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ABSTRACT OF THE DISSERTATION

Exploiting Human Perception for Adversarial Attacks

by

Pengrui Quan

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2020

Professor Mani B. Srivastava, Chair

There has been a significant amount of recent work towards fooling deep-learning-based

classifiers, particularly for images, via adversarial inputs that are perceptually similar to

benign examples. However, researchers typically use minimization of the Lp-norm as a proxy

for imperceptibility, an approach that oversimplifies the complexity of real-world images and

human visual perception. We exploit the relationship between image features and human

perception to propose a Perceptual Loss (PL) metric to better capture human imperceptibly

during the generation of adversarial images. By focusing on human perceptible distortion of

image features, the metric yields better visual quality adversarial images as our experiments

validate. Our results also demonstrate the effectiveness and efficiency of our algorithm.
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CHAPTER 1

Introduction

1.1 Vulnerability of deep learning model

It has been widely observed that deep neural networks are susceptible to adversarial inputs

([SZS13], [GSS14], [ASC19]). For instance, with a small perturbation added to images, the

image classifiers make completely wrong decision ([GSS14], [BRB17]). What is worse, with

full structures of deep neural networks exposed to attackers ([CW17]), the attack is easy to

perform, and the models can even be forced to make with inconspicuous perturbation.

xorg and xtarget L2+BA PL+BA L2+SignOPT PL+SignOPT

Figure 1.1: Visual comparison at 20k iteration. From left to right, first row: original image and

adversarial images generated using L2 + Boundary Attack ([BRB17]), PL (ours) + Boundary Attack,

L2 + Sign-OPT ([CSC19]), and PL (ours) + Sign-OPT. Second row: image in the targeted class

and zoomed patches of each adversarial image. Our methods (the third column and the fifth column)

can visibly suppress the ghosting effects with the same number of queries.
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1.2 Rethinking adversarial attack

In many attack scenarios, if fooling an AI model has been claimed, the adversarial input

should be subjected to the following main requirements at the same time: i) Deceptive:

the prediction of the perturbed inputs should be modified. ii) Feasible: In many cases or

real-world attack situations, the number of queries to the deep learning model is limited and

the gradient information and even the output logistic or probability are even not exposed to

the attacker. iii) Inconspicuous: Images with unnatural artifacts can be detected by statistical

test and can be sent to human inspection ([MGF17], [GMP17], [MC17]). The unnatural

property can also be used to defend against adversarial attacks by mapping the adversarial

inputs to the natural image space ([GRC17], [TKP17]) and hence, those adversarial attacks

can be relatively easy to defend. Therefore, adversarial images with highly perceivable

perturbations may not be as destructive as inconspicuous one.

Consider the input image x ∈ RN , where N = 3×W ×H is the size of images. The

hard-label classifier gives its predicted label y, where y ∈ {1, ..., C}. Currently, given the

original image xorg, its ground-truth label yorg, a target class t 6= yorg and adversarial image

xadv, one of the commonly used methods for generating an adversarial image is to minimize

the L2-distance:

minimize
xadv∈RN

1

N
‖xadv − xorg‖22 (1.1a)

subject to f(xadv) = t (1.1b)

By minimizing the L2-distance, the attackers intend to make the adversarial images inconspic-

uous from the human perspective such that the harm cannot be easily prevented ([GMP17],

[MGF17]). However, we also raise the question about the validity of L2: is the inconspicu-

ousness automatically satisfied in current adversarial attack tasks by merely minimizing the

L2-norm? To better study the human perception question, we also conduct a subjective test

on various adversarial images which will be discussed in Chapter 2.
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1.3 Contribution

We summarize the contribution of this thesis as follows:

• Subjective test: We conduct a human perception assessment to study the effectiveness

of using Lp-norm in the adversarial attacks and demonstrate certain limitations of these

metrics. These data and statistics may serve as the research material for the vision

community in the future.

• Better visual quality: with the same amount of resources utilized, we are able to achieve

better perceptual quality. In the experiment, we incorporate the Perceptual Loss (PL)

in the hard-label black-box attack setting, which is a practical attack scenario.

• Novel feature distortion metric: Perceptual Loss (PL) is a metric of low-level image

feature distortion based on human perception. It is adaptive to image context and does

not rely on optimization methods.

• Robust classifier of low-level features: edge, texture, and smooth area. The classification

is unsupervised with pixel-level distinction.

3



CHAPTER 2

Human perception assessment

2.1 Experiment setup

We use Amazon Mechanical Turk to conduct the human perception assessment, where we

recruited 165 subjects. We designed a website that serves as the user interface where users

are requested to evaluate adversarial images one by one. Some of the presented images are

the original ones as captured by a camera, and others have noise added to them to fool an

AI algorithm. Subjects were asked to give their opinions by answering whether the image

has been perturbed by an adversary to fool an AI algorithm. In this human perception

evaluation, we generated adversarial examples of 20 images using several different methods.

Firstly, we use L0, Linf , and L2 as the objective function and optimizing them with genetic

algorithm ([ASC19]). The reason we choose to use the genetic algorithm in [ASC19] is that

it is a zero-order optimization approach that is easy to implement and adaptive to various

optimization problems. Besides, we also follow the setting in Boundary Attack ([BRB17]) to

optimize L2 objective function. We sampled adversarial images at different iterations, and

each time, the subject was asked to evaluate one image by answering whether the image

is perturbed. We asked 165 subjects to evaluate benign images and adversarial images at

different iterations obtained by the four different combinations of attack methods and attack

objectives. Each subject can see 24 to 25 images. There are 800 adversarial examples, and

20 benign images in total and each of them is evaluated by five times.

4



2.2 Are these attacks really imperceptible?

Denote that p ∈ P where p is a specific attack, i.e., GenAttack + L0 and P is the set

of the attack methods. Explicitly, P = {GenAttack + L0,GenAttack + L2,GenAttack +

Linf ,Boundary Attack+L2}. The ratio of a method rtp at a specific iteration t was calculated

by:

rtp =
1

5|Sp|

5∑
j=1

∑
i∈Sp

1{xti is considered as adversarial at iteration t evaluated at time j}

(2.1)

where 1{·} is an indicator function, j denotes that the time when the image xti is evaluated, t

denotes the iteration where we sample adversarial images, and Sp denotes the set of adversarial

images generate by attack method p. In the following figures, we will plot how the ratio rtp

changes with respect to iterations. We treat the ratio rtp as a proxy of the human perception

on adversarial images.

Typically, we also calculate the ratio r̂ denoting how human perceive the benign images:

r̂ =
1

5|Ŝ|

5∑
j=1

∑
i∈Ŝ

1{xi is considered as adversarial evaluated at time j} (2.2)

where Ŝ denotes the set of benign images. Therefore, by comparing how rtp changes across

different iteration t with r̂, we approximate how human perception changes with respect to

iterations. Note that r̂ will remain constant across every iteration since the benign images do

not change during the optimization. Therefore, it plays the role of an indication of whether

the adversarial image is indistinguishable from the benign images.

From Figure. 2.5, 2.6, and 2.7, we can have several observations: i) Using Lp-norm as the

objective can generally improve the human perception quality. As we can observed from the

figures, the ratio rtp is generally increasing. ii) However, when we consider the preference of

human, Lp-norm cannot always represents it. For instance, from Figure. 2.6 we know that in

terms of L2-norm, GenAttack + L2 is significantly better than Boundary Attack + L2. But

from the human perspective, they are comparable across iterations.

From the human perception evaluation, we can conclude that commonly use Lp distance
5



is valid but not perfect. Minimizing the Lp-norm used in the above attack methods can

generally improve image quality. However, it cannot completely represent the preference of

human perceptions. From Fig. 2.6 we can verify that even though GenAttack+L2 significantly

outperforms Boundary Attack + L2 and other optimization methods in L2 distance, their

perceptual quality does not always give the same results. If we merely treat the L2 distance as

the proxy of human perception, the GenAttack+L2 should have behaved the best among the

four attack methods in human perception. But clearly from Figure. 2.5, this is not the case.

Therefore, if the goal of attackers is to make injected noise imperceptible, spending resources

in minimizing Lp-norm may not always be the optimal choice. This claim is also supported

by the user studies of adversarial images in [SBR18] and [SZM19], where they demonstrate

certain mismatches between Lp-norm and human perception. In the following chapters, we

will discuss an alternative Perceptual Loss metric to better capture the relationship of human

perception and perturbation using our novel image feature classification algorithm.

6



Figure 2.1: GenAttack + L0 Figure 2.2: GenAttack + Linf

Figure 2.3: GenAttack + L2 Figure 2.4: Boundary Attack + L2

Figure 2.5: Results of perception assessment: ratio that human think the given image is adversarial.

The black horizontal line denotes the ratio of benign images. Note that from the human perspective,

Boundary Attack + L2 performs the best among the four methods since when iteration becomes

larger than 50k, subjects cannot almost distinguish the adversarial images from the benign images

(Fig. 2.4).
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Figure 2.6: Results of perception assessment. Left: L2-norm changes v.s. iterations. Right: Ratio

that human recognize the image as an adversary; BA: Boundary Attack; GA: GenAttack. According

to the L2 criterion, GenAttack + L2 is the best, and the Boundary + L2 and GenAttack + L0 are

comparable, which are not the case of human perception as is reflected in the right.

original original GA+ L2 GA+ L2 BA+ L2 BA+ L2

Figure 2.7: Mismatch between L2-norm and visual quality. From left to right: the first pair: original

image; the second pair: GenAttack (L2-distance: 2.8e−4); the third pair: Boundary Attack (L2-

distance: 7.8e−4). The second pair contains color distortion at the neck of the squirrel even though

its L2-distance is smaller. Therefore, it implies that L2 cannot always give the best representation

of human perception.
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CHAPTER 3

Related work

Adversarial attack Some attack methods consider the white-box setting, where the clas-

sifier is completely exposed to the attackers. Among them, C&W attack [CW17] reformulate

the objective function into an unconstrained optimization problem using the logistic outputs

of classifiers. Besides, [CZS17] and [ASC19] consider the black-box scenario where only the

output logistic or classification probability is unknown to the attacker. Furthermore, [IEA18],

[BRB17], [CLC18], and [CSC19] consider more extreme cases, hard-label black-box attack,

where only the top-1 or top-k hard label is given to the attackers.

Objective function [SBR18] demonstrate that Lp-norm may not be the optimal measure-

ment in adversarial setting by conducting user studies. They study human perception by

asking humans to predict the ground-truth label of corrupted images. Moreover, a recent

work [SZM19] asked subjects to point out the perturbed image when they think it became just

noticeably different from the original image. This claim is also supported by the user studies

of adversarial images in [SBR18] and [SZM19], where they demonstrate certain mismatches

between Lp-norm and human perception.

The Perceptual Loss metrics have been used in many areas, such as audio codec and image

processing, to capture the properties of human perception. Leveraging the same ideas, there

are some existing works trying to generate adversarial images to improve visual quality. Some

methods strive to generate adversarial inputs by shifting the color space ([HP18]), performing

geometric transform of the original image ([ETS17]), or using generative models learned

from the data manifold ([ZDS17]). These methods may produce adversarial examples with

high distance to the original images as denoted by Lp-norm. Furthermore, other methods

9



are trying to improve upon the Lp distance: [CH19] combine L0 and L∞ to produce sparser

and less perceivable noise. [GMP19] aims to preserve the perceptual quality by maximizing

the Structural Similarity (SSIM) between original images and adversarial images. [ZAF19]

further includes the smoothness penalty into the objective function to smooth noise on the flat

areas of the input image using Laplacian Smoothing. Besides, [ZLL19] propose an objective

function of color distance in CIELCH space to reduce visible artifacts. Among them, [LLW18]

is probably the most similar to ours: they computed local variance and tried to perturb pixels

at high variance zones. However, they treat features equally across images and only perform

attacks in white-box settings. In this work, we propose a more adaptive and accurate metric

that is closely connected to human perception and demonstrate an improved visual quality in

realistic cases, such as the hard-label black-box attack scenario.

10



CHAPTER 4

Background & algorithm

In this chapter, we mainly focus on the relationship between human perception and image

contexts. We first list the ingredients that influence the human perceptual system and then

design a novel pixel-wise Fourier-Argand (FA) classifier to discriminate the image samples

based on the perceptual sensitivity adaptively. Then we demonstrate that the optimality and

high efficiency of the FA classifier theoretically ensure the reliability and effectiveness of the

proposed framework. Exploiting the feature classifier, we finally propose a novel perceptual

loss and develop an efficient adversarial attack algorithm.

4.1 Human perceptual system

The human visual evaluation mechanism is a quite sophisticated system related to many

aspects, e.g., image resolution, object types, image contrast, etc ([WSL19]). In the image and

video processing community, one widely accepted conclusion is that the human evaluation

mechanism largely depends on the frequency domain characteristics of the image ([DD90]).

For instance, people leverage frequency sensitivity in JPEG image format where 10 : 1

compression is achieved with little perceptible loss in image quality ([Hai92], [HLN18]).

However, based on the Parseval’s theorem (4.1), we know that minimizing L2 distance is

equivalent to penalizing frequency components X[k] with equal importance:

N−1∑
n=0

x[n]2 =
1

N

N−1∑
k=0

|X[k]|2 (4.1)

Therefore, the widely used L2 norm process the image frequency components indiscrim-

inately, which is far from the truth of visual perception. This motivates us to develop a
11



metric that can better characterize the human perceptual evaluation. Since the perceptual

evaluation is subjective and variables affecting visual quality are complicated, we provide

a perspective that explicitly characterizes human perception by exploiting low-level image

features (e.g., edges, textures, etc.). The motivation behind is that, although the precise

characterization of the human perceptual evaluation is infeasible, the link between the visual

sensitivity of the human eye and image features is relatively clear and well-studied ([BSD09],

[RBM19], [PIM08], [DHL15]). Basically, given an image, people tend to be more sensitive to

the low-variation features instead of edges and ridges ([DD90]). Generally speaking, people

usually divide the low-level features of the image into three categories: smooth areas, edges,

and textures. This actually provides a clue to quantify the perceptual distortion of an

adversarial image: compute the feature distortion based on the visual sensitivity, which is

the core idea of this work.

4.2 Refined feature classification

As is mentioned above, we divide the low-level features of the image into three categories:

smooth areas, edges, and textures. Hence, we propose a novel low-level feature classification

(FA classifier) based on the recent Fourier-Argand (FA) filter ([ZB20]). The reason for

not using traditional edge detectors or deep-learning based approaches is that general edge

detectors can only handle the classification of low-frequency and high-frequency components,

and the deep-learning approaches are not robust due to the diversity of the real images. In

contrast, we demonstrate that the optimality and high-efficiency of FA classifier guarantee its

accuracy and robustness. In the first step, we use the FA filter to distinguish smooth areas

and fast-variation features based on the response. Then, we further discriminate between the

edges and textures through the feature spatial sparsity and direction.

In essence, low-level features characterize the local directionality of the image, e.g., edges

are usually unidirectional, while textures are usually multidirectional. This requires that

the edge-detector used should be able to capture all possible directional changes, i.e., [0, 2π).

However, it is very difficult to balance the accuracy and complexity: either we achieve finer

12



reef patch FA response smooth area edge texture

Figure 4.1: Example of FA classifier. From left to right: reef image, a zoomed patch, and the

corresponding features generated by the FA classifier. The bright regions are features detected. The

difference of edge and texture is the sparsity of the neighboring FA responses.

angle discretization with expensive computational cost, or we keep low complexity by rougher

angle discretization, such as Canny edge-detector ([Can86]).

In order to address this issue, people propose steerable filters ([FA91]) whose space of

all rotated version is finite as long as the steerability assumption is satisfied. Using a linear

combination of basis filters ([FA91]), they can obtain an approximated version of the original

filter which is rotation invariant. This rotation-invariance guarantee is still missing in deep-

learning based methods. However, this filter approximation in [FA91] is still not perfect. The

polynomial representation used in the paper lacks optimality and robustness in the presence

of noise. Moreover, it causes numerical stability problems and results in high computational

cost, making it difficult to represent fine direction-selective filters.

Fourier-Argand filter Recently, people further develop Fourier-Agrand (FA) filter, which

is highly efficient and optimal in terms of the approximation error ([ZB20]). The key idea

of the FA filter is to find the optimal basis consisting of N functions for approximating

all rotated versions of the given pattern. Here, the pattern is a filter which can accurately

capture the image spatial variation along certain direction. Specifically, let αh denote the

pattern characterized by the direction α (α ∈ [0, 2π]), and {φ0, φ1, · · · , φN−1} be an arbitrary

basis of N elements. Let P{·} denote the orthogonal projection onto the approximation

space span{φ0, φ1, · · · , φN−1}. [ZB20] found the optimal basis for all rotated versions of αh

13



by minimizing the average approximation error eN :

eN
def
=

∫ 2π

0

‖αh− P{αh}‖22 dα (4.2)

Low-level feature classification This minimization automatically leads to the optimal

and rotation-invariant Fourier-Argand basis. The optimality ensures that we can use a few

basis to approximate the pattern accurately. Furthermore, the rotation-invariance ensures

that the Fourier-Argand filter can fully characterize all spatial directions without any angle

quantization error. The properties provide a valid and efficient tool to accurately classify the

fast-variation image samples with small complexity. We refer to this paper ([ZB20]) for more

details if readers are interested.

With the FA response, the next question is how to further discriminate the edge and

texture features from the filtered results. The key idea is based on the following observation:

intuitively, the spatial sparsity of the texture features in the FA response is much higher than

the edge features.

The sparsity criterion provides a valid approach to effectively classify the edge and texture

features based on the FA response FA(xi,j). Suppose µ1, µ2, and µ3 denote three human

perception coefficients corresponding to smooth area, edge, and texture respectively, and 1{·}

is an indicator function. We first define a sparsity function g(xi,j) to characterize the sparsity

of FA response within a local patch Bi,j centered at pixel xi,j:

Bi,j :
def
= {xm,n | i− r0 ≤ m ≤ i+ r0 and j − r0 ≤ n ≤ j + r0} (4.3)

g(xi,j) =
1

|Bi,j|
∑

xm,n∈Si,j

1{FA(xm,n)>σ} (4.4)

where 1{·} will indicate the FA responses that are above threshold σ. Hence g(xi,j) will
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compute, within the patch Bi,j, the ratio of the response.

Mi,j =


µ1, FA(xi,j) < σ

µ2, FA(xi,j) > σ and g(xi,j) 6 s0

µ3, otherwise
(4.5)

Figure 4.2: FA-filter based feature classification (Eqn. 4.5). For a pixel xi,j , it will be first classified

by the magnitude of FA(·). A high-FA-response pixel will be further classified according to the

neighboring FA sparsity (Eqn. 4.4)

Mi,j indicates the sensitivity coefficient of pixel xi,j. Essentially, the procedure of classifi-

cation is that if the FA response is smaller than a certain threshold, the pixel is classified

into the smooth area; If not, a pixel will be classified into texture if the FA response is dense

within a local patch. Otherwise will be classified into edge if the response is sparse (as is

indicated by Fig. 4.2).
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4.3 Perceptual loss formulation & algorithm

Perceptual loss Hence, according to the our discussion in above sections, we propose the

the problem formulation and the Perceptual Loss (PL) as follows:

minimize
xadv∈RN

PL(xorg,xadv) (4.6a)

subject to f(xadv) = t (4.6b)

where

PL(xorg,xadv) :
def
=

1

N
||xorg �M− xadv �M||22 and t 6= yorg (4.7)

The notation � denotes the Hadamard product of matrices. PL strives to distinguish the

significance across image features and assign penalties to them accordingly.

Proposed algorithm We leverage Boundary Attack, a decision-based method ([BRB17]),

and give the attack procedures as follows (We also described how to use Sign-OPT Attack

[CSC19] to find adversarial samples in the supplementary materials). In essence, Boundary

Attack is to perform searches along the decision boundary. In each iteration, the method will

sample noise η and project xi + η onto the sphere centered at xorg with radius d(xorg,xi)

(Eqn. 4.8). And then it makes a small step towards xorg with step size βd(xorg,xi), (Eqn.

4.9). We refer our readers to [BRB17] for details. In our case, the distance function

d(xorg,xi) = ‖(xorg − xi)�M‖2
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Algorithm 1 PL + Boundary Attack
1: Given original image xorg, image in the target class xtarget, hard-label black-box classifier

f(x) : RN → {0, 1, ..., C}

2: Generate M ∈ RN according to (4.2). Initial step size γ and β. Let x1 = xtarget

3: for i = 1 : N0 do

4: Generate random noise η ∈ RN and project it such that 〈η,xorg − xi〉 = 0

5: i) Perform orthogonal step:

xi+1
o = xorg +

1√
1 + γ2

(γ
‖(xorg − xi)�M‖2
‖η �M‖2

η − (xorg − xi)) (4.8)

6: ii) Perform step towards original image:

xi+1 = xi+1
o + βM� (xorg − xi+1

o ) (4.9)

7: if xi+1 is not adversarial then

8: xi+1 = xi

9: Increase γ and β if the attack success rate is too high. Otherwise, decrease them.

10: return xi+1
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CHAPTER 5

Experimental results

5.1 Quantitative evaluation

Experiment setup We first randomly generate 50 image pairs from ImageNet test dataset

([DDS09]). Then we use Sign-OPT in [CSC19] and Boundary Attack in [BRB17] to optimize

the loss function. Experiments are conducted on three different network architectures:

Inception ([SVI16]), ResNet-50, and ResNet-101 ([HZR16]). We mainly focus on the targeted

black-box attack setting, where the initial samples are the images that are correctly classified

as the targeted class by the classifiers. Besides, µ1, µ2, and µ3 in (Eqn. 4.5) are set to 1, 0.3,

and 0.5 respectively. r0 is 1/10 of the width of input images and s0 equals to 0.4.

In the experiments, each input image is normalized to [−0.5, 0.5]. PL and L2-norm are

calculated as we mentioned in (4.6) and (4.7). Also, we mainly use median distortion as

the metric. median distortion for x queries is the median adversarial perturbation across all

examples under a specific metric, i.e., L2-norm.

We can have the following observations: i) The total perturbation across PL and L2-norm

are comparable. However, by using PL to guide noise according to image features, we can

assign noise to pixels based on the spatial distribution of image features. ii) PL is compatible

with different network architectures and different optimization methods. iii) Compared to

the original attack metric, PL can achieve better visual quality by suppressing unpleasant

artifacts, such as ghosting effects.
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Figure 5.1: Performance v.s. iteration. The first row: PL; Second row: L2. From left to right,

experiments are conducted on Inception-v3, ResNet-50, and ResNet-101 network architectures on

ImageNet.

5.2 Human perception evaluation

To demonstrate the effectiveness of our methods, we further conducted human perception

evaluation among 21 volunteers. We prepared 20 attack images and generated the corre-

sponding adversarial images using L2 and PL metric by querying the models 20k times. We

present a subject with the original image and adversarial images generated by two different

metrics together. Subjects are asked to evaluate which adversarial image looks closer to

the original one. The information of attack methods is hidden from the subjects, and the

questions can only be answered by looking at the image quality.

Preference PL L2 Cannot determine

# (ratio) 219 (52.1%) 71 (16.9%) 130 (31.0%)

Table 5.2: Human evaluation results
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Attack Inception-v3 ResNet-50 ResNet-101

queries L2 PL queries L2 PL queries L2 PL

L2+BA

10k 1.0e−2 8.0e−3 10k 1.0e−2 8.4e−3 10k 7.2e−3 5.8e−3

20k 5.0e−3 4.1e−3 20k 5.0e−3 4.3e−3 20k 3.9e−3 3.2e−3

40k 1.5e−3 1.4e−3 40k 2.2e−3 1.9e−3 40k 1.5e−3 1.3e−3

PL+BA

10k 1.4e−2 6.7e−3 10k 1.4e−2 7.3e−3 10k 1.3e−2 6.0e−3

20k 6.1e−3 2.5e−3 20k 7.8e−3 3.0e−3 20k 6.1e−3 2.6e−3

40k 3.1e−3 7.1e−4 40k 4.1e−3 1.1e−3 40k 3.0e−3 8.4e−4

L2+SignOPT

10k 3.5e−3 2.9e−3 10k 4.9e−3 4.0e−3 10k 3.4e−3 2.8e−3

20k 1.5e−3 1.2e−3 20k 1.5e−3 1.2e−3 20k 1.2e−3 1.0e−3

40k 3.8e−4 3.2e−4 40k 6.8e−4 5.6e−4 40k 3.8e−4 3.1e−4

PL+SignOPT

10k 4.0e−3 2.0e−3 10k 4.4e−3 2.1e−3 10k 4.2e−3 2.3e−3

20k 1.4e−3 5.3e−4 20k 1.8e−3 4.6e−4 20k 1.3e−3 4.3e−4

40k 4.0e−4 9.0e−5 40k 5.5e−4 1.5e−4 40k 4.7e−4 1.0e−4

Table 5.1: Algorithm performance comparison. Column: objective function + attack method. Row:

different evaluating metric. Using the same optimization method, our results are better in terms of

PL metric and even comparable in L2 metric.

As is shown in the table 5.2, among 420 responses, there are 52% answers indicate

the adversarial examples generated using PL are closer to the original image, which is

significantly larger than 16.9% using L2. Besides, 31% of the responses indicate that they

cannot distinguish a better adversarial image. Our interpretation is that: i) Some images

have too few high variant features such as edges and texture so that our metric essentially

regresses to L2. ii) Due to the input size of classifiers, images are restricted to relatively low

resolution, making details difficult to be identified. Nevertheless, those responses do indicate

that our methods are not degrading the visual quality.

5.3 Conclusion

In this work, we propose a new metric, perceptual loss, for adversarial attack based on

low-level image features for better perceptual quality. The metric relies on our novel low-level
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Figure 5.2: Visualization of experimental results. First row: PL (ours); Second row: L2-distance.

From left to right: adversarial image, a zoomed patch, the corresponding noise, zoomed noise patch.

Our method can effectively reduce the ghosting artifacts within the red box.

feature classifier and is compatible with different optimization methods. With the total

distortion amount (L2) comparable, our method can smartly change noise distribution to

improve human perceptual quality, which is also verified by our human perception evaluation.
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Figure 5.3: Visualization of experimental results. First row: PL (ours); Second row: L2-distance.

From left to right: adversarial image, a zoomed patch, the corresponding noise, zoomed noise patch.

Our method can effectively reduce the ghosting artifacts that appear on the back of the sea lion.

Figure 5.4: Visualization of experimental results. First row: PL+Sign-OPT; Second row: L2+Sign-

OPT. From left to right: adversarial images at 5k, 10k, 15k, 20k. Notice the strong watermark in

the background using L2 metric.
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APPENDIX A

Optimized using Sign-OPT

In this chapter, we discuss how we utilized the optimization method in Sign-OPT ([CSC19])

to minimize the Perceptual Loss (PL). Note that the function g(θ) is formulated in [CSC19]

and [CLC18], which essentially describe how good a perturbation θ is.

Algorithm 2 PL + Sign-OPT
1: Given original image xorg, image xtarget in the target class t, hard-label black-box classifier

f(x) : RN → {0, 1, ..., C}

2: Define function g(θ) :def= min.λ>0 s.t. f(xorg + λ θ
||θ�M ||) = t

3: Generate M ∈ RN according to the procedures described in the paper. Let θ0 =

xtarget − xorg

4: for i = 0 : N0 do

5: Generate random noise η1,η2, · · · ,ηQ ∈ RN from Gaussian or Uniform distribution

6: for q = 1 : Q do

7: ηq ← (ηq � 1
M
)2

8: Compute ∇ĝ(θi) = 1
Q

∑Q
q=1 sign(g(θi + εηq)− g(θi)) · ηq

9: Choose an appropriate step size γ using line search

10: Update θi+1 = θi − γ∇ĝ(θi)

11: return xorg + θi+1
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APPENDIX B

Adversarial image visualization

Figure B.1: From left to right: adversarial images at 5k, 10k, 15k, 20k. First row: PL+Sign-OPT;

Second row: L2+Sign-OPT

24



Figure B.2: From left to right: adversarial images at 5k, 10k, 15k, 20k. First row: PL+Sign-OPT;

Second row: L2+Sign-OPT

Figure B.3: From left to right: adversarial images at 5k, 10k, 15k, 20k. First row: PL +Sign-OPT;

Second row: L2+Sign-OPT
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Figure B.4: From left to right: adversarial images at 5k, 10k, 15k, 20k. First row: PL+Sign-OPT;

Second row: L2+Sign-OPT

Figure B.5: From left to right: adversarial images at 5k, 10k, 15k, 20k. First row: PL+Sign-OPT;

Second row: L2+Sign-OPT
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Figure B.6: From left to right: adversarial images at 5k, 10k, 15k, 20k. First row: PL+Sign-OPT;

Second row: L2+Sign-OPT

Figure B.7: From left to right: adversarial images at 5k, 10k, 15k, 20k. First row: L2+Sign-OPT;

Second row: PercLoss+Sign-OPT
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Figure B.8: From left to right: adversarial images at 5k, 10k, 15k, 20k. First row: L2+Sign-OPT;

Second row: PercLoss+Sign-OPT
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