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Abstract

Essays in Microeconomic Theory

by

Andrew Tai

Doctor of Philosophy in Economics

University of California, Berkeley

Associate Professor Haluk Ergin, Chair

Since the 2000s, matching theory has seen an increasing number of applications, from
school assignments to organ donation. This dissertation collects three papers contributing
to the theory of one-sided matching with endowments.

In the first chapter, I study the testable implications of the core in an exchange economy
with unit demand when agents’ preferences are unobserved. To do so, I develop a model
of aggregate matchings in which the core is testable; the identifying assumption is that
agents’ preferences are solely determined by observable characteristics. I give conditions
that characterize when observed economies are compatible with the core. These conditions
are meaningful, intuitive, and tractable; they provide a nonparametric test for the core in
the style of revealed preferences. I also develop a parametric method to estimate preference
parameters from multiple observations of exchange economies. An allocation being in the
core implies necessary moment inequalities, which I leverage to obtain partial identification.

The second chapter is coauthored with Will Sandholtz. We study the classic house-
swapping problem of Shapley and Scarf (1974) in a setting where agents may have “objective”
indifferences, i.e., indifferences that are shared by all agents. In other words, if any one agent
is indifferent between two houses, then all agents are indifferent between those two houses.
The most direct interpretation is the presence of multiple copies of the same object. Our
setting is a special case of the house-swapping problem with general indifferences. We derive
a simple, easily interpretable algorithm that produces the unique strict core allocation of
the house-swapping market, if it exists. Our algorithm runs in O(n2) time, where n is the
number of agents and houses. This is an improvement over the O(n3) time methods for the
more general problem.

The third chapter is also coauthored with Will Sandholtz. We note that the proof of
Bird (1984), the first to show group strategy-proofness of top trading cycles (TTC), requires
a correction. We provide a counter-example to a critical claim, then present a corrected
proof in the spirit of the original.
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Part I

Revealed Preferences of One-Sided Matching

Preface

In the first chapter, I study the testable implications of the core in an exchange economy
with unit demand when agents’ preferences are unobserved. To do so, I develop a model
of aggregate matchings in which the core is testable; the identifying assumption is that
agents’ preferences are solely determined by observable characteristics. I give conditions
that characterize when observed economies are compatible with the core. These conditions
are meaningful, intuitive, and tractable; they provide a nonparametric test for the core in
the style of revealed preferences. I also develop a parametric method to estimate preference
parameters from multiple observations of exchange economies. An allocation being in the
core implies necessary moment inequalities, which I leverage to obtain partial identification.
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1 Introduction

This paper studies the testable implications of the core in exchange economies with indi-
visible goods and unit demand. The setting coincides with the house-swapping matching
model of Shapley and Scarf (1974). As in classical revealed preference theory, I take agents,
endowments, and allocations to be observable, but preferences to be unobserved. Given
such data, I investigate the testable implications of the core in exchange economies. This
paper also develops a parametric method to estimate preference parameters from multiple
observations of such data. In both models with and without monetary transfers, I find condi-
tions that characterize when the observables are consistent with the core (“rationalizability”).
Conversely, these conditions can falsify the market being in the equilibrium.

The exchange economy is a foundational model in economics for situations without
explicit production. With unit demand and indivisible goods, these models correspond to
exchanges or allocations of “large” objects. Furthermore, the process of allocation may be
unknown or ambiguous – even in the setting with monetary transfers, competitive prices
are not inherent to the model. Shapley and Scarf refer to these large indivisible goods as
“houses”; indeed, this is interpretable as a stylized model of housing allocation. The model is
also applied to settings such as living donor organ exchange, school assignment, and course
allocation. The allocation processes can be decentralized trade, as in a Walrasian market;
or via a centralized mechanism.

An example of a market with many of these attributes is the Singaporean public housing
market.1 The government allocates new public housing quarterly via a centralized build-
to-order mechanism. Applicant households submit interest in a new development and are
awarded a subsidized 99 year lease, which they have the right to sell after five years. This set-
ting incorporates many of the features described above; housing is a large good, initial prices
are restricted, and owners have trading rights afterward. It is also plausible that households
with the same observable characteristics share the same preferences over developments.

The core is a game theoretic solution concept and a natural equilibrium notion for this
setting. Informally, it captures group stability by requiring that no coalition would prefer
to break off and re-trade their endowments among themselves. Alternatively, any beneficial
trades have already been made. Implicitly, these coalitions can plausibly find each other to
form. In this way, it is the right equilibrium notion for a market that is “small” relative to
the “large” goods. It is also Pareto efficient. Importantly, the core does not require prices,
which are not inherent to this model. However, I also present equivalence results for the
core and competitive equilibrium in this model.

The conditions I present characterize restrictions on the observable data of core alloca-
tions. An analyst may wish to check for the core for a few reasons. Equilibrium itself may
be the object of interest – an economy which satisfies the conditions is plausibly stable and
Pareto optimal. Other analysis may also require equilibrium, such as study of the prefer-
ences. The conditions for rationalizability also provide ex ante predictions for equilibrium
market outcomes. Finally, even in settings with centralized mechanisms, we may wonder
whether decentralized markets would select similar outcomes; the restrictions provide a way
to test such outcomes.

1Population Trends, Department of Statistics, Ministry of Trade & Industry, Republic of Singapore –
This is also an important market; 79% of Singaporeans live in public housing.
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There are two other ways to interpret this paper. Observers may deal with settings
where the centralized mechanism is unknown and therefore cannot be directly evaluated. In
practice, many mechanisms are hidden, or no particular mechanism is used at all, such as
administrators exercising personal judgment to determine allocations. But we nevertheless
want to determine whether these unknown mechanisms might be stable. Grigoryan and
Möller (2023) develop a theory of auditability, where mechanism implementers may deviate
for various reasons; auditability measures how much information the participants need to
detect a deviation. This paper offers a way to evaluate mechanisms when essentially nothing
is known about the matching process, but the analyst still wants to determine whether the
allocation is may be stable. Alternatively, there may be no centralized mechanism at all. In
this interpretation, I develop a theory to test stability when there is no particular matching
process.

To rationalize a market, it is sufficient to find a preference profile such that it is in the
core. In classical consumer demand revealed preference theory, we infer that the chosen
option is the best among affordable options. Afriat (1967) then proceeds from here to
construct utility values. However, in an exchange economy, the available options are not
exogenously determined by some budget. Stability in an exchange market is determined by
all other agents’ preferences. Further, the core is not equivalent to maximizing social utility,
even when we allow monetary transfers.

To gain traction in this setting, I deal with aggregate matchings, akin to Choo and Siow
(2006)’s empirical work in marriage markets. Objects are grouped into types, equivalent
within type and distinct across types. For instance, these may be apartments in the same
development or houses in the same neighborhood, which can be regarded as essentially the
same. I also assume that agents can be binned into “types” with the same preference, analo-
gous to the assumption of Echenique, Lee, Shum, and Yenmez (2013). Stated another way,
agents with the same observable characteristics (such as age, wealth, and socioeconomics)
have the same preferences. This is a strong assumption as it rules out individual heterogene-
ity.2 However, allowing for enough individual heterogeneity also allows any observed market
to be rationalized.3 In exchange, the resulting test for rationalizability is nonparametric, in
the spirit of revealed preferences.

To show the main results, I introduce a graph representation of exchange economies
and develop graph theoretic results around it. This construction is extremely tractable,
and it gives rise to intuitively appealing conditions for rationalizability. Through the graph
representation, I am able to prove related results about the underlying exchange economies;
I find a partition of any exchange economy into market segments that only interact within
themselves. I also prove a previously informal result that any house-swapping economy can
be partitioned into trading cycles.4 The graph construction’s tractability also suggests ways
to develop “smoother” definitions and statistical tests of rationalizability. In the setting
without transfers, rationalizability is equivalent to equal treatment within each type in each
market segment. In the setting with monetary transfers, there are two equivalent conditions:
the existence of a price vector rationalizing the allocation as a competitive equilibrium, and
a cyclic monotonicity condition similar to many in the revealed preferences literature.

2In the model without transfers, rankings are purely ordinal, so small cardinal heterogeneity is allowed.
3Simply declare all agents’ allocations to be their favorite things.
4Not necessarily Gale’s top trading cycles – no claim on optimality is made here.
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I also develop a parametric method to estimate utility parameters if the data consist of
multiple aggregate matchings without transfers. The setting is similar to Fox (2010) and
Echenique, Lee, and Shum (2013). Heterogeneity across aggregate matchings is allowed.
Each aggregate matching can first be checked for stability by applying the conditions in
the first part of the paper. Stability of the matching implies necessary moment inequalities,
which I leverage to obtain partial identification. I illustrate the method using data simulated
from the experiment of Chen and Sönmez (2006) and applying the method of Chernozhukov,
Chetverikov, and Kato (2019).

This paper contributes to the study of the testable implications of equilibria. The
Sonnenschein–Mantel–Debreu theorem (1972; 1974; 1974) gives a famous “anything goes” re-
sult on the excess demand function in competitive equilibrium. In the same vein, Mas-Colell
(1977) shows that there are essentially no restrictions on rationalizable prices in competitive
equilibria. Brown and Matzkin (1996) apply revealed preference theory to obtain restric-
tions on competitive equilibrium outcomes when a series of markets is observed. Bossert
and Sprumont (2002) find conditions for core rationalizability in a two agent economy with
divisible commodities. I study a distinct setting – exchange economies with indivisible goods
and unit demand – and find tractable and intuitive restrictions on core allocations.

Additionally, I contribute to the growing literature on the revealed preferences of match-
ing. Echenique, Lee, Shum, and Yenmez study the revealed preferences of matching in
marriage markets with aggregate matching type data. Echenique (2008) finds testable im-
plications for two-sided matching when individuals participate in a series of markets.

This paper provides a partial identification result for a one-sided matching model without
transfers. Given allocations presumed to be stable, I find a set of possible utility param-
eters. In a model with transferable utility, Choo and Siow study aggregate matchings in
the marriage market. In the non-transferable utility case, analysts can use intermediate
matching data to recover the agents’ preferences; Hitsch, Hortaçsu, and Ariely (2010) use
rejections in online dating. Recent work by Galichon, Kominers, and Weber (2019) develops
an intermediate case, where utility is imperfectly transferable. Echenique, Lee, and Shum
develop moment conditions for aggregate two-sided matching data. I direct the reader to
Chiappori and Salanié (2016) for a survey of the econometrics of matching.

2 Model

I will first present the model and notation for the case without monetary transfers. Then I
will present the additions for the case of monetary transfers.

2.1 Without transfers

The basis of the model is the Shapley and Scarf house-swapping model with the addition
that objects and agents are grouped into types. This will also turn out to be a pure exchange
economy with unit demand. Agents of the same type share the same (unobserved to the
analyst) preference. Let the set of agent types as A = {1, 2, ..., A}, where A denotes both
the set and its cardinality at minimal risk of confusion; let |A| < ∞. Denote the set of
individual agents as A = {1a, 1b, ...; 2a, 2b, ...;Aa,Ab, ...}, and let |A| < ∞. Implicitly, A
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also encodes the types of each individual; e.g., 1a and 1b are two individuals of the same
type 1. I will refer to i ∈ A as a “type”, and ik ∈ A as an “individual” or “agent”.

Denote the set of object types H, also with cardinality H. I denote each object as a unit
vector in RH ; that is,

H = {(1, 0, ..., 0)︸ ︷︷ ︸
:=h1

, (0, 1, 0, ..., 0)︸ ︷︷ ︸
:=h2

, (0, ..., 0, 1)︸ ︷︷ ︸
:=hH

} ⊂ RH

I will not refer to individual objects – i.e., there is no object analogue of A.
Each agent is endowed with an object, denoted eik ∈ H. An endowment vector is

e = (eik)ik∈A. An allocation is x = (xik)ik∈A such that
∑

ik∈A xik =
∑

ik∈A eik. That is,
the number of allocated objects of each type is equal to the number supplied.

A feasible sub-allocation for a coalition A ⊆ A′ is x′ = (x′ik)ik∈A′ such that
∑

ik∈A′ x′ik =∑
ik∈A′ eik.
Each type i has a strict preference ≿i over H; all ik of type i have the same preference.

I will discuss this more in Section 2.3. Denote ≿= (≿i)i∈A be the preference profile. With
minimal risk (or consequence) of confusion, this could also be the profile of agents ≿=
(≿ik)ik∈A.

The equilibrium concept used in this paper is the core.

Definition 1. A weak blocking coalition is A′ ⊆ A with feasible sub-allocation x′ such that
x′ik ≿i xik for all ik ∈ A′, and x′ik ≻i xik for at least one ik ∈ A′. An allocation x is in the
strict core for a preference profile ≿ if there is no weak blocking coalition.

By convention, when a blocking coalition A′ is one individual, I say x is not individually
rational.5

I can now state the main objective of the paper. If we observe individuals, types,
endowments, and allocations, could the market be in the core? Formally, is there a preference
profile such that x is in the strict core?

Definition 2. A tuple (A,A, H, e, x) is an NT-economy (non-transfers-economy). An
economy is NT-rationalizable if there exists a preference profile ≿ such that x is in the
strict core.

2.2 With transfers

I now introduce monetary transfers. The notation for types, agents, and objects remains
the same. Endowments are now an object and amount of money, (e, ω) = (eik, ωik)ik∈A,
where eik ∈ H and ωik ∈ R++. Likewise, an allocation is an object and amount of money
(x,m) = (xik,mik)ik∈A, such that mik ∈ R++,

∑
ik∈A xik =

∑
ik∈A eik, and

∑
ik∈Amik ≤∑

ik∈A ωik. Note that endowed and allocated money are restricted to be strictly positive.
Analogously, a feasible sub-allocation for a coalition A′ is (x′,m′) = (x′ik,m

′
ik)ik∈A′ such

that
∑

ik∈A′ x′ik =
∑

ik∈A′ eik and
∑

ik∈A′ m′
ik ≤

∑
ik∈A′ ωik.

Let utility Vi : H × R+ → R be quasilinear, given by Vi(h,m) = vi(h) +m. Notice that
the subscript is on types. The vi(·) can be interpreted as a utility index over H; that is,

5A blocking coalition of one individual ik means eik ≻i xik.
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Table 1: Notation
Object Without transfers With transfers Generic member

Agent types A i
Individuals/agents A ik

Objects H h
Endowment e (e, ω)
Allocation x (x,m)
Preferences ≿ Vi(h,m) = vi(h) +m

it is an H-dimensional vector of real numbers representing cardinal utility for objects. We
can regard this model as a partial equilibrium analysis, where all other goods are grouped
into money. This is also a common assumption in market design and matching (e.g. Gul,
Pesendorfer, and Zhang, 2018).

The equilibrium concept in the transfers model is the weak core.

Definition 3. For an allocation (x,m), a strong blocking coalition is A′ ⊆ A with feasible
sub-allocation (x′,m′)|A′ such that Vi(x

′
ik,m

′
ik) > Vi(xik,mik) for all ik ∈ A′. An allocation

(x,m) is in the weak core for (vi) if there is no strong blocking coalition.

The weak core and strict core coincide in most cases, as any strictly better off members
can give ε payments to any indifferent members. The exception is when all strictly better
off members exhaust their money in a candidate blocking coalition. The assumption that
ωik,mik > 0 ensures that money truly enters the model and that the weak core and strict
core coincide for rationalizable allocations.6

The definition of rationalizability is completely analogous. The analyst observes indi-
viduals, types, endowments, and allocations (the latter two including money). I seek a
preference profile such that (x,m) is in the core.

Definition 4. A tuple (A,A, H, (e, ω), (x,m)) is a T-economy (transfers-economy). An
economy is T-rationalizable (transfers-rationalizable) if there exists utility indexes (vi)
such that (x,m) is in the weak core. It is strictly T-rationalizable if it is T-rationalizable
with some strict utility indexes; that is, vi(h) = vi(h

′) if and only if h = h′ for all i.

The main result for T-economies will deal with T-rationalizability, so I will not impose
that the utility indexes (vi) are strict over H. I will discuss afterwards how strict T-
rationalizability is a corollary of the main result.

2.3 Discussion

This paper derives necessary and sufficient conditions for an economy to be rationalizable.
Stated another way, I characterize allocations which are compatible with the core. As
mentioned earlier, this characterization can be used to check for equilibrium; this may be of
interest in and of itself or be necessary for further analysis.

6It can be argued as in Kaneko (1982) and Quinzii (1984) that money is a bundle of goods outside the
model, and it is not “normal” to consume only one indivisible good.
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Mechanically, this economy is the “reverse direction” of the classic house-swapping econ-
omy. That is, we have a house-swapping market as in Shapley and Scarf (1974) where
there are potentially multiple copies of each object. Given an allocation, we are seeking
preferences generating it.

The key identifying assumption is common preferences within agent type. This intro-
duces discipline to the problem. As noted above, this gives the economy testable content;
with enough individual heterogeneity, any economy is rationalizable.7 While not explicitly
modeled, this is akin to an assumption that preferences are solely functions of agents’ observ-
able characteristics. If there are observable traits of agents Xa and of objects Xh, rankings
are generated by some utility function u(Xa, Xh). For the non-transfers case, the resulting
characterizations are completely nonparametric. For transfers case, I impose quasilinear
utility; but the utility for objects vi(h) is otherwise nonparametric. Since the non-transfers
preferences are purely ordinal, some cardinal heterogeneity is allowed, as long as the same
ordinal rankings are generated.

If types are constructed from binned variables, the analyst has some degree of choice.
Coarser bins result in stronger implications on the allocation, and finer bins result in weaker
implications. The “correct” tradeoff is outside of the model of this paper, but the analyst
can decide on the most reasonable choice.

Finally, rationalizability is a meaningful concept; it is not hard to construct economies
that are not rationalizable. Indeed, the formal results characterize such economies.

2.4 Graphs

I will represent economies in graph-theoretic terms. This will allow me to take advantage of
results from graph theory and to parsimoniously present the main results. I first introduce
some standard definitions for directed graphs that will be useful. Familiar readers can skip
this subsection.

Definition 5. A directed graph (digraph) is D = (V,E), where V is the set of ver-
tices, and E is the set of arcs. An arc is an sequence of two vertices (vi, vj); here I allow
for arcs of the form (vi, vi), called a self-loop.8 A (v1, vk)-path is sequence of vertices
(v1, v2, ..., vk) where each vi is distinct, and (vi−1, vi) ∈ E for each i ∈ {2, ..., k}. A cycle
is a sequence of vertices (v1, v2, ..., vk, v1), where each vi is distinct except for the first and
last, and (vi−1, vi) ∈ E for each i ∈ {2, ..., k}. I will also include self-loops (v1, v1) as cy-
cles. Equivalently, a path is a sequence of arcs ((v1, v2), ..., (vk−1, vk)), and analogously for
cycles. The indegree of a vertex d−(vi) = |vj : (vj , vi) ∈ E| is the number of arcs pointing
at vi. Likewise, the outdegree of a vertex d+(vi) = |vj : (vi, vj) ∈ E| is the number of arcs
pointing from vi.

Definition 6. A weighted directed graph is D = (V,E, ℓ(·)), where (V,E) is a directed
graph, and ℓ : E → R is the length (or weight) function over arcs. The length of a path
or cycle (v1, v2, ..., vk) is

∑k−1
i=1 ℓ(vi, vi+1).

The next definition is used in the main result and its discussion.
7There are alternatives, such as repeated re-matchings as in Echenique (2008).
8This is more formally called a directed pseudograph.
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Definition 7. A strongly connected component (SCC) of a digraph D = (V,E) is
a maximal set of vertices S ⊆ V such that for all distinct vertices vi, vj ∈ S, there is a
(vi, vj)-path and a (vj , vi)-path. By convention, there is always a path from vi to itself, even
if (vi, vi) ̸∈ E; an isolated vertex is an SCC.

Informally, an SCC is a maximal set of vertices such that there is a path from any vertex
to any vertex.

Figure 1: Example of strongly connected components

The vertices of any digraph can be uniquely partitioned into SCCs. An algorithm by
Tarjan (1972) finds a partition in linear time, O (|V |+ |E|). Figure 1 illustrates such a
partition; the SCCs are shaded. For example, in the left-most SCC, there is a path from
any vertex to any other vertex. It is also maximal, since including other vertices destroys
this property.

3 Rationalizability

I now give necessary and sufficient conditions for an economy to be rationalizable. I will
first present the graph representation of economies, which I use to show the result for NT-
economies. I will then present the analogous results for T-economies.

3.1 Without transfers

First, I introduce a graph construction that is important for the main results. Construct the
digraph GNT (A,A, H, e, x) = (A, E) as follows: each individual is a vertex. Draw arcs from
ik to all vertices i′k′ that are endowed with xik. That is, let (ik, i′k′) ∈ E if xik = ei′k′ .

Example 1. Consider the economy described below.

ik eik xik
1a h1 h2
1b h2 h2
1c h4 h5
2a h2 h3
2b h5 h4
3a h3 h1

That is, e1b = e2a, and other endowments are unique. The graph GNT is given below in
Figure 2.
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Figure 2: Figure for Example 1

2a/h2

1a/h1

3a/h3

1b/h2 1c/h4

2b/h5

The SCCs of GNT are the focus of the main result. In the context of this paper’s
setting, the SCCs are interpretable as partitioning the market into segments that trade
among themselves. I will refer to these informally as market segments. Readers familiar
with matching may recognize that any allocation can be partitioned into trading cycles.9

In the setting of Shapley and Scarf without indifferences, this partition is unique. In the
present setting, these cycles may not be unique; however, GNT superimposes all such trading
cycles onto one graph.

I now present the main result for the NT-economy.

Theorem 1. Fix an NT-economy (A,A, H, e, x), and consider GNT (A,A, H, e, x). The
economy is NT-rationalizable if and only if: for agents of the same type ik, ik′ in the same
SCC S, xik = xik′. That is, if ik, ik′ ∈ S are the same type and in the same SCC, they
receive the same object type.

Proof. Appendix.

The full proof is contained in the appendix. I give a sketch of the proof below.

Proof sketch of Theorem 1. A key feature of GNT is that all objects of the same type are
contained in the same SCC. The proof of this claim is under 7.

To prove “if”: First, find the decomposition of GNT into SCCs. Then assign an arbitrary
order to the SCCs, and assign preferences in this order. In the first SCC S1, set all types’
top rank to be the objects they receive. By assumption, all agents of the same type in the
same SCC receive the same object, so this is a well defined procedure. In the second SCC
S2, there may be types who were not present in S1; let these types’ top rank be the objects
they receive. For types who were present in S1, set their second ranked object to be what
they receive. Then continue through the remaining SCCs in this way. Since all objects of the
same type are in the same SCC, the procedure never attempts to “re-assign” a preference in
a later step. That is, objects never “re-appear” after being assigned to a preference rank the
first time. The argument that this creates no blocking coalitions is similar to the argument
behind Gale’s proof for TTC.

To prove “only if”, I show that when the condition is violated, there is a blocking coalition
for all preference profiles. One of the two agents of the same type must be worse off; this
one can form a blocking coalition with a subset of other members of the SCC.

9Not necessarily Gale’s TTC cycles – no claim on optimality is made here yet.
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Example (Example 1 continued.). The GNT has two SCCs: the left component and the
right component. To apply the theorem, select one order arbitrarily. Let the left component
be S1, and the right be S2. Let ≿i (k) denote type i’s kth favorite object.

1. In S1, assign all agents’ ≿i (1) = µ(i), so

i ≿i (1)
1 h2
2 h3
3 h1

2. In S2, assign all agents’ ≿i (1) = µ(i) for any i who were not in S1. (Here, both types
1 and 2 were present in S1.) Otherwise, let ≿i (2) = µ(i).

i ≿i (2)
1 h5
2 h4

3. Assign remaining preferences arbitrarily (omitted).

To check for a blocking coalition, observe that all agents in S1 all receive their favorite
objects. Only agents in S2 are unsated. Then in any candidate blocking coalition (A′, µ′),
we require µ′(1c) = h2 or µ′(2b) = h3. This requires at least one agent in A′ ∩ S1 to receive
either h4 or h5, which are strictly dispreferred.

The condition required in Theorem 1 is easy to check; Tarjan’s algorithm finds the
partition into SCCs in linear time. Within each SCC, checking for a non-repeated agent
type-object type pair is linear in the number of agents.

3.2 Discussion and related results

The most direct interpretation of Theorem 1 is this: whenever agents with the same prefer-
ences are in the same market segment, they receive the same object type. Informally, agents
in the same market segment have similar market power; if there are multiple agents of the
same type in an SCC, one should not be worse off. Within a market segment, any agent can
make a series trades to receive any object in this segment; the formal proof of Theorem 1
uses this idea this to find a blocking coalition.

More formally, a second interpretation is in the context of a competitive equilibrium
market.10 Roth and Postlewaite (1977) show that any strict core allocation is a competitive
equilibrium allocation in the typical object exchange setting with no indifferences. Wako
(1984) establishes that a strict core allocation is also a competitive equilibrium allocation
in the setting with indifferences. If x is in the core for some preference profile ≿, it is also
a competitive equilibrium allocation for some price vector. A supporting price vector is
descending in the (arbitrarily selected) order of SCCs. Thus if two agents are in the same
SCC, their endowments are worth the same in competitive equilibrium. The necessity of the

10This is the usual definition. I give the formal definition for in Definition 9 in the appendix.
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condition becomes immediate; two agents with the same budget and same strict preferences
should purchase the same object type.

I now present some related results. First, an immediate implication of Theorem 1 is the
following corollary:

Corollary 1. Fix an economy (A,A, H, e, x). The economy is rationalizable only if: when-
ever agents ik, ik′ are the same type and eik = eik′ , xik = xik′.

Proof. Appendix.

That is, identical agents (of same type and same endowment) must receive the same
object type. Briefly, the theorem requires equal treatment of equals. When types determine
both preferences and endowments, this corollary gives us the condition for rationalizability.

Corollary 2. Suppose eik = eik′ for all k, k′ and for all i ∈ A. That is, all agents of the
same type have the same endowment. Then the economy (A,A, H, e, x) is rationalizable if
and only if xik = xik′ for all k, k′ and for all i ∈ A. That is, if and only if all agents of the
same type receive the same object.

Proof. “Only if” is a consequence of Corollary 1. To prove “if”, note that everyone of the
same type receives the same object, so we can let everyone’s favorite object be their allocated
object.

This resembles the Debreu and Scarf (1963) theorems for general equilibrium. Their
model is an endowment economy with a finite number of goods, agent types, k copies of each
type, and types determining both endowment and preferences. Only allocations assigning
the same bundle to all agents of the same type are in the core. While neither the Debreu
and Scarf model nor my model contains the other, it would be interesting future work to
investigate a whether deeper connection exists.

Theorem 1 characterizes which observed economies are consistent with the core. That is,
the condition offers a restriction on the kinds of allocations that can be seen in equilibrium.
Many allocations can be ruled out ex ante. On the positive side, Corollary 1 gives a clear
prediction for markets in the core.

Another related question is: what is the minimum number of agent types necessary to
rationalize an allocation? That is, suppose we are free to choose agent types. What is
the minimum preference type heterogeneity required to put x in the core? This question is
sensible, since allowing every individual to be his own type always rationalizes an allocation.

Let Ã be the set of individual agents, without encoding information on types. With this
data, we can construct a graph G̃NT

(
Ã, H, e, x

)
in the same way as GNT (A,A, H, e, x).

Corollary 3. Consider G̃NT (A, H, e, x), and decompose this into SCCs, {S1, ..., SM}. Let
αm be the number of distinct object types in Sm. The minimum number of types necessary
to construct ≿ such that x is in the core is α = max{α1, ..., αm}.

Proof. This is a corollary of Theorem 1. Individuals in the same SCCm who receive different
objects must be different agent types. There is no other restriction on agent types.

Within Sm, there are αm distinct objects; order them arbitrarily. Let everyone who
receives object 1 be type 1, and so on. By Theorem 1, this will be rationalizable. It is also
clear that having fewer than α types will make the economy not NT-rationalizable.
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The result also solves the analogous economy for two-sided matching in the strict core.
That is, it solves a strict stability analogue of Echenique, Lee, Shum, and Yenmez with
non-transferable utility. There are types of men and women, and each type has a strict
preference over types of the other side. The result follows from transforming house-swapping
into two-sided matching in the usual way. To do this, let each agent type have a unique
endowment (him- or her- self), and restrict preferences to find only endowments of the other
side acceptable. The condition for rationalizability is given by Corollary 1; an observed
market is rationalizable if and only if all men of the same type are assigned the same type
of women, and vice versa.

3.3 With transfers and related results

I derive necessary and sufficient conditions for a T-economy to be T-rationalizable. First, I
introduce a new weighted digraph GT (A,A, H, (e, ω), (x,m)) = (A, E, ℓ(·)). Draw vertices
and arcs as in GNT ; let each agent be a node, and draw arcs from ik to all vertices i′k′ that
are endowed with xik. In addition, define the lengths arcs by ℓ (ik, i′k′) = ωik −mik. Note
ℓ (ik, i′k′) depends only on the first vertex, not the second.

The following example adds to 1.

Example 2. Consider the economy described in Example 1, adding the following payments:

A eik xik ωik −mik

1a h1 h2 2
1b h2 h2 0
1c h4 h5 1
2a h2 h3 −1
2b h5 h4 −1
3a h3 h1 −1

The following figure illustrates GT .

Figure 3: Figure for Example 2, GT

2a/h2

1a/h1

3a/h3

1b/h2 1c/h4

2b/h5

2

−1

−1

0

0

2

−1 1

I now give the main result for T-rationalizability.

Theorem 2. Fix a T-economy (A,A, H, (e, ω), (x,m)). The following are equivalent:

1. The economy is T-rationalizable.
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2. There exists a vector p ∈ R|H|
+ such that

(xik − eik) · p = ωik −mik ∀ik ∈ A (P )

3. The graph GT (A,A, H, (e, ω), (x,m)) has no cycles with length > 0.

Proof. Appendix.

The vector p in (P ) (suggestively denoted) is interpretable is a price vector for objects.
Indeed, the left side is the difference in price between the allocated and endowed object,
and the right side is the net payment from ik. This suggests an easy interpretation of the
theorem: an economy is TU-rationalizable if and only if everyone who “buys” an object type
pays the same price for it.

A direct interpretation of (3) is that no cycles “export” money. This is clearly a necessary
condition – any cycle that pays money outward can implement their object allocation while
keeping more money. In the full proof, I show that (3) also allows construction of a price
vector p

I now present a sketch of the proof.

Proof sketch of Theorem 2. I first show (2) =⇒ (1). Given p, I seek vi such that (x,m) is a
competitive equilibrium. By the usual arguments, a competitive equilibrium allocation is in
the weak core.11 We are looking for utility indexes vi such that all agents ik are maximizing
subject to their budget constraints, given by eik · p + ωik. Then this becomes a classic
consumer demand revealed preference problem. To see this, reinterpret a type i as a single
consumer, and each individual ik as a demand data point: (xik,mik)︸ ︷︷ ︸

consumed good and money

, (eik · p+ ωik)︸ ︷︷ ︸
budget

, p︸︷︷︸
price


ik

In this structure, such demand data are always rationalizable (in the consumer demand
revealed preference sense). The easiest way to show this is to let vi(xik) = xik · p for all
i, ik, though I show in the full proof this knife-edge construction is not the only one. Any
utility indexes satisfying Afriat’s inequalities work. Then (x,m) is a competitive equilibrium
supported by p, and thus (x,m) is in the weak core.

I now show (1) =⇒ (3). To see this, note that a cycle C’s length
∑

ik∈C ωik −mik is its
members’ total net payment of money. If this is greater than 0, then this cycle net spends
money. Its members can form a blocking coalition – they can allocate objects the same way
as in (x,m), but keep their full endowed money for themselves.

Finally, to show (3) =⇒ (2), I use the shortest path length on GT between two objects to
construct the price difference between those objects. The construction is similar to that in
Quinzii (1984). (We can choose an arbitrary base price high enough so that p ≥ 0.) In the
full proof, I show that this construction is consistent – the minimum path length between
objects of the same type is always 0. This completes the proof.

11For example, Mas-Colell, Whinston, and Green (1995), pg. 653.
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I give an example to illustrate T-rationalizability.

Example (Example 2 continued.). For simplicity, let ωik = 3 for all ik. It can be seen that
all cycles have length 0, so this is rationalizable. Figure 3 shows GT , with ωik −mik as arc
lengths.

Example 3. To construct utilities, set p as follows. In the left SCC, let ph1 = 3 arbitrarily,
and set the prices of other objects in this SCC by the minimum path length from h2 plus 3,
giving ph2 = 5, ph3 = 4. Notice that the path length between the two copies of h2 is 0. In
the right SCC, let ph4 = 1 arbitrarily, and set ph5 = 2 since the path length from h4 to h5
is 1. Altogether,

ph1 = 3

ph2 = 5

ph3 = 4

ph4 = 1

ph5 = 2

The easiest way to construct T-rationalizing preferences is to let vi(xik) = xik · p for all
i. Though as mentioned above (and demonstrated in the full proof), this is not the only
construction.

The theorem establishes a connection between T-rationalizability, competitive equilib-
rium, and consumer demand rationalizability. The question of T-rationalizability is equiva-
lent to consumer demand rationalizability, à la Samuelson and Afriat. That is, an allocation
is rationalizable if and only if each agent type, interpreted as demand data, is consumer
demand rationalizable. Thus, we are looking for utility indexes such that every agent type
is optimizing in their demand. Competitive equilibrium follows.

This yields the theorem’s two equivalent and intuitive conditions for T-rationalizability.
The first condition is the existence of a price vector supporting the allocation as a competitive
equilibrium. That is, an allocation is T-rationalizable if and only if it can be supported as a
competitive equilibrium. The second condition is reminiscent of cyclic monotonicity results
common in revealed preference literature. It is readily interpretable directly; a cycle having
positive length means it net transfers money outwards. Then its members can implement
the same object allocation while retaining its money, establishing a blocking coalition.

I now give some corollaries of Theorem 2. First, I give conditions for strict T-
rationalizability.

Corollary 4. Fix a T-economy (A,A, H, x,m, e, ω). The economy is strictly T-
rationalizable if and only if both of the following are true:

1. The economy is T-rationalizable.

2. If ik, ik′ ∈ S are the same type and in the same SCC in GT , then either xik = xik′ OR
the shortest path length from xik to xik′ ̸= 0.

Proof. Appendix.
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This is the T-rationalizability analogue to Theorem 1. The additional condition says
that two individuals of the same type, in the same SCC, should either be allocated the same
object or pay different amounts. Having a zero path length between xik and xik′ means
their prices must be the same. Then if two different individuals of type i purchase each one
in competitive equilibrium, they must have the same utility. Conversely, having a nonzero
path length allows us to construct different prices, and thus different utilities.

The following examples illustrate the corollary.

Example (Example 2 continued.). This example is strictly T-rationalizable. The only thing
to check is x1a and x1b. Since x1a = x1b, the economy is strictly TU-rationalizable – indeed,
the utility given in the original example suffices.

Example 4. Suppose instead x1b = e2a = h6, a new object type, with no other changes.
Focusing on the left SCC:

ik eik xik ωik −mik

1a h1 h2 2
1b h2 h6 0
2a h6 h3 −1
3a h3 h1 −1

This economy is T-rationalizable, but not strictly T-rationalizable. The minimum path

Figure 4: Figure for Example 2 continued.

2a/h6

1a/h1

3a/h3

1b/h2

2

−1

−1

0

length from x1a = h2 to x1b = h6 is 0, forcing ph2 = ph6 . If v1(h2) > v1(h6), then 1b is not
maximizing subject to his budget, so the allocation is not a competitive equilibrium and not
in the weak core.

The next corollary characterizes possible utility indexes vi(·) that a T-economy.

Corollary 5. Fix a T-economy (A,A, H, (e, ω), (x,m)). A T-rationalizable economy’s so-
lutions vi(·) are characterized by solutions to the following linear system.

for p s.t. (xik − eik) · p = ωik −mik ∀ik ∈ A :

1. vi(xik) ≤ vi(xik′) + p · (xik − xik′)− wik′ ∀i,∀ik, ik′

2. for any h such that h ̸= xik ∀xik , and for any ik such that h · p ≤ eik · p+ ωik :
vi(h)− h · p ≤ vi(xik)− xik · p
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Proof. Appendix.

The first line characterizes valid price vectors p. The inequalities define the utility
indexes (vi) given a valid p. Inequality 1. is the Afriat inequality for quasilinear utility
(with marginal utility of money equal to one). Inequality 2. gives restrictions on utilities
for any objects that are never consumed by type i. If an object h is never consumed but is
affordable under some budget eik · p+ωik := Iik, its consumption bundle (h, Ik −h · p) must
be dispreferred to the actually consumed bundle (xik, Ik − xik · p).

This linear system gives possible values of (vi) from the observed data. As is the case in
consumer demand, these are joint restrictions rather than valid ranges for each vi(h). For
example, there are many possible price vectors, each leading to a range of possible utility
indexes vi’s. I also show in the proof of Theorem 2 that relative prices are determined within
an SCC but not across SCCs.12 Nevertheless, Corollary 5 characterizes the joint restrictions
for valid vis.

4 Estimating utility parameters from aggregate matching
data

I turn to the task of estimating preferences from aggregate matchings without transfers.
In the original setting, it is hard to determine rationalizing preference profiles. The proof
Theorem 1 shows that many preference profiles rationalize an economy, and they are “dis-
similar” due to the arbitrary order of SCCs. However, with a series of observations involving
the same agent types and object types; and if we assume a parametric form of utility; it is
possible to estimate utility parameters.

In this section, I derive an econometric method to estimate a confidence region for utility
parameters from multiple stable matchings. The setup is similar to Fox (2010), though
the resulting method is distinct. In the absence of perfectly transferable utility, we cannot
assume utility maximizing choices. Thus, my objective is to estimate utility parameters from
revealed preferences-type data. I will derive necessary moment inequalities for stability, then
follow method suggested by Canay, Gaston, and Velez (2023).

4.1 Setup

The basic setup is the same as the exchange economy without transfers in Section 2.1.

Definition 8. The aggregate matching matrix X is the matrix with A×H rows, rep-
resenting agent type-endowed object pairs; and H columns, representing allocated objects.
Entry Xie,h is the number of type i endowed with e allocated h.

Now we observe t = 1, ..., T rationalizable economies with the same types, each repre-
sented by Xt. Given a series of aggregate matchings, we can first apply the condition in
Theorem 1 to check for rationalizability. Additionally, let preferences be given by utility
ui(h;β, εiht), a function of observable characteristics of the object, unknown parameter β,

12For this reason I conjecture it is not possible to write a linear system without the existential statement
of (P ).
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and heterogeneity εiht with known distribution. This heterogeneity term is allows types to
have heterogenous utility for objects across aggregate matchings t.

4.2 Moments and identification

An aggregate matching being in the core implies moment inequalities we can use to estimate
the parameter β. First, the allocations must respect individual rationality. For e, h ∈ H
and e ̸= h, an individual of type i must prefer his allocation to his endowment

1 (Xie,h > 0) =⇒ [1 (h ≻i e) = 1]

Giving

P (Xie,h > 0) ≤ P [1 (h ≻i e;β) = 1]

and moment inequality

E[1 (Xie,h > 0)− P [1 (h ≻i e;β) = 1]︸ ︷︷ ︸]
:=m1(X,i,e,h;β)

≤ 0 (1)

Likewise, the core implies no blocking coalitions of size 2. For e ̸= h′, e′ ̸= h, e ̸= e′, and
i ̸= i′, we have

1
(
Xie,h > 0, Xi′e′,h′ > 0

)
=⇒

[
1
(
e ≻i′ h

′)1 (
e′ ≻i h

)
= 0

]
That is, it cannot be that there is an individual of type i and one of type i′ that prefer each
other’s endowments. Then

P
[
Xie,h > 0, Xi′e′,h′ > 0

]
≤ P

[
1
(
e ≻i′ h

′)1 (
e′ ≻i h

)
= 0;β

]
This gives the analogous moment inequality

E[1
(
Xie,h > 0, Xi′e′,h′ > 0

)
− P

[
1
(
e ≻i′ h

′)1 (
e′ ≻i h

)
= 0;β

]︸ ︷︷ ︸
:=m2(X,i,i′,e,e′,h,h′;β)

] ≤ 0 (2)

I use inequalities in 1 and 2 to estimate β. The identified set is given by parameters consistent
with 1 and 2. {

β : 1 ∀i, e ̸= h′, 2 ∀i ̸= i′, e ̸= h′, e′ ̸= h, e ̸= e′
}

These are necessary conditions for the core; they form an outer bound for the true β.
It is also possible to add analogous inequalities for coalitions of size ≥ 3. However, the
number of inequalities grows combinatorially, so the trade-off in tractability is unlikely to
be favorable.

These conditions do not come from utility maximization in a choice set, as in Choo and
Siow (2006) or Fox (2010). When utility is not transferable, the allocation is not utility
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maximizing allocation in general. Additionally, agents’ choice sets are functions of the
matching process, rather than exogenously given.

There is now substantial econometric literature on estimating confidence sets from mo-
ment inequalities; e.g. Chernozhukov, Hong, and Tamer (2007); Chernozhukov, Chetverikov,
and Kato (2019); Canay, Gaston, and Velez (2023). A number of methods are possible to
estimate the given model. I follow the suggestion of Canay, Gaston, and Velez (2023) and
use Chernozhukov, Chetverikov, and Kato (2019) to construct a test for the hypothesis

H0 : {E[m1(X, i, e, h;β)] ≤ 0 ∀i, e ̸= h′;

E[m2(X, i, i′, e, e′, h, h′;β)] ≤ 0 ∀i ̸= i′, e ̸= h′, e′ ̸= h, e ̸= e′}

then invert the test to find β which do not reject the hypothesis. This also highlights a
feature of the model – when the model fits better (that is, when the aggregate matchings
are more “stable”), the confidence sets will be wider.

5 Conclusion

I present testable implications of the core in exchange economies with and without monetary
transfers. The key identifying assumption is on agent types – that preferences are solely
a function of observable characteristics of the agents. The analyst observes these types,
endowments, and allocations, but not the preferences. Given this, I derive tractable and
intuitive conditions for the core to be rationalizable.

The conditions in Theorems 1 and 2 characterize markets that are compatible with
the core. That is, they can falsify a market being in the core; they also serve as ex ante
predictions for market outcomes. The results can also be applied to audit mechanisms when
the matching procedure is unknown.

I also develop a parametric method to estimate parameters of utility generating core
allocations. Given a set of aggregate matchings over the same types, the core implies a
series of moment conditions, which I use to obtain partial identification.

The work here suggests paths for future research. One takeaway is that other information
must be observed (such as partial data on preferences or some structure of the allocation
process) to further distinguish outcomes. Analogously to the development of GARP, one
can implement smoother measures of rationalizability or construct statistical tests for ratio-
nalizability. The tractability of the graph construction GNT and GT may be useful in such
work.

6 Proofs

6.1 Results for GNT

First, I introduce another graph construction. Given a NT-economy13, draw
Gsmall (A,A, H, e, x) = (A, E′) as follows:

Step 0. Draw all agents A as vertices.
13Or, if given a T-economy, discard ω and m.
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Step m. Consider all agents receiving hm, that is all ik such that xik = hm. Order them
according to their index; refer to these as the “left” side. Similarly, order agents
endowed with hm according to their index; these are the “right” side. By construction,
these two sets are the same cardinality. Draw one arc from the first agent on the left
side to the first agent on the right side, and so on. If m < η, continue to step m+ 1.

The graph produced after |H| steps represents the allocation µ. Note that each agent has
one out-arc and one in-arc. Recall the construction of GNT = (A, E). Note also that E ⊇ E′;
that is, GNT can be obtained by adding arcs to Gsmall. Figure 5 shows both constructions
for Example 1.

Figure 5: Figure for Example 1

Graph GNT
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(A particular) Graph Gsmall

2a/h2
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3a/h3

1b/h2 1c/h4

2b/h5

I now provide some intermediate results related to the constructed graphs Gsmall and
GNT . These will be key for the proof of Theorem 1.

Proposition 1. Consider Gsmall (A,A, H, e, x) = (A, E′). Gsmall has a subgraph partition
into cycles. That is, there are disjoint subgraphs C1, ..., CN such that Gsmall = ∪N

n=1Cn,
Cm ∩ Cn = ∅ for all m,n, and each Cn is a cycle.

Proof. Note each vertex i has d−(ik) = d+(ik) = 1. We can invoke a version of Veblen’s
theorem:

(Veblen’s theorem) A directed graph D = (V,E) admits a partition of arcs into
cycles if and only if d−(v) = d+(v) for all vertices v ∈ V . (Veblen, 1912; Bondy
and Murty, 2008)

Since d−(ik) = d+(ik), Gsmall has a partition of arcs into cycles. There are no isolated
vertices, so every vertex is in at least one cycle. Further, since d−(ik) = d+(ik) = 1 each
vertex must be in at most one cycle. Thus the arc partition into cycles also partitions the
vertices into cycles.

Proposition 2. Consider GNT (A,A, H, e, x). For every strongly connected component S of
GNT , there is a cycle including all vertices in S.
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Proof. By Proposition 1, Gsmall admits a partition of vertices into cycles. Recall GNT =
(A, E) and Gsmall = (A, E′), where E ⊇ E′. Then these cycles also partition GNT ’s vertices.
The SCC S in GNT is composed of the vertices in a number of Gsmall-cycles. It cannot
include a strict subset of vertices in a Gsmall-cycle since there is always a path between any
two vertices in a cycle.

The remaining argument is by strong induction on the number K of Gsmall-cycles con-
tained in S. Assign an order to these cycles in the following way. Let the first cycle be any
of these. Choose the kth cycle such that it has the same object type as one of the first k− 1
cycles. It is always possible to do this – suppose at some point none of the remaining cycles
has the same object type as the first k cycles. Then there are no paths in GNT between the
first k cycles and the remaining cycles (recall arcs are drawn from an agent to all agents
whose endowment he receives), so they are not in the same SCC.

Claim. There is a cycle in GNT covering all vertices in the first k Gsmall-cycles in S. As
shorthand, I will call this the “big-cycle”, and the Gsmall-cycles will be “small-cycles”.

Base. For k = 1, the claim is trivial.

kth. Suppose the claim is true for the first k− 1 cycles. That is, there is a k− 1th big-cycle
in GNT covering all the vertices in the first k − 1 small-cycles. I show that there is a
cycle covering all vertices in the k−1th big-cycle and the kth small-cycle. The following
argument is illustrated in Figure 6. There are three cases, depending on whether either
cycle is a self-loop.

Case 1. Suppose neither is a self-loop. Let the big-cycle be (1a, ..., 2a, 1a), and the kth

small-cycle be (3a, 4a, ..., 3a). That is, x2a = e1a and so on. I do not require that
the denoted agents are all different types; e.g. 2a can be 1b. By the ordering of the
cycles, the kth small-cycle and the k− 1th big-cycle have at least one of the same
object type. Without loss of generality let e1a = e4a. This gives x2a = e1a = e4a,
so we have the arc (2a, 4a) ∈ E. Similarly, x3a = e4a = e1a, so we have the arc
(3a, 1a) ∈ E. This gives us a new big-cycle across all the vertices in the first k
small-cycles: ( 1a, ..., 2a︸ ︷︷ ︸

big-cycle k−1

, 4a, ..., 3a︸ ︷︷ ︸
kth cycle

, 1a).

Case 2. Suppose the kth small-cycle is a self-loop, but the k − 1th big-cycle is not. Then
let the big-cycle be (1a, ..., 2a, 1a), and the kth small-cycle be (3a, 3a). Again, let
e1a = e3a without loss of generality. Then x2a = e1a = e3a implies (2a, 3a) ∈ E.
Likewise, x3a = e3a = e1a implies (3a, 1a) ∈ E. So we have a new big-cycle
( 1a, ..., 2a︸ ︷︷ ︸
big-cycle k−1

, 3a, 1a). The case if the big-cycle is a self-loop is the same (this may

occur in the k = 2 claim).

Case 3. Suppose both are self-loops. Then let the big-cycle be (1a, 1a) and the kth small-
cycle be (3a, 3a). Again, we suppose e1a = e3a. Then x1a = e1a = e3a implies
(1a, 3a) ∈ E, and likewise (3a, 1a) ∈ E. So we have a new big-cycle (1a, 3a, 1a).

This completes the proof.
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Figure 6: Illustration of Proposition 2
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The following lemma is derived from Proposition 2 and its proof.

Lemma 1. Consider GNT (A,A, H, e, x). Every strongly connected component S has no
in- or out- arcs. That is, if ik ∈ S and (ik, i′k′) ∈ E or (i′k′, ik) ∈ E, then i′k′ ∈ S.
Alternatively, the strongly connected components and (weak) components coincide.

Proof. There is a cycle covering all vertices of S by Proposition 2. Suppose there is an
out-arc from S pointing to a vertex in a different SCC S′. S′ also has a cycle covering
all its vertices. The same argument as in the induction part of the proof of Proposition 2
establishes an arc from S′ to S. Thus there are paths from between any vertices in S and
S′, and they are in the same SCC, a contradiction. The case for no in-arcs is a relabeling of
S and S′.

The following is a corollary of Lemma 1.

Corollary 6. Consider GNT (A,A, H, e, x). Let ik and i′k′ be distinct vertices. There exists
a (ik, i′k′)-path if and only if ik and i′k′ are in the same SCC. Equivalently, there exists a
(ik, i′k′)-path if and only if there exists a (i′k′, ik)-path.

Proof. If ik and i′k′ are in the same SCC, there exists a (ik, i′k′)-path by definition. Suppose
there exists a (ik, i′k′)-path. By Lemma 1, there are no paths between different SCCs, so
ik and i′k′ must be in the same SCC.

Corollary 7. Consider GNT (A,A, H, e, x). All copies of the same object type are in the
same SCC. That is, if eik = ei′k′ and ik ∈ S, then i′k′ ∈ S.

Proof. Let eik = ei′k′ . There is at least one agent pointing to ik, so ∃a ∈ A such that
(a, ik) ∈ E. Then (a, i′k′) ∈ E as well by construction. By Corollary 6, there are (ik, a)-
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and (i′k′, a)- paths. Then there are (ik, i′k′)- and (i′k′, ik)- paths (through a), so ik and i′k′

are in the same SCC.

The above results give us significant information about the SCCs of GNT . The following
is a summary of these results. From Proposition 2, each SCC contains a cycle covering all
its vertices. From Lemma 1 and Corollary 6, GNT can be vertex- and arc- partitioned into
its SCCs. That is, GNT consists of SCCs with no links between them. Finally, Corollary 7
tells us all copies of a given object type are in the same SCC.

If we take Theorem 1 as given for now, we can use the above result to prove Corollary 1.

Proof of Corollary 1. If if eik = eik′ , then ik and ik′ are in the same SCC. Then apply
Theorem 1 to get the desired result.

6.2 Proof of Theorem 1

Proof of Theorem 1. (“If”) Let the supposition be true: whenever agents of the same type
are in the same SCC, they receive the same object type. I find a preference profile ≿ that
such that x is in the core. First find the partition of vertices into SCCs. Then assign an
arbitrary order to the SCCs, and denote them S1, ...SM . Construct the preferences by the
following procedure. Let ≿i (n) denote type i’s nth favorite object.

Step 1. In S1, for all i ∈ S1, let ≿i (1) = xi. This is well defined since if there are multiple
agents of the same type in S1, they all receive the same object type.

2. In S2, for all i ∈ S2, let ≿i (1) = xi if possible. This is possible if there were no type
i’s in S1. Otherwise, let ≿i (2) = xi. By Corollary 7, an object never reappears in a
later step, so this never assigns an object to two places in the same preference.

m. In Sm for m = 2, ...,M , for all i ∈ Sk, let ≿i (m′) = xi for the lowest unassigned
m′ = 2, ...,m. Again by the same argument above, this never assigns two objects to
the same type; it also never assigns the same object type to multiple places in the
same preference.

M + 1. Assign remaining preferences in any order, if necessary.

I now show this preference profile admits no blocking coalition. Suppose that there is a
coalition of agents A′ ⊆ A and feasible sub-allocation µ′ such that for all ik ∈ A′ : x′ik ≿i xik.
The argument is by induction on the number of SCCs M . In each SCC Sm, the claim to
demonstrate is that x′ik = xik for all ik ∈ A′ ∩ Sm.

Base. In S1, all agents receive their favorite object. Then x′ik ∼ xik for all i ∈ A′ ∩ S1. The
only indifferences are between copies of the same object type, so this gives x′ik = xik.

mth. Suppose the claim is true for all agents in A′ ∩ (S1 ∪ · · · ∪ Sm−1). This implies that
x′ allocates all agents in A′ ∩ (S1 ∪ · · · ∪ Sm−1) objects in their own SCC. That is,
x′ik ∈ ∪ik∈A′∩Smeik.

Toward a contradiction, suppose that ∃ik ∈ Sm such that x′ik := h ≻i xik. Then it
must be h ∈ ∪ik∈S1∪···∪Sm−1eik, since all strictly preferred objects are in earlier SCCs.

22



Further, since x′ reallocates within A′, it must be h ∈ ∪ik∈A′∩(S1∪···∪Sm−1)eik. Then it
must be that an agent in A′ ∩ (S1 ∪ · · · ∪ Sm−1) receives an object in
∪ik∈A′∩(S1∪···∪Sm−1)eik. This contradicts the supposition, so it must be that x′ik ∼ xik
for ik ∈ A′ ∩ Sm, giving x′ik = xik.

Thus x′ik = xik for all ik ∈ A′, and A′ is not a blocking coalition.
(“Only if”) Toward the contrapositive, suppose there is an SCC S with two agents of

the same type who receive different objects. By Proposition 2, there is a cycle covering all
vertices in S. I now construct a blocking coalition using this cycle. Note that two of these
vertices represent agents of the same type who receive different objects. Let these two agents
be 1a and 1b; I consider cases based on their relative positions in the cycle.

1. Suppose the cycle is 1a → 2a → · · · → 1b︸ ︷︷ ︸
:=c

→ 3a → · · · → 1a, and e2a ̸= e3a. Suppose

e2a ≻1 e3a. Then 1b → 2a → · · · → 1b︸ ︷︷ ︸
c

represents a blocking coalition. Note that this

is a feasible sub-allocation; it contains its own endowment, and 1b is strictly better
off. The case e2a ≺1 e3a is a rotation and relabeling of the cycle.

2. Suppose the cycle is 1a → 1b → 2a → · · · → 1a︸ ︷︷ ︸
:=c

. If e2a ≻1 e1b, then

1a → 2a → · · · → 1a︸ ︷︷ ︸
c

is a blocking coalition. If instead e1b ≻1 e2a, then x is not

individually rational for 1b.

3. If the cycle is 1a → 1b → 1a and e1a ̸= e1b, then µ is not individually rational.

This completes the proof.

Remark. For readers familiar with the result in Quint and Wako (2004), it suffices to show
that executing their “ST RICT CORE” algorithm on the above constructed preferences re-
sults in the allocation µ. This is readily apparent, and a formal proof is omitted.

6.3 Proof of Theorem 2 and related results

I first give a formal definition of competitive equilibrium in an exchange economy setting.

Definition 9. Let E = {(ωik, eik), (uik)}ik∈A be an exchange economy, where uik(·) : H ×
R+ → R are utility functions. A competitive equilibrium is a price vector p ∈ RH and a
feasible allocation (xik,mik)ik∈A such that for all ik ∈ A:

• mik + p · xik ≤ ωik + p · eik

• (uik(h,m) > uik(xik,mik)) =⇒ (m+ p · h > ωik + p · eik)

That is, all agents’ allocations are affordable for them, and any better allocation is unaf-
fordable. A competitive equilibrium allocation is (xik,mik)ik∈A for which there exists
a price vector supporting it as a competitive equilibrium.
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Definition 10. Let {(xr, pr, Ir)}Nr=1 be observed demand, price, and budget data, where
xr ∈ RH

+ ; pr, Ir ∈ RH
++. The data is quasilinear rationalizable if for all r, xr solves

max
x∈Rn

++

v(x) +m

s.t. pr · x+m = Ir

for some concave v.

I also give Afriat’s theorem for quasilinear rationalizability. (These are the usual Afriat
inequalities with λ = 1.)

Theorem 3 (Afriat’s theorem). Data (xr, pr, Ir), r = 1, ..., N are quasilinear rationalizable
if and only if there exist numbers vj ∈ R such that

vk ≤ vj +
(
pj · xr − Ir

)
(A)

I now give the full proof for Theorem 2.

Proof of Theorem 2. I show (2) ⇒ (1) ⇒ (3) ⇒ (2).
I now show (2) =⇒ (1). Suppose there exists a vector p satisfying equation (P ). I first

seek to show that this p supports (x,m) as a competitive equilibrium for some utility indexes
(vi). That is, I want to construct vi such that all agents ik are maximizing utility subject
to their budget constraints e′ik ·p+ωik.14 This becomes a classic consumer demand revealed
preference problem. To see this, reinterpret an agent type i as a single consumer, and each
individual agent ik as a demand data point from this consumer: (xik,mik)︸ ︷︷ ︸

consumed good and money

, (e′ik · p+ ωik) := Iik︸ ︷︷ ︸
budget

, p︸︷︷︸
price


k∈{1,...,Ki}

That is, i is a consumer, and each ik is a single observation of demand at a particular budget.
There are |A| consumers and Ki demand points for each consumer i. We seek to rationalize
the demand data in a consumer revealed demand sense by constructing (vi) such that each
consumer i is maximizing utility Vi(h,m) = vi(h) +m in each consumption bundle-budget
pair.

The easiest way to do this is to let vi(xik) = x′ik · p, making all agents indifferent to any
possible consumption bundle while still satisfying assumption (A2). However, these data are
rationalizable more broadly; any indexes fulfilling Afriat’s inequalities (A) will also suffice
for (vi).

I now show (1) =⇒ (3). I show the contrapositive; suppose GT has a cycle C with
positive length; i.e.

∑
ik∈C ωik −mik > 0. The members of C can form a blocking coalition

for (x,m) by allocating to each ik ∈ C(
xik,m+

∑
ik∈C ωik −mik

|C|

)
14Agent ik sells his endowment e′ik at price p and is additionally endowed with ωik money.
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That is, each agent receives the same object and receives more money from the excess
endowment. This is feasible for C and strictly preferred by all ik ∈ C.

Finally, I prove (3) =⇒ (2). Suppose GT has no cycles with length > 0. I construct
a price p satisfying (P ) via path lengths on GT . Note that Proposition 2, Lemma 1, and
Corollary 7 still apply to GT . Every SCC has a cycle covering all its vertices; there are no
paths between two SCCs; and all objects of the same type are in the same SCC. Denote ph
as the price of object type h ∈ H. Construct p as follows:

1. For each SCC, choose any object type h in this SCC and set ph to be any number.

2. For all objects h′ in this SCC, set ph′ − ph to be length of the shortest path from h to
h′. That is, the shortest path between an agent endowed with h to an agent endowed
with h′ determines the price difference.

3. Repeat steps 1 and 2 for all SCCs.

4. Add a constant to p to ensure p ≥ 0.

I will show that all paths between two vertices are the same length, then that the path
length between an object type h and itself is always 0, so that the construction is consistent,
i.e. ph − ph′ = 0 when h = h′. The rest of the proof will immediately follow.

Note the whole economy is budget balanced; we have
∑

ik∈A ωik =
∑

ik∈Amik. For any
cycles that form a vertex-partition of GT : these cycles must have length 0. A negative length
cycle that is in a partition of the overall economy implies a positive length cycle elsewhere
by budget balancedness, a contradiction.

In particular, by Proposition 2, each SCC has a cycle containing all its vertices; call
this the “whole-cycle” as shorthand. These partition the whole economy, so each whole-
cycle must have length 0. For the following claims, assume the SCC has at least three
vertices. I will show the cases for one or two vertices separately. Enumerate the whole-cycle
as (1a, 2a, ..., sa, ...(S − 1)a, Sa, 1a). (Allowing any of these agents to be of the same type
– this is unimportant.) Now consider 1a and sa distinct and in the same SCC (recall there
are no paths between SCCs), and consider the path (1a, ..., sa) via the whole-cycle. Denote
this path (1a, 2a, ..., (s− 1) a︸ ︷︷ ︸

:=α

, sa), and call it the “whole-cycle path” as shorthand.

Claim 1. If the arc (1a, sa) exists, it is the same length as the whole-cycle path. That is,
ℓ(1a, sa) = ℓ(1a, 2a, ..., (s− 1) a, sa).

Figure 7 illustrates the following argument. If the arc (1a, sa) exists, then e2a = esa, so
there is an arc ((s− 1)a, 2a). Then (2a, ..., (s− 1)a︸ ︷︷ ︸

:=α

, 2a) forms a cycle, and

(1a, sa, ...︸︷︷︸
rest of whole-cycle

, 1a) also forms a cycle. Since the two cycles partition the SCC, they

are part of a partition of the overall economy; thus both cycles must have length 0. If
ℓ(1a, sa) > ℓ(1a, 2a, ..., (s− 1) a, sa), then the latter cycle has positive length, a contradic-
tion. This is because the whole-cycle has length 0 as established, and we have found a
cycle with shorter length. If instead ℓ(1a, sa) < ℓ(1a, 2a, ..., (s− 1) a, sa), then the latter
cycle has negative length, also a contradiction. Note the same argument carries through if
2a = (s− 1)a – the first cycle is a self-loop, and 1a = (s− 1)a is symmetric.
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Figure 7: Illustration of Claim 1
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Claim 2. If the arc (sa, 1a) exists, it has length negative of the whole-cycle path from 1a to
sa. That is, ℓ(sa, 1a) = −ℓ(1a, 2a, ..., (s− 1) a, sa).

From Claim 1, ℓ(sa, 1a) = ℓ(sa, (s+1)a, ..., Sa, 1a). Notice that (sa, (s+1)a, ..., Sa, 1a)
and (1a, 2a, ..., (s − 1)a, sa) form the whole cycle, so their lengths sum to 0. That is,
ℓ(sa, 1a) + ℓ(1a, 2a, ..., (s− 1)a, sa) = 0, and the claim follows.
Remark 1. The indexing of 1a and sa in Claims 1 and 2 is not important. Since the whole-
cycle is a cycle, 1a can be any vertex. (It is convenient to have 1 ≤ s ≤ S.)
Claim 3. Any (1a, sa)-path is the same length as the whole-cycle path
(1a, 2a, ..., (s− 1) a︸ ︷︷ ︸

:=α

, sa).

The (1a, sa)-path is some permutation of a subset of vertices of the SCC. Denote this
(σ1a︸︷︷︸
=1a

, σ2a, ..., σj−1a, σja︸︷︷︸
=sa

), where j ≤ S. I will show

ℓ(σ1a, ..., σj−1a, σja) = ℓ(1a, 2a) + · · ·+ ℓ((σj − 1)a, σja)︸ ︷︷ ︸
whole-cycle path

≡
σj−1∑
i=1

ℓ(ia, (i+ 1)a)

Note that σj−1 ̸= σj − 1 in general.
I will show the claim by strong induction on the length of j. The base case of j = 1 is

Claim 1. Now suppose the claim is true for j; that is, ℓ(1a, ..., σj−1a, σja) =
∑σj−1

i=1 ℓ(ia, (i+
1)a). Now consider j + 1. We have ℓ(1a, σj+1a) = ℓ(1a, σja) + ℓ(σja, σj+1a). If σj+1 > σj ,
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then by Claim 1 write

ℓ(σja, σj+1a) =

σj+1−1∑
i=σj

ℓ(ia, (i+ 1)a)

So

ℓ(1a, ..., σja, σj+1a) =

σj−1∑
i=1

ℓ(ia, (i+ 1)a) + ℓ(σja, σj+1a)

=

σj−1∑
i=1

ℓ(ia, (i+ 1)a) +

σj+1−1∑
i=σj

ℓ(ia, (i+ 1)a)

=

σj+1−1∑
i=1

ℓ(ia, (i+ 1)a)

If σj+1 < σj , then by Claim 2 write

ℓ(σja, σj+1a) = −
σj+1−1∑
i=σj

ℓ(ia, (i+ 1)a)

So

ℓ(1a, ..., σja, σj+1a) =

σj−1∑
i=1

ℓ(ia, (i+ 1)a) + ℓ(σja, σj+1a)

=

σj+1−1∑
i=1

ℓ(ia, (i+ 1)a) +

σj−1∑
i=1

ℓ(ia, (i+ 1)a)−
σj+1−1∑
i=σj

ℓ(ia, (i+ 1)a)

=

σj+1−1∑
i=1

ℓ(ia, (i+ 1)a)

as desired.
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Figure 8: Illustration of Claim 3
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Claim 4. The length of any path between an object type h and itself is 0.
Figure 9 illustrates the following argument. Note that two vertices (agents) may be

endowed with the same object type, so these can be distinct nodes. Recall that all copies
of the same object type are contained in the same SCC. The path length from a vertex to
itself is 0 since the whole-cycle has length 0, and any other path is the same length. Now
suppose h is contained in two distinct vertices, 1a and 2a. Consider a node sa such that
xsa = h. (This may be 1a or 2a.) Then the arcs (sa, 1a) and (sa, 2a) exist. These have the
same length, ωsa−msa, by construction of GT . Denote ℓ(sa, 1a) = ℓ(sa, 2a) = ℓ1. I show the
length of the path from 1a to 2a is 0. Denote this path (1a, ..., 2a), and let ℓ(1a, ..., 2a) = ℓ2.
Both (sa, 1a, ..., 2a) and (sa, 2a) are paths from sa to 2a, so must have the same length.
Then ℓ1 = ℓ1 + ℓ2, giving us ℓ2 = 0 as desired.

Figure 9: Illustration of Claim 4
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I have shown the above claims for SCCs of size at least three. Now consider an SCC of
only one vertex. The only arc must be (1a, 1a), which constitutes the whole-cycle and must
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have length 0, and the path length from this object type to itself is 0.
Now consider an SCC of two vertices, 1a and 2a. If they are endowed with distinct object

types, the arcs (1a, 2a) and (2a, 1a) are the only arcs, and the claims are true trivially. If
they are endowed with the same object type, the self loops are also present. The two self-
loops partition the SCC, so have length 0. We have ℓ(1a, 1a) = ℓ(1a, 2a) by construction,
so ℓ(1a, 2a) = 0, and similarly ℓ(2a, 1a) = 0. Then all arcs have length 0 in this SCC, so the
claims are again true.

The rest of the proof follows easily. The path length between any object type h and
itself is 0 (so the minimum path length is 0), ensuring it is possible to construct prices this
way. Next, for any ik ∈ A, the path length from eik := h to xik := h′ is mik − ωik, so that
ph′ − ph = mik − ωik. This gives

(xik − eik) · p = ph′ − ph = mik − ωik

as desired.
This completes the proof of the theorem.

Proof of Corollary 4. As argued in the proof of Theorem 2, any price must satisfy (xik −
eik) · p = ωik − mik for all ik ∈ A. By the construction of GT , xik − eik is an arc from
eik to xik with length ωik − mik, which is also the price difference between these objects.
Inductively (I will omit the full formality), a path from xik to xik′ has path length 0 if and
only if the price difference between them is 0. (Note that by Claim 2, there also must be a
path from xik′ to xik, and it has length 0 as well.)

(“If”) Let both conditions be true. As in the main theorem, it is sufficient to set vi(xik) =
p · xik. Since prices can be set arbitrarily across SCCs, we can ensure no two objects in
different SCCs have the same price.

(“Only if”) Toward a contradiction, suppose the economy is not T-rationalizable. Then it
is of course not strictly T-rationalizable. Now suppose the second condition is false. That is,
there are ik, ik′ in the same SCC such that xik ̸= xik′ , but the shortest path length between
them is 0. Then pxik

= pxik′ . Suppose vi(xik) > vi(xik′) without loss of generality. Then ik′

can afford (xik,mik′), which is preferable to (xik′ ,mik′). Thus (x,m) is not a competitive
equilibrium, so is not strictly T-rationalizable.

In particular, xik can purchase xik′ instead. Since mik > 0 by assumption, ik can form
a blocking coalition by compensating other members of the blocking coalition.

Proof of Corollary 5. This comes from the proof of Theorem 2.
The first line is conditions for valid vectors p, which comes from Theorem 2 and its proof.
The first inequality is (A). This is exactly Afriat’s inequalities when the marginal utility

of money is 1. These give joint restrictions on any the utility for objects actually consumed
by agent type i given some p. Necessity and sufficiency are from Afriat’s theorem.

The second inequality gives restrictions on the utility for objects not consumed by type
i. An object h that is affordable under some ik’s budget must have V (h, eik ·p+ωik−p ·h) ≤
V (xik, eik · p + ωik − p · xik), else (x,m) is not a competitive equilibrium. This gives the
inequality in the corollary:

vi(h) + (eik · p+ ωik − h · p) ≤ vi(xik) + (eik · p+ ωik − xik · p)
vi(h)− h · p ≤ vi(xik)− xik · p
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That is, if h is affordable to ik, then its utility (including leftover money) must be less than
that of xik. Note that an object that is too expensive for all ik is allowed to have any utility.
Again, necessity and sufficiency are immediate.
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Part II

House-Swapping with Objective
Indifferences

Preface

The second chapter is coauthored with Will Sandholtz. We study the classic house-swapping
problem of Shapley and Scarf (1974) in a setting where agents may have “objective” indif-
ferences, i.e., indifferences that are shared by all agents. In other words, if any one agent
is indifferent between two houses, then all agents are indifferent between those two houses.
The most direct interpretation is the presence of multiple copies of the same object. Our
setting is a special case of the house-swapping problem with general indifferences. We derive
a simple, easily interpretable algorithm that produces the unique strict core allocation of
the house-swapping market, if it exists. Our algorithm runs in O(n2) time, where n is the
number of agents and houses. This is an improvement over the O(n3) time methods for the
more general problem.
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7 Introduction

The house-swapping problem originally studied by Shapley and Scarf (1974) assumes that
agents have a strict preference ordering over the set of the agents’ houses. Implicitly, all
houses are distinct. As Roth and Postlewaite (1977) show, in this setting the strict core
is always non-empty and consists of a single allocation, which can identified using the Top
Trading Cycles algorithm (TTC).

In the more general setting where agents’ preference rankings may contain indifferences,
the strict core may be empty. Moreover, when the strict core is non-empty, it may contain
multiple allocations. Quint and Wako (2004) devised an algorithm, Top Trading Segmen-
tation (TTS), that finds a strict core allocation, when it exists. Alcalde-Unzu and Molis
(2011) devise Top Trading Absorbing Sets (TTAS) which finds the strict core when it exists
and the weak core otherwise. They leave computational complexity of their algorithm as
an open question. Jaramillo and Manjunath (2012) also solve the general indifference prob-
lem with Top Cycle Rules (TCR), which has complexity O(n6). Aziz and Keijzer (2012)
present Generalized Absorbing Top Trading Cycle (GATTC), generalizing TTAS and TCR
and show that TTAS has exponential time complexity. Plaxton (2013) develops a different
mechanism to produce a strict core allocation with time complexity O(n3).

We study a more structured problem, where any indifferences are shared across all agents.
We use the phrase “objective indifferences” to describe this setting. Conversely, we use the
phrase “subjective indifferences” to describe indifferences that are not necessarily shared by
all agents. Objective indifferences are the leading case of indifferences, since many objects
we encounter in daily life are commodified. This additional structure enables us to develop
a simple algorithm to find the strict core, when it exists, with time complexity O(n2).

Our setting can be thought of as an intermediate case between the original Shapley
and Scarf setting and the general setting studied first by Quint and Wako. With objective
indifferences, as in the house-swapping problem with subjective indifferences, the strict core
may be empty. However, when the strict core is non-empty it contains a unique allocation.
We propose a simple algorithm that finds the strict core allocation of a house-swapping
market with objective indifferences in square-polynomial time. This algorithm is faster than
the polynomial time algorithms that are needed for house-swapping markets with subjective
indifferences.

8 Model

Let I = {1, 2, ..., I} be a set of agents, each of whom is endowed with a house. Let H =
{1, 2, ...,H} be the set of possible house types in the market. Note that H < I implies
that some agents were endowed with houses of the same type. The endowment function
E : I → H maps each agent to the house type he was endowed with.

Each agent i ∈ I has strict preferences ≿i over H. Implicitly, all agents are indifferent
between two houses of the same type. We use ≿= {≿1,≿2, ...,≿I} to denote the preference
profile of all agents.

An allocation µ is a function µ : I → H such that |µ−1(h)| = |E−1(h)| for all h ∈ H.
That is, µ(i) = h means agent i is assigned a house of type h, and the number of agents
who are allocated to a house type is equal to the supply of it.
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The house-swapping market is summarized as the tuple (I,H,E,≿). We are interested
in whether the strict core exists.

Definition 11. An (sub-)allocation µ is feasible for a coalition of agents I ′ ⊆ I if∣∣µ−1(h)
∣∣ =

∣∣E−1(h) ∩ I ′
∣∣ for any h ∈ E(I ′). That is, the quantity of each house type

required in the (sub-)allocation is the same as the quantity in the coalition’s endowment.

Definition 12. A (feasible) allocation µ is in the strict core of the house-swapping market
(I,H,E,≿) if there is no coalition I ′ ⊆ I and no sub-allocation µ′ such that:

1. µ′ is feasible for I ′

2. µ′(i) ≿i µ(i) for all i ∈ I ′

3. µ′(i) ≻i µ(i) for at least one i ∈ I ′

We derive an algorithm that finds the strict core of a house-swapping market (I,H,E,≿)
when it exists.

9 Directed Graphs

Before proceeding to our main results and the algorithm, we review some useful concepts
related to directed graphs. The definitions are standard, and a familiar reader may skim
this section.

A directed graph is given by D(V,E) where V is the set of vertices and E is the set
of arcs. An arc is a sequence of two vertices (v, v′). We allow for arcs of the form (v, v),
which we call self-loops. A (v1, vk)-path is a sequence of vertices (v1, v2, ..., vk) where each
vi is distinct and (vi−1, vi) ∈ E for all i = 2, 3, ..., k. A cycle is a path where v1 = vk is the
only repeated vertex. A sink of a directed graph is a vertex v such that (v, v′) /∈ E for all
v′ ∈ V .

A strongly connected component (SCC) of a directed graph D(V,E) is a maximal
set of vertices S ⊆ V such that for all distinct vertices v, v′ ∈ S, there is both a (v, v′)-path
and a (v′, v)-path. By convention, there is always a path from v to itself, regardless of
whether (v, v) ∈ E. The collection of strongly connected components of a directed graph
forms a partition of V . (To see this, note that the definition of an SCC implies that a vertex
can be in exactly one SCC.)

The condensation of a directed graph D(V,E) is the directed graph D(V SCC , ESCC)
where V SCC is the set of SCCs of D(V,E) and (S, S′) ∈ ESCC if and only if there exist
v ∈ S and v′ ∈ S′ such that (v, v′) ∈ E. In other words, it is the arc-contraction of D
on each SCC – replace each SCC with a single vertex, and keep any arcs between SCCs.
Condensations of directed graphs are always acyclic.

A topological ordering of a directed acyclic graph D(V,E) is a total order ≤ of the
elements of V such that if (v, v′) ∈ E, then v ≤ v′. A directed graph has a topological
ordering if and only if it is acyclic.15 It is immediate that the vertex with the highest
topological ordering is a sink.

15See Korte and Vygen (2008), Section 2.2.
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10 Results

In this section, we give our algorithm to determine whether a strict core of a market
(I,H,E,≿) exists and to find it when it does. First, we define a function Bi that denotes
the i’s most preferred house type among a subset of house types. Let Bi : I × P(H) → H
be given by Bi(H

′) = h if h ≿i h
′ for all h′ ∈ H ′.

We now give our algorithm.

Algorithm 1. House Top Trading Segments (HTTS)
Step 1. Let R1 = H. Construct the directed graph D1 = D(R1, E1) where (h, h′) ∈ E1

if Bi(R1) = h′ for some i ∈ E−1(h). That is, draw an arc (h, h′) exists if an owner of h
top-ranks h′ among all house types R1 = H. Find an SCC H1 of D1 with no outgoing arcs;
i.e., for any h ∈ H1 and h′ /∈ H1, (h, h′) /∈ E1.16 We call H1 a “house top trading segment”.

Let I1 = E−1(H1). For all i ∈ I1, set µ(i) = Bi(R1). That is, assign every agent
endowed with a house in H1 to his favorite house (also in H1).

Check that µ is feasible for I1. If so, proceed to part c. Otherwise, stop.
Let R2 = R1 \H1. If R2 = ∅, stop; otherwise, proceed to Step 2.
Step d. Construct the directed graph Dd = D(Rd, Ed) where (h, h′) ∈ Ed if Bi(Rd) = h′

for some i ∈ E−1(h). Find an SCC Hd of Dd with no outgoing arcs.
Let Id = E−1(Hd). For all i ∈ Id, set µ(i) = Bi(Rd). That is, assign each agent in Id to

his favorite remaining house. Since Hd has no outgoing arcs, this house is also in Hd.
Check that µ is feasible for Id. If so, proceed to part c. Otherwise, stop.
Let Rd+1 = Rd \Hd. If Rd+1 = ∅, stop; otherwise, proceed to Step d+ 1.

Remark 2. Note that at each step, house types are removed, and thus agents owning them
are also removed. Since there are finitely many house types H, the algorithm terminates in
finite time.

Remark 3. At part b of each step, µ is feasible for Id if and only if for each h ∈ Hd,∣∣E−1(h) ∩ Id
∣∣ = |{i : BiHd) = h, i ∈ Id}|. That is, the number of copies of h available in Id

is equal to the number of agents who top-rank h among the remaining houses. Informally,
“supply equals demand.”

The house top trading segments we find in each step are analogous to TTC trading
cycles. At each step, agents “point” from their owned house to their favorite house. We then
find the trading segment and execute the trades, if possible (“feasible”). For readers familiar
with Quint and Wako (2004), these are modified versions of top trading segments.

Theorem 4. Let (I,H,E,≿) be a market.

1. The strict core exists if and only if Algorithm 1 terminates in part c of a step. That
is, each step’s HTTS gives a feasible allocation, and the algorithm did not terminate
in part b of a step.

2. Algorithm 1 finds a strict core allocation, when one exists.
16There always exists an SCC with no outgoing arcs. To see this, consider the condensation (contract each

SCC to a single vertex). The result is a directed acyclic graph, which has at least one sink. The sink is the
(contracted) desired SCC with no outgoing arcs. Note that there may be multiple SCCs with no outgoing
arcs. If so, pick any arbitrarily.
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3. The strict core allocation is unique, when it exists.17

4. Algorithm 1 has time complexity O(|H|2 + |H||I|).

Before the proof of Theorem 4, we give the following example to illustrate it and Algo-
rithm 1.

Example 5. Consider the house-swapping market (I,H,E,≿) where

I = {1, 2, 3, 4, 5}
H = {h1, h2, h3, h4}
E(1) = h1, E(2) = E(3) = h2, E(4) = h3, E(5) = h4

and ≿= {≿1,≿2,≿3,≿4,≿5} is given by

h2 ≻1 ...

h1 ≻2 ...

h3 ≻3 h2 ≻3 ...

h4 ≻4 ...

h3 ≻5 ...

1. Step 1 : Set R1 = H. Construct the directed graph D(R1, E1) where (h, h′) ∈ E1 if
Bi(R1) = h′ for some i ∈ E−1(h). That is, some owner of h top ranks h′. There are
two SCCs in D(R1, E1): {h1, h2} and {h3, h4}. Only S = {h3, h4} has no outgoing
arcs. Then set H1 = {h3, h4} and I1 = {4, 5}.

(a) Assign µ(4) = h4;µ(5) = h3.

(b) Check that this is feasible for I1. We have∣∣E−1(h3) ∩ I1
∣∣ = |{4}| = 1

|{i : Bi(H1) = h3, i ∈ I1}| = |{5}| = 1

and likewise for h4, so this is feasible.

(c) Set R2 = R1 \H1 = {h1, h2} and continue to Step 2.

2. Step 2 : Construct the directed graph D(R2, E2) where (h, h′) ∈ E2 if Bi(R2) = h′

for some i ∈ E−1(h). That is, some owner of h top ranks h′ among the remaining
houses R2 = {h1, h2}. The entire graph forms an SCC, so set H2 = {h1, h2} and
I2 = {1, 2, 3}.

(a) Assign µ(1) = h2;µ(2) = h1;µ(3) = h2.

(b) Check that this is feasible for I2 (it is).

(c) Set R3 = R2\H2 = ∅. So the algorithm terminates.
17Recall the definition of an allocation is a matching between agents and house types. The individual

identities of the houses do not matter.
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Therefore, a House Top Trading Segmentation of H is given by

H =
{
H1 = {h3, h4}, H2 = {h1, h2}

}
.

h1 h2

h3 h4 H1

R2

Step 1

h1 h2 H2

Step 2

Figure 10: Applying Algorithm 1 to Example 5.

By Theorem 4, the unique strict core of this market is given by

µ(1) = h2

µ(2) = h1

µ(3) = h2

µ(4) = h4

µ(5) = h3

10.1 Proof of Theorem 4

The proofs for the strict core claims unsurprisingly follow Gale’s proof for TTC. The first
key insight is that by focusing on house types as nodes (instead of agents), we ensure that
we remove all copies of a house at the same time. This lets us easily deal with objective
indifferences. The second key insight is that when we assign houses within an SCC without
outgoing arcs, we assign a set of houses and their owners at the same time.

Proof of Claim 2. Let (I,H,E,≿) be a market, and let µHTTS be the allocation produced
by Algorithm 1. That is, the algorithm terminated in part c of some step.

We first argue that µHTTS is indeed a feasible allocation. At each step, we arrive at
a house trading segment Hd. Note that Hd has no outgoing arcs in Dd. Thus all agents
endowed with a house h ∈ Hd (denoted Id) top-rank a house in Hd from among the remaining
houses. By our assumption that Algorithm 1 terminated in part c (and not part b) of some
step, we know that µHTTS is feasible for Id. Part c of this step removes Hd and thus Id from
further consideration. Thus {H1, ...,Hd, ...,HK} and {I1, ..., Id, ..., IK} partition the house
types and agents, respectively. If µ is feasible for each Id, then it is feasible for I.

Toward a contradiction, suppose there is a blocking coalition I ′ and sub-allocation µ′.
For at least one agent i ∈ I, µ′(i) ≻ µHTTS(i). Consider the step d at which i was

assigned in Algorithm 1. By construction, µHTTS(i) = Bi(Hd) = Bi (∪d′≥dHd′). So it must

36



be that µ′(i) ∈ ∪d′<dHd′ . Feasibility of µ′ implies that there is some i′ ∈ Ik for k < d such
that µ′(i′) ∈ ∪k′>kHk′ . But then µ′(i′) ≺ µHTTS(i′), so this is not a blocking coalition. In
other words, for µ′(i) ≻ µHTTS(i), i must be assigned to a house from an earlier segment.
But then an agent from an earlier segment must be assigned to a house from a later segment,
which is strictly dispreferred.

Proof of Claim 3. Let (I,H,E,≿) be a market, and let µHTTS be the allocation produced
by Algorithm 1. That is, the algorithm terminated in a part c. Let µ′ be another strict
core allocation. We again show µ′ = µHTTS by strong induction on the number of steps in
HTTS.

Base claim. Consider H1 and I1. We have µHTTS(i) ≿i µ
′(i) for all i ∈ I1, since every

i ∈ I1 receives his favorite house. Since µHTTS is feasible for I1 and µ′ is in the strict
core, we must also have µ′(i) ≿i µHTTS(i) for all i ∈ I1. (Otherwise I1 can form
a blocking coalition with sub-allocation µHTTS |I1 .) But then µHTTS(i) = µ′(i) for
i ∈ I1.

Claim d. Assume µHTTS(i) = µ′(i) for all i ∈ I1 ∪ · · · ∪ Id−1. Then µ′(Id) ⊆ ∪d′≥dHd′ .
That is, the houses assigned to agents in Id are drawn from the houses that remain
after step d − 1. By construction, we have µHTTS(i) ≿i h for any h ∈ ∪d′≥dHd′ for
all i ∈ Id, so we have µHTTS(i) ≿i µ′(i) for i ∈ Id. Since µHTTS is feasible for Ik
and µ′ is in the strict core, we must have µ′(i) ≿i µ

HTTS(i) for all i ∈ Id. But then
µHTTS(i) = µ′(i) for i ∈ Id.

Proof of Claim 1. We now have that µHTTS is the unique strict core allocation, when it
exists. Thus, if µHTTS is not feasible, there is no strict core allocation.

Proof of Claim 4. We apply Tarjan’s algorithm (Tarjan, 1972). For any directed graph
G = D(V,E), the order in which Tarjan’s algorithm returns the SCCs of G is a reverse
topological ordering of the condensation GSCC = D(V SCC , ESCC) of G.18. Concretely,
suppose S = {S1, S2, ..., Sℓ} is the set of SCCs of G in the order in which they were returned
by Tarjan’s algorithm (i.e., S1 is the first SCC returned, S2 is the second, etc.). Then S1

must be a sink of GSCC . Therefore, S1 is an SCC of G with no outgoing arcs.
At each step d of Algorithm 1, we perform two computations. First, we use Tarjan’s

algorithm to identify an SCC Hd with no outgoing arcs.19 Tarjan’s algorithm has time
complexity O(|H|+ |I|). Second, we check whether the strict core allocation is feasible for
Id = E−1(Hd). That is, for each h ∈ Hd, we check

∣∣E−1(h) ∩ Id
∣∣ = |{i : Bi(Hd) = h, i ∈ Id}|.

This has time complexity O(|H|). Therefore, each step of Algorithm 1 has time complexity
O(|H|+ |I|).

Since Algorithm 1 terminates in at most |H| steps, it has time complexity O(|H|2 +
|H||I|).

18See ?, Section 2.3
19We need not find all SCCs. The first SCC returned by Tarjan’s algorithm will suffice.
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11 Conclusion

In this paper, we study the house-swapping problem in a setting where agents’ preferences
may contain “objective indifferences.” We assume that agents have strict preferences over
a set of house types and that multiple agents may be endowed with copies of the same
house type. We derive a square-polynomial time algorithm that finds the unique strict core
allocation of a house-swapping market, if it exists. This is faster than the methods that
are needed to find strict core allocations in the setting where agents are allowed to have
subjective indifferences. Moreover, our algorithm is interpretable as a series of “house top
trading segments”, which are analogous to top trading cycles. The condition for the non-
emptiness of the strict core is readily interpretable – within each house top trading segment,
supply and demand for each house type are equal.
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Part III

Group Incentive Compatibility in a Market
with Indivisible Goods: A Comment

Preface

The third chapter is also coauthored with Will Sandholtz. We note that the proof of Bird
(1984), the first to show group strategy-proofness of top trading cycles (TTC), requires a
correction. We provide a counter-example to a critical claim, then present a corrected proof
in the spirit of the original.
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12 Introduction

In the classic house swapping problem, we have a finite set of agents, each of whom owns
an indivisible object. Agents have strict preferences over the objects. As shown in Shapley
and Scarf (1974), the top trading cycles (TTC) algorithm finds an allocation in the strong
core. Roth and Postlewaite (1977) show that this is also the unique competitive equilibrium
allocation. The house swapping model is applied to situations like organ exchange, school
assignment, and (indeed) housing assignments. TTC forms the basis for other algorithms
in these settings when efficiency is most desired.

Roth (1982) shows that TTC is strategy-proof. Bird (1984) presents a proof that TTC
is group strategy-proof. In this note, we show that Lemma 1, which is critical to the main
result, requires modification. To our knowledge, we are the first to do so. While other
authors have since provided more proofs for TTC’s group strategy-proofness20, we present
a new proof in the spirit of the original in Bird (1984).

13 Notation

We retain the notation in Bird (1984) and recount it briefly here. Let N = {1, ..., n} be the
set of agents, and w = (w1, ..., wn) be the endowment, where i is endowed with wi. Each
agent i has a strict preference profile Pi over the houses; let P = (P1, ..., Pn). An allocation
is a vector x = (x1, ..., xn) where each xi can be mapped 1-1 into a corresponding wj .

Denote T (N,P ) be the allocation resulting from TTC applied to (N,P ). Let Sk(P ) ⊆ N
be the agents in the kth trading cycle produced by TTC under preference profile Pgma, and
let S0 = ∅. Also define Rk(P ) = ∪k

i=1Si(P ). 21 For convenience, let K be the total number
of cycles resulting from TTC applied to (N,P ).

We seek to show that TTC is group strategy-proof. That is, no subset S ⊆ N can
misreport preferences and make all members of S strictly better off.

14 Lemma 1, counterexample, and corrected version

Bird (1984) states the following lemma, which is critical to the main result.

Lemma 2 (Bird (1984), Lemma 1). Let x = T (N,P ) and let x′ = T (N,P ′). If there is an
i ∈ Sk(P ) such that x′iPixi, then there exists a j ∈ Rk−1(P ) and h ∈ N −Rk−1(P ) such that
whP

′
jxj.

He gives the following intuition (verbatim):

[I]f any trader wants to get a more preferred good, he needs to get a trader in
an earlier cycle to change his preference to a good that went in a later trading
cycle. From this result, the group incentive compatibility follows easily.

The lemma as stated requires correction. We first give a counterexample.
20See Moulin (1995) Lemma 3.3 and Pápai (2000)
21The order of cycles generated by TTC is not generally unique, since there can be two cycles formed at

once. However, the results carry through under any order.
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Example (Counterexample to Bird (1984), Lemma 1). Let N = {1, 2, 3, 4} with the follow-
ing preferences; the figure shows the first step of TTC.

P1 P2 P3 P4

w2 w3 w1 w3

w1 w2 w4 w4

w3

Figure 11: First step of T (N,P )

1 2

3 4

The TTC allocation is x = T (N,P ) = (w2, w3, w1, w4). The figure shows the first step
of TTC, where the dotted line is 2’s changed report.

Now consider a misreport P ′:

P1 P ′
2 P3 P4

w2 w1 w1 w3

w1 w3 w4 w4

w2 w3

Figure 12: First step of T (N,P ′)

1 2

3 4

Then x′ = T (N,P ′) = (w2, w1, w4, w3).
In the notation of Lemma 1, we have i = 4 and k = 2. That is, i = 4 ∈ S2(P ) and

x′4P4x4. However, ̸ ∃j ∈ Rk−1(P ) = S1(P ) such that ∃h ∈ N −Rk−1(P ) = S2(P ) such that
whP

′
jxj . The only candidate for j is j = 2 ∈ R1(P ) = S1(P ). But she does not rank any

objects from N −Rk−1(P ) = S2(P ) above x2 = w3.

In the the proof of Lemma 1, the following erroneous claim is made.

Claim 5. Let xmP ′
mwn for all m ∈ Rk−1(P ) and n ∈ N −Rk−1(P ). That is, all members of

the first k−1 cycles continue to rank these objects above objects in the later cycles (though
perhaps in a different order). Then Rk−1(P

′) = Rk−1(P ). That is, the set of agents assigned
in the first k − 1 cycles under P ′ is the same as the set assigned in the first k − 1 cycles
under P .

This claim is false; the above counterexample also serves as a counterexample to this
claim since R1(P ) ̸= R1(P

′).
The counterexample shows that it is not necessary for an agent in an earlier cycle to

change her preference to a cycle k or later. She may change her preference to an object in
her own cycle or later. This is the necessary addition; we present a corrected version.

Lemma 3 (Lemma 1, Corrected). Let x = T (N,P ) and let x′ = T (N,P ′). If there is an
i ∈ Sk(P ) such that x′iPixi, then there exists a j ∈ Sk′(P ) where k′ < k and h ∈ ∪K

ℓ=k′Sℓ

such that whP
′
jxj.
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That is: if any agent wants to get a more preferred good, he needs to get an agent in an
earlier cycle to change her preference to a good that went in her own cycle or a later cycle.

Proof. Assume the contrary. So there exists i ∈ Sk(P ) such that x′iPixi, and for all j ∈
Sk′(P ), k′ < k and for all h ∈ ∪K

ℓ=k′Sℓ we have that xjP
′
jwh or xj = wh. That is, all agents

in cycles before k prefer their original allocation over any objects in their own cycle or later.
Alternatively, only objects in earlier cycles can be ranked above the original allocation. We
show by induction on cycles that all agents in cycles k′ < k receive their original allocations.

Claim. Sℓ(P ) = Sk′(P
′) for all k′ < k.

Base case. For j ∈ S1(P ), xj was top-ranked under P . It must be that xj is still top-ranked
under P ′. By the definition of TTC, S1(P ) = S1(P

′).

k′ case. Suppose the claim is true for S1(P ) through Sk′−1(P ). Consider step k′ of TTC under
P ′. For each j ∈ Sk′(P ), of remaining objects, xj must be top-ranked under P ′

j . This
is because the premise requires that any better-ranked objects according to P ′

j were
in earlier cycles. Then Sk′(P ) = Sk′(P

′).

Thus xj = x′j for all j ∈ Sk′(P ), k′ < k. However, to have x′iPixi, x′i must have been an
object in a cycle k′ < k, leading to a contradiction.

15 Corrected proof

We now update the proof of Bird’s main theorem using the corrected lemma. The argument
proceeds in the same manner as the original.

Theorem (Bird, 1984). Top trading cycles is group strategy-proof.

Proof. Suppose there is a subset Q ⊆ N reporting P ′. Let i be the first agent in Q to enter
a trading cycle under P . We will show that i cannot improve.

Let i ∈ Sk(P ) and x′iPixi. Note that we must have k ≥ 2, since no one in S1(P ) can
improve. By Lemma 3, there exists a j ∈ Sk′(P ) where k′ < k and h ∈ ∪K

ℓ=k′Sℓ such that
whP

′
jxj . Then P ′

j ̸= Pj , so j ∈ Q. However, j entered a cycle before i under P , so i could
not have been the first agent in Q to under a trading cycle under P .
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