Lusztig [Lus93].

In section 4.1 we introduce the category of σ-foldable crystal graphs with σ-foldable crystal

morphisms (that is, digraph homomorphisms commuting with the σ-action). Roughly speaking,

these are the crystal graphs B equipped with an action σ : B → B that is compatible with the

grading and satisfies

• b i−→ b′ if and only if σ(b)
σ(i)−→ σ(b′)

• If i, j ∈ I belong to the same σ-orbit and b has outgoing edges labeled i and j, then there is a

diamond as shown:

• j
((b

i 66

j
((

•
• i

66

It turns out that this category inherits several desirable properties from the category of A-crystals,

in particular we have the following.

Theorem (Theorem 4.3.1). The set of σ-foldable A-crystals is a tensor category.

In type A3 we have σ = (1, 3), and the crystal graph shown in Figure 0.1 is (1, 3)-foldable

(along the horizontal axis of symmetry). The foldability of a crystal graph B ensures that the set

Bσ of σ-orbits in B is also a crystal graph, but for a different matrix: the Langlands dual folded

matrix (see section 2.2 for more details.).

Theorem (Theorem 4.2.6). Let A be the Cartan matrix of a simply-laced semisimple Lie algebra g

with automorphism σ. Suppose B is a σ-foldable A-crystal, and let B̂σ denote the set of all b ∈ B

with σ-invariant weight. Then the collection Bσ := B̂σ/σ of σ-orbits has an Aσ∨-crystal graph

structure, where Aσ∨ is the Langlands dual folded matrix.

Highest-weight and multi-highest-weight crystals

An important family of crystal graphs are the so-called highest weight crystals. This type

of crystal graph is central to the representation theory of the quantum group Uq(A), in that the

most important category of modules (integrable weight modules, also known as the category Ointq ) is

semisimple, and the simples admit highest-weight crystal graphs (see p.5). This means simply that
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B is connected and contains a unique element with no incoming edges, called the highest-weight

element. The crystal graph shown in Figure 0.1 is highest-weight.

Suppose B is a highest-weight crystal with highest-weight element b. An admissible auto-

morphism σ operates on B, and the latter is σ-stable if and only if σ(wt(b)) = wt(b). When applied

to a highest-weight crystal, the folding procedure yields a crystal which is ‘multi-highest-weight’ in

the following sense.

Theorem (Theorem 4.4.9). Let B be a highest-weight crystal. The subset of σ-invariant elements

in B is a highest-weight subcrystal of Bσ, and each of the remaining connected components of Bσ is

generated by a set of highest-weight elements.

An example is shown in Figure 0.2. Theorem 4.4.9 motivates several natural questions

about the graph structure of Bσ, which are described next.

•
1��

•
2 ��

•
1

��
2

��
•

3

��
1

��

•
2

��

•
1

��
3

��
•

2

��
1

��

•
3

��

•
2

��
3

��

•
1

��
2
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•

1 ��

•
2 ��

•
3 ��

•
2 ��

•
1 ��

•
1 ��

•
2 ��

•
3 ��

•
2 ��

•
1 ��

•
2

��

•
1

��
3

��

•
2
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•
3
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1
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•
2

��
•

3

��

•
1

��
2

��

•
1

��

•
3

��
•

2

��

•
1

��

•
2 ��

•
1��

•

•

Figure 0.2: A multi-highest-weight crystal graph

The set of highest-weight elements is known to be σ-stable (section 4.4), and in a precise

sense contains most of the structure of Bσ.

Problem 1. Characterize the highest-weight elements of Bσ.
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The multi-highest-weight crystals have not appeared in the literature, thus:

Problem 2. Describe the isoclasses of the connected components of Bσ.

Problem 2 is related to an open problem in crystal graph theory. There are conditions, due

to Joseph [Jos95, 6.4.21] and Stembridge [Ste03, Propositions 1.3, 1.4], under which a highest-weight

crystal is a crystal graph of a Uq(A)-module. To the best of the author’s knowledge every known

example of a highest-weight crystal graph is the crystal graph of a Uq(A)-module, yet there seems to

be no proof of the contrary in the literature. Under certain conditions Bσ contains highest-weight

subcrystals which are truncations of multi-highest-weight graphs in a precise sense; these are natural

candidates for examples of highest-weight crystal graphs not arising from highest weight integrable

modules for the folded type (or any other type). Thus far all such graphs we have considered are

in fact isomorphic to crystal graphs of Uq(A)-modules; it remains to be seen whether this is true in

general.

The connectedness of Bσ determines a decomposition of its corresponding quantum group

representation. Towards the long-term goal of classifying this representation, we have considered

the following.

Problem 3. Find necessary and sufficient conditions for two highest-weight elements of Bσ to lie

in the same component. Determine the number of highest-weight elements contained in a given

component.

Problem 4. Determine the number of connected components in Bσ.

Problem 5. Determine the number of highest weight elements of Bσ of a given weight.

Representation theory and the crystal B(∞)

Crystal bases

The quantum group Uq(A) is a can be viewed as a deformation of g(A), according to the

quantum parameter q. Kashiwara used the q → 0 limit, called crystallization, to construct the

crystal graph B(V ) of a simple finite-dimensional Uq(A)-module V ; the actions of the Chevalley

generators of Uq(A) on V induce operators ei, fi (i ∈ I) on B(V ) that satisfy certain properties

[Kas91]. Declaring b
i−→ b′ if and only if fib = b′ gives B(V ) a crystal graph structure, with a

5



grading by the weight lattice of A. A crystal graph of a certain Uq(A3)-module is shown in Figure

0.1. The collection of all B(V ), with V a simple finite-dimensional Uq(A)-module, is a directed set.

The limit of this set, denoted B(∞), is a highest-weight crystal with highest weight vector b∞. This

crystal has a striking property: it parameterizes a basis of an algebra U , and a basis of every simple

U -module V is obtained by multiplying a particular v ∈ V by the elements of B(∞), discarding

those that became zero.

Theorem (Theorem 5.2.1). The crystal B(∞) associated to a quantum group Uq(A) of simply-laced

type under the automorphism σ is foldable.

It follows from this result and the tensor category structure that each B(V ) with σ(V ) = V

is also foldable. This dissertation is primarily concerned with the structure of B(∞)σ, in that this

crystal is naturally related to the folding of quantum groups [BG11].

Balanced parabolic quotients

Let W denote the Weyl group of g. A subset J ⊂ I determines a parabolic quotient

JW ⊂W , which is the set of minimal-length coset representatives in WJ\W , where WJ is the J-th

parabolic subgroup. Stembridge [Ste96] showed that, for certain J , the reduced decomposition of

w ∈ JW is unique up to an exchange of commuting simple reflections (such elements are called

fully commutative). The balanced parabolic quotient is the subset JWσ of all w ∈ JW such that the

number of occurrences of si and sσ(i) in a reduced expression for w are equal.

The highest-weight set of B(∞)σ can be understood in terms of the balanced parabolic

quotient. Given a reduced expression si1 · · · si` of w ∈ W , the Demazure crystal Bw(∞) ⊂ B(∞)

coincides with the set of all fk`i` · · · f
k1
i1
b∞ with kj ≥ 0. These subsets give a combinatorial filtration

of B(∞), and parameterize bases of the Demazure modules of Uq(A). In particular, when W is finite

the subset Bw◦(λ) corresponding to the longest element coincides with B(λ). A Demazure crystal is

a combinatorial analogue of a Demazure module for an extremal vector in a simple finite-dimensional

g-module of highest-weight λ.

Theorem (Theorem 5.3.1). A Demazure crystal Bw(∞) contains a (representative of a) highest-

weight element of B(∞)σ if and only if w ∈ JWσ.

That is, this result indicates the location of highest-weight elements in the Demazure

filtration of B(∞), and exhibits them on the level of the monoid generated by the fi. On the level

6



of g-modules, a balanced quotient describes the interaction between the branching rule for a Levi

subalgebra, Demazure modules, and the σ-action on weight spaces in a σ-stable simple module.

Note that although our results are applicable to representation theory, our methods use only the

combinatorial properties of the Kashiwara-Littelmann crystals along with the Kashiwara ? operation

[Kas93].

Foldings of quantum groups

The permutation σ induces an automorphism of negative (or positive) half U−q (A) of the

quantum group, and the subalgebra U−q (A)σ of σ-invariants is properly contained in the subalgebra

U−q (A)σ spanned by elements of σ-invariant weight. This subalgebra has a crystal basis, namely

B(∞)σ, but its representation theory has never been studied. The combinatorial properties of

B(∞)σ provide insight into the structure of this algebra and its modules. As is the case for U−q (A),

a representation of U−q (A)σ admits a decomposition into irreducibles, and the latter are in one-

to-one correspondence with the connected components of B̂(∞)σ, viewed as a subgraph of B(∞).

Characterizing these irreducible representations using B̂(∞)σ is different from Problems 3 and 4:

some—but not all—components of the former are σ-stable, and this information is lost when passing

to B(∞)σ.

In section 5.5 we handle type A3, and show that B(∞)σ is isomorphic to the direct sum of

countably many copies of the B2-crystal B(∞). From this it follows that Uq(A3)σ ∼= Uq(B2)⊕N. On

the other hand, the subset Vσ ⊂ V spanned by weight-invariant vectors is a U−q (A)σ-module, and

decomposes into a direct sum of simple Uq(B2)-modules.

In type D4 the algebra U−q (A)σ is isomorphic to the direct sum of U−q (C3) and an uniden-

tified quantum algebra, and Vσ has a direct summand that is simple and multi-highest-weight. The

crystal graph shown in Figure is one such example. The quotient B(∞)σ of the limiting crystal

contains a component with infinitely many highest-weight elements (section 5.4).

Geometry and polyhedral combinatorics

We apply methods from convex geometry and polyhedral combinatorics to Problems 3 and

4. We can identify the elements of B(∞) with the lattice points of a certain polyhedral convex

cone Σ in a finite-dimensional vector space [Kas93, NZ97]. This cone’s semigroup and geometric

7



structures allow one to treat the highest-weight elements of B(∞)σ as an abelian semigroup. In

fact, something much stronger is true.

Theorem (section 5.3.2). The abelian semigroup HW Σσ of highest-weight elements of Σσ admits

a unique finite ⊂-minimal generating set H. The balanced parabolic quotient identifies with a subset

of H.

This result reduces Problem 1 to describing a finite subset of B(∞)σ, and leads to the

following conjectural answer to Problem 3, known to be true in many special cases.

Conjecture. The set H is parameterized by the balanced parabolic quotient. Two elements of H lie

in the same component if and only if their corresponding elements lie in the same component of the

normal form forest of the balanced parabolic quotient.

Each generator x ∈ H lies on a face Fx ⊂ Σ, and the set of all such faces is partially

ordered by inclusion. Based on a wealth of computational evidence the following conjecture is made.

Conjecture. The Hasse diagram of {Fx |x ∈ H} under inclusion is isomorphic to the normal form

forest of the balanced parabolic quotient.

These conjectures would indicate that the geometric, algebraic, and graph-theoretic struc-

tures of HW Σσ are related to one another via the balanced parabolic quotients.

8



Chapter 1

Preliminaries

This chapter contains a summary of the background material needed in the sequel. In sec-

tion 1.2 we introduce symmetrizable Cartan data. A symmetrizable Cartan datum is the fundamen-

tal combinatorial ingredient in the definition of essentially every object appearing in this work (root

systems, Weyl groups, Lie algebras, quantized enveloping algebras, and crystals). Section 1.3 begins

with Kashiwara’s definition of the category of crystals associated with a symmetrizable Cartan da-

tum. After presenting some basic examples that will appear in the sequel, we review highest-weight

crystals and Kashiwara’s tensor product operation. Section 1.4 covers the Kashiwara-Littelmann

family of crystals, which are the focus of Chapter 5. Finally, we review two aspects of these crystals

that are essential for our main results: the branching rule for parabolic subdata and the notion

of a Demazure crystal. Section 1.5 is devoted to the polyhedral crystal of Kashiwara-Nakashima-

Zelevinsky, which is our main computational tool.

1.1 Monoidal categories and monoidal functors

Following MacLane [ML98], a monoidal (tensor) category C = (C,�,1, α, λ, %) comprises a

category C, a bifunctor � : C × C → C, an identity object 1 ∈ C, and three natural isomorphisms

α, λ, %. Explicitly,

α = αX,Y,Z : (X � Y )� Z ∼= X � (Y � Z) (1.1.1)

9



is natural for all objects X,Y, Z in C, and the following pentagonal diagram

(X � (Y � Z))�W
αX,Y�Z,W

**
((X � Y )� Z)�W

αX,Y,Z�1W
44

αX�Y,Z,W

��

X � ((Y � Z)�W )

1X�αY,Z,W
��

(X � Y )� (Z �W )
αX,Y,Z�W

// X � (Y � (Z �W ))

(1.1.2)

commutes for all objects X,Y, Z,W in C. (This axiom guarantees that an n-fold tensor product is

well-defined and independent—up to a canonical natural isomorphism—of the order of the tensor

factors.) The natural isomorphisms λ, % satisfy

λX : 1�X ∼= X, %X : X � 1 ∼= X, λ1 = %1 : 1� 1 ∼= 1 (1.1.3)

and the triangular diagram

(X � 1)� Y
αX,e,Y //

%�1Y

��

X � (1� Y )

1X�λY
��

X � Y X � Y

(1.1.4)

commutes for all objects X,Y in C .

A monoidal (tensor) functor (F, F2, F0) : C → C′ between monoidal categories C and C′

consists of the following

1. A functor F : C → C′ between categories

2. For objects X,Y in C a morphism

F2(X,Y ) : F (X)� F (Y )→ F (X � Y ) (1.1.5)

in C′ which is natural in X and Y .

3. For the units 1,1′, a morphism in C′

F0 : 1′ → F (1). (1.1.6)

10



Together, these must make the following three diagrams in C′ commute

(F (X)� F (Y ))� F (Z)
α′F (X),F (Y ),F (Z) //

F2(X,Y )�1Z

��

F (X)� (F (Y )� F (Z))

1X�F2(Y,Z)

��
F (X � Y )� F (Z)

F2(X�Y,Z)

��

F (X)� F (Y � Z)

F2(X,Y�Z)

��
F ((X � Y )� Z)

F (αX,Y,Z)
// F (X � (Y � Z))

(1.1.7)

F (X)� 1′
%′F (X) //

1F (X)�F0

��

F (X)

F (X)� F (1)
F2(X,1)

// F (X � 1)

F (%)

OO
1′ � F (X)

λ′F (X) //

F0�1F (X)

��

F (X)

F (1)� F (X)
F2(1,X)

// F (1�X)

F (λ)

OO
(1.1.8)

1.2 Cartan data

Let I be a finite set, and A = (aij)i,j∈I be an integral matrix such that aii = 2, aij ≤ 0

and aij = 0 if and only if aji = 0. Select a vector d of r positive integers such that (diaij)i,j∈I is

symmetric. Such a matrix is referred to as a symmetrizable generalized Cartan matrix.

Let Λ∨ be a free abelian group of rank 2|I| − rank(A) with Z-basis {α∨i | i ∈ I} ∪ {tk | 1 ≤

k ≤ |I| − rank(A)}, and let h = C ⊗Z Λ∨. We call Λ∨ the dual weight lattice and h the Cartan

subalgebra. Define the weight lattice to be Λ = {λ ∈ h∗ |λ(Λ∨) ⊂ Z}. Let 〈·, ·〉 : Λ∨ ⊗Z Λ → Z

denote the evaluation pairing; note that this extends to a bilinear pairing h∗ ⊗C h→ C.

Set Π∨ = {α∨i | i ∈ I} and choose a linearly independent subset Π = {αi | i ∈ I} ⊂ h∗,

called the set of simple roots, satisfying

〈α∨i , αj〉 = aij , 〈tk, αj〉 ∈ {0, 1}.

When working with the symmetrized version of A, declare 〈α∨i , αj〉 = diaij instead. The span

Q :=
⊕

i∈I Zαi ⊂ Λ of Π is called the root lattice. Finally, we define the fundamental weights

$i ∈ h∗ (i ∈ I) to be the linear functionals on h given by

〈α∨i , $j〉 = δij , 〈ti, $j〉 = 0.

The sextuple C = (A,d,Λ∨,Λ,Π∨,Π) is called a symmetrizable Cartan datum. This is the

combinatorial datum on which the crystal theory is based, it is an abstraction of the datum of a root
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system from the Lie theory. Our level of generality corresponds to the symmetrizable Kac-Moody

Lie algebras (see below).

1.2.1 Weyl groups

The Weyl group is a Coxeter group, generated by the set {si | i ∈ I} of simple reflections

modulo the relations

(sisj)
mij = 1, where mij =



1 i = j

2 aij = 0

3 aijaji = 1

4 aijaji = 2

6 aijaji = 3

(1.2.1)

and acts on Λ via

siλ := λ− 〈α∨i , λ〉αi. (1.2.2)

An expression w = si1 · · · sit is reduced when t takes its minimal value amongst all possible expres-

sions for w as products of simple reflections, and the tuple (i1, · · · , it) ∈ It is called a reduced word

for 2. The length of w is `(w) := t, and the set of all reduced words for w is denoted R(w).

Recall that the Bruhat order is the transitive closure of the relation u < usi, where `(usi) =

`(u) + 1.

A subset J ( I determines a subdatum CJ ⊂ C with simple roots ΠJ := {αj | j ∈ J},

weight lattice ΛJ :=
∑
j∈J Z$j , root system ΦJ = Φ∩ZΠJ and Weyl group WJ := 〈sj | j ∈ J〉. The

latter is called the Jth parabolic subgroup of W . As before, we have a decomposition ΦJ = Φ+
J tΦ−J ,

where Φ±J := Φ± ∩ ΦJ . It is well-known (see, e.g., [Jos95, A.1.19]) that

W J := {w ∈W |wΠJ ⊂ Φ+} (1.2.3)

coincides with the set of minimal-length left coset representatives for W/WJ . The image JW of

W J under the antiautomorphism of W defined by w 7→ w−1 is the set of minimal-length right coset

representatives for WJ\W . The sets JW,W J are known as parabolic quotients of W modulo J .
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1.2.2 Kac-Moody Lie algebras

Let C be a Cartan datum. The Kac-Moody Lie algebra g(C ) is the Lie algebra generated

by the elements xi, yi, hi (i ∈ I) modulo the defining relations

[hi, hj ] = 0

[xi, yi] = hi, [xi, yj ] = 0 if i 6= j

[hi, xj ] = aijxj , [hi, yj ] = −aijyj

(ad xi)
1−aijxj = 0

(ad yi)
1−aijyj = 0

1.2.3 Root systems

Let g = g(C ) be the Kac-Moody Lie algebra associated with C . For each α ∈ Q let

gα = {x ∈ g | [hi, x] = α(hi)x for all i}.

Then we have the root space decomposition

g =
⊕
α∈Q

gα, with dim gα <∞ for all α ∈ Q.

If α 6= 0, gα 6= 0, then α is called a root of g. The dimension of gα is called the root multiplicity of

α; it is well-known that when C is of finite type—in other words, when A has full rank—all root

multiplicities equal 1.

The set of all roots of g is denoted Φ, and called the root system. The choice of simple roots

Π = {αi | i ∈ I} determines a decomposition Φ = Φ+tΦ− of the root system into subsets of positive

and negative roots. To express β ∈ Φ in terms of the simple roots, we write β =
∑
i∈I β(i)αi.

The root system of a simply-laced Cartan datum C is of finite type admits a simple com-

binatorial description: Π ⊂ Φ, and given α, β ∈ Φ we have α + β ∈ Φ if and only if 〈α∨, β〉 = −1,

where
(∑

i∈I niαi
)∨

=
∑
i∈I niα

∨
i . In fact, in the sequel we will only need to use root systems of

these types.
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1.3 Abstract crystals

Let C be a symmetrizable Cartan datum. This section recalls the relevant definitions, ex-

amples, and results about C -crystals needed in the sequel. Unless specified otherwise, all definitions,

examples, and results in this section are due to Kashiwara.

Definition 1.3.1. A C -crystal is a set B equipped with structural maps wt : B → Λ and εi : B →

Z t {−∞} and operators ei, fi : B t {0} → B t {0} for i ∈ I. Adjoined to B is a special ghost

element 0, for which we declare ei0 = fi0 = 0. The structural maps and operators obey the following

axioms: for all b, b′ ∈ B

1. b′ = fib if and only if eib
′ = b

2. If eib 6= 0 then

(a) wt(eib) = wt(b) + αi

(b) εi(eib) = εi(b)− 1

3. If fib 6= 0 then

(a) wt(fib) = wt(b)− αi

(b) εi(fib) = εi(f) + 1

4. εi(b) = −∞ implies eib = fib = 0

A C -crystal is graded by Λ, and we write

B =
⊔
µ∈Λ

Bµ, Bµ := wt−1(µ). (1.3.1)

The subset Bµ is called the µ-weight-subset of B.

Denote by F , respectively E , the monoids generated by all fi, respectively ei with i ∈ I.

The monoid generated by all operators fi, ei is denoted A. Given a sequence i = (i1, . . . , in) ∈ In,

we denote x(i) := xi1 · · ·xin for x ∈ {e, f}.

Let GB be the colored digraph having as vertices the elements of B. An arrow b
i−→ b′ of

color i exists if and only if fib = b′ (or, equivalently, eib
′ = b). This is the crystal graph of B. From

this perspective a C -crystal morphism is (essentially) a morphism of directed graphs GB → GB′

that commutes with wt, εi.
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Definition 1.3.2. A C -crystal morphism is a function ψ : B t {0} → B′ t {0} such that ψ(0) = 0

and, for all i ∈ I and all b ∈ B such that ψ(b) 6= 0

1. (a) wt ◦ ψ(b) = wt(b)

(b) εi ◦ ψ(b) = εi(b)

2. For x ∈ {e, f}, if xib 6= 0 and ψ(xib)ne0 then ψ(xib) = xiψ(b).

A morphism is strict if it commutes with the action of A. An embedding is a morphism with injective

underlying function.

The identity 1B is a C -crystal morphism, the composite of two C -crystal morphisms is

again a C -crystal morphism, and composition of C -crystal morphisms is associative. Thus we have

a category.

Definition 1.3.3. The category of C -crystals with C -crystal morphisms is denoted Crys(C ).

Example 1.3.4. Fix i ∈ I. The ith elementary crystal Ci has underlying set

Ci := {ci(n) |n ∈ Z} (1.3.2)

and C -crystal structure

wt(ci(n)) := nαi (1.3.3)

εj(ci(n)) :=

−n, j = i

−∞, j 6= i
(1.3.4)

ejci(n) :=

ci(n+ 1), j = i

0, j 6= i
(1.3.5)

fjci(n) :=

ci(n− 1), j = i

0, j 6= i
(1.3.6)

Example 1.3.5. Tλ is the singleton crystal Tλ = {tλ} with wt(tλ) = λ and εi(tλ) = −∞ for all i.

Example 1.3.6 ([Jos95]). Sλ is the singleton crystal Sλ = {sλ} with wt(sλ) = λ and εi(sλ) = −〈λ, α∨i 〉

and eisλ = fisλ = 0.
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Definition 1.3.7. An element b ∈ B of a C -crystal is called a highest-weight element in case that

ei(b) = 0 for all i. The set of highest-weight elements of B is denoted HW B. Following [Jos95], we

refer to a C -crystal B as a highest-weight crystal of highest weight λ ∈ Λ when

1. There exists a highest-weight element b ∈ B such that wt(b) = λ.

2. B = Fb, which is to say that B is generated as a crystal by b over the monoid F .

From εi and wt an auxiliary structural map is defined by

ϕi(b) := εi(b) + 〈α∨i ,wt(b)〉. (1.3.7)

Definition 1.3.8. A C -crystal B is upper normal if

εi(b) = max{k ≥ 0 | eki b 6= 0} for all b ∈ B. (1.3.8)

On the other hand, B is lower normal when

ϕi(b) = max{k ≥ 0 | fki b 6= 0} for all b ∈ B. (1.3.9)

A C -crystal satisfying (1.3.8) and (1.3.9) is said to be normal.

Definition 1.3.9. The direct sum B ⊕B′ of two crystals is the crystal with underlying set B tB′

and the natural structure: if b ∈ B tB′ is an element of B, respectively B′, then we use the crystal

structure of B, respectively B′ to determine εi(b),wt(b), fib, eib.

Observe that (1) G(B⊕B′) = GB⊕GB′ (direct sum of graphs), and (2) for any morphism

ψ : B → B′ we have B = ψ−1B ⊕ ψ−10.

In the direct sum construction B and B′ identify with subcrystals of B⊕B′, and inclusion

B,B′ ↪→ B ⊕ B′ is a strict embedding. Conversely, if there exists a strict embedding ψ : B → B′

then ψB is a subcrystal of B′ that is isomorphic to B and B′ = ψ[B]⊕ (B′rψ[B]). In the language

of crystal graphs that conclusion means Gψ[B] is a component of GB′.
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1.3.1 Tensor products

Let B,B′ be C -crystals. The underlying set of B ⊗ B′ is the Cartesian product B × B′

with b⊗ b′ := (b, b′) and 0⊗ b′ := 0 =: b⊗ 0. The structural maps are defined by

wt(b⊗ b′) := wt(b) + wt(b′) (1.3.10)

εi(b⊗ b′) := max{εi(b), εi(b′)− 〈α∨i ,wt(b)〉} (1.3.11)

and the operators by

fi(b⊗ b′) :=

fib⊗ b′ if ϕi(b) > εi(b
′)

b⊗ fib′ if ϕi(b) ≤ εi(b′)
(1.3.12)

ei(b⊗ b′) :=

eib⊗ b′ if ϕi(b) ≥ εi(b′)

b⊗ eib′ if ϕi(b) < εi(b
′).

(1.3.13)

Kashiwara considered the monoidal category structure of Crys(C ) in [Kas93, Kas95]. It

was shown in the latter paper that for any C -crystals B,B′, B′′ there is an isomorphism

αB,B′,B′′ : (B ⊗B′)⊗B′′ ∼= B ⊗ (B′ ⊗B′′) (1.3.14)

and isomorphisms

λB : T0 ⊗B ∼= B, %B : B ⊗ T0
∼= B (1.3.15)

(these results are the contents of [Kas95, Lemma 7.1] and [Kas95, Example 7.3], respectively).

Lemma 1.3.10 ([Kas95, section 7.3]). (Crys(C ),⊗, T0, α, λ, %) is a monoidal category.

1.4 The Kashiwara-Littelmann crystals

Following [Jos95], we say that a collection {C(λ) |λ ∈ Λ+} of normal highest-weight crystals

is closed under tensor products when the subcrystal of C(λ)⊗ C(µ) generated by cλ ⊗ cµ over A is

isomorphic to C(λ+µ). According to [Jos95, Proposition 6.4.21] there is exactly one such collection

up to isomorphism, the Kashiwara-Littelmann (KL) family {B(λ) |λ ∈ Λ+} introduced in [Kas91]

and independently constructed in [Lit94].

There exists an upper normal crystal B(∞) which is a limit of the B(λ), λ ∈ Λ+ in a

certain precise sense. The original construction [Kas91] of B(∞) uses the q → 0 theory of quantized
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enveloping algebras, whereas a purely combinatorial construction is given in [Jos02]. As a crystal

B(∞) is highest-weight of highest weight 0 and the unique element of weight 0 is denoted b∞.

For each λ ∈ Λ+ there exists an injection ῑλ : B(λ) ↪→ B(∞) carrying bλ 7−→ b∞ which

commutes with the E-action but not the F-action. Tensoring B(∞) with Sλ removes this obstacle:

Lemma 1.4.1 ([Jos95, Lemma 5.3.13]). The map ιλ : B(λ)→ B(∞)⊗Sλ whereby b 7−→ ῑλ(b)⊗ sλ

is a strict embedding of C -crystals.

1.4.1 Kashiwara’s involution and Demazure crystals

Let Λ++ ⊂ Λ+ be the semigroup of regular weights, that is Λ++ =
∑
i∈I Z>0$i, and

suppose λ ∈ Λ++ ∪ {∞}. For each w ∈ W , the Kashiwara-Littelmann crystal B(λ) contains a

unique subset Bw(λ), stable under all ẽi, called a Demazure crystal [Kas93]. Several important

properties of the Demazure crystals are given in [Kas93, Propositions 3.2.4, 3.2.5]. The relevant

ones for our purposes are the following.

1. If v ≤ w in the Bruhat order, then Bv(λ) ⊂ Bw(λ).

2. Given i = (i`, . . . , i1) ∈ In denote f̃i := f̃i` · · · f̃i1 ; for k = (k`, . . . , k1) ∈ N` denote f̃ki :=

f̃k`i` · · · f̃
k1
i1

. Then

Bw(∞) =
⋃

k∈Nn
f̃ki b∞ (1.4.1)

for a reduced expression si = si` · · · si1 of w

Let ? : B(∞) → B(∞) denote the Kashiwara involution of B(∞) and define operators

x?i : B(∞)→ B(∞) for x ∈ {e, f} by x?i := ?xi? [Kas93].

Theorem ([Kas93, Theorem 2.2.1]). For any i ∈ I there exists a unique strict C -crystal embedding

Ψi : B(∞) ↪→ Bi sending b∞ to b∞ ⊗ bi(0) with the following properties:

1. If Ψi(b) = b0 ⊗ bi(−m) then Ψi(f
∗
i b) = b0 ⊗ bi(−m− 1) and εi(b

∗) = m.

2. im Ψi = {b⊗ bi(−m) | εi(b∗) = 0,m ≥ 0}.

Let i−1 := (i1, . . . , i`) and k−1 = (k1, . . . , k`) denote the reversals of i and k. It is shown

in [RH02] that

Bw(∞) =
⋃

k∈Nn
f̃?k

−1

i−1 b∞. (1.4.2)

Now we have the following easy consequence of (1.4.1) and (1.4.2).

Lemma 1.4.2. Take u ∈W and i ∈ I such that usi < u. Then Bu(∞) =
⋃
k≥0 f̃

∗k
i Busi(∞)
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1.4.2 Branching rules

Given a subset J ⊂ I we can regard the C -crystal B(λ) as a CJ -crystal. From this

perspective HWJB(λ) comprises the elements of B(λ) that are highest-weight with respect to its CJ -

crystal structure. Let πJ : Λ � ΛJ be the canonical projection homomorphism, whereby $i 7→ $i

if i ∈ J and $i 7→ 0 otherwise. The Jth branching rule (cf. [Kas95, 4.6]) states that B(λ) is

isomorphic, as a CJ -crystal, to a direct sum of the CJ -crystals BJ(µ), for µ ∈ Λ+
J ∪ {∞}, as follows:

B(λ) ∼=
⊕

b∈HWJB(λ)

BJ(πJ(wt b)) for λ ∈ Λ+, B(∞) ∼= BJ(∞)
⊕

HWJB(∞).

Note that for λ ∈ Λ+, this is a combinatorial analogue of the decomposition of a simple finite-

dimensional g(C )-module V (λ) of highest weight λ into a direct sum of simple finite dimensional

g(CJ)-modules.

1.4.3 Littelmann path crystals

When working with the Littelmann path crystals Pλ
∼= B(λ), λ ∈ Λ+ we use the notation

of [Lit94] and assume σ(λ) = λ. Recall that π ∈Pλ has the form π = (τ , a) where τ = τ1 > · · · > τr

is a sequence of linearly (Bruhat) ordered elements of W and a = a0 := 0 < a1 · · · ar := 1 is a

sequence of rational numbers satisfying certain conditions [Lit94, Sections 2.1, 2.2]. We regard π as

the concatenation of the straight line paths πk(t) := τkλt living in Λ⊗ZR, modulo reparameterization.

Recall the surjection φ : Pλ →W/StabWλ [Lit94, 5.2] whereby a path π = (τ , a) is mapped

to its “first direction” τ1; we may assume im φ ⊂ W by taking λ ∈ Λ++. In the same paper path

analogues Pλ,w := {π ∈Pλ |φ(π) ≤ w} of the Demazure crystal are defined. For each w ∈W there

is a bijection Pλ,w
∼= Bw(λ) commuting with the ẽi-action, where Pλ,w := {π ∈ Pλ |φ(π) ≤ w}.

Under this bijection {π ∈Pλ |φ(π) = w} ∼= B̄w(λ).

1.5 The polyhedral crystal

The polyhedral crystal Z∞ι —introduced in [Kas93] and refined in [NZ97]—plays an im-

portant role in this dissertation. The crystal B(∞) can be embeddded into Z∞ι , and thus so can

B(λ) according to Lemma 1.4.1. We use Z∞ι to facilitate calculations involving B(∞), especially in

section 5.2. Furthermore, the polyhedral crystal has an algebraic and a geometric structure that we

use to describe certain subsets of B(∞) in section 5.3.
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We begin by reviewing the polyhedral realization as presented in [NZ97], with some minor

notational variation. Then we explain the connection between B(∞) and Z∞ι via the Kashiwara

embedding theorem [Kas93] and present the geometric description of [NZ97]. Lastly, we record some

lemmata to be used in the sequel.

1.5.1 The crystal Zσ
ι

Let ι = (· · · , ιk, · · · , ι2, ι1) be an infinite sequence of indices from I such that

ιk 6= ιk + 1 for all k, and #{k | ιk = i} =∞ for all i. (1.5.1)

The underlying set of the polyhedral realization is the abelian group

Z∞ = {x = (. . . , xk, . . . , x2, x1) : xi ∈ Z, xk = 0 for k � 0},

on which we place a C -crystal structure according to ι. The weight of x ∈ Z∞ is

wt(x) := −
∑
k≥1

xkαιk . (1.5.2)

For each positive integer k define the Kashiwara functions γk : Z∞ → Z by

γk(x) := xk +
∑
l>k

aιlιkxl. (1.5.3)

For each i ∈ I define

εi(x) := max{γk(x) | k ≥ 1 and ιk = i}, (1.5.4)

Mi(x) := {k ≥ 1 | ιk = i and γk(x) = εi(x)}, (1.5.5)

observe |Mi(x)| <∞ if and only if εi(x) > 0. The operators ei, fi are given by ei0 = 0 = fi, eix = 0

if εi(x) = 0, and otherwise

eix = x− e(maxMi(x)), (1.5.6)

fix = x+ e(minMi(x)). (1.5.7)

where e(k) is the kth standard basis element of Z∞. Finally, define ϕi(x) := εi(x) + 〈α∨i ,wt(x)〉.

The crystal thus obtained is denoted Z∞ι .
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Remark 1.5.1. The bijection Z∞ι
∼−→ · · · ⊗Bιk ⊗ · · · ⊗Bι2 ⊗Bι1 whereby

(· · · , xk, · · · , x2, x1) 7−→ · · · ⊗ bιk(−xk) · · · ⊗ bι1(−x2)⊗ bι1(−x1)

can be shown to be a C -crystal isomorphism, as alluded to in [Jos95, 5.2], for example (the reason

for the sign change will become clear later). In fact, the crystal structure (1.5.2), (1.5.4), (1.5.6),

(1.5.7) is nothing but a reformulation of the crystal structure of · · · ⊗Bιk ⊗ · · · ⊗Bι2 ⊗Bι1 .

1.5.2 Relationship with B(∞)

The Kashiwara embedding theorem [Kas93, Theorem 2.2.1] gives a procedure to describe

B(∞): Given i1, · · · , iN ∈ I such that no ik = ik+1 define ΨiN ,··· ,i1 : B(∞) ↪→ B(∞)⊗ BiN · · ·Bi1

by ΨiN ,··· ,i1 := ΨiN · · ·Ψi1 . For each b ∈ B(∞) one can choose i1, · · · , iN so that ΨiN ,··· ,i1(b) ∈ b∞⊗

BiN · · ·⊗Bi1 . In this manner B(∞) is isomorphic to a subcrystal of the limit · · ·⊗Bik · · ·⊗⊗Bi2Bi1 ,

provided that (1.5.1) is satisfied.

Theorem ([Kas93], see also [NZ97] Theorem 2.5). For ι satisfying (1.5.1) there is a unique strict

C -crystal embedding

Ψι : B(∞) ↪→ · · · ⊗Bιk · · · ⊗Bι1 (1.5.8)

such that Ψι(b∞) = (· · · , 0, · · · , 0, 0).

According to remark 1.5.1 we have the following.

Theorem 1.5.2 ([NZ97] Theorem 2.5). For ι satisfying (1.5.1) there exists a unique strict embedding

of crystals B(∞) ↪→ N∞ι ⊂ Z∞ι whereby b∞ 7→ (· · · , 0, · · · , 0, 0).

Definition 1.5.3. The Nakashima-Zelevinsky polyhedral realization of B(∞) is Σι := im Ψι.

Remark 1.5.4. It is well-known (see, for example, [Nak99, Section 4.2]) that when W (C ) is finite the

crystal appearing on RHS(1.5.8) can be taken to have `(w◦) tensor factors. Thus B(∞) for finite

type embeds into the finite rank lattice Z`(w◦), which has given a crystal structure based on the

finite sequence (ι`(w◦), · · · , ι1).

Remark 1.5.5. Given w ∈W , the image Σι
w := Ψι[Bw(∞)] of the w-th Demazure crystal is described

by the inequalities of [NZ97, Theorem 3.1] with the additional requirement that xk = 0 for k > `

[Nak02, (2.21)].
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1.5.3 Geometric description of Σι

Regard Z∞ι as a lattice in the vector space Q∞. Beginning with the coordinate forms

x∗k ∈ (Q∞)∗ a recursive procedure is described in [NZ97, 3.1, 3.2] for generating a set of forms

Ξι ⊂ (Q∞)∗ that presents Σι as the dual of a rational polyhedral convex cone. It turns out that the

forms of Ξι have integer coordinates with respect to the standard basis of coordinate forms. The

following result depends on the technical assumption

if k(−) = 0 then ϕk ≥ 0 for any ϕ =
∑
k≥1

ϕkx
∗
k ∈ Ξι (1.5.9)

where k(−) := min{0 ≤ j < k | ιj = ιk}, which is called the positivity assumption by Nakashima and

Zelevinsky. This condition is verified to be true when g(C ) is of finite or affine type.

Theorem ([NZ97] Theorem 3.1). If ι satisfies (1.5.1) and (1.5.9). Then

Σι = {x ∈ Z∞ |ϕ(x) ≥ 0 for all ϕ ∈ Ξι}. (1.5.10)

That is, Σι is the set of lattice points of the dual of the rational polyhedral convex cone generated by

Ξι.
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Chapter 2

Folding

In this short chapter we describe the folding of a simply-laced symmetrizable Cartan datum

C by a special type of automorphism. Passing to the set of fixed points under this automorphism

yields a different, but related, Cartan datum called the Langlands dual folded datum which plays a

central role in the rest of this dissertation.

2.1 Admissible automorphisms

We call a permutation σ : I → I an automorphism of C if

σ[A] = A. (2.1.1)

A σ-orbit in I is variously denoted i, or 〈σ〉i for some i ∈ I. Following [Lus93, 12.1.1] we refer to

σ as admissible when

aij = 0 if j ∈ 〈σ〉i. (2.1.2)

In the sequel, I/σ denotes the set of σ-orbits in I and Iσ denotes the set of i ∈ I fixed by σ.

An automorphism of C permutes any set indexed by I; when such indexing reflects the

structure of the Cartan matrix, the σ-action is compatible with said structure by virtue of (2.1.1).

For example, σ permutes the sets Π∨ of simple coroots and {$i | i ∈ I} of fundamental weights, and

induces an action

σ ∈ EndAb(Λ) (2.1.3)
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satisfying

〈α∨i , λ〉 = 〈α∨σ(i), σ(µ)〉 (2.1.4)

Admissible automorphisms of C are optimal for folding: condition (2.1.2) means that vertices in the

same σ-orbit are unconnected in the Dynkin diagram. On the level of the root system, an admissible

automorphism of C only folds together simple roots that are orthogonal.

2.2 Folding and the Langlands dual operation

Associated to Π,Λ,Π∨ are subobjects Π̂σ ⊂ Q̂σ ⊂ Λ̂σ ⊂ Λ and Π̂∨σ ⊂ Λ̂∨σ ⊂ Λ∨, indexed

by I/σ and obtained as follows: Given i ∈ I/σ, put

α̂i :=
∑
i∈i

αi Π̂σ := {α̂i | i ∈ I/σ} Q̂σ :=
⊕
i∈I/σ

Zαi (2.2.1)

α̂∨i :=
∑
i∈i

α∨i Π̂∨σ := {α̂∨i | i ∈ I/σ} Λ̂∨σ :=
⊕
i∈I/σ

Zα̂∨i (2.2.2)

$̂i :=
∑
i∈i

$i Λ̂σ :=
⊕
i∈I/σ

Z$̂i (2.2.3)

There are two different ways to fold the Cartan matrix.

1. In the classical case A is folded to Cσ = (cij)i,j∈I/σ, where

ci,j :=
∑
i∈i

aij , j ∈ j.

It is easy to see that ci,j is independent of the choice of j ∈ j made in its definition. Ad-

missibility (2.1.2) ensures that Cσ is a symmetrizable Cartan matrix. Corresponding to Cσ

is a symmetrizable Cartan datum (Cσ, d̄σ,Πσ,Λσ,Π∨σ,Λ∨σ). There are isomorphisms in the

corresponding categories

Π̂σ ∼−→ Πσ : α̂i 7−→ αi

Λ̂σ
∼−→ Λσ : $̂i 7−→ $i

Π̂∨σ
∼−→ Π∨σ : α̂∨i 7−→ α∨i

which also provide an isomorphism Q̂σ
∼−→ Qσ∨ = Λσ∨.
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2. The relations defining the quantized enveloping algebra Uq(C ) require a symmetric matrix.

Accordingly, the quantum case uses diag(di)A, which is folded to Aσ = (aσij)i,j∈I/σ, where

aσij :=
∑

(i,j)∈i×j

aij . (2.2.4)

Let C = (A,Λ,Λ∨,Π∨,Π) be a Cartan datum. The Langlands dual datum to C is defined

to be

C ∨ := (AT ,Λ∨,Λ,Π,Π∨).

That is to say, to obtain C ∨ from C one transposes the Cartan matrix and interchanges the roles

of the weight lattice and dual weight lattice.

Lemma 2.2.1 ([Lus93]). Aσ is the symmetrized Cartan matrix diag(dσ)C of the Langlands dual

C σ∨ of the folded Cartan datum

C σ∨ = (CσT ,dσ,Πσ∨,Λσ∨,Πσ,Λσ) (2.2.5)

for dσ = (|i1|, · · · , |i|I/σ||). In other words aσij = djcji.

Remark 2.2.2. To allow the folded simple roots α̂i to function as simple roots, we combine the

Langlands dual operation with the folding procedure and pass from C to C σ∨: The orbital sum

defining α̂i ∈ Π̂σ is manifeslty not a root vector, although these sums are linearly independent.

Replacing Π̂σ with Π̂∨σ provides a collection of linearly independent vectors functioning as simple

coroots for C σ—that is to say, as simple roots for C σ∨.

2.3 Parabolic subdata adapted to folding

The parabolic data (cf. p.12) used in this dissertation are the highest-weight configurations

(see Definition 4.4.1), and can be obtained from the maximal proper such subdata (shown below)

by pairwise intersection. In the following diagrams the vertex of I r J is indicated by •.

The D-series

C = Dr+2 Ir := {−1, 0, 1, · · · , r}

σ := (−1, 0) Jr := Ir r {−1} (2.3.1)
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0◦
1◦ · · · r−1◦ r◦

•
−1

folds to the C series

C σ∨ = Cr+1 Ir/σ = {0,1, · · · , r} (2.3.2)

0◦ +3 1◦ · · · r−1◦ r◦

The odd-ranked1 A-series

C = A2r+1 Ir := {1, · · · , 2r + 1}

σ =

r∏
i=1

(2i, 2i+ 1) Jr,k := Ir r {2k + 1} (2.3.3)

2◦ · · · 2k◦ · · · 2r◦
◦
1 ◦

3
· · · •

2k+1
· · · ◦

2r+1

for some 1 ≤ k ≤ r folds to the B series

C σ∨ = Br+1 Ir/σ = {1,3, · · · ,2r + 1} (2.3.4)

1◦ ks 3◦ · · · 2k+1◦ · · · 2r+1◦

The triality of D4

C = D4 I := {1, 2, 3, 4}

σ := (1, 3, 4) J = {1, 2, 3} (2.3.5)

3◦
◦
1

◦
2 •

4

folds to type G2

C σ∨ = G2 I/σ = {1,2} (2.3.6)

1In even rank, the automorphism of C effecting a reversal of the Dynkin diagram is not admissible.
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1◦ *4 2◦

Cases (D3, C2) ∼= (A3, B2) and the triality are special cases of the most general rank two folding

C = Tn In := {0, 1, · · · , n}

σ := (1, · · · , n) J := In r {n} (2.3.7)

1◦
2◦

...
0◦

n◦

which folds to a type we call Tn2

C σ∨ = Tn2 I/σ = {1,0} (2.3.8)

1◦
(n) *4 0◦

The exceptional type

C = E6 I = {1, 2, 3, 4, 5, 6}

σ := (1, 6)(2, 5) J = {1, 2, 3, 4, 5} or {1, 2, 3, 4, 6} (2.3.9)

4◦

◦
1

◦
2

◦
3

•
5

◦
6

4◦

◦
1

◦
2

◦
3

◦
5

•
6

folds to type F4

C σ∨ = F4 I/σ = {1,2,3,4} (2.3.10)

1◦ 2◦ +3 3◦ 4◦
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2.4 Remarks on generality

Other foldings of simply laced symmetrizable Cartan data exist, see [Kas96] for more

examples. The theory developed in Chapter 2 works for any equivalence relation ∼ on I such that

aij = ai′j′ and aii′ = 0 when i ∼ i′, j ∼ j′. Our farthest-reaching results are for the D-series foldings,

as is the case for quantized enveloping algebra folding [BG11].

2.5 Applications of folding

Folding allows simple finite-dimensional Lie algebras can be used to describe the nontwisted

affine Lie algebras [Kac90, pp.105–110]. The former can be constructed directly from the root lattice

Q. That is, Q(ADE) are explicitly defined. A form 〈·, ·〉 is chosen to distinguish the foot system

Φ as {β ∈ A | 〈β, β〉 = 2}. An asymmetry function is introduced which “breaks the symmetry” of

〈·, ·〉. Now, the Cartan subalgebra h := Q⊗Z C gives the decomposition g = h⊕
(⊕

β∈Φ Ceβ
)

, and

a bracket is put on the latter using combinatorial properties of Φ.

The non-simply-laced simple finite-dimensional Lie algebras are then constructed using

admissible automorphisms of the simply-laced data. The automorphism σ indices an automorphism

of g, which decomposes as g =
⊕|σ|−1

k=0 g(k), where g(k) is the exp(2πik/|σ|)-eigenspace of σ. After

changing notation by passing to σ-invariants (orbital sums), it can be easily checked that g(0) is one

of the non-simply-laced simple finite-dimensional Lie algebras.

To construct the canonical basis for the upper-triangular half of a quantum group of simply-

laced type, Lusztig [Lus93] employed the machinery of perverse sheaves on quiver varieties. Through

this he defined the geometric realization of the algebra, and using the geometric action of the algebra

on itself he constructed the canonical basis. For a multiply-laced Dynkin diagram, one needs to

consider valued quivers in order to have a quiver variety. This requires extensions of the base field of

finite degree, and so one can not work over an algebraically closed field. However, in this situation

the geometry becomes intractable.

To construct the canonical basis for an algebra of multiply-laced type, Lusztig realized a

multiply laced C̃ as a folding of a simply-laced C by an admissible automorphism σ. He showed

that σ induces an automorphism of the algebra, which acts on the canonical basis. The fixed points

under this action turned out to function as a canonical basis for the original multiply-laced algebra.

28



There is a short set of axioms, due to Stembridge [Ste03], which allows one to determine

from local structural conditions whether a crystal graph is the crystal of a representation in the

simply-laced case. (Only a partial characterization is available for doubly-laced crystals, and the at

present the literature contains no account of the other multiply-laced cases.) In the introduction of

this paper, the author remarks that

“These simply-laced crystals are arguably the most important, since all highest weight
crystals of finite or affine type—the ones of widest interest—are either simply laced or
may be obtained from such crystals by a standard technique of ‘folding’ by diagram
automorphisms.”

Indeed, since Lusztig’s construction of canonical bases the fixed point set of a crystal under a (not

necessarily admissible!) automorphism has received a great deal of attention. Naito and Sagaki

proved analogues of Lusztig’s result for various realizations of Kashiwara’s B(∞) crystal in a series

of papers [NS01,NS02,NS03,NS04,NS05].

Remark 2.5.1. In each of the situations described above, the fixed-point set of σ plays the crucial

role. Because the automorphism’s action on the fixed-point set is trivial by definition, there has

been no motivation to fold the structure of the objects under consideration. In this report we work

with the largest proper subset of a crystal on which σ-acts, a consider the crystal structure of this

set modulo the automorphism’s action.
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Chapter 3

Balanced parabolic quotients

Many aspects of the representation and structural theory of a semisimple Lie algebra g

and its quantum analogue are closely related to and connected by the combinatorial properties of

the Weyl group W of g (see [Kac90, Lus93, Kas93, Jos95] to name but a few). In this chapter we

study a subset of the Weyl group W , comprising elements of a parabolic quotient JW ⊂ W whose

reduced decompositions are balanced with respect to a diagram automorphism σ. We call this set

the balanced quotient and denote it by JWσ.

A canonical set of reduced expressions for JWσ in type AD is enumerated by a forest

digraph with self-similar components. (This is different than the normal forest of [BB05, 3.4] in that

we are considering a subset of W .) By design a balanced quotient is a proper subset of set of fully

commutative elements in a Coxeter group. As such, our normal forms can be viewed as refinements

of results of Stembridge [Ste97].

We give a characterization of an element of JWσ by a property of its inversion set. In

[Fan95] it is shown—in the context of a simply-laced Coxeter group—that w is a fully commutative

element if and only if w yields an abelian subalgebra of the Borel. Combining our result on inversion

sets with this property, we find that an element of the balanced quotient gives an abelian subalgebra

of the Borel that decomposes into the direct sum of two subalgebras: one contained in the Borel for

the Jth Levi subalgebra, and one consisting of σ-invariants. Formulae for the dimensions of these

subalgebras are given, based on the structure of a reduced decomposition of w.
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3.1 The balanced parabolic quotient

A well-known theorem of Tits [Tit69, Theorème 3] states that two reduced expressions for

w ∈ W can be obtained from one another by applying a sequence of commutation/braid relations.

We refer to w as fully commutative if any two reduced decompositions are obtained from one another

using only commutation relations. A subset of W is called fully commutative when each of its

elements is fully commutative.

In this chapter we focus our attention on those Cartan data that correspond to the simple

finite-dimensional Lie algebras of simply-laced type. Thus, the matrix A is assumed to be positive

definite and cannot be written in a block-diagonal form, and W is finite. The subdata we use are

related to the action of an admissible automorphism of C ; they are maximal proper subsets J ( I

that meet each σ-orbit in I nontrivially.

• Type A2r+1 with |J | = |I| − 1.

• Type Dr with CJ ∼= Ar−1.

• Type E6 with CJ ∼= D5.

• Type D4 under the triality with CJ ∼= A3.

More details on these data, including indexing schemes and the corresponding automorphisms are

shown in displays (2.3.1), (2.3.3), (2.3.9), and (2.3.5).

Theorem 3.1.1 ([Ste96, Theorem 6.1]). In the cases listed above the parabolic quotient JW is fully

commutative.

Given i = (i1, . . . , it) ∈ It, let `i(i) := |{1 ≤ r ≤ t | ir = i}|. A reduced decomposition of

a fully commutative w admits no braid relation. Accordingly, `i(i) is independent of i ∈ R(w) and

will be denoted by `i(w). Following Theorem 3.1.1 we make the following definition.

Definition 3.1.2. The σ-balanced quotient JWσ is the set of all w ∈ JW such that `i(w) = `σ(i)(w)

for all i ∈ I.

The reference to σ is omitted when the context is clear.
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3.2 Normal forms for JWσ in types A and D

Recall the weak right ordering ≤R on W , defined by u ≤R uv if and only if `(uv) =

`(u)+`(v). This is a partial-order relation on W , which restricts to a partial ordering on the balanced

quotient JWσ. Recall that a subset O of a poset (X,≤) is an order ideal if {x ∈ O |x ≤ a} ⊂ O for

all a ∈ O.

Lemma 3.2.1 ([Ste96, Proposition 2.5]). For any J ⊂ I the set JW is an order ideal of W under

the right weak ordering. In particular, we can regard JW = [1, Jw◦]R.

In section 3.2 we give a set of normal forms for the elements of JWσ. This set is enumerated

by a forest digraph with self-similar components; in section 3.3 we present these graphs, which have

a remarkable self-similarity property, and obtain from them an enumeration of JWσ.

The key ingredient in our proofs of Theorems 3.4.1 and 5.3.1 is a set of normal forms for

the balanced quotient. This set can be viewed as a refinement of the one given in [Ste97] for the

fully commutative elements of W .

Remark 3.2.2. The cases covered in this paper correspond to the cases in [Ste96, Theorem 6.1] such

that W J is minuscule, C admits an admissible automorphism, and J is adapted to the σ-action as

described above. Up to an application of σ, (2.3.1)–(2.3.5) exhaust these cases.

In types D and A it is most convenient to state our normal forms in the injective limits

W (D∞) and W (A∞), which are also partially ordered by ≤R. That is, we specify a set of normal

forms for J∞W (D∞)σ and J∞,kW (A∞)σ (k ≥ 1) from which the normal forms for JrW (Dr)σ and

Jr,kW (A2r+1)σ are obtained by an appropriate restriction of parameters.

In type D (2.3.1), given 1 ≤ j ≤ k let

s
(j)
k :=

j−1∏
t=0

sk−t ∈Wσ, `(s
(j)
k ) = j.

Then our set of normal forms is as follows.

Proposition 3.2.3. In the injective limit J∞W (D∞) of type D as in (2.3.1) we have J1w◦ = s−1s1s0

and Jmw◦ is σ-balanced if and only if m is odd, in which case

Jmw◦ = Jm−2w◦sm−1sm · · · s2s3s1s2
J1w◦ (3.2.1)

32



Every w ∈ J∞W (D∞)σ not of the form Jmw◦ with odd m has a reduced expression

w = Jmw◦s
(j1)
m+1 · · · s

(jn)
m+n (3.2.2)

with 2`−1(w) − 1 = m ≥ j1 ≥ · · · ≥ jn ≥ 1. Taking all elements of the form (3.2.2) such that

m+ n ≤ r along with Jmw◦ for odd m ≤ r gives a set of normal forms for JrW (Dr)σ.

In type A (2.3.3), given 0 ≤ j < k let

ŝ
(j)
k :=

j∏
i=0

s2(k−j)s2(k−j)+1, `(ŝ
(j)
k ) = 2j,

and declare ŝk := s
(0)
k . Then our set of normal forms is as follows.

Proposition 3.2.4. In the injective limit J∞,kW (A∞) of type A as in (2.3.3), the elements Jr,kw◦, r ≥

k are all σ-balanced and have reduced expressions

Jk,kw◦ = s2k+1 · · · s3s1s2 · · · s2k (3.2.3)

Jm+1,kw◦ = Jm,kw◦ŝm+1 · · · ŝk+1
Jk,kw◦,m ≥ k. (3.2.4)

Every w ∈ J∞,kW (A∞)σ not of the form Jm,kw◦ with m ≥ k has a reduced decomposition

w = Jm,kw◦ŝ
(j1)
m+1 · · · ŝ

(jn)
m+n (3.2.5)

with m− k ≥ j1 ≥ · · · ≥ jn ≥ 1. Taking all elements of the form (3.2.5) such that r ≥ m+ n along

with Jm,kw◦ for k ≤ m ≤ r gives a set of normal forms for Jr,kW(A2r+1).

The longest element w◦ ∈ W factors uniquely as w◦ = w◦(J) · Jw◦, with w◦(J) being the

longest element of WJ . Accordingly

`(Jw◦) = |Φ+| − |Φ+
J |. (3.2.6)

As Jw◦ is the unique element of JW with this length, Jw◦ = wJ◦ and (1.2.3) gives

Φ+(Jw◦) = Φ+ r Φ+
J . (3.2.7)
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We begin with type D, and use the notation (2.3.1). Equation (3.2.6) indicates

`(Jrw◦) =
(r + 1)(r + 2)

2

hence `(Jrw◦)− `(Jr−1w◦) = r + 1. That is to say, for each r ≥ 0 there is a reduced expression

Jrw◦ = Jr−1w◦τr, `(τr) = r + 1.

More precisely:

Lemma 3.2.5. We have τ0 = s−1 and, for all r ≥ 1,

τr =

sr · · · s1s0 r odd

sr · · · s1s−1 r even.
(3.2.8)

In particular the longest element of JrWσ is σ-balanced if and only if r is odd, in which case it has

a reduced expression

Jrw◦ = Jr−2w◦sr−1sr · · · s2s3s1s2
J1w◦, odd r (3.2.9)

and if r is even then

w = Jr−1w◦sr · · · s−1, even r. (3.2.10)

Proof. We argue by induction on r. Since J1w◦ = s−1s1s0 and J2w◦ = s−1s1s0s2s1s−1, induction

begins. Take an even n ≥ 1. By the induction hypothesis there is a reduced expression

Jn−1w◦sn · · · s1s−1 = Jn−2w◦sn−1 · · · s1s0sr · · · s1s−1.

Then

`(Jn−1w◦sn · · · s1s−1) =
1

2
n(n+ 1) + (n+ 1) = `(Jnw◦).

Both Jn−2w◦ and sn−1 · · · s1s0sr · · · s1s−1 are fully commutative, hence

Jn−1w◦sn · · · s1s−1 ∈ Jn−1W.

Therefore Jn−1w◦sn · · · s1s−1 coincides with Jnw◦. The case for odd n is proved similarly.

Proof of Proposition 3.2.3. We argue by induction on r. The induction begins because J2Wσ =
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{J1w◦s2,
J1w◦s2s1}. For 1 < m ≤ r let

JmW := JmW r Jm−1W

and J1W := J1W so that JrW =
⊔

1≤m≤r
JmW . A reduced expression for w ∈ JmW contains sr

and does not contain any sp with p > m. Accordingly w = vu with v ∈ Jm−1W of maximal length,

`(w) = `(v)+ `(u), and u ≤R τr by Lemma 3.2.5. That is, u ≤R sr · · · s1si for i ∈ {0,−1} depending

on the parity of r.

If `(us−1) < `(u) then w is balanced if and only if v is balanced. In this case, using the

induction hypothesis we obtain

w = J2t−1w◦s
(j1)
2t · · · s

(jn)
2t+ns

(j)
m

where m− 1 = 2t+n. If j > jn then a reduced expression for w contains sm−jn−1sm−jnsm−jn−1 as

a subword, contradicting full commutativity. Therefore in this case w has the desired form.

If u = τr and v <R
Jr−1w◦ then `(vsj) < `(v) for some 1 ≤ v ≤ r − 1. But then a reduced

expression for w contains the expression sjsj+1sj , contradicting full commutativity. And so if u = τr

then w = Jrw◦.

Remark 3.2.6. The alternating occurrences of −1, 0 in a reduced expression of w ∈ JrW is one of

several equivalent conditions for an element to be Ar-stable in the sense of [Ste97]. In fact JrW is

a proper subset of the set of Ar-stable elements of W . Besides the central role played by σ, our

perspective differs in that we focus on the subdatum Ar+1 ⊂ Dr+2, while Dr+1 ⊂ Dr+2 is studied

in [Ste97].

Next we treat type A, using the notation (2.3.3). Put J ′′r,k := {2i + 1 | k < i ≤ r} and

J ′r,k := Jr,k r J ′′r,k so that

CJr,k = CJ′r,k × CJ′′r,k
∼= Ar+k ×Ar−k. (3.2.11)

Now w◦(Jr,k) ∼= w◦(Ar+k) · w◦(Ar−k) and equation (3.2.6) indicates

`(Jr,kw◦) = (r + 1)2 − k2

and also that `(Jr+1,kw◦)− `(Jr,kw◦) = 2r + 3.
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Lemma 3.2.7. For all 1 ≤ k ≤ r

Jk,kw◦ = s2k+1 · · · s3s1s2 · · · s2k (3.2.12)

Jr+1,kw◦ = Jr,kw◦ŝr+1 · · · ŝk+1
Jk,kw◦. (3.2.13)

Proof. This proof is similar to the proof of Lemma 3.2.5, and is omitted.

Proof of Proposition 3.2.4. Each Jm,kw◦ with k ≤ m ≤ r is balanced, so we need not consider these

elements in this proof. Note that

Jk,kWσ = {Jk,kw◦} (3.2.14)

by (3.2.12). For k < m ≤ r let

Jm,kW := Jm,kW r Jm−1,kW

and Jk,kW = Jk,kW so that r,kW =
⊔
k≤m≤r

Jm,kW . A reduced expression for w ∈ Jm,kW contains

s2m or s2m+1 and contains no sp with p > 2m+1. Accordingly w = vs2m · · · s2(m−j)s2m+1 · · · s2(m−j′)+1

with v ∈ Jm−1,kW of maximal length.

Now w is balanced if and only if j = j′ and v is balanced. By induction v = Jt,kw◦ŝ
(j1)
t+1 · · · ŝ

(jn)
t+n ŝ

(j)
m

(where m = t + n + 1). If j > jn then a reduced expression for w contains the expression

st+n−jnst+n−jn+1st+n−jn , contradicting full commutativity.

3.3 Enumeration of JWσ

For each positive integer k define an infinite digraph Tk := (Vk, Ek) as follows

Vk := {(k;∅)} ∪ {(k; j1, . . . , jn) | k ≥ j1 ≥ · · · ≥ jn}

(k; j1, . . . , jn)→ (k; j′1, . . . , j
′
m) ⇐⇒ m = n+ 1 and j′t = jt ∀ t = 1, . . . , n.

It is easy to see Tk is an infinite tree. Indeed, first note that there is a unique path between any

vertex (k; j1, . . . , jn) and (k;∅). Now suppose (k; j1, . . . , jn) and (k; l1, . . . , lm) are arbitrary. Then

the unique path between these two vertices is given as follows: Let i := max{p ≥ 1 | jt = lt for all 1 ≤

t ≤ p}. If no such i exists, then take the unique path from (k; j1, . . . , jn) to (k;∅) followed by the

unique path from (k;∅) to (k; l1, . . . , lm). Otherwise, we have

(k; j1, . . . , jn)← · · · ← (k; j1, . . . , jp) = (k; l1, . . . , lp)→ · · · → (k; l1, . . . , lm)
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uniquely.

Observe that Tk is isomorphic to a subgraph of each Tr, r > k via the natural inclusions

of vertices and edges. Furthermore, Tk is isomorphic to infinitely many subgraphs of itself via

(k; j1, . . . , jn) 7−→ (k; k, . . . , k︸ ︷︷ ︸
m

, j1, . . . , jn),m ≥ 0.

Declare T
(0)
k := {(k;∅)}, and for a fixed positive integer N define the Nth truncation

T
(N)
k :=

(
V

(N)
k , E

(N)
k

)
by

V
(N)
k := {(k;∅), (k; j1, . . . , jn) | k ≥ j1 ≥ · · · ≥ jn and n ≤ N}

E
(N)
k := {x→ y |x, y ∈ V (N)

k },

and let T
(N)
k be the empty graph when N < 0. Figures 3.1, 3.2 show respectively T

(3)
2 , T

(3)
3 .

•

�� ��
•

�� ��

•

��
•

�� ��

•

��

•

��
• ◦ • •

Figure 3.1: T
(3)
2 with vertex (2; 2, 2, 1) indicated by ◦.

•

�� �� ��
•

{{ �� ��

•

�� $$

•

##•

yy �� ��

•

�� ��

•

��

•

�� &&

•

&&

•

&&• • • • ◦ • • • • •

Figure 3.2: T
(3)
3 with vertex (3; 3, 2, 1) indicated by ◦. The subgraph obtained by deleting the dashed

arrows is isomorphic to T
(3)
2 ⊕ T (2)

2 ⊕ T (1)
2 ⊕ T (0)

2 , as indicated in the proof of Lemma 3.3.1
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Lemma 3.3.1. For all r ≥ 1, k ≥ 0 we have |T (r)
k | =

(
r+k
k

)
.

Proof. We prove that

|V (r)
k | =

(
r + k

k

)
for all r ≥ 0 (3.3.1)

by induction on k. When k = 1, (3.3.1) is true by the definition of V
(r)
1 , thus induction begins. Now

let k > 1 and assume for induction that (3.3.1) holds for k− 1. Observe that there exists a bijection

Vk ∼=
⊕

n∈N Vk−1 whereby

Vk−1 3 (k − 1; j1, . . . , jm) 7−→ (k; k, . . . , k︸ ︷︷ ︸
n

, k − 1, j1, . . . , jm) ∈ Vk, n ≥ 0

Accordingly, for all r ≥ 0 there exists a bijection

V
(r)
k
∼=

r⊕
n=0

V
(n)
k−1.

Now, by the induction hypothesis |V (r)
k | =

∑r
n=0

(
n+k−1
k−1

)
.

To complete the inductive step it remains to prove that for all a ≥ 0, b ≥ 1 we have∑a
n=0

(
n+b−1
b−1

)
=
(
a+b
b

)
This claim is clear for a = 0 and for all b ≥ 1. Assuming

∑s
n=0

(
n+b−1
b−1

)
=(

s+b
b

)
, for all s ≤ a and b ≥ 1, we have

a+1∑
n=0

(
n+ b− 1

b− 1

)
=

(
a+ b

b

)
+

(
a+ b

b− 1

)
=

(
a+ b+ 1

b

)
.

Thus,

|V (r)
k | =

r∑
n=0

(
n+ k − 1

k − 1

)
=

(
r + k

k

)
,

which completes the inductive step.

Corollary 3.3.2. The normal form forest H(J∞W (D∞),≤R) is isomorphic as a graph to the di-

rected forest
⊕

k>0 T2k, and thus

H(JrW (Dr+2),≤R) ∼=
⊕
k≥1

T
(r−2k+1)
2k .

Therefore, in type D we have |JrW (Dr+2)σ| = 2r − 1.

Proof. By Proposition 3.2.3, the assignments Jmw◦ 7→ (m+ 1;∅) and

Jmw◦s
(j1)
m+1 · · · s

(jn)
m+n 7→ (m+ 1; j1, . . . , jn)
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place the elements of J∞W (D∞) in one-to-one correspondence with the vertices of
⊕

k>0 T2k.

Using the convention that
(
a
b

)
= 0 if b > a, we have |

⊕
k≥1 T

(r−2k+1)
2k | =

∑
k≥1

(
r+1
2k

)
by

Lemma 3.3.1. It is well-known that
∑
j≥0

(
r+1
j

)
= 2r+1, and also that

∑
j≥0(−1)j

(
r+1
j

)
= 0. Adding

these identities gives
∑
k≥0 2

(
r+1
2k

)
= 2r+1, whence

∑
k≥1

(
r+1
2k

)
= 2r − 1.

There is a map J∞,kW (A∞)σ →
⊕

k>0 Tk given by Jm,kw◦ 7−→ (m − k;∅) and w 7−→

(m − k; j1, . . . , jn) for w of the form (3.2.5). However, owing to the value m − k dominating the

sequence j1 ≥ · · · ≥ jn, the preimage of a vertex of
⊕

k>0 Tk is infinite. Indeed, for a fixed

(t; j1, . . . , jn) we have

{w ∈ J∞,kW (A∞)σ |w 7→ (t; j1, . . . , jn)} = {Jm,kw◦ŝ(j1)
m+1 · · · ŝ

(jn)
m+n |m− k = t}

However, for fixed (r, k) the normal form forest of (Jr,kW (A2r+1)σ,≤R) is as follows.

Corollary 3.3.3. In type A, suppose r ≥ k ≥ 1. Then we have an isomorphism of digraphs

H(Jr,kW (A2r+1)σ,≤R) ∼=
⊕
m≥1

T (r−k−m)
m

Hence ∣∣Jr,kW (A2r+1)σ
∣∣ = 2r−k − 1. (3.3.2)

Remark 3.3.4. The graphs T
(r)
k may be combined in different ways to make forests with interesting

combinatorial properties. Let

F (n)
l :=

bn+l−1
l c⊕

k=1

T
(n+l−1−lk)
k .

Then, for example, |F (n)
2 | = fn − 1, where fn are the Fibonacci numbers.

On the other hand, let G(n) :=
⊕bn+l−1

l c
k=2 T

(n+l−1−lk)
k ; that is, G(n) equals F (n)

2 with the

1-branching component deleted. Then |G(n)| = fn+5 − n − 4. Now, define sequences (dt)
∞
t=0 and

(bt)
∞
t=0 by

dt := |JtW (Dt+2)σ|

and bt := the tth nonnegative integer having no consecutive zeros or no consecutive ones in its binary

representation. For example, bt = t for 0 ≤ t ≤ 11, but b12 = 13 because (12)2 = 1100. Then one

can show (see, e.g., [OEIS, A107909]) that

b|G(t−1)| = dt.
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3.4 Inversion sets and the balanced quotient

Given w ∈ W , Φ+(w) := Φ+ ∩ w−1Φ− is called the inversion set of w. It is well-known

(cf. [Hum72, Section 10]) that `(w) = |Φ+(w)| and W contains a unique element w◦, called the

longest element, with `(w◦) = |Φ+|. The map w 7→ Φ+(w) is injective ([Jos95, A.1.1]) and provides

a way to recognize w on the level of the root system (that is, without appealing to a reduced

decomposition). Our first main result is the following, which we prove in section 3.4.

Theorem 3.4.1. In types Dn (2.3.1), E6 (2.3.9) and D4 under the triality (2.3.5), for all w 6= Jw◦

we have w ∈ JWσ if and only if

Φ+(w) r Φ+
J ⊂ Φσ and w−1ΠJ ⊂ Φ+. (3.4.1)

In type A2r+1 (2.3.3) we have w ∈ JWσ if and only if

Φ+(w) = {β ∈ Φ+(Ir) |β is supported on ασ(i)} (3.4.2)

or (3.4.1) holds.

Associated to C is the simple complex Lie algebra g(C ), (cf. [Hum72, Section 18]), which

has a presentation depending only on the matrix A. The choice of Cartan subalgebra h := CΠ∨

provides a decomposition g = h ⊕
⊕

β∈Φ gβ with Borel subalgebra b :=
⊕

β∈Φ+ gβ ; recall that

dimC gβ = 1 for all β ∈ Φ. A result of Fan [Fan95, Proposition 7] implies that the inversion set

Φ+(w) of a fully commutative element gives a commutative subalgebra aw :=
⊕

β∈Φ+(w) gβ of the

Borel; these are known (cf. [Kos98]) to be related to abelian ideals in the Borel subalgebra.

Let gJ be the Levi subalgebra of g associated with J ; thus, gJ is generated as a Lie algebra

by gα, ±α ∈ ΠJ . Let bJ := b ∩ gJ be the Borel subalgebra of gJ .

Corollary 3.4.2. Assume C is of type Dr+2 (2.3.1), A2r+1 (2.3.3), E6 (2.3.9) and D4 under the

triality (2.3.5), and let w 6= Jw◦. Then the abelian subalgebra aw ⊂ b decomposes as

aw = aw,J ⊕ aσw

where aw,J ⊂ bJ and aσw consists of σ-invariants. The dimensions of these algebras are as follows,
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where m and k are uniquely determined by w per Propositions 3.2.3 and 3.2.4

dimC aw,J =

m+ 1 C = Dr+2

m(m+ 1)− k(k − 1) + 1 C = A2r+1

and dimC aσw = `(w)− dimC aw,J .

In [Fan95], the following characterization of fully commutative elements in the simply-laced

case was given.

Theorem 3.4.3 ([Fan95, Proposition 7]). Suppose W is a simply-laced Weyl group. Then an

element w ∈W is fully commutative if and only if there do not exist three roots α, β, α+β ∈ Φ+(w).

Recall the following standard facts. See [Jos95, A.1.1], for example, for proofs.

Lemma 3.4.4. Take a reduced expression w = si1 · · · si` and define βj := si` · · · sij+1
αij for 1 ≤

j ≤ `. Then Φ+(w) = {βj | 1 ≤ j ≤ `}.

Lemma 3.4.5. For all w ∈W and i ∈ I we have

Φ+(siw) = Φ+(w) t {w−1αi} in case `(siw) > `(w) (3.4.3)

Φ+(w−1) = −wΦ+(w). (3.4.4)

These yield a right-insertion analogue that we failed to find in the literature.

Lemma 3.4.6. For all v, w ∈ W such that `(vw) = `(v) + `(w), we have Φ+(vw) = w−1Φ+(v) t

Φ+(w).

Proof. We use induction on the length of w. If `(v) = 1 then (3.4.3) and (3.4.4) give

Φ+(vsi) = −siv−1Φ+(siv
−1)

= −siv−1[Φ+(v−1) t {vαi}]

= si(−v−1Φ+(v−1)) t {−siv−1vαi}

= siΦ
+(v) t {αi}

hence the induction begins.
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Assume Φ+(vw) = w−1Φ+(v) t Φ+(w) for all w of length `(w) ≤ n and take i such that

`(wsi) = `(w) + 1. By the above, we have

Φ+(vwsi) = siΦ
+(vw) t {αi}.

Then, using the induction hypothesis and Lemma 3.4.4, we obtain

Φ+(vwsi) = si(w
−1Φ+(v) t Φ+(w)) t {αi}

= (wsi)
−1Φ+(v) t (siΦ

+(w) t {αi})

= (wsi)
−1Φ+(v) t Φ+(wsi).

3.4.1 Inversion set of a long element’s coset

Suppose C is of type Dr+2 (2.3.1) or A2r+1 (2.3.3). A given w ∈ JWσ has the form

w = J′w◦ŝ, with ŝ ∈Wσ and

J′w◦ =

Jmw◦, odd 1 ≤ m ≤ r if C = Dr+2

Jm,kw◦, k ≤ m ≤ r if C = A2r+1

by Propositions 3.2.3 and 3.2.4. The inclusion of Cartan data ι : Dm+2 ↪→ Dr+2 (respectively

ι : A2m+1 ↪→ A2r+1) induces a monomorphism ι : W (Dm+2) ↪→ W (Dr+2) and an inclusion

ι : Φ+(Dm+2) ↪→ Φ+(Dr+2) (respectively ι : W (A2m+1) ↪→ W (A2r+1) and ι : Φ+(A2m+1) ↪→

Φ+(A2r+1)) that commute with σ and the map w 7−→ Φ+(w). Denote C ′ := Dm+2, A2m+1 when

C = Dr+2, A2r+1 respectively.

Now, by Lemma 3.4.6 we have

Φ+(w) = ŝ−1ι[Φ+(J
′
w◦)] t Φ+(ŝ)

= (ŝ−1ι[Φ+(J
′
w◦)] r Φ(C )σ) t (ŝ−1ι[Φ+(J

′
w◦)] ∩ Φ(C )σ) t Φ+(ŝ),

hence

|Φ+(w)| = |ŝ−1ι[Φ+(J
′
w◦)] r Φ(C )σ|+ |ŝ−1ι[Φ+(J

′
w◦)] ∩ Φ(C )σ|+ `(ŝ).
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Because ŝ ∈Wσ we have ŝ−1β ∈ Φσ if and only if β ∈ Φσ; hence

|ŝ−1ι[Φ+(J
′
w◦)] r Φ(C )σ| = |ι[Φ+(J

′
w◦)] r Φ(C )σ|

|ŝ−1ι[Φ+(J
′
w◦)] ∩ Φ(C )σ| = |ι[Φ+(J

′
w◦)] ∩ Φ(C )σ|+ `(ŝ).

In W (C ′) we have σ(J
′
w◦) = wJ

′

◦ , thus by (3.2.7) we have

ι[Φ+(J
′
w◦)] = ι[Φ+(σ(wJ

′

◦ ))] = σ ◦ ι[Φ+(wJ
′

◦ )] = σ ◦ ι[Φ+(C ′) r Φ+
J′ ]. (3.4.5)

This relationship will be used to handle the inversion sets of the elements Jmw◦ and Jm,kw◦ in

sections 3.4.2, 3.4.3, and 3.4.4.

3.4.2 Type D

Proof of Theorem 3.4.1. We use induction on r. Lemma 3.4.4 gives Φ+(J1w◦) = {α0, α0 +α1, α−1 +

α0 + α1}, and so induction begins.

Suppose w ∈ JrW r {Jmw◦ | odd m ≤ r}. Then w is balanced if and only if w =

Jmw◦s
(j1)
m+1 · · · s

(jn)
r for some odd m < r by Lemma 3.2.3. Lemma 3.4.6 gives

Φ+(w) =
(
s(jn)
r

)−1
Φ+(Jmw◦s

(j1)
m+1 · · · s

(jn−1)
r−1 ) t Φ+(s(jn)

r )

but Φ+(s
(jn)
r ) ⊂ Φσ since s

(jn)
r ∈ Wσ. If β ∈ Φ+(w) r Φ+

J then β =
(
s

(jn)
r

)−1
γ for some γ ∈

Φ+(Jmw◦s
(j1)
t+1 · · · s

(jn−1)
r−1 ). As s

(jn)
r ∈Wσ, it must be that γ /∈ Φ+

J as well. By induction γ ∈ Φσ and

it follows that β ∈ Φσ.

Suppose instead that w = Jmw◦ for odd 1 ≤ m < r. Recalling (3.4.5), we have

Φ+(w) = σ ◦ ι[Φ+(Dm+2) r Φ+
Jm

]

= σ[{β ∈ ι[Φ+(Dm+2)] |β is supported on α−1}]

= {β ∈ ι[Φ+(Dm+2)] |β is supported on α0}.

Now, if γ ∈ Φ+(w) is supported on α−1 then it must be that γ ∈ Φσ.

Example 3.4.7. In type D4 we have I2 = {−1, 0, 1, 2}, J2 = {0, 1, 2}, J1 = {0, 1} and σ = (−1, 0).

To illustrate the case w = Jtw◦ (odd t) of the above proof, let us examine the inversion set of the

coset of the long element J1w◦ from type D3 in the context of Φ+(D4).

43



Figure 3.3 shows the Hasse diagram of the root poset Φ+(D4), decorated as follows:

• To visually separate the parabolic subsystem Φ+
J2
∼= Φ+(A3) from the set of roots supported

on α−1, edges corresponding to adding α−1 to β ∈ Φ+
J2

are indicated by // .

• Elements of Φσ (those supported on α1 + α0 + α−1) are indicated by #.

• Elements of Φ+(J1w◦) are indicated by ∗.

• Elements of Φ+(J1w◦) ∩ Φσ are indicated by ~.

• All other elements of Φ+(w) are indicated by •.

#

#

OO

•

88

•

OO

~

gg

•

OO 77

∗

gg 77

•

gg OO

•α2

@@

•α1

^^ @@ 55

∗α0

^^

•α−1

``

Figure 3.3: Root poset of type D4, decorated as described in Example 3.4.7.

In accordance with Theorem 3.4.1, each element of Φ+(J1w◦) that is supported on α−1 is

symmetric. Regarding the conclusion of Corollary 3.4.2, this calculation indicates that aJ1w◦,J2 has

dimension 2 and aσJ1w◦ has dimension 1.

Example 3.4.8. In type D6 we have I4 = {−1, 0, 1, 2, 3, 4}, J4 = {0, 1, 2, 3, 4}, J3 = {0, 1, 2, 3}, and

σ = (−1, 0). Let us now examine the inversion set of the coset of the long element J3w◦ from type

D5 in the context of Φ+(D6).

Figure 3.4 shows the Hasse diagram of the root poset Φ+(D6) , decorated in the same

manner as Example 3.4.7.

In accordance with Theorem 3.4.1, each element of Φ+(J3w◦) that is supported on α−1 is

symmetric. Regarding the conclusion of Corollary 3.4.2, this calculation indicates that aJ3w◦,J4 has

dimension 3 and aσJ3w◦ has dimension 7.
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#

#

OO

#

@@

~

^^

#

OO

~

gg OO

•

88

•

OO

~

gg OO

~

ff

•

OO 88

∗

ff 77

•

OOgg

~

ff OO

•

@@

•

^^ @@ 55

∗

^^ 55

•

^^ @@

~

^^

•

OO

•

ff OO

•

gg OO 77

∗

gg 77

•

gg OO

•α4

@@

•α3

^^ @@

•α2

^^ @@

•α1

^^ @@ 55

∗α0

^^

•α−1

``

Figure 3.4: Root poset of type D6, decorated as described in Example 3.4.7.

3.4.3 Type A

Proof of Theorem 3.4.1. First we verify (3.4.2) holds if and only if w = Jm,kw◦ for k ≤ m ≤ r. But

this is an immediate consequence of (3.4.5), indeed, in this case

Φ+(w) = σ ◦ ι[Φ+(A2m+1) r Φ+
Jm,k

]

= σ[{β ∈ ι[Φ+(A2m+1)] |β is supported on α2k+1}]

= {β ∈ ι[Φ+(A2m+1)] |β is supported on α2k+2}.

In case r = k condition (3.4.1) holds (vacuously) by (3.2.14). Assume that condition

(3.4.1) holds for some pair (r, k) with r ≥ k. We only need to check the elements of Jr+1,kW

excluding Jr+1,kw◦. Now w ∈ Jr+1,kWσ if and only if it has the form provided by Theorem 3.2.4

with m+ n = r + 1.

Lemma 3.4.4 gives

Φ+(w) = (ŝ
(jn)
r+1)−1Φ+(w′) t Φ+((ŝ

(jn)
r+1)−1)
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for w′ = w(ŝ
(jn)
r+1)−1 ∈ Jr,kW . Because m− k ≥ jn it follows that Φ+((ŝ

(jn)
r+1)−1) ⊂ Φ+

J . Accordingly

if β ∈ Φ+(w) r Φ+
J then β = (ŝ

(jn)
r+1)−1γ for some γ ∈ Φ+(w′). Since `2k+1((ŝ

(jn)
r+1)−1) = 0 it follows

that β /∈ Φ+
J if and only if γ /∈ Φ+

J . By induction, this happens if and only if γ ∈ Φσ. Therefore

β ∈WσΦσ ⊂ Φσ.

3.4.4 Proof of Corollary 3.4.2

Retain the notation of section 3.4.1. Recalling (3.4.5), since σ, ι are injective it follows that

dimC aw,J = |(Φ+(C ′) r Φ+
J′) r Φ(C ′)σ|

dimC aσw = |(Φ+(C ′) r Φ+
J′) ∩ Φ(C ′)σ|+ `(ŝ).

The cardinalities of these sets are readily determined. Because dimC aw = `(w), which is known by

virtue of Propositions 3.2.3 and 3.2.4, it suffices to determine one of them.

Type D

Suppose w = Jmw◦s
(j1)
m+1 · · · s

(jn)
m+n; then

(Φ+(Dm+2) r Φ+
Jm

) r Φ(Dm+2)σ = {α−1, α−1 + α1, α−1 + α1 + · · ·+ αm},

whence

dimC aw,Jr = m+ 1.

Now, since `(Jmw◦) = 1
2 (m+ 1)(m+ 1) it follows that

dimC aσw =
1

2
m(m+ 1) +

n∑
i=1

ji.

Type A

Suppose w = Jm,kw◦ŝ
(j1)
m1 · · · ŝ

(jn)
m+n; then

(Φ+(A2m+1) r Φ+(Jm,k)) ∩ Φ(A2m+1)σ =
{
α1 +

t∑
i=1

(α2i + α2i+1)
∣∣∣ k ≤ t ≤ m},

whence

dimC aσw = k −m+ 1 + 2

n∑
i=1

ji.
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Now, since `(Jm,kw◦) = (m+ 1)2 − k2, it follows that

dimC aw,Jr,k = m(m+ 1)− k(k − 1) + 1.

3.5 Exceptional types

The exceptional cases E6 (2.3.9) and D4 under the triality (2.3.5) are treated by hand in

in section 3.5, where we exhibit the normal forms, directly check that Theorem 3.4.1 holds, and

calculate the dimensions of aw,J and aσw for each w ∈ JWσ.

3.5.1 Type D4 with the triality

In this case JWσ = {s4s2s3s1, s4s2s3s1s2} and

Φ+(s4s2s3s1) r Φ+
J = {α1 + α2 + α3 + α4}

Φ+(s4s2s3s1s2) r Φ+
J = {α1 + 2α2 + α3 + α4}

while JW r JWσ = {s4, s4s2, s4s2s1, s4s2s3, s4s2s3s1s2s4} and

Φ+(s4) r Φ+
J = {α4}

Φ+(s4s2) r Φ+
J = {α2 + α4}

Φ+(s4s2s1) r Φ+
J = {α1 + α2 + α4}

Φ+(s4s2s3) r Φ+
J = {α2 + α3 + α4}

Φ+(s4s2s3s1s2) r Φ+
J = {α2 + α3 + α4}

thus condition (3.4.1) holds.
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3.5.2 Type E6

In this case JWσ = {s6s5s4s2s3s1, s6s5s4s2s3s1s4, s6s5s4s2s3s1s4s3, s6s5s4s2s3s1s4s3s5s4s2}

and

Φ+(s6s5s4s2s3s1) r Φ+
J = {α1 + α2 + α3 + α4 + α5 + α6}

Φ+(s6s5s4s2s3s1s4) r Φ+
J = {α1 + α2 + α3 + 2α4 + α5 + α6}

Φ+(s6s5s4s2s3s1s4s3) r Φ+
J = {α1 + α2 + 2α3 + 2α4 + α5 + α6}

Φ+(s6s5s4s2s3s1s4s3s5s4s2) r Φ+
J = {α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6}

while Φ+(w) r Φ+
J for each of the 22 remaining w contains an asymmetric root supported on α6.

Thus condition (3.4.1) holds.

48



Chapter 4

Crystal folding

In this chapter C denotes a simply-laced Cartan datum with admissible automorphism σ. In

section 4.1 we introduce the categories Ĉrys(C , σ) of structurally σ-foldable crystals and Crys(C , σ)

of σ-foldable crystals. Our first main results are the construction of functors F̂σ : Ĉrys(C , σ) →

Crys(C σ∨) and Fσ : Crys(C , σ) → Crys(C σ∨) (Theorems 4.2.1 and 4.2.6). Our second main result

(Theorem 4.3.1) is that Ĉrys(C , σ) and Crys(C , σ) are monoidal categories under the tensor product,

and furthermore that the functor F̂σ is monoidal (Theorem 4.3.2).

We consider the highest-weight elements of a foldable crystal in section 4.4, and show how

folding a highest-weight crystal leads to a new type of crystal we call multi-highest-weight.

4.1 Category of σ-foldable crystals

Definition 4.1.1. The category of structurally σ-foldable C -crystals, denoted Ĉrys(C , σ), is the full

subcategory of Crys(C whose objects satisfy:

1. The pairs fi, fj and ei, ej commute, as operators on B, when j ∈ 〈σ〉i

2. εi(e
n
j b) = εi(b) for all distinct i, j ∈ I with j ∈ 〈σ〉i.

Definition 4.1.2. Let (B, fi, ei,wt, εi) be a C -crystal. We say thatB is σ-foldable if it is structurally
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foldable there is an action σ : B → B, σ(0) = 0 such that the following diagrams commute

B
σ //

wt

��

B

wt

��
Λ

σ
// Λ

(4.1.1)

B
σ //

εi $$

B

εσ(i)zz
Z ∪ {−∞}

(4.1.2)

B t {0} σ //

xi

��

B t {0}

xσ(i)

��
B t {0}

σ
// B t {0}

(4.1.3)

for x ∈ {e, f}

A σ-foldable morphism between σ-foldable C -crystals is a C -crystal morphism ψ : B → B′

commuting with the σ-actions on B and B′.

When B is σ-foldable it follows from Definition 1.3.1(4) and (4.1.2) that σ◦ϕi = ϕσ(i)◦σ. It

is clear that the identity morphism is σ-foldable, and that the composite of two σ-foldable C -crystal

morphisms is a σ-foldable C -crystal morphism. The associativity of the composition operation

applied to σ-foldable C -crystal morphisms is inherited from Crys(C ). Hence the following definition.

Definition 4.1.3. The category of σ-foldable crystals and σ-foldable crystal morphisms is denoted

Crys(C , σ).

The following proposition is evident.

Proposition 4.1.4. Crys(C , σ) is closed under direct sums.

Example 4.1.5. Crystals for representations of Uq(so6) (type D3). Here σ = (2, 3).

1. Spin crystals are structurally foldable but not foldable; operators 2 and 3 commute (trivially),

but the graphs are not stable under the automorphism. In fact, they are conjugate to one

another under σ.

B+
sp : (+,+,+)

3 // (+,−,−)
1 // (−,+,−)

2 // (−,−,+)

B−sp : (+,+,−)
2 // (+,−,+)

1 // (−,+,+)
3 // (−,−,−)
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2. Vector representation crystal (also known as the crystal of letters) is foldable. The action is

given by σ( 3 ) = 3̄ otherwise σ( i ) = i .

3
3

&&
1

1 // 2

2
88

3 &&

2
1 // 1

3̄
2

88

4.2 The folded crystal

The functor F̂σ folds the crystal structure of B, and yields a C σ∨ structure on a certain

subset—which is the largest subset on which such a structure can be placed.

When B is structurally σ-foldable the orbital products

ŷi :=
∏
i∈i

yi, y ∈ {e, f}, i ∈ I/σ (4.2.1)

are well-defined by virtue of Definition 4.1.2(1). Denote

B̂σ := wt−1[Λ̂σ].

and let F̂σ, Êσ, Âσ denote the monoids generated respectively by {f̂i | i ∈ I/σ}, {êi | i ∈ I/σ}, {f̂i, êi | i ∈

I/σ}. It is clear that ÂσB̂σ ⊂ B̂σ t {0}. Given b ∈ B̂σ and i ∈ I/σ define

ε̂i(b) := min{εi(b) | i ∈ i}. (4.2.2)

Let ωσ denote the canonical Z-lattice isomorphism ωσ : Λ̂σ ∼= Λ∨σ, given by extending $̂i 7−→ α∨i .

Theorem 4.2.1. Let (B, fi, ei,wt, εi) be a structurally σ-foldable C -crystal. Then the set B̂σ is a

C σ∨-crystal under

yi := ŷi for y ∈ {e, f} (4.2.3)

wtσ := ωσ ◦ wt (4.2.4)

εi := ε̂i (4.2.5)

where i ∈ I/σ. Suppose that B,B′ are σ-foldable C -crystals and ψ : B → B′ is a C -crystal

morphism. Then, the restriction ψ̂σ of ψ to B̂σ is a C σ∨-crystal morphism ψ̂σ : B̂σ → B̂′σ.
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Proof. We verify the conditions of Definition 1.3.1.

1. That f̂ib = b′ if and only if êib
′ = b follows from repeated application of 1.3.1(1) for B.

2. (a) By definition, wtσ(êib) = ωσ ◦wt((
∏
i∈i ei)b). Repeated application of Definition 1.3.1(2a)

for B gives wtσ(êib) = ωσ(wt(b) + α̂i) = wtσ(b) + αi.

(b) By definition, ε̂i(êib) = min{εi(êib) | i ∈ i}. For a fixed i ∈ i we have εi(êib) = εi(eib) =

εi(b) + 1 by Definitions 4.1.2(2) and 1.3.1(2b) for B. Thus, ε̂i(êib) = min{εi(b) + 1 | i ∈ i} =

ε̂i(b) + 1.

3. The proofs of conditions (2) and (3) are the same, mutatis mutandis.

4. If ε̂i(b) = −∞, then εi(b) = −∞ for some i ∈ i. Therefore êib = 0 by Definition 1.3.1(4) for B.

In total, B̂σ is a C σ∨-crystal.

Proposition 4.2.2. The functions B 7−→ B̂σ and ψ 7−→ ψ̂σ define an essentially surjective, full

functor F̂σ : Ĉrys(C , σ)→ Crys(C σ∨).

Proof. First we prove that F̂σ is essentially surjective. Select an arbitrary B ∈ Crys(C , σ); we

shall construct a structurally foldable C -crystal Bσ such that F̂σ(Bσ) ∼= B. Let G(B) denote the

underlying graph of B; that is, the image of B under the forgetful functor Crys(C σ∨) → DiGraphI

in the category of directed graphs with I-colored edges. The underlying graph of Bσ is obtained by

applying the following procedure to each edge b
i−→ b′ in G(B): Insert (#i)! vertices between b and

b′ in such a way that all n! paths from b to b′ are realized, with any two pair of edges commuting.

For example, if i = {i, j} then that edge replaced by:

b
i

��

j

��
•

i ��

•

j��
b′
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or if i = {i, j, k} then that edge is replaced by:

b

�� �� ��
•

��   

•

~~   

•

~~ ��
•

��

•

��

•

��
b′

This yields a directed graph with I-colored edges, with the property that fifj = fjfi when j ∈ 〈σ〉i.

For each b ∈ B we have ω−1
σ ◦ wt(b) ∈ Λ(C ), which gives a notion of weight for some vertices of

Bσ. Extend this to a grading of Bσ using the rule x
i−→ y =⇒ wt(x)− wt(y) = αi. An arbitrary

vertex in the orbit expansion of b
i−→ b′ has the form x = fi1 · · · finb for some {i1. . . . , in} ⊂ i. For

each k ∈ I put εk(x) := εi(b)− 1 if j ∈ {i1, . . . , in} or εk(x) := εi(b) otherwise. It is clear that these

definitions make (Bσ,wt, εi, ei, fi) a C -crystal, and that F̂σ(Bσ) ∼= B.

Now we prove that F̂σ is full. Suppose that B and B′ are structurally foldable, and select an

arbitrary C σ∨-crystal morphism ψ̂ : B̂σ → B̂′σ; we shall construct a C -crystal morphism ψ : B → B′

such that F̂σ(ψ) = ψ̂. That is to say, we will indicate how ψ̂ can be extended to a C -crystal

morphism. If ψ̂(b) 6= 0, then each edge b
i−→ b′ in is carried by ψ̂ to an edge ψ̂(b)

i−→ ψ̂(b′) in B′.

Define an extension ψ : Bσ → B
′
σ of ψ̂ as follows: Select an arbitrary vertex x = fi1 · · · finb in the

orbit expansion of b
i−→ b′, and declare ψ(x) := fi1 · · · fin ψ̂(b) (this is well-defined by the structural

foldability of Bσ). It is clear that ψ is a C -crystal morphism. Now extend ψ to a C -crystal morphism

ψ : B → B′ by declaring ψ[B rBσ] := {0}.

Remark 4.2.3. Suppose that B and B′ are structurally σ-foldable, and ψ : B → B′ is a C -crystal

morphism. The C -crystal Bσ obtained by applying the Proposition to B̂σ is in general different from

B. Similarly, the morphism obtained by applying the Proposition to ψ̂σ : B̂σ → B̂′σ is in general

different from ψ. This fact precludes F̂σ from being faithful.

The functor Fσ folds the C -crystal structure of B, and transfers this structure to the

quotient of B̂σ by the σ-action. The following lemma ensures that the root operators and structural

maps are well defined on the latter.
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Lemma 4.2.4. Suppose B is a σ-foldable C -crystal. Then ŷi ◦ σ = σ ◦ ŷi and wt ◦ σ = wt and

ε̂i ◦ σ(b) = ε̂i on B̂σ.

Proof. Suppose b, b′ ∈ B̂σ and b′ = σ(b). By definition wt and σ commute on B̂σ. Condition

(4.1.2) and the definition of ε̂i imply that ε̂i(b
′) = ε̂i(b). Assuming ŷb 6= 0, observe that σ ◦ ŷi(b) =

σ ◦
∏
i∈i yi(b) =

∏
i∈i yσ(i) ◦ σ(b) by (4.1.3).

Definition 4.2.5. Let Bσ denote the set of σ-orbits in B̂σ. An element of Bσ is variously expressed

as b or [b] := 〈σ〉b for b ∈ B̂σ, and ΦσB : B̂σ → Bσ denotes the projection map ΦσB : b 7−→ [b].

The compatibility of B’s crystal structure with the σ-action allows the root operators and

structural maps to descend to the quotient B̂σ � Bσ.

B̂σ t {0}
x̂i //

ΦσB
����

B̂σ t {0}

ΦσB
����

Bσ t {0} xi

// Bσ t {0}

B̂σ
wt //

ΦσB
����

Λ̂σ

ωσ

��
Bσ

wtσ
// Λ∨σ

B̂σ
ε̂i //

ΦσB
����

Z t {−∞}

Bσ

εi

::

This yields operators and structural maps which turn out to be a C σ∨-crystal structure for Bσ.

Theorem 4.2.6. The set Bσ is a C σ∨-crystal under

xi := ΦσB ◦ x̂i ◦ (ΦσB)−1 for x ∈ {e, f} (4.2.6)

wtσ := ωσ ◦ wt ◦ (ΦσB)−1 (4.2.7)

εi := ε̂i ◦ (ΦσB)−1 (4.2.8)

where i ∈ I/σ. A foldable C -crystal morphism ψ : B → B′ induces a C σ∨-crystal morphism

ψσ : Bσ → B′σ.

Proof. That the proposed definitions of ai,wtσ, εi are independent of the choice of representative

b ∈ (ΦσB)−1(b) follows from Lemma 4.2.4.

Next the axioms of Definition 1.3.1 must be verified. Let b,b′ ∈ Bσ and i ∈ I/σ.

1. First note that σ◦ x̂i = x̂i ◦σ on B̂σ. Now fi[b] = [b′] if and only if [f̂ib] = [b′]. For the moment,

take for granted that [f̂ib] = [b′] if and only if [b] = [êib
′]. From this it follows immediately

that [b] = ei[b
′].
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To check the claim, observe first that we are assuming {σn(f̂ib) |n ∈ Z} = {σm(b′) |m ∈ Z}.

But then for all n there exists m such that σn(f̂ib) = f̂i(σ
n(b)) = σm(b′). This is true

if and only if σn(b) = êi(σ
m(b′)) by Definition 1.3.1(3), thus σn(b) = σm(êib). Therefore

{σn(b) |n ∈ Z} = {σm(êib
′) |m ∈ Z}.

2. First observe that (4.2.6) gives ei[b] = [êib]. Now wtσ(ei[b]) = wtσ(êib) by (4.2.7). Next

wtσ(êib) = wtσb+ αi by Definition 1.3.1(1). Finally wtσ(ei[b]) = wtσ[b] + αi by (4.2.7) again.

Therefore wtσ(ei[b]) = wtσ[b] + αi. Using (4.2.8) gives εi(ei[b]) = ε̂i(êib) which in turn equals

min{ε̂i(êib) | i ∈ i} by definition. Definition 4.1.2(2) now gives εi(ei[b]) = min{εi(eib) | i ∈ i},

which equals min{εi(b) | i ∈ i} − 1 according to Definition 1.3.1(1). Applying (4.2.8) again

yields εi(ei[b]) = εi([b])− 1 as desired.

3. The proofs of conditions (2) and (3) are identical, mutatis mutandis.

4. Follows immediately from Definition 1.3.1(4) and (4.2.6).

This completes the proof that (Bσ,wtσ, εi, ei, fi) is a C σ∨-crystal.

Let ψ : B → B′ be a σ-foldable C -crystal morphism. To begin, observe ψ maps B̂σ into

B̂′σ because ψ commutes with wt. Note also that ψ([b]) = [ψ(b)]. Now define ψσ : Bσ → B′σ by

ψσ := ΦB′ ◦ ψ ◦ (ΦσB)−1. (4.2.9)

The conditions of Definition 1.3.2 must be verified.

(1a) Consider the following diagram

Λσ

ω

��

B̂σ

wt
00

ψ //

ΦσB
����

B̂′σ

wt

==

Φσ
B′
����

Bσ
ψσ

//

wtσ ..

B′σ
wtσ

!!
Λσ∨

We claim that wtσ ◦ ψσ = wtσ. Calculating gives

wtσ ◦ ψσ = wtσ ◦ ΦσB′ ◦ ψ ◦ (ΦσB)−1 = ω ◦ wt ◦ ψ ◦ (ΦσB)−1 = ω ◦ wt ◦ (ΦσB)−1 = wtσ
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by (4.2.9), (4.2.7), Definition 1.3.2(1a), (4.2.7) respectively, as desired.

(1b) Consider the following diagram

B̂σ
ψ //

ΦσB

    

ε̂i

++

B̂′σ
Φσ
B′

~~~~

ε̂′i
ss

Bσ
ψσ

//

εi $$

B′σ

ε′izz
Z t {−∞}

We claim that ε′i ◦ ψσ = εi. Calculating gives

ε′i ◦ ψσ = ε′i ◦ ΦσB′ ◦ ψ ◦ (ΦσB)−1 = ε̂′i ◦ ψ ◦ (ΦσB)−1 = ε̂i ◦ (ΦσB)−1 = εi

by (4.2.9), (4.2.8), and Definition 1.3.2(1b) respectively, as desired.

(2) Let y ∈ {e, f}, we claim that ψσ ◦ ai = ai ◦ ψσ on {b ∈ Bσ | aib 6= 0}. Consider the

following diagram

B̂σ

ΦσB

����

âi

��

ψ // B̂′σ
âi

��
B̂σ

ψ // B̂′σ

Φσ
B′

����

Bσ
ψσ //

ai
  

B′σ

ai   
Bσ

ψσ

// B′σ

Calculating gives

ψσ ◦ ai = ΦσB′ ◦ ψ ◦ âi ◦ (ΦσB)−1 = ΦσB′ ◦ âi ◦ ψ ◦ (ΦσB)−1 = ai ◦ ψσ

by (4.2.9) and (4.2.6), Definition 1.3.2(2,3), (4.2.9) and (4.2.6) respectively, as desired.

To prove that we have a functor we must show the following

1. For all σ-foldable C -crystals B, we have (1B)σ = 1Bσ .

By (4.2.9), (1B)σ = ΦσB ◦1B ◦ (ΦσB)−1. Given b ∈ Bσ and b ∈ b arbitrary, we have (1B)σ(b) =

ΦσB ◦ 1B ◦ (ΦσB)−1(b) = ΦσB ◦ 1B(b) = ΦσB(b) = b. Therefore (1B)σ = 1Bσ .
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2. For all σ-foldable C -crystal morphisms ψ : B → B′ and ψ′ : B′ → B′′, we have (ψ′ ◦ ψ)σ =

ψ′σ ◦ ψσ.

Observe that ψ′σ ◦ψσ = ΦσB′′ ◦ψ′ ◦Φ−1
B′ ◦ΦσB′ ◦ψ ◦ (ΦσB)−1 = ΦσB′′ ◦ψ′ ◦ψ ◦ (ΦσB)−1. By (4.2.9),

the latter coincides with (ψ′ ◦ ψ)σ.

Proposition 4.2.7. The functions B 7−→ Bσ and ψ 7−→ ψσ define an essentially surjective, full

functor Fσ : Crys(C , σ)→ Crys(C σ∨).

Proof. Equip the structurally foldable C -crystal Bσ constructed in the proof of Proposition 4.2.2

with the trivial σ-action.

4.3 Monoidal category structure

Theorem 4.3.1. The categories Ĉrys(C , σ) of structurally σ-foldable crystals and Crys(C , σ) of

σ-foldable crystals are monoidal categories under the tensor product.

Proof. Because Crys(C ) is a monoidal category, it suffices to prove that the tensor product B ⊗B′

of two σ-foldable C -crystals B,B′ is σ-foldable. It will follor from this that Ĉrys(C , σ) is a monoidal

category under ⊗ as well.

Define an action σ : B ⊗B′ → B ⊗B′ by

σ(b⊗ b′) := σ(b)⊗ σ(b′). (4.3.1)

The diagrams and conditions of Definition 4.1.2 must be verified.

Condition (4.1.1) for B ⊗ B′ follows from (4.1.1) and (2.1.3) for B,B′, and (1.3.10). The

calculation is as follows

wt ◦ σ(b⊗ b′) = wt(σ(b)⊗ σ(b′))

= wt ◦ σ(b) + wt ◦ σ(b′)

= σ ◦ wt(b) + σ ◦ wt(b′)

= σ(wt(b) + wt(b′))

= σ ◦ wt(b⊗ b′).
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Condition (4.1.2) for B ⊗ B′ follows from (1.3.11), (4.1.2) for B,B′, (4.1.1) for B, and

(2.1.4). The calculation is as follows

εσ(i) ◦ σ(b⊗ b′) = max{εσ(i) ◦ σ(b), εσ(i) ◦ σ(b′)− 〈α∨σ(i),wt ◦ σ(b)〉}

= max{εi(b), εi(b′)− 〈α∨i ,wt(b)〉}

= εi(b⊗ b′).

It suffices to check condition (4.1.3) for B ⊗ B′ with x = f . This follows from (1.3.12),

(4.1.3) for B,B′, and (4.1.2) along with the corresponding equation for ϕ for B,B′. The calculation

is as follows

fσ(i) ◦ σ(b⊗ b′) =

fσ(i) ◦ σ(b)⊗ σ(b′), ϕσ(i) ◦ σ(b) > εσ(i) ◦ σ(b′)

σ(b)⊗ fσ(i) ◦ σ(b′), ϕσ(i) ◦ σ(b) ≤ εσ(i) ◦ σ(b′)

=

σ ◦ fi(b)⊗ σ(b′), ϕi(b) > εi(b
′)

σ(b)⊗ σ ◦ fi(b′), ϕi(b) ≤ εi(b′)

= σ ◦ fi(b⊗ b′).

The calculation for x = e is similar.

For condition (1) select distinct i, j ∈ i ∈ I/σ. Calculating gives

ejei(b⊗ b′) =



ejeib⊗ b′, ϕj(eib) ≥ εj(b′) and ϕi(b) ≥ εi(b′)

eib⊗ ejb′, ϕj(eib) < εj(b
′) and ϕi(b) ≥ εi(b′)

ejb⊗ eib′, ϕj(b) ≥ εj(eib′) and ϕi(b) < εi(b
′)

b⊗ eiejb′, ϕj(b) < εj(eib
′) and ϕi(b) < εi(b

′)

eiej(b⊗ b′) =



eiejb⊗ b′, ϕi(ejb) ≥ εi(b′) and ϕj(b) ≥ εj(b′)

ejb⊗ eib′, ϕi(ejb) < εi(b
′) and ϕj(b) ≥ εj(b′)

eib⊗ ejb′, ϕi(b) ≥ εi(ejb′) and ϕj(b) < εj(b
′)

b⊗ ejeib′, ϕi(b) < εi(ejb
′) and ϕj(b) < εj(b

′)
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To conclude as desired we verify the following four statements

ϕj(eib) ≥ εj(b′) and ϕi(b) ≥ εi(b′) ⇐⇒ ϕi(ejb) ≥ εi(b′) and ϕj(b) ≥ εj(b′) (4.3.2)

ϕj(eib) < εj(b
′) and ϕi(b) ≥ εi(b′) ⇐⇒ ϕi(b) ≥ εi(ejb′) and ϕj(b) < εj(b

′) (4.3.3)

ϕj(b) ≥ εj(eib′) and ϕi(b) < εi(b
′) ⇐⇒ ϕi(ejb) < εi(b

′) and ϕj(b) ≥ εj(b′) (4.3.4)

ϕj(b) < εj(eib
′) and ϕi(b) < εi(b

′) ⇐⇒ ϕi(b) < εi(ejb
′) and ϕj(b) < εj(b

′) (4.3.5)

and appeal to condition (1) for B,B′. Note that

ϕi(ejb) = ϕi(b) (4.3.6)

by the definition of ϕ, Definition 4.1.2(2), Definition 1.3.1(2a), and (2.1.2). Statement (4.3.2) is a

tautology. Statements (4.3.3), (4.3.4), (4.3.5) all follow from (4.3.6) and Definition 4.1.2(2). The

calculation for x = f is similar, and omitted.

For condition (2) it suffices to show that εi ◦ ej(b ⊗ b′) = εi(b ⊗ b′). This follows from

(1.3.13), (1.3.11), Definition (4.1.2)(2) for B,B′, and (2.1.2). The calculation is as follows

εi ◦ ej(b⊗ b′) =

εi(ejb⊗ b′), ϕj(b) ≥ εj(b)

εi(b⊗ ejb′), ϕj(b) < εj(b)

=

max{εi ◦ ej(b), εi(b′)− 〈α∨i ,wt ◦ ej(b)〉}, ϕj(b) ≥ εj(b)

max{εi(b), εi ◦ ej(b′)− 〈α∨i ,wt(b)〉}, ϕj(b) < εj(b)

=

max{εi(b), εi(b′)− 〈α∨i ,wt(b)〉}, ϕj(b) ≥ εj(b)

max{εi(b), εi(b′)− 〈α∨i ,wt(b)〉}, ϕj(b) < εj(b)

= εi(b⊗ b′)

This completes the proof.

Theorem 4.3.2. The functor F̂σ : Crys(C , σ)→ Crys(C σ∨) of Theorem 4.2.1, together with

Fσ2 (B,B′) : B̂σ ⊗ B̂′σ → (B̂ ⊗B′)σ, b⊗ b′ 7−→ b⊗ b′ (4.3.7)

Fσ0 : Tσ∨0 → (T̂0)σ. tσ∨0 7−→ t0 (4.3.8)

forms a monoidal functor.
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Proof. We must show that three diagrams in Crys(C σ∨) commute. For diagram (1.1.7) with X =

B, Y = B′, Z = B′′,� = ⊗, α′ = ασ∨ we must check that

Fσ2 (B,B′ ⊗B′′) ◦ (1B ⊗ Fσ2 (B′, B′′)) ◦ ασ∨ = F̂σ(α) ◦ Fσ2 (B ⊗B′, B′′) ◦ (Fσ2 (B,B′)⊗ 1B′′).

We will omit the parenthetic indication of the dependence of Fσ2 for readability’s sake. Letting

(b⊗ b′)⊗ b′′ ∈ (B̂σ ⊗ B̂′′σ)⊗ B̂′′σ, we have

Fσ2 ◦ (1B ⊗ Fσ2 ) ◦ ασ∨((b⊗ b′)⊗ b′′) = Fσ2 ◦ (1B ⊗ Fσ2 )(b⊗ (b′ ⊗ b′′))

= Fσ2 (b⊗ (b′ ⊗ b′′))

= (b⊗ (b′ ⊗ b′′))

F̂σ(α) ◦ Fσ2 ◦ (Fσ2 ⊗ 1B′′)((b⊗ b′)⊗ b′′) = F̂σ(α) ◦ Fσ2 ((b⊗ b′)⊗ b′′)

= F̂σ(α)((b⊗ b′)⊗ b′′)

= (b⊗ (b′ ⊗ b′′)).

For diagram (1.1.8) with X = B, e = T0, e
′ = Tσ∨0 ,� = ⊗, %′ = %σ∨ we must verify

ρσ∨ = ρ̂σ ◦ F 2
σ (B, T0) ◦ (1⊗ F 0

σ )

Letting b⊗ tσ∨0 ∈ B̂σ ⊗ Tσ∨0 . we have ρσ∨(b⊗ t0) = b, and

ρ̂σ ◦ F 2
σ (B, T0) ◦ (1⊗ F 0

σ )(b⊗ t0) = ρ̂σ ◦ F 2
σ (B, T0)(b⊗ tσ∨0 )

= ρ̂σ(b⊗ tσ∨0 ) = b.

The calculation for the diagram involving λσ∨ is nearly identical, and omitted.

4.4 Highest-weight elements of the folded crystal

Throughout this section we assume B is a σ-foldable C -crystal with B̂σ and Bσ as in

section 4.2. Recall that

HW Bσ = {b | eib = 0 for all i ∈ I/σ}.
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Suppose that b ∈ HW Bσ, and choose a representative b ∈ Φ−1
B (b). According to the definition

(4.2.6) of the ei-action, for all i ∈ I/σ there exists j = j(b, i) ∈ i such that ejb = 0. Denote

J(b) := {j ∈ I | ejb = 0}.

Definition 4.4.1. Let C be a Cartan datum with admissible automorphism σ : I → I. The set of

highest-weight configurations of I with respect to σ is

HWσI := {J ⊂ I | J ∩ i 6= ∅ for all i ∈ I/σ}.

A highest-weight configuration J is minimal in case |J ∩ i| = 1 for all i, and maximal proper if

|J | = |I| − 1. To each highest-weight configuration corresponds a highest-weight subset of B̂σ

HWJ B̂σ := {b ∈ B̂σ | J(b) = J}.

The following is evident.

Proposition 4.4.2. The set of highest-weight configurations of I is partially ordered by set inclusion,

as is the set of highest-weight subsets of B̂σ, and the map J → HWJ B̂σ is an order anti-isomorphism.

Furthermore, (HWσI,⊂) is a bounded join-semilattice under union and, dually, ({HWJ B̂σ | J ∈

HWσI},⊂) is a bounded meet-semilattice under intersection with

HWJ B̂σ ∩HWJ B̂σ = HWJ∪J′B̂σ.

Example 4.4.3. Highest-weight configurations for some cases of the D,A, T -series foldings.

1. The D series, labeled as in (2.3.1): For all r there are three highest-weight configurations for

(Dr+2, Cr+1), namely Jr, σ[Jr], Ir. The Hasse diagram is

Ir

Jr

??

σ[Jr]

aa

2. The A series, labeled as in (2.3.3): For all r there are 2r distinct maximal proper highest-weight
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configurations, namely Jr,k, σ[Jr,k] : 1 ≤ k ≤ r For (A5, B3) (r = 2) the Hasse diagram is

I2

J2,2

33

J2,1

99

σ[J2,1]

ee

σ[J2,2]

kk

J2,1 ∩ J2,2

OO 77

σ[J2,1] ∩ J2,2

gg 44

J2,1 ∩ σ[J2,2]

jj 66

σ[J2,1] ∩ σ[J2,2]

hh OO

3. The Hasse diagram for (D4, G2) with I, σ as in (2.3.5) is

{1, 2, 3, 4}

{1, 2, 3}

88

{1, 2, 4}

OO

{2, 3, 4}

ff

{1, 2}

OO 88

{2, 3}

ff 88

{2, 4}

ff OO

Remark 4.4.4. It follows from foldability axiom (4.1.3) that σ[HWJ B̂σ] = HWσ[J]
σ B̂σ. Let {J1, . . . , Jn}

be a complete set of representatives of the σ-orbits in HWσI; we have

HW B̂σ =

n⋃
i=1

〈σ〉HWJ B̂σ.

To study an element b ∈ HW Bσ it suffices to work with a single representative b ∈ Φ−1
B (b). Now

because {J(x) |x ∈ b} = 〈σ〉J(b) we need only consider highest-weight configurations modulo the

σ-action. In summary, to analyze an arbitrary highest-weight element of Bσ it is enough to choose

a representative J of each σ-orbit in HWσI and describe an arbitrary element of HWJ B̂σ.

Example 4.4.5. The poset
(

HWJ B̂σ

)/
σ for some cases of the D,A, T -series foldings.

1. The D series, labeled as in (2.3.1):

Ir

Jr

OO
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2. For (A5, B3)

I2

J2,2

::

J2,1

ee

J2,1 ∩ J2,2

OO 44

σ[J2,1] ∩ J2,2

jj

3. The Hasse diagram for (D4, G2) with I, σ as in (2.3.5) is

{1, 2, 3, 4}

{1, 2, 3}

OO

{1, 2}

OO

Remark 4.4.6. The highest-weight elements of HWJ B̂(∞)σ for (C , J) = (Dr, Jr), (A2r+1, Ir,k) are

completely classified by the balanced parabolic quotient, see Theorem 5.3.1. In section 5.3.3 we

provide a set of {1, 2}-highest-weight elements for type D4 under the triality which in a precise sense

generates HW1,2B̂(∞)σ.

The following lemma severely restricts the weight of a highest-weight element in a normal

crystal.

Lemma 4.4.7. Let B be an upper-normal σ-foldable crystal with all ϕi non-negative and take

b ∈ HW B̂σ. Denoting J(b)σ := {j ∈ J(b) | 〈σ〉j ⊂ J(b)}, we have

wt(b) ⊂ Λ+(J(b)σ) (4.4.1)

Proof. That

〈wt(b), α∨i 〉 is

≥ 0, 〈σ〉i ⊂ J(b)

= 0, 〈σ〉i 6⊂ J(b)

follows immediately from (1.3.7), (1.3.8), and the fact that ϕi is non-negative.

Consider the D-seires folding. The subdiagram indexed by Iσr = {1, · · · , r} is isomorphic

to the Dynkin diagram of type Ar. Identifying the type Ar weight lattice with its image under the

natural Z-module embedding Λ(Ar) ↪→ Λ(Dr+2), we have the following:
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Corollary 4.4.8. Let B be a σ-foldable Dr+2-crystal. Then

wt[HWJr B̂σ] ⊂ Λ+(Ar)

The cyclicity phenomenon for foldable highest-weight crystals

Take B to be a σ-foldable highest-weight C -crystal of highest weight λ̂ ∈ Λ̂σ+ ∪ ∞. In

particular B = Fbλ̂ where bλ̂ denotes the unique element of weight λ̂. That is to say the C -crystal

B(λ̂) is generated by bλ̂ over the monoid F ; in this sense B is cyclic on bλ. Remark wt[B] ⊂ λ̂−NΠ.

Define the weight wt : F → Q by f = fi1 · · · fin 7−→ −
∑n
k=1 αik , and put F̂σ := wt−1[Qσ].

Now let Fσ := F̂σ
/
〈σ〉. It is clear that B̂σ = F̂σbλ, and hence

Bσ = Fσ[bλ̂],

wt[Bσ] ⊂ λ− NΠσ∨.

where λ = ω(λ̂) ∈ Λσ∨. Given ξ =
∑

i∈I/σ ξ(i)αi ∈ Qσ∨, define the height |ξ| :=
∑

i |ξ(i)|. For a

non-negative integer k let Bσ,k := {b ∈ Bσ | |wt(b)− λ| = k}. Definition 1.3.1(2a) indicates

eiBσ,k ⊂ Bσ,k−1 t {0} (4.4.2)

for each i.

Let C be a connected component of Bσ (more precisely, of GBσ), and put HW C = C ∩

HW Bσ. For a non-negative integer k put Ck := C ∩Bσ,k, and let k0 = k0(C) := min{k ≥ 0 |Ck 6=

∅}. By design C is the disjoint union of {Ck | k ≥ k0}.

Theorem 4.4.9. Let B to be a σ-foldable highest-weight C -crystal. Then each connected component

of Bσ is generated by the set of its highest-weight elements over the monoid Fσ∨.

Proof. We must show that for all b ∈ C there exist x ∈ HW C and f ∈ Fσ∨ such that b = fx.

Proceed by induction on k ∈ {k0, k0 + 1, · · · }.

Arbitrarily select b ∈ Ck0 . If b is highest-weight then there is nothing to prove. If there

exists i such that eib 6= ∅, then this element belongs to C by connectedness. But then eib ∈ Ck0−1,

in contradiction to the definition of k0. Hence Ck0 ⊂ HW C and, taking x = b and f = 1, induction

begins.
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For induction we may assume that a given b in a given Ck with k > k0 is not highest-

weight. If eib 6= 0 then, as before, b ∈ Ck−1. By induction there exist x ∈ HW C, f ∈ Fσ∨ such

that eib = fx. Now b = fifx by Definition 1.3.1(1).

A σ-foldable highest-weight C -crystal B folds to the C σ∨-crystal Bσ, which decomposes as

Bσ =
⊕
C≤B

C, C = Fσ∨(HW C). (4.4.3)

The task of describing the crystal structure of Bσ reduces to describing the crystal structure of

Bσ’s subcrystals. For a KL crystal B = B(λ) with σ(λ) = λ when λ ∈ Λ+, by a result of Lusztig

[Lus93] (see also section 4.5.3) the subcrystal B(λ)σ is known to be isomorphic with the C σ∨-crystal

B(ω(λ)). The other subcrystals of B(λ)σ have never been considered in the literature.

Example 4.4.10. For the pair (C ,C σ∨) = (D4, C3), consider the Kashiwara-Littelmann crystal

B($̂1 +$̂3). We calculate that B̂($̂1 +$̂3)σ contains five highest-weight elements b∞, x1, x2, x3, x4,

and further that x2 = σ(x1), x4 = σ(x3). Thus

B̂($̂1 + $̂3)σ = F̂σ{x1, x3} t F̂σ{x2, x4} t B̂($̂1 + $̂3)σ

as a set. Furthermore, denoting J = {1, 2, 3} we have HWJ B̂($̂1 + $̂3)σ = {x1, x3}. This of course

implies that σ[F̂σ{x1, x3}] = F̂σ{x2, x4}. Passing to the quotient, we have

B($̂1 + $̂3)σ ∼= Fσ∨{[x1], [x3]} ⊕B($1 +$3) ∈ Crys(C3)

by Lusztig’s characterization of the invariant subcrystal (section 4.5.3). The crystal graph of

Fσ∨{[x1], [x3]} is shown in Figure 0.2.

4.5 Miscellaneous results

4.5.1 Transfer of normality

Proposition 4.5.1. If B is an upper (lower) normal σ-foldable C -crystal, then Bσ is an upper

(lower) normal C σ∨-crystal.

Proof. Assume B is upper-normal and arbitrarily select b ∈ Bσ and i ∈ I/σ. If k ≤ εi(b) then

k ≤ εi(b) for all (i, b) ∈ i× b by (4.2.2) and (4.2.8). Now eki b 6= 0 for all (i, b) ∈ i× b by (5.1.2) for
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B, and it follows that eki b 6= 0. If instead k > εi(b) then k > εi(b) for some (i, b) ∈ i× b, again by

(4.2.2) and (4.2.8). But now eki b = 0, and it follows that eki b = 0. The proof for lower normality is

the same, mutatis mutandis, and is omitted.

4.5.2 Weyl group action

When B is normal it admits a unique action W → AutSet(B) of the Weyl group W (C )

given by [Kas94]

si.b :=

f
〈wt b,α∨i 〉
i b 〈wt b, α∨i 〉 ≥ 0

e
−〈wt b,α∨i 〉
i b 〈wt b, α∨i 〉 ≤ 0

and satisfying

wt(w.b) = w(wt b), all w ∈W, b ∈ B.

In effect the action of si on b reverses the i-string through b.

Given i ∈ I/σ define ŝi :=
∏
i∈i si. Let Wσ := 〈ŝi | i ∈ I/σ〉. The following lemma is

evident.

Lemma 4.5.2. For all b ∈ B̂σ we have

ŝi.b =

f̂
〈wt b,α̂∨i 〉
i b 〈wt b, α̂∨i 〉 ≥ 0

ê
−〈wt b,α̂∨i 〉
i b 〈wt b, α̂∨i 〉 ≤ 0

We know, from [BG11, Proposition 2.4], for example there exists an isomorphismW (C σ∨) ∼=

W (C )σ.

Proposition 4.5.3. Let B be a normal σ-foldable C -crystal. Then Bσ admits a unique action

W (C σ∨)→ AutSet(Bσ) of the Weyl group W (C σ∨) via

si.[b] := [ŝib]. (4.5.1)

Each subcrystal of Bσ is stable under this action.

Proof. Use the previous Lemma and the properties of the folded root operators. Because W (C σ∨)

acts by folded root operators it preserves each subcrystal of Bσ.

66



4.5.3 The symmetric portion of a crystal

The subset of a crystal B fixed by the action of a diagram automorphism σ was first

considered by Lusztig and described further by Naito and Sagaki. Before discussing these results we

introduce this object in the context of our theory.

Definition 4.5.4. For a σ-foldable C -crystal B let B̂σ := {b ∈ B |σ(b) = b} and Bσ := ΦB [B̂σ].

The following proposition is evident.

Proposition 4.5.5. If B is a σ-foldable C -crystal then Bσ is a sub-C σ∨-crystal of Bσ. That is to

say, GBσ = GBσ ⊕ G(Bσ rBσ).

The machinery of σ-foldability is unnecessary for studying Bσ. Indeed, the σ-action on

B̂σ is trivial by definition, which allowed other authors to work with B̂σ and Âσ and obviated the

need for a theory of crystal folding. For the Kashiwara-Littelmann crystals there is the following

well-known result of Lusztig.

Theorem ([Lus93, Theorem 14.4.9]). Let σ be an admissible automorphism of C , and let λ ∈

Λ+∪{∞}. Then σ acts on B(λ) ∈ Crys(C ) and B̂(λ)σ is naturally isomorphic to B(λ) ∈ Crys(C σ∨).

The polyhedral crystal B = Z∞ι may be given a C σ∨-crystal structure in the manner of

subsection 1.5.1, denote this crystal Z∞ι (C σ∨). Naito and Sagake define the operators âi as in (4.2.1),

without explicitly noting the condition of Definition 4.1.2(1), and obtain the following result.

Theorem ([NS04] Theorem 2.4.1). We have Aσ(Z∞ι )σ ⊂ (Z∞ι )σ t {0}. Furthermore, there exists a

canonical bijection Φ : (Z∞ι )σ → Z∞ι (C σ∨) such that Φ ◦ x̂i = xi ◦ Φ for all i ∈ I/σ, x ∈ {e, f}.

No crystal structure is placed on (Z∞ι )σ in [NS04] and it is not claimed that Φ is an

isomorphism of crystals. A similar result is obtained for the path model P (λ).

Theorem ([NS02, Theorem 4.2], [NS01, Theorem 3.2.4]). Suppose λ ∈ Λ+ satisfies σ(λ) = λ.

Then there exists a canonical bijection Φ : P (λ) → P (ωσ(λ)) such that Φ ◦ x̂i = xi ◦ Φ for all

i ∈ I/σ, x ∈ {e, f}.

67



Chapter 5

Folded structure of the

Kashiwara-Littelmann crystals

For the Cartan data described in section 2, the σ-foldability of B(∞) is follows from that

of the polyhedral crystal. Theorem 4.3.1 then implies B(λ) : λ ∈ Λ+ is σ-foldable. The complete

structure of Bσ for type (D3, C2) ∼= (A3, B2) is given in subsection 5.5, and examples showing that

HW C can have more than one element are given for type.

After discussing the σ-action on the polyhedral crystal in section 5.1, we prove that the

polyhedral crystal is σ-foldable (Theorem 5.2.1). It follows immediately that B(∞) is σ-foldable,

and being a highest-weight C -crystal it is subject to the cyclicity phenomenon of section. In types

A,D,E6 we give a complete characterization of the highest-weight elements of B(∞)σ in terms of the

balanced parabolic quotient (Theorem 5.3.1) via Demazure crystals. We show that the Jr-highest-

weight subset of Σ̂ι,σ(Dr+2) is a semigroup, and admits a unique finite ⊂-minimal generating set.

The balanced parabolic quotient JrWσ embeds into the generating set (Proposition 5.3.11), and

there is a bijection between the two for 1 ≤ r ≤ 7. In section 5.3.3 we exhibit a convex rational

polytope whose discrete volume gives the number of Jr-highest-weight elements of a given weight,

and relate this volume to the kernel of a certain integral matrix. Next, we show that there exists

a component of B(∞)σ in Dn, n ≥ 4 containing infinitely many highest-weight elements. A table

providing connectedness data for several B(λ)σ is given, and we conjecture a decomposition of

B(∞)σ as a C3-crystal. Finally, in section 5.5 we compute the structure of the C2-crystal B(∞)σ.
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5.1 The σ-action on the polyhedral crystal

The following result—valid in far greater generality but only needed in the present form—is

essential to constructing a σ-action on the polyhedral crystal.

Lemma ([Nak99, Proposition 4.1]). Suppose j ∈ 〈σ〉i. Then there exists a C -crystal isomorphism

φij : Bi ⊗Bj ∼= Bj ⊗Bi whereby bi(x)⊗ bj(y) 7−→ bj(y)⊗ bi(x).

For our purposes we choose a sequence ι that is adapted for the folding of C by an admis-

sible automorphisim σ. Repeat a Coexeter word1 ι|I/σ|, · · · , ι2, ι1 from I/σ infinitely many times,

producing a sequence ι from I/σ. Lift ι to a sequence ι from I by replacing each orbit ιk by its

elements. Besides its organization based on the structure of I/σ, we have ensured that (1.5.1) is

satisfied.

Definition 5.1.1. A sequence ι from I constructed in the manner described above is called σ-

adapted.

A priori there are multiple lifts of ι to ι, each corresponding to an ordering of ιk’s elements.

The crystals · · · ⊗ Bιk ⊗ · · · ⊗ Bι2 ⊗ Bι1 and · · · ⊗ Bι′k ⊗ · · · ⊗ Bι′2 ⊗ Bι′1 corresponding to different

lifts ι′, ι of ι are isomorphic by [Nak99, Proposition 4.1]. Identifying these crystals, we assume there

is a unique lift ι, consisting of ‘blocks’ that are σ-orbits in I.

Use [Nak99, Proposition 4.1] to define an isomorphism φσ : · · · ⊗ Bιk ⊗ · · · ⊗ Bι2 ⊗ Bι1 ∼=

· · ·⊗Bσ(ιk)⊗· · ·⊗Bσ(ι2)⊗Bσ(ι1), where σ(ι) := (σ(ιk) | k ≥ 1). Let 1σ : · · ·⊗Bσ(ιk)⊗· · ·⊗Bσ(ι2)⊗

Bσ(ι1) → · · · ⊗ Bιk ⊗ · · · ⊗ Bι2 ⊗ Bι1 be the bijection that is the identity function on its domain.

Abusing notation, remark 1.5.1 yields

Z∞ι
φσ−→ Z∞σ(ι)

1σ−→ Z∞ι

A σ-adapted sequence ι affords a convenient indexing scheme. In this case ιk+|I| = ιk for

all k. Now a given k ≥ 1 has the form k = n|I| + r with n ≥ 0 and 1 ≤ r ≤ |I|, which gives a

bijection N ∼−→ N× I whereby k 7−→ (n+ 1, r). Expressing ιk = ιn+1,ιr gives

ι = (ιn,i |n ≥ 1, i ∈ I) (5.1.1)

x = (xn,i |n ≥ 1, i ∈ I). (5.1.2)

1That is, a sequence in which each index appears exactly once.
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Example 5.1.2. Consider the pair (C ,C σ∨) = (D3, C2) as in (2.3.1) with ι = (· · · ,0,1,0,1) lifted

to ι = (· · · ,−1, 0, 1,−1, 0, 1). Expression (5.1.2) is

x = (· · · , x2,−1, x2,0, x2,1, x1,−1, x1,0, x1,1) (5.1.3)

Lemma ([NS04, 2.3]). The automorphism σ yields a bijection σ ∈ Bij(Z∞ι ) which can be described

on elements as follows: for all x = (xn,i) ∈ Z∞ι we have σ(x) = y, where

y = (yn,i)(n,i)∈N×I with yn,i = xn,σ−1(i). (5.1.4)

Write (n, j) > (m, i) if n|I| + j > m|I| + r. The doubly-indexed Kashiwara functions are

given by

γm,i(x) = xm,i +
∑

(n,j)>(m,i)

aijxn,j . (5.1.5)

In this notation, the definition of the Kashiwara operators is formulated as follows. Let

mi(x) := min{m ≥ 1 | γm,i(x) = εi(x)} (5.1.6)

mi(x) := max{m ≥ 1 | γm,i(x) = εi(x)}. (5.1.7)

Then, when the respective images are nonzero, we have

eix = x− e(mi(x), i) (5.1.8)

fix = x+ e(mi(x), i) (5.1.9)

(There is a unique such index because each element of I appears once per block when ι is σ-adapted.)

We shall need two technical results on the relationship between the σ-action and the Kashi-

wara functions.

Lemma 5.1.3. If aij = 0 then

γk(yjx) = γk(x) for all ιk = i, y ∈ {e, f},x ∈ Z∞ι . (5.1.10)
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Proof. For all k,m ≥ 1 and all x ∈ Z∞ι

γk(e(m)) =


aij , k < m

1, k = m

0, k > m

(5.1.11)

by (1.5.3). The claim now follows from (1.5.6) and (1.5.7).

Lemma 5.1.4. For all x ∈ Z∞ι and all (m, i) ∈ N× I the following diagram commutes

Z∞ι
σ //

γm,i
  

Z∞ι

γm,σ(i)
~~

Z

(5.1.12)

Proof. By (5.1.5) and (5.1.4)

γm,σ(i) ◦ σ(x) = ym,σ(i) +
∑

(n,j)>(m,σ(i))

aσ(i),jyn,j

= xm,i +
∑

(m,j)>(n,σ(i))

aσ(i),jxn,σ−1(j)

γm,i(x) = xm,i +
∑

(n,j)>(m,i)

ai,jxn,j .

Now for all (n, j) > (m,σ(i)) there exists a unique (n′, j′) > (m, i) such that aσ(i),jxn,σ−1(j) =

ai,j′xn′,j′ . Indeed, letting (n′, j′) = n, σ−1(j) we have

ai,j′xn′,j′ = ai,σ−1(j)xn,σ−1(j) = aσ(i),jxn,σ−1(j)

by (2.1.1).

5.2 Foldability

Theorem 5.2.1. The polyhedral crystal Z∞ι with σ-adapted sequence ι is σ-foldable.

Proof. The σ-action is given by (5.1.4), we must verify the conditions of Definition 4.1.2.

Equation (4.1.1): According to (5.1.2) and (1.5.2)

wt ◦ σ(x) =
∑
i∈I

∑
n≥1

xn,σ−1(i)

αi
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whereas

σ ◦ wt(x) =
∑
i∈I

∑
n≥1

xn,i

ασ(i).

Equation (4.1.2): According to (1.5.4) and (5.1.4)

εi ◦ σ(x) = max{γn,i ◦ σ(x) |n ≥ 1} = max{γn,σ−1(i)(x) |n ≥ 1} = εσ−1(i)(x).

It suffices to check equation (4.1.3) for the f operator. According to (5.1.8) we have

fi ◦ σ(x) = fiy = y + e(mi(y), i).

But (5.1.4) and (4.1.2) give

mi(y) = mσ−1(i)(x).

Now

fi ◦ σ(x) = σ(x) + e(mσ−1(i)(x), i)

= σ(x + e(mσ−1(i)(x), σ−1(i))) = σ ◦ fσ−1(i)(x)

by (5.1.8) again.

It is enough to check condition (1) for the f operator. According to (5.1.9) we have

fifjx = x + e(mj(x), j) + e(mi(fjx), i)

fjfix = x + e(mi(x), i) + e(mj(fix), j).

Thus it suffices to prove that mi(fjx) = mi(x) when j ∈ 〈σ〉i. This follows, indeed it holds in even

greater generality by Lemma 5.1.3.

Condition (2) is an immediate consequence of Lemma 5.1.3.

It is clear from the definitions that a subcrystal of a σ-foldable crystal is σ-foldable. Hence

[NZ97, Theorem 2.5] gives

Corollary 5.2.2. The limit Kashiwara-Littelmann crystal B(∞) is σ-foldable.

Corollary 5.2.3. For each λ ∈ Λ+ satisfying σ(λ) = λ the KL crystal B(λ) is σ-foldable.
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Proof. Recall that B(λ) : λ ∈ Λ+ is isomorphic to the subcrystal of B(∞)⊗Sλ generated by b∞⊗sλ.

Define σ : Sλ → Sλ by σ(sλ) = sλ, it is easily checked that Sλ is σ-foldable. (The σ-invariance of λ

is required for condition (4.1.1) to hold.) Therefore B(λ) is σ-foldable by Theorem 4.3.1.

5.3 Highest-weight elements of the KL crystals

5.3.1 Demazure crystals, branching rules, and σ-invariant weight spaces

Fix a simply-laced symmetrizable Cartan datum C with admissible automorphism σ. It

turns out that the balanced quotients characterize the Demazure crystals in which weight-invariant

J-highest-weight elements appear.

Theorem 5.3.1. Let λ ∈ Λ++∪{∞}. For (C , J) of type Dn (2.3.1), A2r+1 (2.3.3), E6 (2.3.9), and

D4 under the triality (2.3.5) an element w ∈ JW is σ-balanced if and only if B̄w(λ) := Bw(λ) r⋃
v≤w Bv(λ) contains a weight-invariant element of HWJB(λ).

Elements of HWJB(λ)—that is, the elements of B(λ) that are highest-weight for the Jth

branching rule—are readily seen to be related to JW by the following, which we failed to find in the

literature.

Lemma 5.3.2. For any J ⊂ I, we have HWJB(λ) ⊂
⋃
w∈JW Bw(λ), λ ∈ Λ++ ∪ {∞}

Proof. It suffices to prove the claim using the path crystal. Immediately from [Lit94, Proposition

1.5], we have that

ẽjπ = 0 ⇐⇒ 〈α∨j , im π〉 ⊂ [0,∞). (5.3.1)

We have π ∈ HWJPλ if and only if (5.3.1) holds for all j ∈ J . In particular 〈α∨j , τ1λ〉 > 0 for all

j ∈ J . Now 〈τ−1
1 α∨j , λ〉 > 0 for all j ∈ J implies that τ−1

1 ∈W J by (1.2.3).

Observe that, Bw(λ) =
⊕

ν∈NΠBw(λ)λ−ν , where

Bw(λ)λ−ν := {fn`i` · · · f
n1
i1
bλ |

∑
1≤k≤`

nkαik = ν}.

Now |Bw(λ)λ−ν | are increasing in λ for the ordering ≺ of Section 1.2 and uniformly bounded by

the number of monomials fn`i` · · · f
n1
i1

with
∑

1≤k≤` nkαik = ν. Thus there exists λ ∈ Λ++ such that

|Bw(λ)λ−ν | is maximal. The set Bw(∞) is defined to be the disjoint union of these Bw(λ)λ−ν , hence

the results of Bw(λ) imply the result on Bw(∞).
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The proof of Theorem 5.3.1 is technical and uses a combination of the polyhedral realization,

the combinatorics of the reduced expressions of w, and Kashiwara’s ? involution. We begin by

outlining the steps.

Proof outline of Theorem 5.3.1. We must show that

B̄w(∞) ∩HWJB(∞) contains a weight-invariant element ⇐⇒ w ∈ JWσ (5.3.2)

We restrict our attention to type D as in (2.3.1), type A is proved similarly and the exceptional

cases are checked by hand.

First, we shall prove that if a representative w ∈ JW is σ-balanced, then B̄w(∞) contains

a weight-invariant element of HWJB(∞), by constructing such an element. Given a reduced word

(i`, . . . , i1) ∈ R(w) let b := f̃i` · · · f̃i1b∞. It follows immediately that b is weight-invariant, since

wt(b) = −
∑`
k=1 αik and w is σ-balanced. Note also that b ∈ B̄w(∞), by (2) above.

Proposition 5.3.3. b ∈ HWJB(∞)

Proposition 5.3.3 is proved using the polyhedral realization Ψι : Bw(∞) ∼= Σι,w [Nak02].

Using a relationship between the operators f̃i, f̃j when aij = −1 (Lemma 5.3.6 below), we compute

Ψι(b). Next, we apply a result of Littelmann (Lemma 5.3.7 below), which describes the structure of

a reduced expression of a fully commutative element, to conclude that ẽjb = 0 for all j ∈ J . This

shows that b is an element of B̄w(∞)∩HWJB(∞) having σ-invariant weight, which proves the “only

if” direction of (5.3.2).

Remark 5.3.4. It does not follow immediately from the definitions of (B(∞), ẽi, f̃i) alone that b is

J-highest-weight.

The following Lemma completes the proof of (5.3.2).

Lemma 5.3.5. If w ∈ JW is not σ-balanced, then B̄w(∞) does not contain a weight-invariant

element of HWJB(∞).

To prove Lemma 5.3.5 we first observe that by Lemma 3.2.5, if w ∈ JW is not σ-balanced

then it has a unique reduced factorization w = us−1s1s2 · · · sk with u ∈ JWσ of maximal length

and `(w) = `(u) + k + 1. If w = us−1 we check that Lemma 5.3.5 holds by a direct calculation in

Σι,w. Otherwise, if w = us−1s1 · · · si with i ≥ 1 we can use Kashiwara’s ?-operation along with the

combinatorial properties of Demazure crystals from section 1.4.1.
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Proof of Proposition 5.3.3. First, we need a lemma about the interaction of the operators f̃i, f̃j when

aij = −1. The notations appearing below are defined in section 1.5

Lemma 5.3.6. Let w ∈ JWσ and x ∈ Σι
w and i, j be such that aij = −1. If f̃j acts on x at position

k, then f̃j acts on f̃ix at position k′ ≥ k.

Proof. We show that minM (j)(f̃ix) ≥ minM (j)(x). Let ` = `(w). By definition (see section 1.5),

f̃ix = x + eminM(i)(x). Take k ≥ 1 such that ιk = j; then

γk(f̃ix) = γk(x) + γk(δk,minM(i)(x))

=

γk(x), k > minM (i)(x)

γk(x)− 1, k < minM (i)(x)

by [Nak02, 2.8]. There are three cases to consider:

1. If M (j)(x) ⊂ (minM (i)(x), `] then εj(f̃ix) = εj(x) and minM (j)(f̃ix) = minM (j)(x) by the

above display.

2. IfM (j)(x) ⊂ [1,minM (i)(x)) then, similarly as before, εj(f̃ix) = εj(x)−1 and minM (j)(f̃ix) =

minM (j)(x).

3. If M (j)(x)∩[1,M (i)(x)) and M (j)(x)∩(M (i)(x), `] are nonempty then there exists k ∈M (j)(x)

such that k > minM (i)(x) and γk(x) = εj(x). Thus εj(f̃ix) = εj(x) and minM (j)(f̃ix) >

minM (j)(x).

These calculations complete the proof.

It follows from this Lemma and Theorems 3.2.3, 3.2.4, and the definition of f̃i, f̃j (see

section 1.5) that Ψι(b) is the sequence (· · · , 0, 1, . . . , 1︸ ︷︷ ︸
`(w)

).

To prove that Ψι(b) ∈ HWJΣι we use combinatorial information about the parameterizing

sequence ι, which is based on (i`, . . . , i1) ∈ R(w), via the following.

Lemma 5.3.7 ([Lit98, Lemma 3.4]). Let (ir, . . . , i1) index a reduced expression of a fully commu-

tative w ∈W . Then

1. If j ≥ 2 is such that ik 6= ij for all k < j then there exists exactly one l ∈ {1, . . . , j − 1} such

that ajl 6= 0.
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2. Suppose i = ip = iq but ij 6= i for all p < j < q. Then there exist two (not necessarily different)

ij , ik with p < j < k < q such that ai,ij , ai,ik = −1.

We are now in a position to show that ẽjb = 0 for all j ∈ J . It suffices to show εj(b) = 0

for all j ∈ J , by to the upper-normality of B(∞). Let x := Ψι(b). By [Nak02, (2.13)] it suffices to

show γl(x) ≤ 0 for all l such that ιl = j, where j ∈ J is arbitrary. Recall

γl(x) = 1 +
∑
l<t≤`

aιt,j

and note that only those t with ιt ∈ {2,−1} contribute to the sum.

If there exists a unique l such that ιl = j then εj(x) = max{0, γl(x)}. By Lemma 5.3.7(1)

there exists a unique t > l such that aιt,j = −1. Thus γl(x) = xl + (−1)xt = 0.

It there exist more than one l such that ιl = j, say there are n such indices ln > · · · > l1.

Then Lemma 5.3.7(2) provides two indices lk+1 > ir(k) > is(k) > lk such that aιr,j = aιs,j = −1.

By Lemma 5.3.7(1) there exists a unique l > ln such that aιl,j = −1. Thus

γlk(x) = xlk − xln +
∑
k<t≤n

2xlt − (xir (k) + xis(k))

= 1− 1 +
∑
t

2− (1 + 1) = 0.

Hence in either case γl(x) ≤ 0, which completes the proof of Proposition 5.3.3.

Proof of Lemma 5.3.5. Recall that we use the indexing scheme (2.3.1) To begin, observe that Lemma

3.2.5 implies that w ∈ JW that is not σ-balanced has a unique reduced factorization w = us−1s1s2 · · · sk

with u ∈ JWσ of maximal length.

In the case w = us−1 it follows from Lemma 3.2.5 that w = 2kw◦. We check that B̄w(∞)

does not contain a weight-invariant element of HWJB(∞) by a direct calculation. Fix n = 2k >

0 and take the reduced decomposition of w = Jnw◦ = τ0 · · · τn afforded by Lemma 3.2.5. Let

(i`, · · · , i1) be the reduced word for this decomposition, and let ι = (· · · , ιk, · · · , ι2, ι1) be an infinite

sequence from I such that ιk = ik for all 1 ≤ k ≤ `; combinatorial properties of ι will be used

frequently and without reference in the sequel.

We claim that HWJ(Σι
w)σ = ∅. Indeed, let x ∈ HWJ(Σι

W )σ. Given i ∈ I, set Ki := {k ≥

1 | ιk = i}, ki := minKi, Ki := maxKi. Then

x ∈ HWJΣ
ι ⇐⇒ γk(x) ≤ 0 for all k ∈

⋃
j∈J
Kj .
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and

x ∈ Σι
σ ⇐⇒

∑
k∈K0

xk =
∑

k∈K−1

xk (5.3.3)

We are considering only those x lying in the interior of the cone Σι
w, which means all xk > 0. We

will show that ∑
k∈K0

xk ≤
∑

k∈K−1r{k−1}

xk, (5.3.4)

which contradicts equation (5.3.3). It will be useful to use the following form of the definition of γk,

which is adapted to our simply-laced case

γk(x) = xk + 2
∑

m∈Kιk :m>k

xm −
∑

m∈K(ιk):m>k

xm, K(i) :=
⋃

j:aij<0

Kj

Let K∗ := {k ≥ 1 | k0 ≤ k ≤ Kn−1}, this range of indices corresponds to τn−1 in our

preferred reduced decomposition of w. In the following we describe how to systematically reduce

the set of inequalities {γk(x) ≤ 0 | k ∈ K∗} to the desired contradictory inequality. Consider two

inequalities at a time, beginning with the largest index: In case k = Kn−1 we have

xKn−1 ≤ xKn−2 (5.3.5)

whereas in case k = Kn−1 − 1, because ιKn−1−1 = n− 2 and K(n−2) = Kn−1 ∪ Kn−3 we have

xmax(Kn−2r{Kn−2}) + 2xKn−2
≤ xKn−1

+ xmax(Kn−3r{Kn−3}) + xKn−3
(5.3.6)

Combining (5.3.5) and (5.3.6) gives

xmax(Kn−2r{Kn−2}) + xKn−2
≤ xmax(Kn−3r{Kn−3}) + xKn−3

(5.3.7)

In case k = Kn−1− 2, because ιk = n− 3 and K(n−3) = Kn−2 ∪Kn−1 (go to the final steps if k ≤ 4)

we have

xmax(Kn−3r{Kn−3,max(Kn−3r{Kn−3})}) + 2xmax(Kn−3r{Kn−3}) + 2xKn−3 (5.3.8)

≤ xn1 + xn2 + xn3 + xn4 + xn5
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where

n1 = max(Kn−2 r {Kn−2})

n2 = max(Kn−4 r {Kn−4,max(Kn−4 r {Kn−4})})

n3 = Kn−2

n4 = max(Kn−4 r {Kn−4})

n5 = Kn−4

Combining (5.3.7) and (5.3.8) gives

xmax(Kn−3r{maxKn−3,max(Kn−3r{maxKn−3})}) + xmax(Kn−3r{maxKn−3}) + xmaxKn−3

≤ xk2 + xk4 + xk5

This process eventually terminates; the final step is the case k = minK0 in which we have

xk0 + 2
∑

m∈K0r{k0}

xm ≤
∑

n∈K1r{k1}

xn.

In case k + 1 we found that

∑
n∈K1r{k1}

xn ≤
∑

r∈K0r{k0}

xr +
∑

s∈K−1r{k−1}

xs.

Combining these inequalities yields (5.3.4). Thus, HWJ(Σι
w)σ = ∅.

In case w = us−1s1 · · · si with i ≥ 1 we use Kashiwara’s ?-operation. We will show that

b ∈ HWJ B̄w(∞)σ = ∅. Assume that b is an element of that set, using the notation of (1.4.1) we can

express b = f̃ki f̃
k
i b∞, with k,min kj > 0, where i ∈ R(wsi). Then Lemma 4.1 provides b′ ∈ Bwsi(∞)

such that b = f̃?ki b′. Now wt b = wt b′ − kαi and εj(b) = εi(b
′) for all j 6= i by [Kas93, Corollary

2.2.2].

In case σ(i) = i we have i ∈ J . Since w is not σ-balanced, we see that wsi is also not

σ-balanced. Furthermore, b′ ∈ Bwsi(∞)σ. By induction there exists j ∈ J such that εj(b
′) > 0. If

j 6= i then b /∈ HWJBw(∞), contradicting the choice of b. Therefore it must be that εj(b
′) = 0 for

all j ∈ J r {i}. Writing Ψi(b
′) = b0 ⊗ ci(−k), it follows from (1.4.1) that Ψi(b) = b0 ⊗ ci(−m− k).
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Now because Ψi is an isomorphism the tensor product axioms give

0 < εi(b
′) = max{εi(b0), εi(ci(−m))− 〈α∨i ,wt(b0)〉}

= max{εi(b0),−(〈α∨i ,wt(b′)〉+m)}

and

0 = εi(b) = max{εi(b0), εi(ci(−m− k))− 〈α∨i ,wt(b0)〉}

= max{εi(b0), k − (〈α∨i ,wt(b′)〉+m)}.

Accordingly εi(b0) = 0, forcing −(wtib
′+m) > 0. But now k− (wtib

′+m) ≤ 0, which is impossible.

The map η

Define a function

η :
⋃
n≥1

I×n → B(∞) whereby (in, . . . , i1) 7−→ fin · · · fi1b∞. (5.3.9)

When ι is as in section 1.5.1, we denote ηι := Ψι ◦ η, whose image lives in Σι. Recall (section 5.2)

that if aij = 0 then fifj = fjfi as operators on B(∞). On the other hand, it is easy to show

that if the simple reflections si, sj commute if and only if aij = 0. Accordingly, if w ∈ W is fully

commutative them η[R(w)] is a singleton; let η(w) denote this element. In particular, for C of types

Dn (2.3.1), A2r+1 (2.3.3), E6 (2.3.9) we have ηι : JWσ → Σι.

5.3.2 Free generators in the polyhedral crystal

Suppose A is positive definite, so that g(C ) is of finite type and the polyhedral crystal lives

in Q`(w◦). Recalling the geometric presentation of the Kashiwara-Nakashima-Zelevinsky crystal from

section 1.5.3, denote Cι := R≥0Ξι. Theorem 3.1 of [NZ97] presents Σι as the associated semigroup

of the dual cone C∨ι , which is to say Σι = C∨ι ∩ Z`. Owing to the fact that the coordinate forms

x∗k, k ≥ 1 belong to Ξι, the dual cone Cι is strongly convex, in the sense that it contains no nontrivial

subspace of R`.

Let C be a convex rational polyhedral cone in Rd. We say that a vector x ∈ C∨ ∩ Zd is

irreducible if x = y + z with y, z ∈ C∨ ∩ Zd implies y = 0 or z = 0.
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Lemma 5.3.8 ([CLS11, Proposition 1.2.23]). The set Hι := {x ∈ Σι |x is irreducible} has the

following properties:

1. Hι is finite and generates Σι as a semigroup.

2. Hι contains the ray generators of the edges of C∨ι .

3. Hι is the ⊂-minimal generating set of the semigroup Σι.

Remark 5.3.9. According to [Jos09, 4.1], there is no hope of explicitly describing Hι in the general

case, because it is extremely sensitive to the choice of parameterizing sequence ι.

Let C be of type Dr+2, (2.3.1), and given x ∈ Z∞ι , write
∑
i∈I wti(x)αi := wt(x). We can

repeat the previous line of reasoning, beginning from the set Ξrι,σ := Ξι,σ ∪ Γr, where

Ξι,σ := Ξι ∪ {±(wt−1 − wt0)} (5.3.10)

Γr := {−γk | ιk ∈ Jr}. (5.3.11)

These data yield a presentation of the Jr-highest-weight subset of Σ̂ι,σ as the associated semigroup

of the cone Crι,σ := R≥0Ξ
r
ι,σ

HWJr Σ̂ι,σ =
(
Crι,σ

)∨ ∩ Z`. (5.3.12)

The obvious variant of Lemma [CLS11, Proposition 1.2.23] provides a unique finite ⊂-minimal

generating set Hrι,σ of HWJrΣι,σ.

Fact 5.3.10. For C of type Dr+2 as in (2.3.1), with 1 ≤ r ≤ 7 and ι obtained from the Coxeter

word (−1, 0, 1, . . . , r), we have HJrι,σ = ηι
[
JrWσ

]
.

Fact 5.3.10 should be compared to Remark 5.3.9.

Conjecture 1. Fact 5.3.10 holds for all r ≥ 1.

Proposition 5.3.11. For C of type Dr+2 as in (2.3.1), and ι obtained from the Coxeter word

(−1, 0, 1, . . . , r), we have ηι[
JrWσ] ⊂ Hrι,σ.

The proof of Proposition 5.3.11 relies on the following technical lemmata. The first is a

reformulation of Lemma 5.3.6 in the double-indexing scheme, and the second concerns Demazure

crystals in the polyhedral realization.
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Lemma 5.3.12. Let ι be a sequence from I satisfying (1.5.1). Then for all i and all x we have

minMi(fix) ≤ minMi(x).

Given i := (in, . . . , i1),p := (pn, . . . , p1) ∈ Nn, denote fpi := fpnin · · · f
pn
i1
∈ F . Thus, if

i ∈ R(w) then Bw(∞) =
{
fpi b∞ |p ∈ N`(w)

}
(cf. condition (2) on p.18).

Lemma 5.3.13. Suppose that C is of type Dr+2, 2.3.1, and let ι be the adapted sequence obtained

from the Coxeter word (−1, 0, 1, · · · , r). For all n ≥ 1 odd and all x ∈ (Σι)Jnw◦ we have

max{m ≥ 1 | (∃i ∈ I)xm,i > 0} ≤ n+ 1

That is, an element of (Σι)Jnw◦ is only supported up to block n+ 1.

Proof. We may assume that n = r + 2 without loss of generality. Lemma 3.2.5 indicates that

R(Jnw◦) 3 i := ( −1︸︷︷︸
block n+1

, 1, 0︸︷︷︸
block n

, 2, 1,−1︸ ︷︷ ︸
block n−1

, . . . , n, n− 1, . . . , 1, 0︸ ︷︷ ︸
block 1

).

Accordingly, writing ` := `(Jnw◦) we must show that the claim holds for x = fpi 0, where p :=

(p`, . . . , p1) ∈ N` is arbitrary.

First consider block 1. Obviously m0(0) = m0(f t00) = 1 for all 1 ≤ t ≤ p1. Now

γ1,1(fp10 0) < 0, while γ2,1(fp10 0) = 0, so m1(fp10 0) = 2. If t < p1/2 then γ1,1(f t1f
p0
0 0) = −p1 +2t and

m1(f t1f
p0
0 0) = 2; otherwise m1(f t1f

p0
0 0) = 1. Similarly, m2(fp21 fp10 0) = 3 and m2(f t2f

p2
1 fp10 0) ≤ 3

for t ≤ p3 by Lemma 5.3.12 Continuing in this fashion, we find that mn(fpnn−1 · · · f
p2
1 fp10 0) = n + 1

and mn(f tnf
pn
n−1 · · · f

p2
1 fp10 0) ≤ n+ 1 for t ≤ pn+1 by Lemma 5.3.12

Repeat this argument for block 2. Letting y := f
pn+1
n fpnn−1 · · · f

p2
1 fp10 0 We have m−1(y) =

m−1(fp21 fp10 0) by Lemma 5.1.3. Now γ1,−1(fp21 fp10 0) = −t for t ≤ p2 and γ2,−1(fp21 fp10 0) = 0, so

m−1(f t−1y) = 2 and m−1(f t−1f
pn+1
n fpnn−1 · · · f

p2
1 fp10 0) ≤ 2 for t ≤ pn+2 by Lemma 5.3.12. Letting

y := f
pn+2

−1 · · · fp10 0, it is clear from the previous steps and the structure of i that max{(m, i) | ym,i >

0} ≤ (3, 2); thus γm,1(y) = 0 for m ≥ 3, which implies that m1(f t1y) ≤ 3 for 0 ≤ t ≤ pn+2. As

before, letting y := f
pn+2

1 · · · fp10 0, it is clear from the previous steps and the structure of i that

γm,2(y) ≤ 0 for m ≥ 4; thus m2(f t2y) ≤ 4 for all 0 ≤ t ≤ pn+3. Continuing in this fashion we arrive

at mn(f tnf
p2n
n−1 · · · f

p1
0 0) ≤ n+ 1 for 0 ≤ t ≤ p2n+1.

Repeating this argument for each of the n+ 1 blocks of indices in i, for the leftmost index

i of each block we find that mi(f
t
i f
pk
i−1 · · · f

p1
0 0) ≤ n+ 1. The claim follows.
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For each w ∈ JrWσ there exists an odd integer n ≥ 1 such that w ≤ Jnw◦. If j, i denote

reduced words for w, Jnw◦ respectively then j is a subword of i, and all elements of (Σι)w have the

form fpi 0, where pk = 0 if ik does not appear in j. Thus

Corollary 5.3.14. Suppose that C is of type Dr+2 (2.3.1), and let ι be the adapted sequence obtained

from the Coxeter word (−1, 0, 1, · · · , r). For all w ∈ JrWσ and all x ∈ (Σι)w we have

max{m ≥ 1 | (∃i ∈ I)xm,i > 0} ≤ r + 1

Proof of Proposition 5.3.11. Given w ∈ JrWσ, consider ηι(w) ∈ Σι. Because w is fully commutative

and its reduced expressions are σ-balanced, we have ηι(w) ∈ Σι,σ. Let ι′ be a sequence from I

satisfying (1.5.1) and such that (ι`(w), . . . , ι1) ∈ R(w). The proof of Proposition 5.3.3 shows that

ηι′(w) ∈ HWJrΣι′ . Letting ψ : Σι′ → Σι denote the braid-type isomorphism [?Nak99], we have

ηι(w) = ψ ◦ ηι′(w) ∈ HWJrΣι,σ.

If ηι(w) is not irreducible in HWJrΣι,σ, then there exist nonzero x,y ∈ Σι,σ such that

ηι(w) = x + y. By Theorem 5.3.1 there exist u, v ∈ JrWσ such that x ∈ (Σι,σ)u and y ∈ (Σι,σ)v.

Since wt(x) + wt(y) = wt(ηι(w)) it must be that `0(u), `0(v) < `0(w). Therefore, if u ∈ Ts, v ∈

Tt, w ∈ Tk then s, t < k. According to Corollary 5.3.14, there exists an index (m, i) on which

ηι(w) is supported but neither x nor y is supported. This contradiction indicates that ηι(w) is

irreducible.

5.3.3 Multiplicities of highest-weight elements

Assume C is of finite type and ι is adapted. A finite set H ⊂ HW Σ̂ι,σ generates a subset

S(H) := NH of highest-weight elements. The latter inherits a grading S(H) =
⊔
β∈Q+(Cσ∨) S(H)−β

from the structurally folded crystal Σ̂ισ.

We describe an elementary procedure for computing #S(H)−β . Identify Q+(C σ∨) with

Z⊕|I/σ| via αi ↔ e(i), where {e(i) | i ∈ I/σ} denotes the standard basis. Form the matrix H ∈

Mat|I/σ|×|H|(Z) whose columns are wtσ(h),h ∈ H. Now

#S(H)−β = #{x ∈ N|H| |Hx = β}

that is to say, #S(H)−β equals the vector partition function of H. Given a particular solution

Htβ = β, we have

#S(H)−β = #
(
{z ∈ kerH | tβ + z ≥ 0} ∩ Z|H|

)
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which is the discrete volume of a certain lattice polytope; expressing z ∈ kerH in terms of the basis

afforded by Gauss-Jordan elimination we get an explicit presentation of this polytope.

DC series

Recall the setup of Proposition 5.3.11, and consider Hrι,σ := Ψι ◦ η[JrWσ]. The proof of

Proposition 5.3.3 indicates that S(Hrι,σ) ⊂ HWJr B̂(∞)σ; indeed, equality holds for 1 ≤ r ≤ 7

according to Fact 5.3.10.

Given β ∈ Q̂σ, we have

S(Hrι,σ)−β 6= ∅ ⇐⇒ β =
∑

w∈JrWσ

cwwt(w), cw ∈ N.

Define an ordering JrWσ = {w1, . . . , w2r−1} by w1 := J1w◦, and arrange elements of JrWσ (p.35)

according to their length. Remark that wt(w2k) = (1, . . . , 1) for all k. This yields a matrix of

nonnegative integers whose columns are wt(wk)

Hr
ι,σ :=

(
wt(w1) wt(w2) . . . wt(w2r−1)

)
(r+1)×(2r−1)

.

Note that

rank Hr
ι,σ = r + 1, nullity Hr

ι,σ = 2r−1 − r − 1.

Let e(i) : 1 ≤ i ≤ r + 1 denote the standard basis of Rr+1, and identify Q+(Cr+1) with Nr+1 via

αi ↔ e(i+ 1).

Example 5.3.15. The first four matrices are as follows

H1
ι,σ =

(
1

1

)
H2
ι,σ =


1 1 1

1 1 2

0 1 1

 H3
ι,σ =


1 1 1 1 1 1 2

1 1 2 1 2 2 3

0 1 1 1 1 2 1

0 0 0 1 1 1 1



H4
ι,σ =



1 1 1 1 1 1 2 1 1 1 1 2 2 2 2

1 1 2 1 2 2 3 1 2 2 2 3 3 3 4

0 1 1 1 1 2 1 1 1 2 2 1 1 2 2

0 0 0 1 1 1 1 1 1 1 2 1 2 2 2

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1


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The columns in these matrices are obtained from the following reduced expressions

J1Wσ

{
wtσ(J1w◦) = α0 + α1

J2Wσ

wtσ(J1w◦s2) = α0 + α1 + α2

wtσ(J1w◦s2s1) = α0 + 2α1 + α2

J3Wσ



wtσ(J1w◦s2s3) = α0 + α1 + α2 + α3

wtσ(J1w◦s2s1s3) = α0 + 2α1 + α2 + α3

wtσ(J1w◦s2s1s3s2) = α0 + 2α1 + 2α2 + α3

wtσ(J3w◦) = 2α0 + 3α1 + 2α2 + α3

Let πrι,σ : Q+(Cr+1)→ N be the vector partition function associated to Hr
ι,σ

πrι,σ(β) := #
{
x ∈ Nr+1 |Hr

ι,σx = β
}
.

By virtue of the setup,

#HWJr B̂(∞)−β = πrι,σ(β).

Remark 5.3.16. Let incl : Q+(Cr+1) ↪→ Q̂σ+(Cr+2) denote the natural inclusion monomorphism. If

for β =
∑r
i=0 biαi it happens that br = 0, then β = incl(γ) for some γ ∈ Q+(Cr+2). In this case

#HWJr+1
B(∞)−β = #HWJrB(∞)−γ .

Proposition 5.3.17. Given β =
∑r
i=0 biαi ∈ Q+(Cr+1), the vector

t2 := (b0 − b2)e(1) + (b0 − b1 + b2)e(2) + (−b0 + b1)e(3)

is a solution to H2
ι,σx = β, and for r ≥ 3 the vector

tr := tr−1 + (−br)e(2r−2) + bre(2r−1)

is a solution to Hr
ι,σx = β.

Proof. We proceed by induction on r. The claim is easily checked for r = 2. Indeed

H2
ι,σ =


1 1 1

1 1 2

0 1 1




b0 − b2
b0 − b1 + b2

−b0 + b1

 =


b0

b1

b2


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and so the induction begins. Now, observe that tr−1 is not supported on any e(k) : k ≥ 2r−1.

Regarding the former as the image of tr−1 under the inclusion homomorphism, w have

Hr
ι,σtr−1 = incl. Hr−1

ι,σ tr−1 = (b0, . . . , br, 0)T . (5.3.13)

Now

(−br)Hr
ι,σe(2r−2) = (−br)wt(w2r−2)

= (−br)(1, 1, . . . , 1, 0)T (5.3.14)

brH
r
ι,σe(2r−1) = brwt(w2r−2)

= br(1, 1, . . . , 1, 1)T . (5.3.15)

Combining (5.3.13), (5.3.14), (5.3.15) yields

Hr
ι,σtr = Hr

ι,σtr−1 + (−br)Hr
ι,σe(2r−2) + brH

r
ι,σe(2r−1)

=


b0
...

br−1

0

+


−br

...

−br
0

+


br
...

br

br

 =


b0
...

br−1

br


It follows from Gauss-Jordan elimination we see that any solution x ∈ Rn+1 to Hr

ι,σx = b

has the form x = tr + z, where z ∈ kerHr
ι,σ. Therefore

|HWJr B̂(∞)−β | =
∣∣{z ∈ kerHr

ι,σ | tr + z ≥ 0
}
∩ Zr+1

∣∣
meaning that the number of highest-weight elements of weight β ∈ Q+σ equals the discrete volume

of the lattice polytope described by the inequalities tr + z ≥ 0, z ∈ kerHr
ι,σ.

Taking advantage of the facts that Hr
ι,σ : r = 1, 2 have trivial kernels, we get the following.

Fact 5.3.18. In type (Dr+2, Cr+1) (2.3.1) for 1 ≤ r ≤ 7, suppose β =
∑r
i=0 biαi ∈ Q+(Cr+1). Then

1. For r = 1 we have

|HW B(∞)−β | =

1, b0 = b1

0, otherwise
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2. For r = 2 we have

|HW B(∞)−β | =


1,


b0 − b2 ≥ 0

b0 − b1 + b2 ≥ 0

−b0 + b1 ≥ 0

0, otherwise

The situation in type (D5, C4) (r = 3) is already very different. Indeed, we have

|HW B(∞)−β | = #(z1, z2, z3) ∈ N3 such that



b0 − b2 ≥ z1 − z2

b0 − b1 + b2 − b3 ≥ −z1 − z3

−b0 + b1 ≥ z1 + z2 + z3

b3 ≥ z1 + z2 + z3

Observe that if b3 = 0 then there is either a unique solution z = 0 or no solution, in accordance

with Remark 5.3.16. It would be interesting to find a closed form, or at least a good estimate, for

the number of lattice points in this polytope.

Let us describe kerHr
ι,σ more precisely. Given a matrix M = (mx,y)x∈X,y∈Y and subsets

X ′ ⊂ X,Y ′ ⊂ Y , let MX′,Y ′ denote the submatrix on the index set X ′×Y ′. For each r ≥ 1 we have

Hr
ι,σ = (Hr+1

ι,σ )[1,r]×[1,2r−1]. Accordingly, for r > 1 we put

H
r

ι,σ := (Hr
ι,σ)[1,r]×[2r−1,2r−1] = (wt(w))

w∈JrWσ

and letting incl : R2r−1−1 ↪→ R2r−1 it is clear that incl[kerHr−1
ι,σ ] is a direct summand of kerHr

ι,σ.

Write

kerHr
ι,σ = incl[kerHr−1

ι,σ ]⊕ kerHr
ι,σ, dim kerHr

ι,σ = 2r−1 − 1

where kerHr
ι,σ := kerHι,σ r incl[kerHr−1

ι,σ ]

We describe a sequence of bases Xr
ι,σ for kerHr

ι,σ with the property that Xr
ι,σ ↪→ Xr+1

ι,σ . Of
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course Xr
ι,σ = ∅ for r = 1, 2; for r = 3, 4 Gaussian elimination gives

X3
ι,σ =



0 1 −1

1 0 1

−1 −1 −1

−1 −1 −1

1 0 0

0 1 0

0 0 1


X4
ι,σ =



0 1 −1 0 1 1 −1 −1 0 0

1 0 1 1 0 1 1 2 1 2

−1 −1 −1 −1 −1 −1 −1 −1 −1 −2

−1 −1 −1 0 0 −1 0 −1 −1 −1

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 −1 −1 −1 −1 −1 −1 −1

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


Observe that X3

ι,σ ↪→ X4
ι,σ; indeed the former coincides with the [1, 7]× [1, 3]-submatrix of the latter.

Denote

X3
ι,σ =


X

3

ι,σ

v
(1)
3

I3

 X4
ι,σ =



X
4

ι,σ

X3
ι,σ v

(2)
3

03×7

08×3 v
(1)
4

I7


=



X
3

ι,σ X
4

ι,σ

v
(1)
3 v

(2)
3

I3 03×7

08×3 v
(1)
4

I7


For r ≥ 3 let v

(1)
r := [−1, . . . ,−1]T ∈ Z2r−1−1. Continuing this pattern, we can show by induction

on r that for r ≥ 3 there exists a uniquely determined 3× (2r−1−1) integer matrix X
r

ι,σ and integer

vectors v
(t)
k ∈ R2r−1+(t−1)−1, 3 ≤ k ≤ r, 1 ≤ t ≤ k such that



X
r

ι,σ

v
(r−2)
3

03×(2r−1−1)

Xr−1
ι,σ

...

v
(2)
r−1

0(2r−2−1)×(2r−1−1)

02r−1×2r−2−r v
(1)
r

I2r−1−1


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Corollary 5.3.19 (Corollary to Proposition 5.3.17). Expressing z ∈ kerHr
ι,σ using Xr

ι,σ, the set of

inequalities tr +z ≥ 0 comprises r+ 1 inequalities along with zk ≥ 0 for all k. The r+ 1st inequality

is z2r−1 + · · ·+ z2r−1 ≤ br

A better understanding of the structures of X
r−1

ι,σ and the various v
(t)
k will yield a more

precise description of kerHr
ι,σ and perhaps lead to an estimate for |HWJr B̂(∞)−β |.

Triality of D4

Recall from section 4.4 that HWσI = 〈σ〉{1, 2} ∪ 〈σ〉{1, 2, 3}.

Fact 5.3.20. Express β ∈ Q+(G2) as β = b1α1 + b2α2. Then

#HWJ(B̂(∞))−β =




(⌊

2b1−b2
2

⌋
+ 1
) (⌈

2b1−b2
2

⌉
+ 1
)
, #J = 2

1, #J = 3
if

2b1 ≥ b2

b2 ≥ b1

0, otherwise

Proof. The weight matrix H of the Hilbert basis for HW1,2B̂(∞)σ is

H =

(
1 1 2 2

1 1 1 2

)
.

The equation Hx = β has particular solution tβ = (2b1 − b2, 0,−b1 + b2, 0)T , and a basis for kerH

is {(−2, 0, 0, 1)T , (−1, 1, 0, 0)T }. Accordingly,

#HW1,2(B̂(∞)σ)−β = #
{

(x1, x2) ∈ N2 | 2b1 − b2 − 2x1 − y ≥ 0,−b1 + b2 ≥ 0
}
.

Now, given n ≥ 0, observe that

#{(x1, x2) ∈ N2 | 2x1 − x2 ≤ n} =

n∑
k=0

⌊
k

2

⌋
+ 1

=

bn/2c∑
k=0

(n+ 1− 2k)

=
(⌊n

2

⌋
+ 1
)

(n+ 1)−
⌊n

2

⌋(⌊n
2

⌋
+ 1
)

=
(⌊n

2

⌋
+ 1
) [
n−

⌊n
2

⌋
+ 1
]

=
(⌊n

2

⌋
+ 1
)(⌈n

2

⌉
+ 1
)
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On the other hand, it is clear that

HW1,2,3B̂(∞)(134) ⊂ HW1,2,3B̂(∞)(34).

Applying Fact 5.3.18(2), the claim follows at once.

5.4 Connectedness

Lemma 5.4.1. Let ι be an admissible sequence in the sense of [NZ97]. Then for all x ∈ Σι and

any (n, i) ∈ N× I we have nfix = fni (nx).

This has been proved for λ ∈ Λ+ by Littelmann [Lit94] and Kashiwara [Kas96] indepen-

dently.

Proposition 5.4.2. In type (Dr, Cr−1) for r ≥ 4, there exists a connected component of B(∞)σ

with infinitely many highest-weight elements.

Proof. It suffices to prove this statement for r = 4, because B(∞) ∈ Crys(D4) identifies with a

subgraph of B(∞) ∈ Crys(Dr) by the branching rule [Kas95, 4.6].

We work in the polyhedral realization Ψι : B(∞) ∼= Σι with adapted sequence ι ob-

tained from the Coxeter word (. . . ,−1, 0, 1, 2). Denote x := f−1f1f0b∞. We know that nΨι(x) ∈

HW−1,0,1,2Σ̂ι,σ for all n ≥ 0 and using Lemma 5.4.1 we calculate

nΨι(x) = n(e(3) + e(6) + e(8)).

It is straightforward to show that

f̂0f̂
3
1 f̂2f̂0(nΨι(x)) = f̂1f̂0f̂1f̂2((n+ 1)Ψι(x))

= (n+ 1)e(3) + e(4) + (n+ 2)e(6) + (n+ 1)e(8) + e(9) + e(10) + e(11)

for all n ≥ 1. Passing to B(∞)σ, this calculation shows that there exist finite sequences i, j from

I/σ such that

[nx] =
(
e(j)f(i)

)n−1
[x] for all n ≥ 1.

The claim follows.
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Remark 5.4.3. We have many other examples of pairs of highest-weight elements and monomials

connecting them. At the time of this writing, a pattern is not yet clear.

5.4.1 Examples of connectedness in type D4

Let G = (V,E) be a graph. It is well-known that the relation on V given by v ∼ v′ if and

only if v, v′ belong to the same connected component of G is an equivalence relation. Naturally, the

set V/ ∼ coincides with the set of connected components of G.

Replacing the edges between elements of B̂(λ)σ from F by edges from F̂σ, we can view

B̂(λ)σ as a subgraph of B(λ). Thus an element of HW B̂(λ)σ
/
Âσ is the set of Âσ-highest-weight

elements of a particular connected component of B̂(λ)σ. Similarly, an element of HW B(λ)σ
/
Âσ∨

is the set of Aσ∨-highest-weight elements of a particular connected component of B(λ)σ. Note

that the number of connected components of B̂(λ)σ (respectively, B(λ)σ) equals |HW B̂(λ)σ
/
Âσ|

(respectively, HW B(λ)σ
/
Âσ∨). In the following table we consider certain λ ∈ Λ̂σ+, expressed as

λ =
∑
i∈I liαi and identified with (l0, l1, . . . , lr).

λ |HW B̂(λ)σ| |HW B̂(λ)σ
/
Âσ| |HW B(λ)σ| |HW B(λ)σ

/
Aσ∨|

(#HW C |C ≤ B̂(λ)σ) (#HW C |C ≤ B(λ)σ)

(1,1,1,1) 11 3 (1,5,5) 6 2 (1,5)
(2,1,1,1) 11 3 (1,5,5) 6 2 (1,5)
(1,2,1,1) 17 3 (1,8,8) 9 2 (1,8)
(1,3,1,1) 23 3 (1,11,11) 12 2 (1,11)
(1,1,2,2) 19 2 (1,18) 10 2 (1,9)
(1,1,3,3) 27 2 (1,26) 14 2 (1,13)
(2,2,1,1) 17 3 (1,8,8) 9 2 (1,8)
(2,1,2,2) 23 2 (1,22) 12 2 (1,22)
(1,2,2,2) 29 2 (1,28) 15 2 (1,14)
(1,3,2,2) 20 2 (1,19) 39 2 (1,38)
(2,2,2,2) 35 2 (1,34) 18 2 (1,17)
(1,2,3,3) 41 2 (1,40) 21 2 (1,20)

Based on these data, we make the following conjecture.

Conjecture 2. In the category of C3-crystals, we have B(∞)σ ∼= B(∞)⊕B, where B is a connected

upper normal mult-highest-weight crystal whose highest-weight set coincides with the semigroup gen-

erated by η(J2Wσ).

5.5 Type (D3, C2)

In this section we work in type D3 with notation as in (2.3.1). Let ι = (ιk | k ≥ 1) be the σ-

adapted sequence obtained from the Coxeter word (1, 0,−1). Because |Φ+(D3)| = 6 the polyhedral
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crystal Σι identifies with a subset of N6. More precisely, we regard Σι as the lattice points of a

certain rational polyhedral convex cone in R6. The generating set Ξι (cf. (1.5.3)) of the dual cone

is as follows

Ξι = {x∗1, x∗2, x∗3, x∗4, x∗5, x∗6, x∗2 + x∗3 − x∗4, x∗3 − x∗5, x∗4 − x∗5, x∗2 − x∗6, x∗4 − x∗6, x∗4 − x∗5 − x∗6}

According to Fact 5.3.10, a J1-highest-weight element x ∈ Σ̂ι,σ has the form

x = n(f−1f1f00) = (0, 0, n, n, n, 0), n ∈ N.

The subset generated by x over the monoid F̂σ has the following form.

Lemma 5.5.1. For all x ∈ HWJ1Σ̂ι,σ we have

F̂σx = x + {(d, c, c, b, a, a) | a ≥ 0, b ≥ c ≥ d ≥ 0} (5.5.1)

Proof. Each y ∈ F̂σx has the form f̂im · · · f̂i1x for some m ≥ 1. We prove the Lemma by induction

on m. The claim is clear for m = 0, and so induction begins.

Suppose that y = f̂im · · · f̂i1x has the form prescribed by (5.5.1). By (1.5.7),

f̂1y =

x + (d, c, c, b+ 1, a, a), b+ d ≥ 2c

x + (d+ 1, c, c, b, a, a), 2c > b+ d

It is clear that (b+ 1) ≥ c ≥ d; on the other hand, if 2c− b > d, then it follows that c > d because

b− c ≥ 0 from the polyhedral inequalities. Thus in either case f̂1y has the desired form. By (1.5.3)

we have γ1(y) = γ2(y)+n, and γ4(y) = γ5(y)+n, and it follows that minM0(y) = minM−1(y)+1.

In other words, f−1, f0 act on y at the same block of ι (cf. section 5.1). Therefore by (1.5.7)

f̂0y =

x + (d, c, c, b, a+ 1, a+ 1), a+ c ≥ b

x + (d, c+ 1, c+ 1, b, a, a), b > a+ c

The inequalities of (5.5.1) are clearly satisfied in the first case; on the other hand, if b > a+ c then

also b ≥ c+ 1, and so f̂0y has the desired form.

Let ι denote the sequence obtained from the Coxeter word (1,0) in type C2, and let Σι

denote the corresponding polyhedral realization of B(∞) ∈ Crys(C2). Nakashima and Zelevinsky
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have shown [NZ97, Theorem 4.1] that

Σι = {(d, c, b, a) | a ≥ 0, b ≥ c ≥ d ≥ 0}

Denote x := f−1f1f00, and for each n ≥ 0 define a map Φn : F̂σ(nx)→ Σι by

Φn (nx + (d, c, c, b, a, a)) := (d, c, b, a).

Lemma 5.5.2. For all n ∈ N the map Φn is a bijection satisfying Φn ◦ f̂i = fi ◦ Φn.

Given y ∈ F̂σ(nx) consider Φn(y) ∈ Σι. If i ∈ I/σ satisfies eiΦn(y) 6= 0 then there exists

a unique z ∈ F̂σ(nx) such that eiΦn(y) = Φn(z). Axiom 1.3.1(1) gives Φn(y) = fiΦn(z) = Φn(f̂iz),

and so it must be that y = f̂iz, which is to say z = êiy. Thus we have proved

Proposition 5.5.3. Let x = f−1f1f00. For all n ≥ 0, Fσ∨[nx] is a subcrystal of Σι,σ. Furthermore,

each Fσ∨[nx] is isomorphic to the C2-crystal Σι.

Corollary 5.5.4. In type D3, B(∞)σ is isomorphic to B(∞)
⊕HWB(∞)σ
C2

in the category of C2-

crystals.
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