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ABSTRACT OF THE DISSERTATION

Network dynamics: biofilament and neuronal networks

by

Valentin Maximovich Slepukhin

Doctor of Philosophy in Physics

University of California, Los Angeles, 2021

Professor Alex J. Levine, Chair

In this dissertation, I study two types of networks: biopolymer filament networks

(part I) and biological neural networks (part II).

First, I focus on the most common structural element of the filament networks:

bundles of parallel stiff filaments held together by smaller molecules (cross links).

The experiment and numerical simulations show that such bundles can have localized

regions of high curvature that are long-lived metastable states (kinks). I suggest the

mechanism of kink stabilization as a topological defect, with three possible defect

types: a difference in trapped length of the filament segments between two cross-links

(loop); the braiding of the filaments in the bundle; and the dislocation where the

endpoint of a filament occurs within the bundle. I show that the pairs of defects are

produced under compressive loading. Loops then get separated, while braids remain

coupled. The braid separation requires cycles of compression and tension.

Second, I explore the force propagation in the whole network from the point-like

source. Numerical simulations show a particular pattern of stress propagation. In
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particular, the force decays exponentially, which I can capture using an analytical

model in a particular parameter region.

Third, I study the statistical properties of the filament in the network modeling

the rest of the network as a quenched random potential. I compare the average

end-to-end distance in this model with one obtained numerically validating it.

Finally, I switch to neural networks and explore the preBötzinger complex which

produces rhythm that times inspiration in mammals. We explore the initiation of the

activity by external stimulation of a small subset of neurons. In the leaky integrate-

and-fire neuron model, I observe that only a small subset of network patterns can

produce results resembling experimental data. Using the firing-rate model with den-

dritic adaptation, we observe that if the system quits the oscillatory phase, it gets

separated into two subnetworks: highly firing and low firing one. This separation

occurs even for the all-to-all coupled networks thus being a spontaneous symmetry

breaking. For the arbitrary network, simplified (”on-off”) version of neuronal dy-

namics the separation is exactly controlled by the topological feature of the network

- k-cores.
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old value for three different force magnitudes. Again, colors indicate 6

different pulling experiments. . . . . . . . . . . . . . . . . . . . . . . . . 112

5.7 Simulation snapshots for an applied point force of magnitude (A) F =

100pN, (B) F = 50pN, or (C) F = 2pN. The central, long filament is

highlighted in green in the middle of the network of all other filaments

(thinner, gray lines) and cross links (pink). All filaments in the force

chains for an elastic energy threshold (per finite element) Eel,ele = 0.1aJ

are highlighted in blue. The black arrow indicates the applied point force

and the thin shell outside the brown box represents the region where

filaments are pinned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
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5.8 (A) Semi-logarithmic plot of the axial force N along the central filament

for 5 different point force magnitudes F , using the average over 20 pulling

experiments. The error bars indicate the standard deviation at five ex-

emplarily chosen, equidistant points along the filament. The curves for

all individual pulling experiments at a point force magnitude of F = 2pN

and F = 100pN are shown in (B) and (C), respectively. Each pulling

experiment is indicated by a different combination of color and line style.

Performing a linear fit to the mean tension decay in (C), we obtain de-

cay lengths ξ = 2.24, 2.99, 3.55, 3.80, and 3.67µm, in order of increasing

applied force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.9 Schematic representation of forces and displacements at a single node.

The central filament (deformed, red; undeformed, dashed), pointing in the

n̂ci direction, is aligned along the x-axis. The crossing filament (black),

in the direction n̂×i makes an angle θi with the central filament. The

network is pulled in the −x̂ direction, leading to two incoming tensions

T ci and T×i , and two outgoing tensions T ci+1, T̃
×
i at node i (see inset). In

the self-consistent model of sec. 5.3.1, displacements (wide gray arrow)

∆~xi are with respect to the undeformed state. We show in the inset the

free-body diagram of forces at node i including the effects of tensions T

(green) and bending F (blue) associated with the semiflexible filaments. . 115
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5.10 Numerical solution of the self-consistent Eqs. 5.10 and 5.11 for both free

(black) and pinned (red) boundary conditions, for a total number of cross-

ing filaments N = 100 (solid curves) and N = 10 (dashed curves). We

set ε = 1. For small longitudinal spring constants ks the behavior of k‖ is

independent of the number of cross links N and the boundary conditions.

The transition to a regime where boundary condition affect the result

occurs at higher ks for larger N . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1 (color online) Three tensed filaments interacting with the pinning po-

tential, shown as a heat map with brighter colors representing higher

potential energies. The lowest filament traverses a saddle between local

potential maxima. On the right of that saddle point it curves into a deep

potential minimum (dark). Similar features may be seen in the other

filaments. This is a snapshot from our Brownian dynamics simulations,

discussed in section 6.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Examples of the random potentials V (x, y) (shown as a heat map with

contour lines) selected from different distributions: (A) Energy controlled

distribution. (B) Force controlled distribution. (C) Exponential suppres-

sion of high modes. The correlation length is fixed in all three so that

Lx/ξ = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3 (color online) Detail views of the force fields resulting due to the random

pinning potentials shown in Fig. 6.2. (A) Force controlled distribution.

(B) Exponential suppression of high modes. . . . . . . . . . . . . . . . . 150
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6.4 (color online) The excess arclength ∆L – see Eq. 6.19 of a semiflexi-

ble filament in the quenched pinning potential (with persistence length

`P ≈ 14µm) as a function of tension τ . At high tension (orange, dashed)

the filament cannot track the bottom of potential valleys, while at low

tension (green, thick) or small bending modulus the filament does track

the potential valleys with higher fidelity. The (blue) dots with errorbars

represent simulation results and the errors show the standard deviations

of about five hundred filaments. The pinning potential is defined by

V0 = 0.175pN , ξ ≈ 1.6µm. . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.5 (color online) (A) Ebend(q), the energy energy per mode of a tensed,

pinned filament (in units of T ) as a function of q = ξzn. The pinning po-

tential strength is set by dimensionless Ẽ = V 2
0 ξ/Tτ using the exponential

potential distribution. The small q modes typically have more bending

energy than expected for a thermalized filament without the pinning. The

high q modes are effectively unpinned. (B) The effect of changing tension

on bending energy: τ = 0.1, 1, 5τ0 where τ0V
2

0 ξ/T . We set κ = ξ2τ0. . . . 152

6.6 (color online) For a given value of the pinning strength and tension, there

is a transition at q? between pinned modes q < q?, which trap a sig-

nificant excess energy as compared to the free filament and free modes

q < q?, which do not. We examine this transition by plotting the ratio

of the excess bending energy resulting from the pinning potential Epin

to the energy of that mode without the pinning potential ET. The pin-

ning potential and the tension are T/(2ξ) and
√

2κV0/ξ. The figure is

qualitatively the same for other values of these parameters. . . . . . . . 153
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6.7 The maximum value for the energy stored in the potential is reached at

ξ = 1/zn which resembles the resonance absorption spectrum. Here ξ is

measured in the units of 1/zn, V0 = 20(τ + κ) in these units. . . . . . . 154

6.8 (A) Simulation snapshot of the initial setup. An initially straight, stress-

free filament is constrained to the xy-plane and simply supported at its

endpoints. It interacts with a random potential V (x, y) that is shown as

a heat map with contour lines. (B) Simulation snapshot of a deformed

configuration showing the forces on the filament resulting from the pinning

potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.9 Weak tension persistence length . . . . . . . . . . . . . . . . . . . . . . . 155

6.10 Strong tension correlation function . . . . . . . . . . . . . . . . . . . . . 155
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7.1 Left: Examples of 3 different experiments of multiple trials with holo-

graphic photostimulation (top frames) of 4, 6 or 9 neurons with XIIn

recording (bottom) in rhythmic slice preparations; photostimulation on-

set indicated by triangles: red triangles indicate success and blue triangles

indicate failure to elicit an ectopic I-burst. Middle: Latency to induce

I-burst after the onset of photostimulation in minimum number (thresh-

old) of stimulated inspiratory-modulated neurons, ranging between 4-9,

required to induce an I-burst (h). Right: Same as middle but with ad-

ditional 1-3 stimulated neurons. For (H-I), n=4 experiments with 5-10

trials each. All data expressed in mean±SEM. . . . . . . . . . . . . . . . 160
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7.2 ER graphs with lognormal synaptic weights reproduced the robustness

of preBötC synchronization and trial to trial variability in the latency to

synchronize seen in experiments. A. Model output when the same set of

randomly selected 7 neurons (on the dashed lines) was stimulated to fire

seven spikes each as in ([80]). Spike times for all neurons represented by

circles color coded for 5 trials (green, blue, black, purple, red). Y-axis

represents arbitrary order of 1000 neurons. In 4 trials (green, blue, black

and purple), the network synchronized, indicated by temporal alignment

of spikes in all neurons, but at various latencies. In the 5th trial (red), the

network did not synchronize, i.e., no vertical alignment of red dots. B.

firing rate (FR) of stimulated neurons and their postsynaptic activated

neurons in A (color coded as in A) in 5 ms bins showing waxing and

waning of their activity during and poststimulation. C, average firing

rate of network computed by averaging network activity in a moving

window of 40 ms with 5 ms step increment. Dashed boxes in (B) and (C)

represent unusual intervals where despite of relatively high synchronous

activity, emerging from stimulated and their recruited neuronal firing, the

network did not synchronize fully. . . . . . . . . . . . . . . . . . . . . . . 170
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7.3 Synchronization probability (A,B,C,D) and mean latency to synchronize

(E,F,G,H) for localized, hierarchical, ER and small world network respec-

tively as a function of number of initially activated neurons. Each colored

trace represents a different network from the same ensemble where syn-

chronization probability and the mean latency to synchronize was com-

puted over 10 trials; error bars show standard deviations; grey boxes span

the parameter space that lie within the experimental range (170 ms-370

ms) ([80] ) for threshold number of stimulated neurons to induce preBötC

bursts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
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7.4 A-B, Synchronization probability (A) and latency to synchronize (B) for

5 different ER networks with uniformly distributed synaptic weights that

were equal to mean weight used in Figures 2-3. C, Voltage of 5 randomly

selected neurons from an ER network with uniform weights when a dif-

ferent set of randomly selected 7 neurons was stimulated like simulations

in Figure 3A. D, Same as (C) when the same network connectivity was

incorporated with lognormal weight distribution. The network synchro-

nized at ∼78 ms and voltage traces reveal better coincidence detection in

this network; vertical lines ∼78 ms represent action potentials. E-F, Av-

erage firing frequency (E) and spike probability (F) of individual neurons

when 10 randomly selected synaptic inputs (out of 50) were activated at 6

different Poisson frequencies (10-200 Hz; indicated at bottom of F), with

either lognormal (LN) or uniform (Unif) synaptic weight distributions;

these are composite results from 3 trials each of 10 different neurons at

each stimulation frequency; p values for KS test. G, Histogram of LN

weights used (E) and (F) (red) compared with the distribution of weights

of Figure 3; corresponding EPSP amplitudes for the weights are indicated

in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
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7.5 A. Average firing rate of ER networks with zero weights (black), uniform

(red), lognormal (green and blue), when all neurons stochastically fire at

0.5 Hz. Dotted lines mark 99.75% range of firing rate for the network

with zero weight. For lognormal note the partial synchronization and

subsequent desynchronization of network activity (*) is similar to experi-

mentally observed burstlets [80]. B-C. Probability (B) and mean latency

to burst (C) of 10 ER networks with uniform (black) and lognormal weight

distribution (red) when all neurons were made to fire at various Poisson

distributed frequencies (Neuronal firing rate) indicated. D. Firing rate of

an ER network with lognormal weight distribution when various fractions

of its neurons (as indicated in color-code) stochastically fire at a frequency

around 1 Hz. E, Same as (D) but with uniform weight distribution; note

that the partially synchronized network activity (burstlets ), preceding

the full network burst, are more prominent and can be generated with a

lesser fraction of randomly spiking neurons in networks with LN weights

(D) as compared to the ones with uniform weight (E). . . . . . . . . . . 181
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8.1 (Color online) Dynamical phase diagram of the model as a function of the

size of the network N and basal neuronal excitability ∆V . (A) An all-to-

all coupled network with large gC = 3 produces phase behavior consistent

with mean-field predictions, but (B) sharp sigmoids (small gC = 0.01)

produce a disordered diagram in which all dynamical phases are strongly

mixed and the network dynamics is highly dependent on initial condi-

tions. Finally, in (C) randomly connected networks (p = 0.2) with large

gC = 3, have initial-condition independent results with a modified dy-

namical phase diagram. In all three panels the phases are: Q (light blue,

lightest gray), BTO (blue, lighter gray), HA (dark red, darkest gray),

ATO (purple, darker gray), TMA (green, middle gray). All parameter

values are listed in appendix E.5. . . . . . . . . . . . . . . . . . . . . . . 194

8.2 (Color online) Reentrant behavior along the of the TMA-HA phase bound-

ary. k-cores transitions are shown as black lines, and colors are the same

as at the previous figure.). All parameter values are listed in appendix E.5. 195

8.3 (Color online) Phase diagram showing reentrant behavior at the Q (light

blue, lightest gray) HA (dark red, darkest gray) phase boundary. There

are also small regions of the oscillatory phases: TMA (green, middle

gray), ATO (purple, darker gray), BTO (blue, lighter gray). Black vertical

dashed line shows reentrant behavior. The moving along this line is shown

in Fig.8.4. All parameter values are listed in appendix E.5. . . . . . . . 197
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8.4 (Color online) Example of reentrant high activity on a small network.

Red (dark gray) neurons have V > V ∗ and dark yellow (light gray) V <

V ∗. The neurons are numbered and the last neuron in each network is

removed when going A → B → C → D. With the removal of neuron

16 (from A to B) , the somatic potential of neuron 11 drops below the

threshold, as it has insufficient voltage input, and the average network

voltage falls below V ∗, too. Going from B to C neuron 15, which synapses

to neuron 4, is removed, which lowers its calcium concentration. As a

consequence, the somatic potential of the neuron 4 increases as well as

its firing rate, resulting in increasing the firing rate and voltage input to

neuron 7. The somatic potential of neuron 7 then goes above the threshold

too. The increasing firing rate of neuron 4 also raises the somatic potential

of neuron 0, which raises somatic potential of neuron 13, which in turn

raises it for the neuron 11. Although somatic potentials of neurons 0 and

13 do not exceed V ∗, for neuron 11 it does. As a result, the average voltage

of the network rises above V ∗. Finally, when neuron 14 is removed (from

C to D), all neurons are deactivated and ∆V must increase to restore

high activity. All parameter values are listed in appendix E.5. . . . . . . 198

8.5 Activity phase separation on all-to-all connected network of N = 10 neu-

rons. The traces show somatic potential of individual neurons as a func-

tion of time. (A) One neuron is at high voltage , nine are quiescent,

gV = 0.3 mV, gC = 0.5 . (B) Two neurons oscillate, eight are quiescent,

gV = 0.3 mV, gC = 0.5 . (C) Synchronous oscillations of all neurons,

gV = 0.1 mV, gC = 1.1 . (D) All neurons at high voltage, gV = 1.8 mV,

gC = 10.8 . All parameter values are listed in appendix E.5. . . . . . . . 201
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8.6 (Color online) Nullclines of the all-to-all N = 10 network described by

Eqs. 8.10 (orange, light gray) and 8.11 (blue, dark gray) in the text. There

are either three fixed points or one fixed point depending on parameters.

Assuming R is constant (and not fixed self-consistently) two of the fixed

points annihilate in a standard pitchfork bifurcation [173]. (A) gV = 0.5

mV, gC = 0.3, three fixed points. (B) gV = 5 mV, gC = 3, one fixed

point. All parameter values are listed in appendix E.5. . . . . . . . . . . 202

8.7 Activity phase separation on all-to-all connected network of N = 1000

neurons. The left panel shows nullclines as in Fig.8.6, the right panel

shows corresponding traces of voltage versus time, as in Fig.8.5. The

upper panel demonstrates activity separation for gV = 0.05 mV, gC =

0.03. The lower panel show no such phase separation but synchronous

oscillation with gV = 2 mV, gC = 1. All parameter values are listed in

appendix E.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.8 Number of stable fixed points as a function of the network connectivity

probability p for N = 100 neurons. For p = 1 this number coincides with

n!
nl!nh!

, and rapidly falls to one or zero when p . 0.9 . All parameter values

are listed in appendix E.5. . . . . . . . . . . . . . . . . . . . . . . . . . 206
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8.9 Phase trajectories in the averaged V − C plane for networks with step-

function neurons. (A) Almost chaotic behavior. True chaos is not ob-

served since the number of possible states is finite, but the voltage varies

wildly. (B) Limit cycle with self-intersections, indicating asynchronous

firing. (C) Standard limit cycle with synchronous firing, corresponding

to true metronomic activity (TMA), rarely observed in the step-function

limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.10 A star network with N = 9 neurons. The peripheral neurons are bidirec-

tionally coupled to the central neuron, but not to each other. . . . . . . 209

8.11 (Color online) The phase diagram for the simplified model discussed in

section 8.5. There is no oscillatory phase, only quiescent (Q, light blue,

lightest gray) and high activity (HA, dark red, darkest gray). Black hor-

izontal lines correspond to k-core transitions. We see almost exact corre-

spondence between k-cores transtions and steps on the phase boundary.

Small deviations are due to the fact that the average voltage of the whole

network can be below V ∗ even in the presence of the active k-core due

to the averaging over all neurons including quiescent ones. All parameter

values are listed in appendix E.5. . . . . . . . . . . . . . . . . . . . . . . 212
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8.12 (Color online) Phase diagram of the network with physiologically relevant

parameters. It shows three stable dynamical phases: true metronomic

activity (TMA, green, middle gray) consistent with the preBöC’s physio-

logical dynamics, as well as a high activity (HA, dark red, darkest gray),

and a quiescent (Q, light blue, lightest gray) regime. There is a narrow

band of above threshold oscillations (ATO, purple, darker gray). The

diagram corresponds to the part of the phase diagram in Fig.8.13 in the

black frame under rescaling, thus does not have all the possible phases

present. All parameter values are listed in appendix E.5. . . . . . . . . . 215

8.13 (Color online) Phase diagram of large networks with N up to 1000. All

five phases are present: true metronomic activity (TMA) is green (mid-

dle gray), below threshold oscillations (BTO, blue, lighter gray), above

threshold oscillations (ATO, purple, darker gray), high activity (HA, dark

red, darkest gray), and quiescent (Q, light blue, lightest gray). The right

TMA-BTO and BTO-Q boundaries demonstrate the reentrant behavior.

In general, the pattern is approximately the same as in Fig. 8.1C, support-

ing the scaling argument. The black frame shows the part of the diagram

that maps into the phase diagram in the Fig.8.12 under rescaling. All

parameter values are listed in appendix E.5. . . . . . . . . . . . . . . . . 217

A.1 Measurements of a single kink over time. A) Multiple images of a bundle

with a kink. Not all snapshots of the bundle are shown in this figure.

Yellow lines overlaid on the bundle are from the angle measurement tool

in ImageJ. B) Histogram showing the measured angles for this single kink. 246
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A.2 Process of determining curvature of the bundles from the images. (A)Fluorescence

confocal image of a bundle. (B) Blurred and background subtracted im-

age. (C) Line intensity profile across the bundle. (D) Gaussian fit of the

line intensity profile is used to determine the y axis location of the bundle

at the x position of the line profile. (E) Cubic spline of the points gen-

erated from the Gaussian fit. (F) Summary of all the curvatures of the

spines. (G) 50 splines with errors introduced in the position (uniformly

distributed between 0.5 and -0.5) from which the spline is calculated. (H)

Summary showing the mean curvatures (black) and standard deviation

(red) of the 50 splines with error introduced. . . . . . . . . . . . . . . . . 247

A.3 Distribution of the measured 2D projected kink angles (blue) and of 3D

kinks angles inferred from measured distribution using Eq. A.2 (red). (A)

The distribution for the observed angles is taken from the experiment.

Negative values for inferred kinks angles are caused by underestimation of

the observed number of kinks with small angles. (B) Artificially increasing

the amount of small angle kinks from the experimental data leads to

disappearance of negative frequency values at small kinks. . . . . . . . . 248

A.4 Number of cross-links (A) and number of braids (B) over time, observed

in five independent simulation runs. . . . . . . . . . . . . . . . . . . . . . 249
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A.5 Curvature of the bundle centerline observed in 2D simulations. (A) Bun-

dle centerline (black dashed line), individual filaments (blue and red) and

braids (black dots) for the configuration plotted in (D). (B)-(D) Curva-

ture of the bundle centerline at three different points in time. (E) Mean

of the curvature (black) over 100 configurations with a time interval of 1s

each. Red lines indicate one standard deviation. . . . . . . . . . . . . . 250

A.6 (Blue) Inverted square of the number of kinks as the function of time as

the result of the single run of Monte-Carlo simulation. (Red) linear fit of

obtained data. In spite of sticking events, the trend is linear, supporting

the analysis in Sec. 3D of the main document. . . . . . . . . . . . . . . 251

A.7 Several examples of bundles exhibiting z shaped kinks. This shape may

be due to 2 loop defects forming as 2 filaments slide in opposite directions.

Only a single snapshot is shown here, but these kinks persisted over the

observation time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

A.8 A schematic diagram of a loop made by two filaments. There is an excess

of length between the cross links (black circles) of the blue filament as

compared to the red one. This length mismatch generates a localized

bend (kink) in the energy-minimized structure. . . . . . . . . . . . . . . 253

A.9 Schematic description of the 2D braid used for the analytic calculations.

The blue lines are filaments, and red lines represent cross links. . . . . . 253
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A.10 Illustration of the braid group generators b1,2,3 acting on a bundle in ∇-

state with filaments 1,2,3. For example, b1 corresponds to first passing

filament 1 over filament 2, which is done by operator σ3. After that, the

former filament 1 is now filament 2, and vice versa. The second and final

step in the braid operation is passing the new filament 2 (i.e., old filament

1) under filament 3, which is performed by operator σ−1
1 . We obtain the

formulae for other operators in the same way. . . . . . . . . . . . . . . . 254

B.1 The compressive load required to produce Euler buckling in a three-

filament bundle as a function of ζ. Green dots - results of numerical

minimization of the energy. Dashed line - guide for the eye. . . . . . . . 266

D.1 (color online) Comparing the mean-field theory and simulations of the

firing-quiescent model for a small network of 100 neurons. We observe a

wide range of minimal growth rate for small m above the synchronization

threshold. The error bars show the standard deviation of the mean for

each data point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

D.2 (color online) Comparing the mean-field theory and simulations of the

firing-quiescent model for a large network of 1000 neurons. We observe a

much smaller range of minimal growth rate at small m above the synchro-

nization threshold as compared to that of smaller networks. The error

bars show the standard deviation of the mean for each data point. . . . . 287

D.3 (color online) The probability to synchronize as function of N under keep-

ing α to be constant. The curves from top to bottom correspond to

α = 2.0, 1.0, 0.5, 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

xxxvi



E.1 (Color online) (A) Phase diagram for the all-to-all coupled network, using

arbitrary initial conditions and smooth sigmoids. It is identical to (B),

the mean-field phase diagram. Phases are: Q (light blue, lightest gray),

BTO (blue, lighter gray), HA (dark red, darkest gray), ATO (purple,

darker gray), TMA (green, middle gray). All parameter values are listed

in appendix E.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

E.2 (Color online) The results of the simulations for different gV and gC .

Blue, light region (red, dark region) points correspond to the case where

the dynamics agree (disagree) with mean field predictions, as determined

by a visual inspection of the numerically obtained phase diagrams. The

blue region exhibits both insensitivity to initial conditions and robustness

in the face of damage. Conversely, the red region is highly sensitive to

both initial condition and damage. All parameter values are listed in

appendix E.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

E.3 (Color online) (A) Phase diagram for the all-to-all coupled network, gC =

0, gV > 0. All five previously mentioned phases are present. There is a

quasi-periodical pattern on the BTO (blue, lighter gray) - Q (light blue,

lightest gray) boundary. This phase diagram fits the theoretical prediction

(B) where blue (lightest gray) corresponds to the case that Eq. E.12 has

a solution and dark red (darkest gray) to the case that it does not. All

parameter values are listed in appendix E.5. . . . . . . . . . . . . . . . . 304
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CHAPTER 1

Introduction

1.1 Networks around us

The study of complex, many-body systems is one of the forefront questions in modern

physics. While such systems have been the subject of intense studies, these investiga-

tions have been mostly confined to systems with local interactions, i.e., the situation

where only the nearest neighbors can interact. Spatially nonlocal interactions, how-

ever, appear in a variety of systems, and are particularly ubiquitous in the living

world. For example, genetic and neural networks exhibit interactions controlled by

connectivity in an abstract space, not distance. Namely, the strength of the interac-

tion between two neurons depends solely on the strength of the connection between

them, not on the distance between two neurons. Such networks can be referred as

controlled by topological properties only (i.e., who connects to whom) - the position

of elements of the network in the space does not play role in its dynamics.

There are, however, networks where both topology of connections and the geo-

metrical position in space matter. Examples are transport networks and biopolymer

filament networks, where long molecules (filaments) are held together by shorter ones

(cross-links). The position of the transport route in space, its shape, matters for the

dynamics. The same is true for filament networks, where bent filament and straight
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filament certainly respond to applied force in a different way.

In this thesis, I consider one example of the solely topology controlled network,

and one example of the geometry controlled network. For the geometry controlled, I

study the above-mentioned biopolymer filament network (see Section 1.2). For the

topologically controlled, I study the particular case of the biological neuronal net-

work, the preBötzinger Complex, controlling breathing of mammals (see Section 1.3).

1.2 Biopolymer networks

Biopolymer filament networks are ubiquitous in the living nature, from the cytoskele-

ton inside living cells to the intercellular matrix in between cells forming tissues.

The cytoskeleton, the ”carcass” of the cell that controls its shape, consists of long

(from 100 nm to few microns [86]) molecules of F-actin, called filaments, connected by

shorter molecules of different types, called cross links (see Fig. 1.1 for an image of the

cytoskeleton). These cross links are physical, or transient: the binding energy is low

enough so they can couple and decouple [101]. This property is not a general case; for

example, certain types of rubber are created using chemical crosslinking, where the

bonds are covalent (which makes their energy significantly higher than the energy of

the thermal fluctuations), so the cross links can be considered as constant [179]. For

the living cells, however, the bonds are hydrogenic, which makes them much easier

to destroy.

There are different types of cross links. Smaller ones, such as α-actinin and

fimbrin, are usually participating in forming bundles - groups of filaments aligned

together, densely connected by the cross links. The larger, such as filamin, spectrin,
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and dystrophin, are less likely to require alignment of the filaments, thus being a

crucial ingredient for forming a whole network of the cytoskeleton [172, 1].

The intercellular matrix is made up of collagen bundles, that have a hierarchical

structure (see Fig. 1.2 for illustration). On the lowest level of this hierarchy, there is

a triple helix of approximately 0.3 micron length, that consists of three polypeptide

chains. These triple helices aligned together form fibrils, and fibrils, aligned together,

form fibril bundles and fibers, and, finally, fibers form the intercellular matrix [175].

Thus, in both cytoskeleton and intercellular matrix bundles of filaments are one

of the most common structural motifs. Naively, such bundles could be considered

as coarse-grained thick and stiff filaments. However, the real picture is far more

complicated. For example, due to the possibility of sliding one filament relative to

the rest of the bundle, the effective collective bending modulus starts to depend on

the length of the bundle [11, 68]. Another crucial difference is the presence of the

metastable states. Namely, crosslinking can trap a segment of the bundle in a state,

different from the straight bundle. We refer to the segment of the bundle in this

state as a defect . To go from this state to a straight bundle, one needs to remove

all cross links either on the left or on the right from the defect, which makes it very

stable and long-living. We devote the first three chapters of the manuscript to the

study of these defects.

In the chapter 2, we classify the defects on the bundle and explore the condi-

tions when the defect can produce a region of localized curvature, that we name a

kink. We observe such kinks in the experiment with collagen fibers and in numerical

simulations. In the chapter 3, we see how compression of the bundle leads to the

production of a particular type of defects, in a way resembling the Schwinger effect
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Figure 1.1: Fluorescent image of the cytoskeleton. F-actin filaments are shown in

red. Image from [185]
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Figure 1.2: Hierarchical structure of collagen. Triplices (on top) form fibrils (middle)

that form fibers (bottom). Image from [186]
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- the production of electron-positron pairs in the strong electric field. We continue

studying the effect of the external field in chapter 4, where we see that oscillatory

force enhances the production of another type of defects.

In the next chapter, we change gears and look at the elastic properties of the whole

network. Namely, we study numerically and analytically force propagation from the

point-like source. We observe that instead of homogeneous stress distribution like in

the uniform elastic media the tension propagates in a tree-like way like a lightning.

We call these tension pathways force chains. This non-homogeneous distribution is

crucial for mechanosensing, the force-driven communication between distant cells in

a tissue.

We conclude this part with chapter 6, where we change gears once again. Here

we look at the single filament, modeling other filaments in the bundle or network as

a quenched random potential. Such treatment allows to directly take into account

thermal fluctuations of the filament.

1.3 Neuronal networks

Neuronal networks are perhaps the most well-known example of the network in bi-

ology. They control almost any complicated animal behavior, including learning,

memory, and decision making. Outside of the living world, they inspired artificial

neural networks - structures, where the nodes are borrowing particular properties of

real neurons to achieve such functions as image recognition, linguistic analysis, and

many more that biological neural networks are tremendously capable of.

The main ingredient of the neural network, is, as one may guess, the neuron (see
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Fig. 1.3 for an illustration). Neuron is cell that consists of soma, dendrites, and axon.

Soma is the compact body of the neuron, often modeled as a point. Dendrites stem

from the soma and branch for a few hundred micrometers around it. Single axon also

stems from the soma, but can be much longer, even up to 1 meter. It also branches.

Axon ends with axon terminals, where it synapses to dendrites of another neuron

(which means that while neurons remain to be distinct cells, the electric current from

the axon of the first neuron will influence the state of the other neuron).

In this picture, dendrites are essentially input terminals, and the axon is the

output of the neuron. When the electric potential of soma (called somatic potential)

exceeds a certain threshold, the neuron fires: it produces a sharp impulse of current

that spreads along the axon, called action potential. This action potential (sometimes

referred to as spike because of its shape as a function of time) reaches dendrites of

other neurons, leading to the change of the membrane potential of these neurons,

and the magnitude of the effect depends on the synaptic connection between axon

terminals and dendrites. If the neuron that fires is excitatory, the somatic potential

increases; if it is inhibitory, somatic potential decreases. Thus, excitatory neurons

make their neighbors fire more, while inhibitory suppress their firing.

The crucial feature of this structure is the non-linearity of the input-output func-

tion of the neuron. Indeed, the neuron does not increase its firing linearly as the

input increases, but demonstrates a sharp threshold behavior, with very low or no

firing for below threshold input and noticeable firing above the threshold. It is im-

portant to keep this property for the artificial neural network as well - none of them

can work with purely linear neurons.

The models of individual neurons can differentiate on the level of complexity
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Figure 1.3: The artistic view of the neuron. Image from [184]
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and physiological accuracy. There are complicated multi-parameter models such

as Hodgkin-Huxley, that aim to create an electrophysiological model of the cell.

The significant simplification is the leaky integrate-and-fire (LIF) model, where the

somatic potential is controlled by a first-order differential equation of the charging

capacitor [92]:

RC
dVi
dt

= Vrest − Vi(t) +R
∑
j

Ii,j(t) (1.1)

where Vrest is the resting potential with no external input, C is the membrane capac-

itance, R is the membrane resistance, Ii,j is the input current from the neuron j to

neuron i , the sum is over all input neurons that synapse to neuron i. The current

Ii,j is a series of sharp pulses with centers around the times when neuron j was firing

(and delayed by the time of transmission from neuron j to neuron i that is usually

insignificant)”. Neuron fires when its somatic potential reaches the firing threshold,

and that the somatic potential drops back to the rest value, or even slightly below.

This model is perhaps the simplest among the physiological models, yet it is usually

still too complicated for the analytical treatment.

A slightly simpler yet still useful model is the firing rate model. In this model, one

does not consider the exact time when neuron fires, but rather looks at the average

firing rate of the neuron as the function of its somatic potential. In terms of this

average firing rate, the somatic potential as a function of time is still controlled by

a first-order differential equation

dVi
dt

=
1

RC
(Vrest − Vi) + ∆V

∑
j

r(Vj) (1.2)

where the summation is again over the neighbors that synapse to neuron i, r(V )

9



is an average firing rate of neuron j, and ∆V is the average change of the somatic

potential of the neuron due to the incoming spike. Different versions of this model

are used for artificial neural networks, and it has enough flexibility to capture the

dynamics of biological neural networks in cases when only the average firing rate, not

the exact moments when neurons spikes, is relevant. However, it is not able to capture

the situation when the exact time of the spiking is the crucial ingredient, for example,

for the process of synchronization between the neurons. Firing-rate based model is

significantly simpler than the LIF model and sometimes allows analytical treatment.

When it does not, it is still significantly faster for numerical computations, which

perhaps was the main reason for using it in artificial neural networks. There are cases,

however, when even the firing rate model is not simple enough, for example, when

intense numerical exploration is not feasible due to the generality of the problem and

only analytical solution may bring some new ideas.

In this case, one may consider the on-off neurons, where the neuron can be either

in ”on”, or firing state, or ”off”, or not firing. This is nothing but the limiting case

of the firing rate model with the firing rate r(V ) being the Heaviside step function.

This simple model strongly resembles the Ising model and in many cases is solvable

analytically.

The dynamic of the whole network is controlled by two components: the dynamics

of the individual neurons, described above, and the way neurons are connected.

In the second part of this dissertation, I am primarily interested in how network

connectivity patterns influence the dynamics of the system. While the models we

consider are quite general and can in principle be applied to different brain regions,

to compare with the real data I focus my attention on solely preBötzinger Complex

(preBötC). PreBötC is a microcircuit consisting of a few thousand neurons that
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produce rhythmic activity, controlling inspiration in mammals [168, 31]. This rhythm

consists of short periods of high activity, or bursts, when all neurons fire with high

frequency (≈ 40 Hz, [80]), and long periods of low activity, or interburst intervals,

when neurons are almost silent (firing frequency 0.5-2 Hz, [7, 58, 147, 137]). During

the burst, the signal travels from preBötC to muscles causing inspiration.

This periodic activity is an emergent property of the complex [31, 7, 26, 44, 181,

79, 133, 134]. While there are pacemaker neurons in preBötC, that may produce

rhythm on their own, blocking them does not terminate the rhythm [134]. This

implies that the rhythmic activity must be a collective property of the network

rather than the property of single neurons. Excitation only is not enough to obtain

desired oscillations; inhibition is also required. The inhibition can be realized either

by adding inhibitory neurons to the network or by introducing internal variable for

each neuron, modulating its sensitivity [43, 154]. Here I am going to consider the

latter approach.

Specifically, the slow internal variable (identified by experiment to be dendritic

calcium concentration [124]) leads to the oscillatory behavior in the following way.

The membrane resistance of each neuron is high when the calcium concentration is

low, and low when the calcium concentration is high. The calcium concentration

grows with the incoming synaptic current. Thus, this calcium mediation plays the

role of negative feedback. When the calcium concentration is low, membrane re-

sistance is high, the neurons are sensitive to incoming spikes and, through mutual

excitatory interactions, they collectively increase their somatic potential and firing

rate, leading to a burst. During the burst, high input synaptic current drives calcium

to higher values, making neurons insensitive to further input. Then the somatic po-

tential of the neurons returns to its rest value, and the firing ceases until the calcium
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concentration also decays to its equilibrium value, completing the cycle.

In this part of the dissertation, I construct the mathematical model of this process

for different neuron’s dynamics and different networks and compare the results with

experimental data. In chapter 7 I consider the process of external activation of

the burst by stimulation of the small subset of neurons (1-10), obtaining for the LIF

model quantitative agreement with experimental data and limitations for the possible

network connectivity patterns. In chapter 8 I consider how network topology controls

the stability of the rhythm, observing for the firing rate model the phase separation

onto high firing and low firing subnetworks.
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Part I

Filament networks
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CHAPTER 2

Topological defects produce kinks in biopolymer

filament bundles

2.1 Introduction

As we discuss in chapter 1, the cross linked filament bundles can trap defects dra-

matically changing their mechanical properties and even shape. We focus on these

defected, metastable states and their effect on the low-energy configurations of the

bundle. Specifically, we show that there are three types of defects, two of which

correspond to topological defects in the bundle’s unstressed state – braids and dislo-

cations. These and a third form of trapped length (loops) are all long-lived structures

due to cross linking.

As a result of these structural defects within the bundle, the elastic reference state

is no longer straight, even though straight filament configurations are individually the

lowest energy state of the constituent filaments. Bundles containing these defects can

minimize their elastic energy by taking on localized bends, which we call kinks. The

presence of kinks allows one to relate the micron-scale contour of kinked filament

bundles to their nanoscale structure, specifically the presence of length-trapping

defects. We show that the combination of theory and simulation of defected bundles
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can account for the distribution of kinks we observe in experiment. Over long times,

defects slowly anneal in bundles. This slow relaxation of the bundle’s structure can be

understood in terms of the diffusion and interaction of the defects on it. Specifically,

defects leave the bundle either through diffusion off the bundle’s ends, or by the

annihilation of defects within it.

Defected bundles not only explain the apparent kinks in collagen fibers, but

also the presence of defects have implications for the collective elastic response of

the bundle. In particular, we show that kinks are more bending compliant than

undefected lengths of a bundle. As a result, we hypothesize that the collective

mechanics of a network of defected bundles depends on the number and position of

these quenched defects, which act like soft hinges in a three-dimensional network of

bundles that behave more like stiff beams.

Topological defects are well known in condensed matter, including e.g., disclina-

tions in nematic liquid crystals and dislocations in crystalline solids [22, 91, 131].

Defect motion plays a dominant role in the plastic deformation of many solids. Dislo-

cations and disclinations are topological defects; their removal requires a system-sized

reorganization of interatomic bonds. The defects in filament bundles share this fea-

ture. They cannot be removed without breaking a number of cross links proportional

to the bundle length (we consider the filaments to always be unbreakable). This fea-

ture ensures that the defects are long-lived on the scale of the thermal undulations

of the bundles themselves.

In our observations of collagen networks, we observe kinked bundles, whose con-

tour we quantify by measuring their local curvature using light microscopy. Due to

their connection to the network, we cannot be certain that these kinks are not in
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some way related to elastic stress in the network. To address this question, we used

large-scale Brownian dynamics simulations to study kinking in quenched filaments

with force- and torque-free boundary conditions, finding that quenched defects pro-

duce a statistical distribution of kinks similar to those observed in the experiment.

Using the simulations, we are also able to measure the reduction of the bundle’s local

bending modulus at the location of the defects and observe the motion of the defects

along the bundle. Finally, we present theoretical calculations using a simple model of

semiflexible filaments that demonstrate the relationship between defects and kinks

in the bundle. Moreover, we analytically determine (and test via simulation) the

time evolution of the number of defects in a bundle as they slowly anneal through

defect-defect annihilation or by diffusion off the ends.

We first report our observations from light microscopy of kinks in collagen bundles

and compare these kinks with those from numerical simulations. We then present a

general discussion of the three types of defects and demonstrate that the minimum

energy state of the defected bundle can be kinked. We explore defect dynamics,

estimating the life time of a kink and the number of kinks in a bundle as a function of

time, which we compare to simulation. To properly describe interaction of braiding

type defects, we use the theory of the braid group; some relevant background is

provided in the Appendix A.
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Figure 2.1: Measurements of collagen bundles using fluorescence microscopy (left

column) and simulations (right). A) Fluorescence image of a collagen bundle with

noticeable kinks. Green traces show a measurement of the kink angle, given as

angular deviation from straight. B) Mean curvature (black) of a collagen bundle over

50 images. Red lines show the spread of curvature in time (1 std). Blue arrows mark

the locations of high curvature. C) Histogram of mean kink angles for all measured

bundles (n = 74). D) 2D simulation of bundles with reversible cross linkers showing

the bundle centerline (black dashed line), individual filaments (blue and red) and

braids (black dots). E) Mean of the curvature over 100 configurations (black). Red

lines indicate one standard deviation. F) Kink angles from simulation for 2 filament

bundles in 2D and 7 filament bundles in 3D measured in the same way as in (C).
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Results

2.1.1 Experiment1

The nanoscale structure of collagen is quite complex [159, 18]. Small fibrils bind

together to form larger fibrils, which, in turn, bind together to form fibers, which we

observe in light microscopy. Given that these fibers associate rapidly and strongly

with local bonds, collagen fibers are a good place to look for quenched defects in

bundles and kinks, if such sharp bends of the bundle indeed result from those de-

fects [83]. In fact, kinked collagen bundles have been observed previously [48, 144, 60]

using electron microscopy. These observations leave the possibility that the kinks

observed in a single snapshot of a dynamic, flexible structure may be consistent with

thermal undulations about a straight equilibrium state, rather than long-lived sharp

bends [178]. To address this question, we made multiple observations of collagen

bundles in an aqueous environment to determine if the time-averaged state of the

bundles includes kinks.

We reconstituted pepsin-extracted type I bovine collagen and fluorescently la-

belled and imaged individual bundles. In Fig. 2.1A we show fifty superimposed

images of a single bundle (White on a black background) taken 0.5s apart and show-

ing three persistent kinks, which confirms that they are indeed long-lived structures.

Green lines indicate the measurement of a kink angle. We measure the 2D projection

onto the microscope’s focal plane of the physical kink angle in three dimensions. We

accept kink observations only when at least about three microns of bundle is observ-

able on either side of the kink. In order for the image of the bundle to extend away

1Experiment was performed by Qingda Hu and Elliot Botvinick, UCI
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from the kink on both sides, our reported kinks must lie in a plane making at most a

small angle with respect to the focal plane. As a result, the discrepancy between our

observed kink angle distribution and physical one is quite small. We find less than

ten percent discrepancies between the projected and three-dimensional, physical an-

gle distribution when testing this procedure with simulated data – see Appendix A

Sec. 1D.

74 kink angle measurements from 43 bundles are summarized in Fig. 2.1C. The

trace of the local curvature versus arc length along the bundle shown in Fig. 2.1B

quantifies the points of high persistent curvature as indicated by the blue arrows.

These local curvatures were computed by discretizing the contour using the intensity

pixels in each image and computing the curvature from a cubic spline fit to these

data. More details are given in Appendix A Sec. A.1A.1.2. Repeating this procedure

for other bundles, we observed kinks and determined their mean kink angles by

averaging again over up to fifty repeated measurements of each kink angle. They

showed temporal fluctuations with a nonzero mean. We present the distribution of

kink angles for 74 bundles in Fig. 2.1C. There were larger variations between kink

angles measured across multiple bundles than in the thermal fluctuations of a given

kinked bundle. The distribution of these time-averaged kink angles has a mean at

26 degrees and includes a range of typical angles between 7 and 55 degrees. We

observed one high-angle kink with a bend of 74 degrees.

Many of the experimentally observed kinks appeared to be flexible. As typical

example, the kink angle of the bundle shown in Fig. A.1 had a mean of 29 degrees, but

fluctuated between 21 and 38 degrees. Because the bundle’s ends were constrained

by the network, we cannot use these thermal fluctuations of the kink angle as a true

measure of the kink’s bending compliance.

19



2.1.2 Numerical simulation2

To better explore both the nanoscale structure of the cross section of the kinked

bundles and to study the system with simpler, free boundary conditions, we turn

to Brownian dynamics, finite-element simulations. Our numerical model describes

Figure 2.2: Typical bundle shape and defects observed in numerical simulations of

the bundle formation process, starting from initially straight and parallel filaments

without any initial cross links. (A) Example images show the entire bundle consisting

of 7 filaments (green) in 3D and approximately 1600 cross links (pink). A magnified

part is shown in the inset. (B) Braids and loops observed in simulations with a

minimal setup of two filaments (green) and transient cross links (pink) in 2D. (C)

Schematic of a braid (left) and a loop (right) as described in our analytical model.

the semiflexible filaments as elastic objects via geometrically exact beam theory, and

includes viscous dissipation (local drag), thermal forces, and the random binding

and unbinding of cross links [28, 29, 129]. Bound cross links are treated as short

elastic beams making locally normal connections to the filaments to which they are

2The numerical simulations were performed by Maximillian Grill and Wolfgang
Wall
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bound. As a result they act like so-called bundling cross linkers that elastically

constrain the angle between the bound filaments. Such linkers are well-known in

F-actin networks [117, 188, 139]. The details of collagen intra-bundle cross linking

are more poorly understood. In the absence of detailed models for these cross linkers,

we chose this simple linker model to promote bundling. Initially, all filaments were

straight and parallel without any cross links. To form bundles, a fixed concentration

of cross linkers was added to the finite-temperature (stochastic) simulation. The

interaction of the thermally undulating filaments with transient cross linkers lead to

rapid bundle self-assembly (see Fig. A.4) with a number of quenched defects. Further

details of the model and the setup of the computational experiments are provided in

the methods section below and in Appendix A Sec. A.2.

2.1.2.1 Observation and characterization of defects

A 7-filament bundle is shown in Fig. 2.2A from a simulation in three dimensions. Its

contour deviates quite drastically from the trivial equilibrium shape of straight and

parallel filaments, which are regularly cross linked along their entire length. These

metastable configurations of the bundle with localized bends – kinks – persist over

long times as compared to the typical time scale of the angular fluctuations of the

mean local tangent of the bundle. Over still longer times, the locations of the kinks

move along the bundle, as described below.

We observe two distinct classes of defects in the quenched bundles, which are all

related to a mismatch between amount of filament arc length taken up per fixed unit

length of the bundle. These are (1) braids, i.e., rearrangements of filaments within

the bundle, and (2) loops where one filament stores excess length by looping out of the
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bundle and then reattaching to it. Both braids (actually pseudo-braids, as described

below) and loops are shown in Fig. 2.2B from a two-dimensional simulation of two

filaments where the filaments are allowed to cross each other but cannot untwist.

This special setup is motivated by the fact that it is the smallest system capable of

supporting a loop or a pseudo-braid. The pseudo-braid is a projection of a braid

onto two dimensions and is the mechanical analog of a true braid in 3D. As will

be shown in Sec. 2.1.3, the two-filament pseudo-braid is energetically equivalent to

the case of a true braid of three filaments in 3D when the two filaments making up

the pseudo-braid in 2D have different bending moduli. The simplest system that

supports true braiding defects is a three-filament bundle in three dimensions, shown

in Fig. 2.2C. The inset of Fig. 2.2A shows the typical structure of a loop in a larger

bundle. There is also a third type of defect, (3) a dislocation in which a filament

end appears within the bundle. This defect was not created in our simulations due

to the fact that we started the system with equal length filaments whose ends were

initially aligned at one end of the simulation box. In the simulations, we concentrate

on braids and loops. We first analyze the curvature of the bundle center line as well

as the kink angles resulting from such defects, and then investigate the dynamics of

the defects, i.e., how they move along the bundle and potentially interact with each

other.

2.1.2.2 Curvature and kink angles of defected bundles

Fig. 2.1D shows a typical configuration of the minimal bundle setup with two fila-

ments (blue and red) in two dimensions. The bundle centerline (black dashed line) is

computed as the average of the two filament centerlines, and braids (black dots) are
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detected by the crossings of the filament centerlines. The curvature of the bundle’s

centerline as a function of centerline arc length is plotted in Fig. 2.1E, showing both

the mean (black) and the standard deviation range (red lines) of the curvature com-

puted from 100 simulation snapshots with a time interval of 1s. Close to the midpoint

of the bundle in the range of arc lengths 10µm < s < 12µm, we observe two peaks

in the curvature that are clearly visible as a double kink in the bundle configuration

shown in Fig. 2.1D. These can be explained by the braid and loop defects there. The

standard deviation of the curvature is increased by about one order of magnitude in

this defected region, indicating a local increase in angular fluctuations at this point.

This is a direct measure for the decreased effective bending modulus of the bundle

in these defected, non-cross-linked regions. Using the relation between the thermal

fluctuations of the local curvature and the bending modulus, we estimate a decrease

in the effective bending modulus of about two orders of magnitude. Apart from

the locally decreased bending modulus, such a defect most likely also leads to an

anisotropy in the bundle’s bending mechanics, which breaks another basic assump-

tion of the ideal bundle as a single, thick filament. Similar features in the curvature

data are observable for the second braid of this bundle at approximately s = 6µm

of this bundle. More examples are found in the other simulation runs. Additional

results showing the curvature along the bundle at different time points are provided

in Fig. A.5.

The histogram of measured kink angles over a total of 12 simulations is shown

in Fig. 2.1F. Here, we applied the same procedure for the angle measurements

as described for the experimentally obtained microscopy images in Appendix A

Sec. A.1A.1.2. The 3D simulation results were rotated such that the bundle center-

line tangents left and right of the kink lie within the image plane. The distribution of
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72 kink angles for the two-filament bundle has a mean of 27 degree, with a standard

deviation of 14 degrees and values ranging from 4 to 77 degrees. The kink angle dis-

tribution for larger bundles with 7 filaments in three dimensions demonstrate a trend

towards smaller angles and a more narrow distribution with 20±8 degrees (mean ±
standard deviation). Big bundles with up to 225 filaments will be investigated in

more detail below.

2.1.2.3 Dynamics and interactions of defects

We now use our simulations to study dynamics on longer time scales, where we

expect to see the motion of defects along the bundle and their annealing as the

metastable, defected bundle slowly relaxes. To facilitate these observations, we need

to speed up the motion of the defects by doubling the linker unbinding rate in our

simulations to koff = 6s−1. At this rate the motion of defects is still much slower

than the undulatory fluctuations of the bundle, but now defect motion is moved into

a time scale accessible by simulation, which covers 1000 seconds.

Fig. 2.3 shows an example of how the (defected) configuration of a two-filament

bundle evolves over time. We plot the position (measured by arc length) of braids

(red dots) and cross links (blue dots) along the bundle horizontally, with time in-

creasing vertically. The resulting red tracks record the world-lines of the braids over

a simulated period of 500 seconds. The white vertical scars show cross-linker gaps

in the otherwise densely cross-linked bundle. Due to a small off-set between the fil-

aments, there is a nearly persistent gap in cross linking at the left end of the bundle

where one filament stops. Cross linkers appear in this gap because one filament slid

far enough past the other to wrap around and briefly cross link to the other one
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Figure 2.3: Dynamics and interactions of defects observed in 2D numerical simula-

tion. The position of braids (red dots) and cross links (blue dots) along the (first,

i.e., blue) filament is tracked over time. The inset images (green frames) show the

corresponding configuration of the two filaments (blue and red lines) and the braids

(black dots) in the bundle at three different time points.
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due to the periodic boundary conditions of the simulation box. We observe a pair of

braids located near the bundle midpoint first emerge after ∼ 20s during the initial

quench of the bundle. This timescale for the formation of the quenched bundle is

typical and consistent with observation of the initial growth of the number of doubly

bound cross linkers; that number rapidly increases from zero at the beginning of a

simulation and plateaus around 20s, indicating the maturation of the defected bun-

dle – see Fig. A.4 for further details on bundle self-assembly. Once the bundle has

formed, the two braids in the middle approach each other and appear to annihilate,

leaving a low-cross-linker density region within the bundle during the time period of

100s < t < 270s. After that time, a new pair of braid defects form. These slowly

separate as more and more cross links are formed between them.

The single braid close to the bundle’s right end diffuses until it approaches the

far right end of the bundle at s ≈ 19µm and at time t ≈ 280s. Here it vanishes

by diffusing off the open end. The filaments simply uncross and new cross links

are established between the unbraided filaments. Looking more carefully, one may

observe a similar phenomenon on the left edge of the bundle. Immediately after the

quench there are actually four braids on the bundle, as indicated by the picture of

the system at timeslice t = 34s. Almost immediately after this time and long before

the next bundle configuration image at t = 200s, that leftmost braid diffuses off

the left end of the bundle. The final state of the bundle at t = 500s shows a bent

configuration where the localized bend near the center of the bundle is due to the

two interacting braids that remain in the system. For these parameter values, the

typical lifetime of a defect is 100s of seconds.
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2.1.2.4 Bundles with large number of filaments

Motivated by the fact that the number of filaments in a biopolymer bundle is likely

to vary from O(1) to O(103), we explored simulations of bundles with significantly

larger than in previous sections number of filaments in three dimensions. Fig. 2.4A

shows a self-assembled bundle with 225 filaments (white) and approximately 16000

cross links (pink). To rule out the influence of the initial arrangement of filaments in

plane perpendicular to the bundle’s mean tangent, we ran simulations with filament

endpoints placed on a square grid in addition to the hexagonal grid. We observed

no significant differences.

The large bundle’s structure is hierarchical; one can identify more tightly bound

sub-bundles that form loops and braids with each other along the bundle’s length.

As observed already in 25-filament bundles, its centerline remains rather straight,

while the sub-bundles show the characteristic kinks observed in the smaller bundles.

One possible explanation for the rather straight form of the big bundles is the smaller

aspect ratio as compared to the small bundles; in other words, very large bundles

may well show kinks over longer distances, since such kinks require higher energy

and thus statistical less probable, defects. Simulations of big bundles with the same

aspect ratio as the smaller ones remain computationally prohibitive. We observe in

the large bundle a large hole created by a sub-bundle loop defect. Its appearance

is strikingly similar to our experimental images of collagen bundles in Sec. 2.1.1

(Fig. 2.4B). Those parts of the images showing the hole defect are magnified and

compared side-by-side in the center panel of Fig. 2.4.
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Figure 2.4: Hole defect observed in simulation and experiment. (A) 3D simulation

of a bundle with 225 filaments (white) and approximately 16000 cross links (pink).

(B) Fluorescent confocal laser scanning image of a collagen bundle. Those parts of

both images showing the hole defect are magnified and compared side-by-side in the

center panel of this figure.
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2.1.3 Kinking Theory

2.1.3.1 The model

We now examine the energetics of kink formation using a a simple model consisting

of a bundle of N inextensible, semiflexible filaments connected by cross links. The

filaments’ elasticity is controlled by a single bending modulus κ. The filaments are

arranged so that their mean tangent directions are parallel along the x̂ axis. In a

cross section normal to this direction (the yz plane) the filaments’ centers lie on a

triangular lattice with a lattice constant equal to the size of the cross linkers. The

cross linkers are assumed to locally constrain both the distance between the cross-

linked filaments and their crossing angle so that the cross links are normal to the

filaments to which they bind. We further assume that the cross linking is reversible,

i.e., they bind and unbind from the filament bundle so that the cross linker density

within the bundle remains in chemical equilibrium with a solution of free cross linkers

at a fixed chemical potential. Previous work has shown that thermal undulations

of the filaments induce Casimir forces between cross links [76, 77] and cause the

transition between states of free filaments and a densely cross-linked bundle to be a

discontinuous, or first-order phase transition rather than a smooth crossover. Here

we work at chemical potentials above this transition so that we may assume dense

cross linker coverage; hereafter we neglect Casimir interactions and other fluctuation-

induced effects.

If all the bundle’s filaments have the same length, the energetic ground state is

a straight bundle with as many cross links as possible. However, if, at least one of

the filament’s length differs from those of others, the straight bundle configuration

will necessarily have a defect where a filament’s end occurs within the bundle. That
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dislocation defect may, in fact, be unstable towards forming a kink in the bundle’s

interior, leading to a kink in the elastic ground state of the system (we explore this

point in Sec. 2.1.3.4).

When we consider metastable states, there are many more options. If removing

a defect in the structure of cross-linked straight filaments requires uncoupling a

large number of cross links, the lifetime of that defect may exceed the time of the

experiment. We divide such defects into two groups: defects due to the deviation of

the filament from its straight state (loop), and the effects due to the permutations of

the filaments (braiding). We study the simplest cases of these effects in Sec. 2.1.3.2

and Sec. 2.1.3.3 respectively.

In all these cases, the energy of the bundle can be written as the sum of two terms:

the bending energies of the (n) constituent filaments and energy of their chemical

interactions with the cross links

E =
n∑
i=1

∫
ds
{κi

2

(
∂st̂i
)2

+ µ
}
, (2.1)

where t̂i is unit tangent vector of filament i. The integral is taken over the piece of

the filament ` without cross links, which generates the term µ` equal to the work of

unbinding the cross links in this piece, where µ is a linker binding energy per unit

length. Eq. 2.1 implicitly assumes a linear elastic response of the material to bending

deformation in that the bending torque is proportional to the bending angle. The

parameterization of local curvature, however, is exact even for large bending. In

essence, we use the usual assumption [99] that, due to the thinness of the filaments,

there are no large strains within the filament cross section even at large curvatures,

so constitutive bending nonlinearities may be neglected even for highly deformed

filaments.
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Since we assume that the cross links completely fix both angle and positions of the

filaments, the piece of the filament with cross links is straight and parallel to the whole

bundle. We now minimize the bundle’s energy subject to boundary conditions that

enforce the presence of one or more defects. If a kinked configuration minimizes this

energy, we conclude that elasticity theory predicts a kink. This calculation will also

determine the optimal size (length) and bending angle of the kink, which we report

below. All such calculations assume that the defects do not trap filament torsion.

We note from simulation that typical defects include some torsional deformations.

As a result, our calculations represent the minimum energy configurations of each

defect. We anticipate there to be a continuous spectrum of excited defect states

associated with increasing torsional energy. We now perform this minimization for

the three different types of defects.

2.1.3.2 Loops

We start with the simplest case of a two-filament bundle, forming a loop defect by

demanding that the filaments have disparate lengths L1 6= L2 between consecutive

cross links. What results is the bending of the whole bundle to form a kink – see

Fig. 2.2B. This approach generalizes to N -filament bundles, and can be adapted to

large bundles in which two sub-bundles form a loop. To simplify this calculation,

we take the size of the cross links and the filaments’ diameter (whose sum is a) to

be zero. In case of loops, the excess trapped length in the defect is not principally

controlled by that length so in this case the a = 0 limit is both reasonable and

simplifies the calculation. Then the boundary conditions for the position of the ends
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Figure 2.5: (A) Braid in the limit of zero bending. Forces F1, F2, F3, F4 (black

arrows) have equal magnitude, but F2 and F4 create a larger torque (relative to

the middle of the corresponding cross link, black dots). This torque leads to the

rotation of the left piece of the bundle counterclockwise and right piece clockwise,

i.e., increases the angle of the kink. (B) Dislocation in the limit of zero bending.

The least energy configuration is a straight bundle, with one filament rearranging

at the right angle when filament 4 (chartreuse) stops, immediately taking its place.

However, if we increase the bending to nonzero, this segment under the right angle

tries to straighten, producing repulsive forces (black arrows). These forces create an

uncompensated torque at the left and right part of the bundle, leading to a kink.
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of the filament are integral conditions on the tangent vector:∫ L1/2

−L1/2

dst̂1(s) =

∫ L2/2

−L2/2

dst̂2(s), (2.2)

and boundary conditions for the tangent vector determine the kink angle φ, which

is the total bend of the tangent across the structure. We pick a reference frame so

that these boundary conditions are symmetric:

t̂1(±L1) = t̂2(±L2) =

cos(φ/2)

sin(φ/2)

 . (2.3)

Minimizing the energy from Eq. 2.1 in the limit of small filament bending (t̂y � 1)

we obtain a lengthy self-consistent equation for the angle φ (see Appendix A Sec.

A.3A.3.1), which can be simplified in the case of the equal bending moduli κ1 = κ2 =

κ to

φ = γ

(
∆L

√
µ

κ

)1/3

, (2.4)

with the numerical constant γ ≈ 0.93, and ∆L = L2 − L1 6= 0. We verified these

results by minimizing the energy numerically – see Fig. 2.6A. Loops produce a con-

tinuous spectrum of kink angles that grow as the cube root of their length mismatch.

As expected, an increase in the bending modulus suppresses this kink angle, while

an increase in the linker binding energy increases it by shrinking the extent of the

gap in the cross linking. We now turn to braids.

2.1.3.3 Braids

The simplest model of braiding in 3D requires three filaments. Braiding of two

filaments in 3D can be undone by twisting the bundle about its long axis; it is not

topologically protected (the relationship between braiding and rotation is discussed in
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Figure 2.6: Kink angle φ as a function of a dimensionless parameter for (A) loops,

(B) braids and (C) dislocations showing both numerical solutions to the energy

minimization (circle), and the analytic predication (solid line). We show two cases

κ1 = κ2 (blue) and κ1 = 2κ2 (red). (A) Numerical results agree with the small

angle theoretical prediction even up to φ ≈ π
2
. (B) For the symmetric case κ1 = κ2,

the angle φ produced by the braid grows as
√
ζ − ζ∗ with ζ∗ = 2. The coefficient

of proportionality for the analytical curve was chosen to best fit the data. For the

asymmetric case, there is a discontinuous (first order) jump in φ at ζ∗ ≈ 12.25. (C)

For dislocations, the angle reaches a maximum at a finite value of ζ and goes to zero

at ζ = 0 and ζ =∞.

34



more detail in the Appendix A Sec. A.3A.3.3). The minimum energy configuration

of three cross-linked filaments with the same length will be a right prism with an

equilateral triangle as its base. We choose a coordinate system so that the x-axis

lies parallel to the filaments, filaments 2 and 3 are in xz-plane, and filament 1 is

above that plane. To introduce a braid we require filament 1 to go from above to

below the xz-plane – see Fig. 2.2(C). This configuration is metastable since we need

to decouple all the cross links on one side to get to the minimal energy configuration.

There is no rotation of an end of the bundle that will eliminate the braid.

Since the cross links fix both relative angle and position of the filaments, filament

1 can not be connected to the filaments 2 and 3 by the cross links in the defect core,

however, filaments 2 and 3 can remain cross linked. Thus, filaments 2 and 3 behave

as one combined filament 2’ with double the bending stiffness, and remains in the

xy plane like filament 1. The true three-filament braid in 3D is thus energetically

equivalent to a two-filament pseudo-braid, as introduced in our simulations.

The boundary conditions on the vector t̂ are the same as in the previous case,

Eq. 2.3, but the displacement boundary condition differs, incorporating the finite

cross linker length a, which is necessary for the braid to trap excess length. We find∫ L1/2

−L1/2

dst̂1(s) =

∫ L2/2

−L2/2

dst̂2(s) + 2a cos (φ/2) ŷ, (2.5)

Unlike in looping, we do not fix the filament length mismatch ∆L = L2 − L1, but

instead allow it to vary to relax the braid’s energy. It is conceivable that one may

encounter higher-energy braids in which braiding and an excess of trapped length

(looping) coexist. We do not study this case here.

We observe that braids should generate local bending, at least in the limit of

a sufficiently soft bending modulus. The binding free energy (chemical potential
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difference between free and bound linkers) acts as an effective tension on the bundle.

Setting the bending modulus to zero and fixing the length of the braided region,

the solution for the filament contours inside the braid will be straight lines. In

this configuration, linker-induced tension generates a torque that increases the kink

angle of kinked configurations – see Fig. 2.5A. To stabilize this angle at a finite value

we must including finite bending compliance. We do so now, turning to the full

calculation.

Calculating the energy of the braid as a function of the kink angle φ, we find that

kinking is controlled by the dimensionless parameter

ζi =
µa2

κi
, (2.6)

where µ is the cross-linker binding energy per unit length, κi is the bending modulus

of filaments of type i, and the length a is the normal distance between the center

lines of a pair of bound filaments. This length can be interpreted to be the sum of the

radii of the filaments and the length of the cross-linking molecule. ζ is the ratio of

the linker binding energy per unit length µ to an energy per length set by bending on

the scale of the inter-filament separation, κ/a2. In general, we expect larger ζ values

to lead to kinking. Below we verify this intuition. Larger values of the linker binding

energy and inter-filament separation increase filament bending in the defected region.

This bending, which is opposed by κ provides the torques necessary to produce the

kinks. The nonphysical limit of zero inter-filament distance (a → 0) implies that

braids involve no filament bending and thus generate no bending moments necessary

for kinking.

We prove in the Appendix A (see Appendix A Sec. 3B.1.) that for small values

of ζi, the energy is minimized at φ = 0, i.e., there are no kinks. For large values of
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ζi, the minimum energy states are kinked (φ > 0). We examine this transition in

more details for the case κ1 = κ2. We assume symmetric bending, α1(s) = −α2(−s)
noting that numerical solutions of the minimization show that the symmetric solution

based on this ansatz indeed identifies the global energy minimum. We obtain (see

Appendix A Sec. 3B.2.):

λ2 sin2 (φ/2) =
8κ2

a4
(ζ − 2) , (2.7)

where we introduced a Lagrange multiplier λ to enforce the ŷ component of Eq. 2.5,

which plays the role of the tensile force in ŷ direction. When ζ increases to 2, there

is a second order transition at which the kink angle grows continuously from zero as

ζ increases. Near the critical point ζ = 2 + ε, φ ∼ √ε. Numerical minimization of

the energy from Eq. 2.1 leads to the same result (see Fig. 2.6B). In that figure, we

also see (red dots) that when the two filaments have differing bending moduli, there

is a first order kinking transition where the kink’s angle jumps discontinuously from

zero at the critical value of ζ.

2.1.3.4 Dislocations

The simplest dislocation requires a bundle of four filaments in 3D where one of the

four ends within the bundle. The stable state of four filaments is a right prism formed

by a base of two equilateral triangles sharing one edge, as shown in Fig. 2.5B. We

label these triangles as 1-2-4 and 2-4-3; only filaments 1 and 3 are not cross linked

to each other. If either filament 1 or 3 ends within the bundle, the configuration

remains stable because the other three form a stable three-filament prism. But

if another filament ends, e.g., filament 4, the remaining filaments must deform to

recreate a cross section with an equilateral triangle – see Fig. 2.5B. Due to cross-
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linker constraints, the distortion associated with the defect must locally remove cross

linkers between two of the filaments. Without loss of generality, we demand that

filaments 2 and 3 remain cross linked. Calculating the energy associated with this

defect is complicated by the fact that there is no mapping to a 2D version of the

distortion. To gain immediate insight, it is helpful to consider momentarily the

unphysical case of zero filament bending modulus. Then filaments 2 and 3 remain

straight, but filament 1 makes two right-angle bends at the defect to move to the

location of the missing filament 4 and thereby maximize cross linking. If we now

reintroduce a finite bending modulus, this localized dislocation will spread out along

the bundle to decrease bending energy at the expense of reducing the maximal cross

linking shown in the figure. A force pair is also introduced by filament 1’s bending

(shown in the figure as black arrows) which produce a torque causing the entire

bundle to kink. We perform numerical minimization of the energy assuming that

filaments 2 and 3, being cross linked everywhere, form a ribbon that can bend in

the direction perpendicular to its plane with bending modulus κribbon = 2κ, but is

absolutely rigid in the direction parallel to its plane. The results are consistent with

the qualitative study (see Fig. 2.6C) – the maximum of the kink angle is observed at

a finite value of parameter ζ, while zero and infinite values lead to zero kink angle.

2.1.4 Defect dynamics

Over times significantly longer than those associated with the undulations of the

bundle, defects can move along the bundle and interact. These dynamics require

multiple cross linker binding/unbinding events. As a result of these events, defects

move diffusively and may eventually fall off the ends of the bundle. In the case of
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dislocations and braids, defects may combine or annihilate. For the latter type, these

interactions are controlled by the structure of the braid group.

Consider two braids – a braid/anti-braid pair – separated by N cross links. Since

these defects would annihilate if the intervening cross links were removed, we may

expect this pair might vanish if their separation becomes sufficiently small. The

braids are motile with a diffusion constant set by the linker detachment rate koff

and do not strongly interact when separated by lengths greater than the defect core

size. The probability density p(n, t) of there being n cross links separating the two

defects at t then obeys a diffusion equation

∂p(n, t)

∂t
= 2koff

∂2p(n, t)

∂n2
(2.8)

Using a well-known result for the first mean passage time [81], the mean lifetime of

this braid/anti-braid pair is

T =
3N2

koff

. (2.9)

For the simulations presented in Fig. 2.3 we have koff = 6s−1, N ≈ 15 − 35. Then

Eq. 2.9 predicts T ≈ 100 − 500s, while in Fig. 2.3 we obtain T ≈ 200s, within the

predicted range.

For a three-filament bundle the dynamics of N braids is equivalent to the diffusion

of N particles (braids) of three types, which are randomly distributed after a quench.

The braid group (see Appendix A Sec. A.3A.3.3) requires that a particle of one type

can annihilate only with particles of one other type. If particles encounter each other

and cannot annihilate, we assume they stick, since, by merging their defected regions,

the net number of cross linkers on the bundle increases. Using these dynamical rules,

we studied the annealing of braided bundles using Monte-Carlo simulations – results

are shown in the Appendix A.

39



Simple combinatorics shows that annihilation events are less common than braid

combination (sticking) since the former requires braid/anti-braid adjacency. Since

the number of different braid group operators grows linearly with the number of

filaments in the bundle, the probability for braid/anti-braid adjacency decreases with

increasing braid size. When considering large bundles we can neglect annihilation.

Doing so and using a mean-field approximation, we let ρ(x, t) be the braid density,

implying that the average distance between neighboring braids is 1
ρ
. The time to

halve the number of braids will then be t1/2 ∝ 1
ρ2koff

according to Eq. 2.9. The same

logic implies that the continuous rate of decrease of the braid density will obey

dρ

dt
= −αρ3 (2.10)

where α is a phenomenological parameter accounting for the probability of braids

combining upon close approach. Solving Eq. 2.10, we find ρ ∝ t−1/2, which is a

general result for sticky (or annihilating) random walkers [20]. The predictions of

this mean-field model are consistent with our Monte Carlo simulations and with the

Brownian dynamics simulations of the full bundle model - see Fig. A.6.

We briefly mention the dynamics of loop and dislocation defects. Complete anni-

hilation of loop defects is highly unlikely as it would require the amount of trapped

length in the two loops to match. We expect loop defects to diffuse along the bundle

and, in larger bundles, to pass through each other. Dislocations should also diffuse by

a type of reptative motion (as in polymer melts) in which the filament end detaches

within the bundle, forms a loop and reattaches. Thus, dislocations in an otherwise

ordered bundle should retract towards the bundle edge with more filaments in it.

After loops are formed the dislocation should perform a biased random walk due

to the fact that the energy of loop defects will suppress further retractions of the
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dislocation core towards the bundle’s end.

Discussion

Biopolymer filament bundles are kinked in spite of the fact that the elastic ground

state of their constituent filaments is straight, as clearly seen in our experiments

on collagen bundles. In this article, we quantified these kinks and proposed that

their existence can be attributed to defects quenched into the bundles during cross

linking. These defects come in three classes: loops, braids, and dislocations. This

proposal is supported by both analytic calculations of the energy-minimizing contour

of bundles containing these defects and by finite-element Brownian dynamics simu-

lations of the quenched bundles of two to two hundred filaments. The mechanical

connection between these defects and kinks (high curvature regions) of the bundle is

straight forward – defects generate a local distortion of the filaments driven by cross

linking. The entire bundle may bend producing a kink in order to compensate for

that distortion. This mechanism is reminiscent of the relaxation of a flexible hexatic

membrane in the vicinity of a disclination [135]. There a topological defect relaxes

local strain via a puckering of the membrane that produces long-ranged Gaussian

curvature. Here the distortion of the bundle may be entirely localized in a sharp

bend.

In our experiments we found that 4% of the observed collagen bundles had one

or more kinks and that these kink angles had a mean of 26 degrees, but were quite

varied ranging up 74 degrees in the sample of 74 kinks studied. When we consider

that loop defects can produce a continuous distribution of kink angles, it seems

natural to suppose that this defect is the predominant cause of kinking. The number
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of observed kinks is likely an underestimate of the real system, due to the limitations

of our imaging that shows only those bundles lying in the imaging plane. Only kinks

oriented so that the bundle bends within the imaging plane are observable.

The kinks associated with both braids and dislocations are expected to be nar-

rowly distributed at angles set by the number of filaments in the bundle since these

defects produce fixed kink angles that depend only on that number, the cross-linker

binding energy, and bending moduli of the filaments. For a fixed number of filaments,

both dislocations and braids produce kink angles that depend on only a single di-

mensionless number ζ = µa2/κ. In the case of braids, the kink angle grows from zero

at a critical value of ζ, which depends on the number of filaments but is roughly of

order unity. Looking at stiff F-actin cross linkers like α-actinin, we find that ζ ∼ 0.1;

it is too small for braids to generate kinks. We do, however, expect braids to be

associated with kinks in softer filament systems such as DNA condensed by poly-

valent counter ions [111, 142] or cross-linked intermediate filaments [24, 61] where

ζ ∼ 10 − 100. Currently, our understanding of collagen bundle cross linking is less

precise; our estimate in this system is that ζ ∼ 1 (see Appendix A Sec. A.1A.1.5).

This suggests that loops certainly should produce kinks, but that braids are also po-

tentially kink-generating defects since our estimate for ζ is near the threshold where

such braid-induced kinking should occur. Of course, even if braids do not produce

kinks, we expect them to be present and to produce high flexible “hinges” in the

bundle. Dislocations always generate kinks, but the kink angle is appreciable only

when ζ ∼ 1. We surmise that dislocations may also be responsible for some of the

experimentally observed kinks in the collagen bundles.

Another argument for loop controlled defects in collagen is a presence of z-shaped

double kinks (see Fig. A.7 for the examples), which can be attributed to slippage

42



between two filaments in a bundle such that they produce a pair of loops. The

lengths stored in this pair are such that, after the two loops, the filaments once have

no length mismatch.

The life time of these defects appears to be significantly larger than the char-

acteristic time of thermal undulations of the filaments and longer than the typical

observation time in experiment. This is supported by the experimental data, where

kink annihilation or diffusion to the ends is never observed. When we study kink

dynamics via simulation on the timescales significantly longer than those covered by

experiment, we observe their diffusion, sticking, and annihilation, which one expects

from the theory. Specifically for braids, we find that their motion is consistent with

particles diffusing in 1D with interactions obeying the rules of the braid group. We

speculate that bundles under compression may relieve stress by the pair production

of braid/anti-briad pairs in a manner resembling the Schwinger effect [155, 156].

Examining Fig. 2.4 leads us to speculate that very large bundles of many filaments

might be considered to be smaller bundles composed of more weakly bound sub-

bundles, which are themselves composed of the original filaments. If we may consider

this hierarchical approach, we can replace a in ζ’s by the sub-bundle radius and

write the bending modulus in terms of that radius as well using κ ∼ Ea4, where E

is the Young’s modulus of the material (typically in the 1GPa range for proteins).

In that case, we see that ζ ∼ (µ/E)a−2, so that as the radius of the sub-bundles

increases, ζ decreases rapidly. As a result, we expect that kinks in larger bundles

will be dominated by loop defects regardless of the value of ζ for the original filament

system. When considering very large bundles, one may ask whether cross linkers deep

in the bundle’s interior remain in equilibrium with the cross linker concentration in

the surrounding fluid. Due to steric hindrance, these internal linkers may diffuse
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slowly out of the bundle, leading to a linker chemical potential gradient across the

bundle’s radius on measurable time scales. We do not incorporate such effects in our

simulations, and we do not expect them to be relevant in the case of our collagen

bundles where we do not have exogenous linkers. But this nonequilibrium effect,

where relevant, may introduce intriguing viscoelastic effects in the bending dynamics

of very large bundles.

Many biopolymer filaments are chiral and their chirality is known to affect their

packing into tight bundles [56]. In particular, chirality introduces a form of geometric

frustration in these tightly packed bundles. We suspect that these defects may play

a role in reducing the elastic stress associated chirality-induced packing frustration,

and thus may be important for understanding the long length scale structure of such

chiral bundles.

We note that defects rather generally produce weak links in the bundle where,

due to the absence of cross linking, the effective bending modulus of the bundle is

reduced by at least an order of magnitude. This suggests that the collective me-

chanics of a rapidly quenched bundle network might be dominated by these defects,

which introduce a set of soft joints into the otherwise quite stiff bundles. As a result,

rapidly quenched bundle network may be anomalously compliant as compared to

their annealed state. It is interesting to note that these defects provide soft hinges

in the network (rather than universal joints) and that there may well be many more

such soft hinges than there are kinks, since not all defects generate kinks, but all

disrupt the local cross linking. Currently, there are no kinetic theories of bundling

that allow us to estimate the number of such soft hinges in a network of filament

bundles and then attempt to predict the mechanics of the defected network. Of

course, filament bundle networks produced by transient cross linkers have a complex
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rheological spectrum, including a low-frequency power-law regime [14, 127]. Under-

standing the mechanical effect of these soft hinges on that low-frequency rheology

remains an interesting direction for future studies.

2.2 Materials and methods

Experiments

Type I Bovine pepsin extracted collagen (PureCol 5005-100ML lot 7503, Advanced

BioMatrix) was reconstituted according to Doyle, 2016 [38]. Reconstituted colla-

gen solution was diluted to 0.2mg/mL with PBS and was incubated at 37◦C over

night. The collagen was fluorescently labelled (Atto 488 NHS ester 41698-1MG-F

lot BCBW8038, Sigma-Aldrich) and then imaged with Olympus Fluoview1200 laser

scanning confocal microscope using a 60x 1.45NA oil immersion objective. To con-

struct a trace of the bundle, Matlab was used to determine the position of bundle in

each row of the image defined as the mean of the Gaussian fit of the pixel intensity

across each row. A cubic spline is used to estimate the curvature along the bun-

dle. The kink angles were measured using imageJ. Further details can be found in

Appendix A Sec. A.1.

Simulations

In our numerical model, the individual semiflexible filaments are described via non-

linear, geometrically exact, 3D Simo-Reissner beam theory [145, 160] and discretized

in space by suitable finite element formulations [74, 118]. Their Brownian dynamics

is modeled by including random thermal forces and viscous drag forces along the
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filament [28, 29]. We apply an implicit Euler scheme to discretize in time, which

allows us to use relatively large time step sizes [28, 29]. Cross links are modeled

as additional, short beam elements between distinct binding sites on two filaments,

which bind and unbind randomly based on given reaction rates and binding crite-

ria [129]. In particular, the latter include a preferred distance between binding sites

and a preferred angle between filament axes that need to be met such that a linker

molecule switches from the free to the singly bound state or from the singly to the

doubly bound state. Altogether, this finite element Brownian dynamics model turns

out to be a highly efficient numerical framework, which enables large-scale simu-

lations with hundreds of filaments over hundreds of seconds and has been used in

several previous studies [27, 126, 129, 109, 78, 164]. We used the existing C++ imple-

mentation in our in-house research code BACI [2], which is a parallel, multi-physics

software framework. In addition, we used self-written Matlab [174] scripts for the

data analysis and Paraview [88] for the visualization of the system. Further details

about the numerical model including all parameter values and the detailed setup of

the computational experiments can be found in Appendix A Sec. A.3.
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CHAPTER 3

Thermal Schwinger Effect: Defect Production in

Compressed Filament Bundles

Stiff rods under compression are known to undergo a mechanical instability called

Euler buckling, leading to a symmetry-breaking event. Upon compression directed

along its long axis, a circular elastic rod first shortens its length, bearing the exter-

nal loading via compression. But at a critical compressive strain, the rod buckles,

supporting the compressive stress via bending on the length scale of the entire rod,

and thereby breaking the rotational symmetry (when viewed down the long axis of

the undeformed rod) of the deformed state [99, 54]. When I consider the response to

compressive loading of biopolymer filament bundles bound by transient cross linkers,

I find that Euler buckling is precluded in such composite objects at finite temper-

ature by another type of instability: at compressive stresses lower than the Euler

buckling threshold, the bundles shorten by the thermally-activated production of

defects, considered in chapter 2. While dislocations cannot be produced without

breaking the filament, braids and loops can be produced in pairs. See Fig. 3.1C

and D for schematic diagrams of pairs of loops and braids respectively. Forming

these defects from a quench by adding cross linkers is commonplace, but since the

addition or removal of these defects requires a system-sized rearrangement of cross

linkers, one cannot expect them to form spontaneously. Rather, they form in defect
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Figure 3.1: Fluorescence microscopy images of a z-bend (A) and a u-bend (B) in a

collagen bundle. (C) Two loops under compression form a z-bend. (D) Two braids

under compression form a u-bend. (E) Angle produced by a loop pair and energy

difference between the looped and straight bundle as a function of dimensionless

torque. (F) Angle produced by a braid pair and the energy difference between braided

and straight bundles as the function of dimensionless torque. [Images courtesy of

E. Botvinick and Q. Hu]

– anti-defect pairs, which require only local cross-linker rearrangements. Since these

defect pairs are associated with kinks, compressive loading suppressed the energy

barrier associated with defect pair production. As a result, at a critical compressive

stress, I expect the proliferation of these defect pairs once the energy cost of pair

production is reduced to the thermal energy.

Pair production of defects is analogous to the Schwinger effect, in which electron-

positron pair production was predicted in a sufficiently strong static electric field [155,

156]. The forces due to the large electric field on the charged particle pairs pulls

them apart, stabilizing these quantum fluctuations of the vacuum. In the same way,

it is energetically favorable for thermally-generated defects to separate under the
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compression of the bundle. I term this mechanism the thermal Schwinger effect.

We first consider the energetic cost of the production of loop and braid defects in a

compressed bundle. I then use these results to compute the loop pair production rate

at temperature T in a calculation reminiscent of the Kramers’ escape problem [95, 81].

We also analyze the critical stress for defect pair production in a few biopolymer

systems including F-actin, DNA, and collagen bundles.

To compute the minimal energy configuration for stable and metastable states of

the N -filament bundle under a compressive force F , I introduce the energy

E = −F∆L+ µ`+
N∑
i=1

∫
ds
κi
2

(
∂st̂i
)2
. (3.1)

The first term gives the energy reduction due to the shortening of the bundle’s end-

to-end distance ∆L. The cross linkers have binding energy µ per unit length. Since

the defect(s) disrupts cross linking over a distance `, their presence increases the

system’s energy as reflected by the second term on the right hand side of Eq. 3.1.

The third term gives the bending energy stored in the bundle, where κi and t̂i(s)

are the bending modulus and tangent vector of the ith filament. s is the arc length

along the bundle. I neglect torsion, so all defect energies are actually lower bounds.

There will be a continuous spectrum of excited states due to trapped torsion.

We examine first a pair of loop defects. I assume the compressive load to be

sufficiently weak so the characteristics of a loop, i.e., the dependence of its kink

angle and energy as a function of its size can be taken from our previous calculations

in the zero-compression limit in the previous chapter 2. The kink angles generated

by neighboring loops are equal and opposite, since the amounts of their trapped

length have to be equal and opposite (which makes the loop sizes also equal, see

Appendix B). The pair of loops produce a z-bend where parts of the bundle not
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lying between the loop pair are parallel and offset in the normal direction to the

undeformed bundle – Fig. 3.1A,C. This result holds even for bundles having filaments

of differing bending moduli, as long as the excess trapped length in the loop is much

smaller than the total length of the defected region. For simplicity, I focus on the

case of equal bending moduli. Then the total energy of configuration with two loops

of size `/2 each, generating kink angles φ, and separated by a distance R is

Etot = g1µ`− FR(1− cosφ). (3.2)

The first term in the Eq. 3.2 is the energy of the pair of loops of length `/2, with

coefficient g1 ≈ 1.48 (see Appendix B). The second term is the decrease of energy due

to the compression (see Fig. 3.1C. As long as F � µ, it is not important whether I

define R to be the distance between centers of loops or their edges, since the difference

will be small in comparison with the first term. However, I pick R to be the distance

between closest edges, so it is equal to zero when loops are not yet separated.

There is a continuous distribution of loop sizes, leading to a continuous distri-

bution of angles of the z-bends produced by loop pairs and a similar distribution of

energy reductions associated with them as shown in Fig. 3.1E. Observed loop pairs

are the result of a stochastic process of pair production, which is related to the classic

problem of the thermally-activated escape from a potential well.

We investigate the energetics of pair production and escape. Loop formation

involves cross linker removal and filament bending leading to an energy increase of

g1µ` as the loop size ` increases. At some loop size `0, the two growing loops separate

due to random fluctuations. Once separated, the loops can no longer exchange

trapped length so their lengths are now fixed at `0/2 each (see Appendix B). As

the distance R between the loops of the resulting z-bend grows, the energy of the
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Figure 3.2: Dimensionless loop pair production rate with η = 10, τ = 0.1 (see

Eq. 3.5)
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compressed bundle decreases due to shortening along the direction of the compressive

load. I can consider this process as an escape from the potential well using x as a

single reaction coordinate that describes the growth of the loop size while they overlap

and then their separation afterwards:

U(x) =


g1µx, x < `0

g1µ`0 − F (1− cosφ)(x− `0), x > `0,

(3.3)

x grows with the sizes of the loops x = ` before separation (upper equality), and

then describes the distance between the separated loops x = R (lower equality). The

effective potential for the growing loops increases linearly with loop size up to the

final loop size `0 and then decreases linearly due to the shortening of bundle along

the direction of the applied force.

Treating this process as a Kramers’ escape problem [95] in the potential Eq. 3.3,

I compute the escape rate r, the rate of loop pair production in thermal equilibrium

at a fixed compressive stress. I compute this rate as the inverse of the mean time to

escape using the standard Kramers’ approach for an overdamped system:

r−1 =
1

D

∫ x0

0

dyeβU(y)

∫ y

0

dze−βU(z), (3.4)

where x0 is defined such that U(x0) = 0 and β = 1/kBT . The reptative motion of the

defects is heavily overdamped; I introduce a loop diffusion constant D ∝ koff∆x2 in

terms of koff the rate of cross-linker unbinding and the distance between consecutive

binding sites of those cross linkers along the filament ∆x.

Performing the integral in Eq. 3.4 in the limit of small F/µ and φ (see Ap-

pendix B), I obtain

r−1 =
4

Dβ2F 2φ4

(
τφ2

2g1

eηφ + ηφ− 1 + e−ηφ
)
, (3.5)
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where I introduce the dimensionless parameters τ = F/µ, η = g1g2β
√
κµ, with g2 ≈

4.8 relating defect size to the kink angle it produces: ` = g2

√
κ
µ
φ (see Appendix B).

The pair production rate r vanishes as φ goes to zero since the potential barrier width

diverges as 1/φ2. Conversely, very large angle kink production is also suppressed

(r → 0 as φ → ∞) due to the increasing energy of the loop. The rate of pair

production has a maximum at a finite angle – see Fig. 3.2. I obtain a prediction

for the most commonly produced kink angles in z-bends as a function of material

parameters of the bundle and the applied compressive load. In the limit of weak

compression, the maximum loop pair production rate rmax (z-bend formation rate)

occurs at angle φ? (see Appendix B for details):

φ? = η−1 log

(
6g1η

2

τ

)
(3.6)

rmax =
D

3

τ log
(

6g1η2

τ

)
2βκ

2

(3.7)

The production rate of the z-bends increases as the compressive force squared and is

rather sharply peaked – Fig. 3.2 – as a function of angle, suggesting that, for fixed

material parameters, including bundle sizes, one expects to observe a narrow range

of z-bending angles. The most probable z-bend angle scales roughly as kBT/
√
κµ;

the binding energy of the linkers determines the typical observed angles for bundles

of a fixed number of filaments. Finally, as the bundle size grows, the effective κ

increases, driving the z-bend angles to zero.

We now examine the production of braid/anti-braid pairs in a three-filament

system. Within the lowest energy configuration of the braid, two of the filaments

follow the same trajectory, allowing us to reduce the problem to that of studying

two filaments in 2D. We call the case of two filaments with equal bending moduli
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a pseudobraid, reserving the name braid for the more physical but analytically less

tractable case unequal bending moduli κ1 = 2κ2. See Ref. [163] for further details.

Unlike in the case of loops, only the magnitude of the kink angles produced by the

braid pair must be equal. The kink angles generated by braids thus do not have to

form z-bends; in fact, the lowest energy state will be a u-bend as shown in Fig. 3.1B.

This energy is minimized when the two defects are close to each other and localized

in the middle of the bundle, since this provides the greatest shortening in response to

the force. I speculate that braid defect co-localization is the primary reason for the

rarity of u-bend observations as compared to z-bends (see Ref. [163]). The u-bends

could be easily misinterpreted as a single defect with a larger kink angle.

In minimizing the total energy of the bundle (see Appendix B), it is convenient

to introduce a dimensionless parameter ζ = µa2

κ
, where a is the spacing between the

centerlines of the filaments enforced by the cross linkers. We expect this distance

to be the sum of the linker size and twice the radius of the filament’s cross section.

Using the same parameters, I also introduce a dimensionless applied force f = FRa
κ

.

We find that, up to a critical compression f ?(ζ), implicitly determined by

∫ 1

0

(ζ−
√

2ζ)2

f2 tdt√
1− (ζ−

√
2ζ)2

f2 t2
√

1− t
=
√
ζ/2, (3.8)

the minimum energy configuration of the braid/antibraid pair remains that of an

unkinked bundle as shown in Fig. 3.1F. This is distinct from the case of loop pairs

where low-angle loops can form at any compressive load. For f > f ?(ζ), the defect

pairs produce finite-angle kinks – Fig. 3.1F – resulting in a u-bend whose angles grow

with f .

Solving Eq. 3.8 numerically (which agrees with the numerical minimization of
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the energy Eq. 3.1), I obtain a phase diagram spanned by compressive loading f

and ζ shown in Fig. 3.3. Above and to the right of the boundary, u-bends are

present. One can interpret the diagram as a graph of the critical loading versus

linker binding energy µ at fixed κ and a. The non-monotonic behavior of the curve

can be understood as follows. For sufficiently large µ, kinks appear at braids even at

zero compressive stress, but as the linker binding energy decreases, kink formation

is energetically unfavorable unless the shortening of the bundle under load produces

a sufficient energy reduction. For small enough linker binding energy, the defected

regions extend in arc length, thereby becoming more bending compliant so that

there is a re-entrant kinking regime at small µ. The behavior of the more physical,

asymmetric case (green circles) is similar to that of the pseudobraid (red circles

and blue line), but the transition is shifted to higher compressive loads due to the

increased bending rigidity of the system.

Upon increasing the compressive load, I predict that bundles should first shorten

by producing loop pair defects creating z-bends, as found in the collagen bundles

seen in Fig. 3.1A. Assuming the size of the bundles is known and controlled the

resulting z-bends will be generated with reproducible angles, due to the peak in

stochastic defect production rate with angle as shown in Fig. 3.2. We expect the high

polydispersity of typical biopolymer filament bundles to spread out the distribution

of z-bend angles. But since the angle of maximum production φ? ∼ kBT/
√
κµ, for a

bundle of N filaments so that κ ∼ N2, I expect δφ? ∼ δNN−2. The peak in the z-

bend angle distribution may be hard to observe without some bundle control unless N

is large. If the cross-linking energy is sufficiently large, the z-bend angles will vanish

as φ ∼ 1/µ1/2. However, as the distance R between the two loops increases, I cannot

continue to neglect the increase of the equilibrium loop angle shown in Fig. 3.1E,
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Figure 3.3: Numerical minimization of the energy (red dots) and analytical prediction

implicitly given by Eq. 3.8 for a symmetric pseudobraid κ1 = κ2. The numerical

solution of the more complex, three-filament braid with κ1 = 2κ2 (green circles,

green dashed line is a guide to the eye) shows that the transition is shifted to higher

compression.
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which may lead to observable angles at large R, even if they were unobservably small

angles at formation.

At higher compression, the u-bends seen in Fig. 3.1B will also be created when

braid pair production is reduced to thermal energy. Using estimates of ζ for various

filament bundle systems, I find F-actin and collagen to have ζ ∼ 0.1, so uncom-

pressed bundles support unkinked braids. Braid pair production leading to u-bend

formation should occur for compressive forces on the order of 10 pN based on the

phase diagram shown in Fig. 3.3. DNA condensed by polyvalent ions and cross-linked

intermediate filaments have ζ ∼ 100 suggesting that there will be a number of kinked

braids quenched into the bundle. As a result, I expect these bundles to collapse by

bending at the preexisting braids, which introduce more bending compliant regions

via cross linker reduction. Finally, I note that under sufficiently large forces, Euler

buckling can take over from braid-generated u-bend formation. We estimate that

Euler buckling should be found for FRa/κ ≈ 5 (see Appendix B) for ζ ≈ 0.1 (and

this value only grows for larger ζ) which is well above the region shown in the u-bend

phase diagram, Fig. 3.3.

The most direct test of the theory should be found in compression experiments

on individual bundles. For collagen and F-actin the necessary compressive forces

are on the order of 10pN, suggesting laser trapping experiments should probe the

relevant force scales.
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CHAPTER 4

Braiding dynamics in semiflexible filament

bundles under oscillatory forcing

4.1 Introduction

While in the previous chapter I considered only static external force, the situation

with time-dependent drive is more complicated. Namely, bundles possesses a vis-

coelastic response – their stress relaxation has a complex time dependence and these

systems dissipate work not only through viscous dissipation in the surrounding fluid

but also by linker unbinding. As a result, the collective mechanical response of

networks of filament bundles has a nontrivial low-frequency viscoelastic response at

frequencies below a characteristic linker unbinding rate [15, 128].

I explore here particular type of stress relaxation through the production and

movement of defects in cross-linked bundles. Previously, I have shown that bundles

support a set of topological defects – loop, braids, and dislocations [162]. The lifetime

of these defects is quite long, growing with the length of the bundle, since they cannot

be removed by local rearrangements of the cross linking on the bundle. Defects, how-

ever, can be produced in defect/anti-defect pairs by local rearrangements, and defect

pair production is predicted to be enhanced by applied compressive loads [166]. In
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this chapter, I report on theoretical studies of defect pair production under reciprocal

mechanical deformations and consider how the proliferation and motion of defects

affects the force-extension relation of a bundle in constant applied force experiments.

I point out that there is a range of bundle mechanical parameters that allows for a

nonmonotonic extension versus time curve at constant force.

The motion of topological defects plays a critical role in the long-time plastic

deformation of crystalline solids under mechanical loading. I suggest here that defect

motion plays a similar role in the slow relaxation of bundles under load. Mechanical

loading can also generate defect pair production. I first consider pair production in

cycles of compression and extension of one bundle. I then examine the force extension

relation of defected bundles by examining the extension of the bundle as a function

of time for fixed force.

4.2 Materials and Methods

To study the conformation of the bundle under the external load, I look at the

minimal energy configuration of the N -filament bundle under a force F . The energy

has three contributions:

E = −F∆L+ µ`+
N∑
i=1

∫
ds
κi
2

(
∂st̂i
)2
. (4.1)

The first term is work of the force F , extending the bundle by distance ∆L. Note

that, unlike in Ref. [166], I pick positive sign for the extensive force; a compressive

force takes a negative sign. The second term is the missing binding energy of the

cross links. Namely, if cross links are absent on the interval of bundle of length `,

I assume that the energy of the bundle is larger by µ` where µ is binding energy
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Figure 4.1: Schematic illustration: (A) A pair of braids produced under compres-

sion force F on a semiflexible filament bundle of length 2L (and comprised of three

filaments), but not separated. 2x is the size of the defected region. The filaments

are shown in blue, while the cross links are shown in red. (B) A pair of braids is

now separated under applied tension. The braids produce a kink with angle φ. 2x

is the distance between braids (including their own size – the total excess length

stored within the braid). In the lower figures I show the piece-wise linear potential

U(x) under compression (C) and under extension (D) . The left part of the potential

x < l corresponds to the production of defects, the while right x > l controls the

separation of the defects.
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per unit length. Here and throughout this work, I assume that the cross linkers are

highly inextensible so where the filament have the inappropriate spacing within the

braid, the cross linkers must be missing. I do not consider more elastically compliant

cross linkers here. The third term is the bending energy of all the filaments in the

bundle, where t̂i(s) and κi are the tangent vector and the bending modulus of the ith

filament. The integral is over the whole bundle; however, in the minimal energy state,

the part of the bundle without defects is perfectly straight, so the expression under

the integral is zero at this part – only the defected part of the bundle contributes to

the bending energy.

In this chapter, I study three-filament bundle, and a particular type of defect,

braids. Each braid can be envisioned as a permutation of the filaments within the

bundle with the understanding that the product of two such permutations does not

restore the bundle to its undefected state as the filaments remain wound about it

other. For a more complete description of the group of braid operations, please see

Ref. [162] and the references therein. The case of a single braid, or a braid/anti-braid

pair is particularly simple to analyse because in these configurations, two filaments

within three-filament bundle remain cross-linked everywhere, while the third filament

passes back and forth in between them as shown in Fig. 4.1(A,B). As a result the

equilateral triangle formed by the filaments in the plane perpendicular to their local

tangent flips by π as one moves through a single braid. The anti-braid simply flips

this triangle back to its original orientation. The simplicity of this structure allows

one to treat the two everywhere-cross-linked filaments as a single effective filament

having twice the bending rigidity of the single filaments. Then the problem effectively

maps on two filaments in two dimensions, one of which has bending modulus twice

as big as the other. I write the boundary conditions for this problem in terms of the
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tangent vector t̂. First, I have a condition that at the ends of the braid the filament

should be parallel to each other

t̂1(±L1) = t̂2(±L2) =

cos(φ/2)

sin(φ/2)

 . (4.2)

where φ is the angle that the braid forms (see Fig. 4.1B). Notice that here I have

also specified the direction of coordinate axis. The second boundary condition fixes

the position of the ends of the filaments:∫ L1/2

−L1/2

dst̂1(s) =

∫ L2/2

−L2/2

dst̂2(s) + 2a cos (φ/2) ŷ, (4.3)

where L1,2 is the length of the filament in the braid, and a is the size of the cross-link

plus two the radii of the filament (the distance between the center lines of the cross

linked filaments). In these boundary conditions, φ, L1 and L2 are subject of variation.

Since the braid/anti-braid pair is produced from undeformed state, I should have a

length conservation condition:

Lbraid
1 + Lanti-braid

2 = Lbraid
2 + Lanti-braid

1 (4.4)

I minimize the energy Eq. 4.1 subject to the conditions Eqs. 4.2, 4.3, 4.4. The results

shown here were obtained using the SciPy package in Python [75]. I discretize each

filament into 50 elements. The numerical results coming from this discretization is

previously validated by their comparison to analytic results as shown previously in

Ref. [166].
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Figure 4.2: The phase boundary in the parameter space of dimensionless torque

(vertical axis) and the dimensionless material parameter ζ = µa2

κ
(horizontal axis).

The positive values of the torque (above the dashed line) correspond to extension,

the negative (below the dashed line) to compression. Above the curve, the angle

formed by braid is zero, and below it is nonzero. The pictures represent straight, or

unkinked braid pair (upper) and a bent, kinked braid pair (lower).
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4.3 Results

4.3.1 Braid configuration under external force

Minimizing the energy Eq. 4.1, I obtain a phase diagram, which is shown in Fig. 4.2

spanned by the applied torque F (L−x)a/κ and the dimensionless parameter ζ = µa2

κ

that quantifies the propensity of the braided bundle to form a kink. The kink angle

is given by φ. Depending on ζ and the applied torque, the braid may or may not

cause a localized bend of the filament or kink, as can be seen in the figure where, at

large applied torques, I predict straight, braided bundles, as is intuitively reasonable.

If the braids move outward along the bundle, or if I decrease the applied force, the

torque acting on the kinks is reduced. In the first case this is due to the decreasing

moment arm produced by the kinked bundle while in the second case it is simply

due to the reduced applied force.

The nonmonotonic behavior of the phase boundary is perhaps the most striking

feature of the phase diagram, which was also discussed in Ref. [166]. If ζ is small,

the binding energy of the linkers is also small, allowing the braid to extend along

the bundle and thereby reduce its effective bending modulus. As ζ is increased the

braids become shorter and stiffer. When ζ is sufficiently large, however, the braid

will now kink even in the absence of an applied force in order to minimize the energy

of the bundle. Because of this effect, the large-ζ limit also exhibits kinks. I note

that this large-ζ limit occurs around ζ ∼ 3, which I believe is obtainable in some

biopolymer systems, including condensed DNA [111, 142], cross-linked intermediate

filaments [24, 61] and perhaps for collagen [143, 189, 144, 162]. I should note that I

introduced the torque with the opposite sign from that used here in Ref. [166], i.e.,
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extension is positive, compression is negative.

When I consider the case of sufficiently large values of the ζ parameter, so that

kinks exist even under non-zero tensile force, I may then investigate how the kink

angle changes in response to that loading by determining the energy-minimized con-

figuration of each kinked braid. As expected, the kink is straightened – the kink angle

φ decreases – under tension. The dependence of the kink angle φ versus applied ten-

sion is shown in Fig. 4.3 for a fixed ζ = 4 I observe that the angle versus torque of

the kinked bundle is nonlinear; the torque response of the bundle is non-Hookean. I

understand this effect to occur because the structure of the energy-minimizing braid

itself changes with applied torque so the braided bundle does not bend simply like

an effectively thicker filament.

I will later see that the force-induced straightening of the kinks allows for the

nonmonotonic behavior of the bundle’s extension versus time under a constant ten-

sile loading. This is discussed in more detail in Section 4.3.4. But first, in the

following section, I assume the torque to change weakly, so I can assume the kink

angle to be constant, which sufficiently simplifies the study of the braid/anti-braid

pair production for our analysis.

4.3.2 The piece-wise linear defect potential and the defect distribution

I have shown that the production of braid/anti-braid pairs in a compression bundle

can be mapped onto the Kramers escape problem in one dimension using a single

reaction coordinate [95, 166]. The two defects must be first produced together in

the form of defect/anti-defect pairs, which requires energy Edefect. The formation

of one defect introduces a length mismatch between the filaments involved that is
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Figure 4.3: Angle produced by braid under extension as function of the value of the

torque. Dimensionless parameter ζ = 4. The angle versus torque curve shows that

the bending response of the braid is nonlinear, unlike the linear or Hookean response

of the individual filaments.
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then compensated by the second, anti-defect. As a result, defect pair production

entails only local rearrangements of cross linkers. During this point in the thermally-

activated production of the defect pair, I may take the single reaction coordinate to

represent the total length “exchanged” between defects. Once the defects separate

so that a region of cross-linked bundle appears between them, the defects can no

longer exchange length, but they may separate along the bundle by reptative motion.

Most importantly, since the defects generate localized bends or kinks under external

loading, the motion of the defects changes the end-to-end distance of the bundle

under load. By separating the braids, the energy of the system decreases in response

to applied tension and increases in response to applied compression. During this

separation (under external loading) the distance between the defects plays the role

of the reaction coordinate.

Taking these two aspects of the problem together, I may consider the stochastic

pair production process as the thermal escape of a single fictitious particle, repre-

senting the reaction coordinate x, in an approximately piece-wise linear potential.

Before defect pair separation x < l, where l is the size of the defect at the moment

of the separation, the potential increases linearly as more length is exchanged be-

tween the defect pair and thus more cross links are removed. Understanding the

exact form of this potential would require taking into account all different pathways

leading from the properly cross-linked bundle to the bundle with braids. I make the

simplest approximation, i.e., a linear potential, motivated by the fact that I need to

remove number of cross links proportional to the size of the uncross-linked region.

Then the effective potential is U(x) = Ax, with A = Edefect/l. The energy of the

defect incorporates bending energy of the filaments, the missing binding energy of
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the cross links absent in the defected region, and the work of the applied force:

Edefect = Ebending(φ) + Ebinding(φ)− 2F (L− x) cos(φ)− 2Fx, (4.5)

where φ is the angle formed by a single braid (see Figure 4.1 ), F is a force acting on

the ends of the bundle (positive sign is chosen for the extension), 2L is a length of

the bundle. The angle φ is determined by energy minimization with respect to it. As

defects separate, x grows. The angle also changes, but as soon as x� L, this change

contributes to the energy at the next order in the small parameter x/L. I address

the explicit dependence of the angle on interbraid separation in the Section 4.3.4.

Omitting this effect, I can again write an effective potential U(x) = Al + B(x − l)
with B = 2F (cosφ− 1). Thus, I may explore the pair production process using the

potential

U(x) =


Ax, x < l

Al +B(x− l), l < x < L

∞, x > L

(4.6)

Before considering dynamics, I use this potential to consider the equilibrium distri-

bution of defects on a bundle of length L. Specifically, I consider the equilibrium

separation of two defects. Using Eq. 4.6 it is trivial to write the probability distri-

bution in this potential: p(x) = 1
Z
e−βU(x) where the partition function Z is given

by

Z =

∫ L

0

e−βU(x)dx, (4.7)

and β = 1/kBT is the inverse temperature. A straightforward calculation arrives

at the partition function written as the sum of two parts corresponding to the two

pieces of the potential

Z = Z1 + Z2. (4.8)
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with

Z1 =
1

βA
(1− e−βAl) (4.9)

and

Z2 =
1

βB
e−β(A−B)l(e−βBl − e−βBL). (4.10)

Taking the ratio of these partition sums I obtain the ratio of observable separated

braid pairs to strongly interacting and co-localized braids:

Z2/Z1 =
Ae−β(A−B)l(e−βBl − e−βBL)

B(1− e−βAl) (4.11)

From the above I see that in thermal equilibrium I expect there to be a low density of

separated braids, at least at low temperatures (T ≈ 300K). Specially, if the thermal

energy is much lower than the cross-linker binding energy (which is typically true

in biopolymer filament systems) I expect an exponentially small density of braids

(∝ e−Ebraidβ, where for known filaments βEbraid � 1. In fact, it appears that the

smallest value of βEbraid is found for DNA bundles condensed by polyvalent ions

where βEbraid ≈ 50 [111, 142, 166]. Braid pairs, however, can be generated either

during bundle formation or via cycles of compression and expansion, as would be

expected in a bundle network under reciprocal shear.

4.3.3 The nonequilibrium braid distribution in a time-dependent poten-

tial

When one applies a time-varying force, the effective potential controlling the pro-

duction and motion of the braids also changes in time. As a result, I cannot rely

on the equilibrium distribution discussed in the previous section. Instead, I have to
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solve the Smoluchowski diffusion equation for defect density ρ(t, x):

∂tρ(t, x) = D∂x [(∂x − βF (t, x)) ρ(t, x)] , (4.12)

where the force now takes the form

F (t, x) =


A(t), x < l

B(t), l < x < L.

(4.13)

During compression A(t) = Ac and B(t) = Bc. During expansion A(t) = As,

B(t) = Bs (note that Bs is negative). In the above, D is the defect diffusion constant.

I cannot solve this equation analytically, however, I can provide a qualitative analysis.

To simplify, I assume that A and B are fixed during each period of compression and

expansion. I explore how the defect production rate depends on the lengths of these

periods of compression and extension. I also estimate the maximal defect production

rate.

The transport time from 0 to l in the potential is controlled by the constant A.

This is the braid pair production rate when the braids have stored length of l. This

problem is simply the first passage time [95] to reach l in the linearly increasing

potential, which I may estimate to be

T0l =
1

D

eβAl

β2A2
. (4.14)

Similarly, I estimate the transport time from L to l. This gives an approximate

value of the lifetime of the braid pair, since when their separation returns to l they

will likely annihilate. Here I must distinguish between two limiting cases. In the

first case, I consider purely diffusive braid motion and in the second, I look at the

deterministic transport of the braids under an applied force using a mobility set by
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the diffusion constant and the Einstein relation. I find

TLl =


L2/D,Bβ > 1/L

L/(BβD), Bβ < 1/L.

(4.15)

In general, where I expect there to be both diffusive and advective defect motion, I

find that the time for defects to recombine is

TLl =
L2

D(1 + βBL)
(4.16)

In the limit of large L, TLl � T0l so that the time for distant defect pairs to come

together and potentially annihilate is much greater than their production time. If

braids are able to separate sufficiently, I expect this ordering of time scales to be

valid and thus predict braid proliferation on the bundle.

Because the production time T0l has an exponential dependence on A,

T compression
0l � T stretching

0l , (4.17)

since the A parameter is much larger under stretching than it is under compression:

Ac < As. If I choose the time-dependence of the applied force so that the stretching

time τs and compression τc satisfy the inequalities

T compression
0l � τc � τs � T stretching

0l � TLl, (4.18)

I may analyse the dynamics of the system using a few approximations.

Since the braid production rate during compression is small compared to the com-

pression time: T compression
0l � τc, then, during the compression period, the density on

the left 0 < x < l equilibrates. Since τs � T compression
0l � TLl, during the stretching

period, the probability density ρ(x) decreases near the potential maximum at x = l,
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Figure 4.4: The time evolution of the distance between two defects (red) and the end–

to-end distance of the bundle (blue) under a constant applied tensile force F = 0.9 κ
aL

plotted as a function of non-dimensionalized time. The cross linker binding energy

is µ = 4 κ
a2 .
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but it is highly unlikely that thermally excited hopping over the barrier at l occurs.

Since τc � τs � T compression
0l � TLl, the applied force is changing sufficiently

fast that the density of the right of of the potential x > l may be replaced by its

time-averaged value. Moreover, since τc � τs, density on the right of the potential

is effectively determined by the dynamics during the stretching period. Because the

compression period is shorter, the already produced braids are unlikely to be driven

together and annihilate. As a result, I conclude that the density distribution on the

left is effectively determined by the compression period and the density on the right

by the stretching period. Finally, I note that the Smoluchowski diffusion equation

requires the continuity of both the probability density and its current at the bound-

ary x = l. From these conditions, I obtain a value of the averaged density on the

right as a function of the equilibrium density on the left. This implies that with this

sequence of inequalities, the braid production and separation may be considered to

take place in a time-averaged, effective potential where the production part is set

by the compression forces and braids separate under a force related to extension.

Specifically, I consider

U(x) =


Acx, x < l

Acl +Bs(x− l), l < x < L

∞, x > L.

(4.19)

In this potential, the probability of braids on the left x < l will be proportional to

Z1 =
1

βAc
(1− e−βAcl), (4.20)

while on the right

Z2 =
1

βBs

e−β(Ac−Bs)l(e−βBsl − e−βBsL). (4.21)
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The ratio is

Z2/Z1 ≈ −
Ac
Bs

e−β(Ac−Bs)le−βBsL � 1, (4.22)

which exceeds the case of only compression by a factor of eβ|Bs|L, and the case of

only expansion by a factor of eβ(As−Ac)l – see Eq. 4.11.

4.3.4 Constant force stretching dynamics of a braided bundle

I now consider an experiment in which one stretches a previously compressed bundle

(by laser tweezers or other means) at a fixed force and determines the time rate of

change of the bundle’s length. This is akin to a step force rheological measurement,

and is closely related to determining the force-extension curve of a filament or fil-

ament bundle. Typically, in such force extension measurements, one considers the

limit of slow extension so that the observed length corresponds the thermal equilib-

rium prediction under a fixed force [106]. In this case, however, the extension of the

bundle will be time dependent even though the force is constant.

To study this problem, I minimize the energy of the bundle under a fixed stretch-

ing force. By doing so, I assume that bending of the kink angles at the braids is

fast compared to the time scale of measurement of the end-to-end distance. I do

not, however, assume that the advection and diffusion of the braids is similarly fast.

Doing this energy minimization numerically, I obtain the time dependence shown

in Fig. 4.4. The time dependence of the bundle’s extension is nonmonotonic: as

defects diffuse from each other, the bundle initially becomes shorter. This happens

due to the fact that as x grows, the L − x becomes smaller, hence, the moment

of the force decreases as well. Since the stretching force decreases, kinks become

less stretched and their angles increase (see Fig. 4.3), decreasing end-to-end distance
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∆L = 2(x+ (L− x) cosφ).

4.4 Discussion

Semiflexible filament bundles admit three classes of topological defects: loops, braids,

and dislocations. These defects are all likely to be produced in the formation of

bundles from solutions of semiflexible filaments by the introduction of cross-linking

agents. They are, however, unlikely to form spontaneously in thermal equilibrium

when the filament bundles are also chemically equilibrated with a reservoir of cross

linkers. Here I have pointed out that reciprocal compression and extension of filament

bundles, however, is capable of producing a higher nonequilibrium density of braid

defects within a bundle. The key insight is that bundles under compression can

locally buckle producing braid, anti-braid pairs. Upon subsequent extension, these

braid pairs will be driven to separate, as long as they do not immediately annihilate.

In order to ensure that braid pairs produced in the previous compression cycle (and

separated during the previous extension part of that cycle) do not annihilate during

the subsequent compressive cycle, one needs to introduce an asymmetry between

the period of compression (short) and the period of extension (long). Other cycles

of compression and extension will also produce braid, anti-braid pairs, but at lower

density. I predict that the short compression period following long extension one will

result in the maximum possible defect density.

I also examined the extensional dynamics under a fixed tensile load of semiflexible

bundles containing a braid defect pair. Here one does not observe the standard

worm-like chain force extension relation at very low frequencies. The extension of

the bundle is not controlled by the depletion of the length reservoir associated with
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the thermally-generated undulations of the bundle, but rather by the motion of the

braid defects and the bending of the kinks associated with these defects. In essence,

our predictions refer to the analog of plastic deformation in solids associated with

defect motion rather than the (entropic) elastic response of the bundle, which, due to

cross linking, is suppressed. I note that the end-to-end distance of the bundle varies

nonmonotonically with time under a constant tensile load. This somewhat counter-

intuitive result occurs due to the combination of two effects: braid separation, which

lengthens the bundle, and kink angle relaxation, which shortens it.

For experimental verification of these predictions, there is no more direct mea-

surement than compression/extension experiments on individual semiflexible fila-

ment bundles using laser or magnetic tweezers to manipulate the bundle’s stress

state [171]. In addition, one expects that the imagining experiments on compressed

semiflexible filament bundles should produce observable kinks (localized bending de-

fects) rather than the uniform curvature of the entire bundle, as would be expected

from classical Euler buckling. Although less direct in testing the predictions made

here, standard shear measurements and studies of stress relaxation in networks of

filament bundles with transient cross linkers at long times or low frequencies are

particularly relevant to the present work. I imagine that, at sufficiently long times,

stress relaxation will be dominated by plastic deformation of network comprised of

both tearing and reattachment of bundles from each other, and the plastic defor-

mation of the individual bundles themselves, presumably following the mechanisms

discussed here. I do not, as yet, understand how to distinguish these dynamics in

rheological data, and this remains one of the principal open questions related to this

work.

Other open questions involve the the mechanical compliance of the cross linkers
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and their binding kinetics. In this work, I have considered the cross linkers to be

essentially inextensible so that when they must fall off the defected regions where

the inter-filament spacing is no longer equal to the cross linkers’ length. I imagine

that cross linker redistribution and defect energies will be affected by the elastic

compliance of the cross linkers. In fact, sufficiently compliant cross linkers may even

allow for Euler buckling of the bundle under compression. Lastly, I point out that

I have assumed that cross linkers are able to bind and unbind on short time scales

compared to the observation time for both defect pair production and motion along

the bundle. When investigating bundle mechanics at sufficiently short time scales,

one must consider the possibility that the cross linker distribution is no longer in

equilibrium with the bundle in its current stress state. I leave these open questions

to future work.
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CHAPTER 5

Directed force propagation in semiflexible

networks

5.1 Introduction

As we discussed in chapter 1, the transmission of force through filamentous networks

on the mesoscale is a complex problem that cannot be directly addressed by appeals

to continuum elasticity. Understanding that, at sufficiently large length scales, a fil-

amentous network must act like a continuum elastic solid is not helpful in predicting

how that force is supported at mesoscopic length scales in the network immediately

surrounding the point of force application. The complexities associated with this

question are reasonably clear; they are related both to the spatial heterogeneity

and geometric complexity of filament interconnections and the inherent nonlinear-

ity of the filaments’ force extension relations. Biopolymer filaments are generically

strongly strain hardening under tension, but quite soft under compression, due to

Euler buckling.

A well-known system that combines both geometric heterogeneity of force-transmitting

contacts and strong mechanical nonlinearity is granular piles [103, 21, 72]. In a sand

pile, one has a complex network of force-transmitting contacts that are elastically
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nonlinear – the contacts support large compressive loading and essentially no ten-

sile loading. These granular systems generically exhibit long and quite ramified force

chains, spanning large numbers of intergrain contacts. Although the bending stiffness

of the filaments makes the analogy between filamentous networks and granular media

imperfect, one might expect similar force chains in such networks in the response to

point forces. This expectation seems to be supported by previous simulations [65, 67]

of the point force response of mikado networks and experiments on force-based in-

teractions of cells with the fibrous extracellular matrix (ECM) [105, 150]. In the

former, one sees the breakdown of the continuum elastic response on scales much

larger than the mesh size. In the latter, one observes intercellular force transmission

over long lengths, but only along particular, directed paths. Intriguingly, numerical

studies of three-dimensional filament networks subjected to large shear strains [71]

reveal the appearance of percolating tensed subnetworks that may also be related to

force chains.

In the ECM experiments, it is not clear if these long tracks of force transmission

are a generic consequence of isotropic random networks, or due, in part, to some

filament anisotropy or heterogeneity either in the form of stiffer filament bundles or

spatial variations in the networks density. Such heterogeneity may well be important.

In even slightly anisotropic networks, previous work [120, 47, 110] has shown that

there exist long-ranged buckling scars forming in the network’s response to even

uniform shearing.

Another consequence of the mesoscopic failure of continuum elasticity (by which

we mean on scales greater than several mesh sizes is that the collective point-force

response of the network is remarkably heterogeneous. Active microrheology experi-

ments [94, 87] have shown that the linear response of a bead embedded in the network
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Figure 5.1: Schematic of the setup and protocol of the numerical experiments.

(A) Pre-processing: Random placement of straight filaments (green) and free linker

molecules (not shown) in a cubic box with periodic boundaries. (B) Simulation of

the network assembly driven by Brownian motion and random formation of cross

links (pink). Subsequent equilibration of the system considering permanent cross

links and zero temperature. (C) Simulation of the quasi-static network response to a

point force (red arrow), applying zero displacement boundary conditions in the thin

outermost shell of the network (between brown and black box).
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to force varies from location to location within the network by one order of magni-

tude. Similarly, recent experiments [70] have shown that the response of the network

to a force acting on one filament is also highly heterogeneous. The displacement of

the surrounding network depends critically on which filament is pulled, and in which

direction. These complexities of the point force response are not attributable to

large-scale spatial gradients in either the density of cross links or filaments. Instead,

the experiments suggest that the inherent mesoscale structure of a network, whose

density and connectivity is, at least, statistically homogeneous or self-averaging on

long length scales, is responsible for these effects.

To better understand the peculiarities of the response of these seemingly simple

systems, we examine in this manuscript the question of force chains and the elas-

tic response of isotropic and homogeneous filament networks to point forces. These

choices allow us to assess the complexity of force propagation in the most simple

form of a random filament network. In this work, we combine the results of large-

scale, finite-element simulations with theoretical modeling to determine how a force

applied to a single point on a filament spreads out through the network. We con-

fine our studies here entirely to the static response of the system. We show via

simulation that tensile force chains exist in the vicinity of the point of force appli-

cation. We use these simulations to further characterize both the spatial structure

of the force chains and the forces they carry, paying particular attention to how the

force applied to a particular filament bleeds off into the surrounding network through

cross-linked junctions. In addition, we examine the collective response of the network

to applied point forces by determining the point force response that is measured by

low-frequency microrheology experiments in fibrous materials like the ECM.

We then turn to the theoretical approach to understanding force chains and
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the point force response of the network. We develop a self-consistent approach to

calculating the point-force response function. Finally, we compare simulation and

theory, as well as discuss our results in the broader context of intercellular force

propagation in tissues in our summary. There we address the question of whether

one can account for the observations of both long force chains and the dramatic

spatial heterogeneity of the collective response of the network to point forces within

a statistically isotropic and homogeneous filament network.

5.2 Simulations1

This section covers the large-scale, finite-element simulations we performed to study

the point force response of randomly assembled 3D networks of semiflexible filaments.

After a brief description of the conducted numerical experiments and the underlying

computational model in Sec. 5.2.1 and 5.2.2, respectively, we present the simulation

results in Sec. 5.2.3.

5.2.1 Computational experiments

A schematic overview of the setup and protocol of the performed experiments is

given in Fig. 5.1. In a pre-processing step, a number of straight filaments and free

linker molecules are randomly distributed inside a cubic simulation box with periodic

boundary conditions (Fig. 5.1(A)). We chose the filament concentration so that we

end up with 834 filaments in a box with edge length of 10µm. The number of

linker molecules is chosen as N` = 104. During the first simulation phase of t =

1The numerical simulations were done by Maximillian Grill and Wolfgang Wall,
Technical University of Munich
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1.5s, the filaments experience stochastic, thermal undulations, and cross links are

established, such that we obtain a random 3D network geometry (Fig. 5.1(B)). The

final number of (doubly bound) cross links in these assembled networks varies from

2998 to 3097 over the ten random realizations that have been considered in our

study. A subsequent relaxation phase of 1s allows the network to release some of the

prestress that has been trapped during the assembly in order to start the subsequent

force application from an equilibrium state. For this purpose, the thermal energy

kBT and the binding and unbinding rates kon and koff of the linkers are set to zero

after the assembly phase.

Finally, a point force is applied in order to investigate the quasi-static response

of the network (Fig. 5.1(C)). The point of force application is chosen close to the box

center in order to restrict the influence of the boundary conditions. Specifically, the

filament nodes in the outermost shell of the network sample (the volume between

the brown and black box in Fig. 5.1(C)) are pinned via zero displacement Dirich-

let boundary conditions. The thickness of this shell is chosen to be 0.5µm, which

corresponds to 5% of the edge length. The direction of the applied force is chosen

either tangentially to the filament axis or transverse to it. It is important to note,

however, that the point force direction is kept constant, i.e., it will not follow the

filament’s deformation. The force magnitude is increased linearly until it reaches its

maximum F = 100pN after another 1s of simulation. This is sufficiently slow to

ensure a quasi-static response of the system. At the smallest forces recorded, we do

observe viscous effects dependent on the rate of force increase, which perturb our

results for pulling forces around 1pN. Note that the third phase of the simulation,

consisting of the actual force application, is run independently several times in order

to generate our complete data set, and to observe the influence of the direction of
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force application. Starting from the identical equilibrated network configuration, the

network is thus probed along three mutually orthogonal axes with two directions

each, which leads to six numerical pulling experiments for each network geometry.

5.2.2 Numerical model

We employ the numerical model developed and applied in our previous work [28,

29, 27, 126, 129, 109, 78, 164], describing semiflexible filaments via geometrically

exact beam theory, subjected to Brownian dynamics. Thermal excitations and the

presence of cross-linker molecules give rise to network self-assembly, which produces

isotropic and uniform random 3D networks, which are to be probed by applying a

point force later on. Further details including the parametrization of the model are

given as follows.

5.2.2.1 Filament model

Each filament is modeled by nonlinear, geometrically exact, 3D Simo-Reissner beam

theory and discretized in space using beam finite elements. In terms of the struc-

tural rigidity of the filament, we thus account for axial, torsional, bending, and

shear deformation. All filaments are chosen to be initially straight with a length of

L0 = 4µm and persistence length Lp ≈ 7µm. The geometrical and material param-

eters resemble F-actin, which is a key constituent of the cytoskeleton. A complete

specification is given by the cross-section area A = 1.9 × 10−7µm2, area moment of

inertia I = 2.85×10−11µm4, polar moment of inertia Ip = 5.7×10−11µm4, Young’s

modulus E = 109pN/µm2, and Poisson ratio ν = 0.3. By default, we discretized

each filament with four beam finite elements of the Hermitian Simo-Reissner type,
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which has been presented in our recent contribution [118].

As described above, once the networks have been created by the Brownian dif-

fusive dynamics of cross links and filaments, we explore force propagation in the

network in zero temperature simulations. Other computational approaches to form-

ing filament networks starting from individual filaments have been pursued [71],

leading to similar networks without resorting to this Brownian dynamics approach

to network construction. Force propagation in these networks depends only on the

relative size of two length scales, the filament length and the distance between con-

secutive cross links along the filament. As a result, our studies of force propagation

under static loading apply equally well to filament networks at all scales including

cytoskeleton and ECM.

5.2.2.2 Brownian dynamics

To model the Brownian motion, we include viscous drag as well as thermal forces,

each distributed along the entire filament length as in previous work [29]. Viscous

forces and moments are computed assuming a quiescent background fluid and indi-

vidual damping coefficients for translations parallel and perpendicular to the filament

axis, as well as rotation around the filament axis. Thermal forces are determined from

the stochastic Wiener process in accordance with the fluctuation-dissipation theorem.

Finally, an implicit Euler scheme is used to discretize in time and a Newton-Raphson

algorithm solves the resulting nonlinear system of equations. Further details on this

simulation framework including all formulae can be found in Ref. [29].

Here, temperature is set to T = 293K and the dynamic viscosity of the quiescent

background fluid to η= 10−3 Pa s. The base time step size is chosen as ∆t = 0.01s,
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which is augmented by an adaptive time stepping scheme that reduces the time step

size whenever necessary.

5.2.2.3 Cross-link model

Our numerical model tracks linker molecules explicitly as they switch between three

possible states: free, singly bound, or doubly bound. All details on the linker model

can be found in the original publication [129]. Free linker molecules experience

Brownian motion until eventually all binding criteria are met and they establish a

first, and later possibly a second, connection to a filament. In the doubly bound

state, i.e., a cross-link spanning two filament binding spots on different filaments,

each linker is treated as an additional, very short beam element, which can transmit

forces and moments between the filaments. We do not prescribe a preferred binding

angle between the filament axes that needs to be met for binding. However, due

to the rigid connection to the filaments, the cross links act to maintain the specific

angle(s) that were present at the time of binding. As such, these short filaments

(the cross linkers) behave more like α-actinin or other bundling cross linkers than

they do act like filamin, which is known to form quite flexible hinges. The binding

decision is made based on a given binding rate and a distance criterion that takes

into account the spatial extent and thus action range of the linker molecule. Here,

the length of the linker is chosen to be L` = 0.1µm (with a tolerance of ∆L` = 2nm)

and binding spots are assumed to be located equidistantly along the filament with

a spacing of ∆sbs = 0.1µm. During the assembly of the networks, the binding and

unbinding rates are set to kon = 105s−1 and koff = 0s−1 in order to speed up the

network generation process.
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5.2.3 Simulation results

All the simulations were performed by means of the parallel, multi-physics, in-house

research code BACI. [2] The following simulation results aim to characterize the

collective point force response of the system, the resulting deformation and the stress

state inside the system. In particular, we explore how the applied external force

propagates through the system.

5.2.3.1 Force-displacement curves and effective spring constants

Fig. 5.2(A) shows the measured force-displacement curves for 10 different network

geometries with two axial and four transverse pulling directions each, i.e., for a total

of sixty numerical pulling experiments. The response from both the axially (red)

and transversely (blue) applied point forces reveal a highly nonlinear, hyperelastic

behavior. Generally, we observe significantly smaller local stiffness in the regime of

low forces (see magnified part on the left of Fig. 5.2(A)) as compared to the high-force

regime, which yields a pronounced strain hardening behavior. To further characterize

and investigate the system response, we compute the local, effective spring constant

as the slope of each curve, both for the low- and high-force regime as indicated by

the green and orange triangles, respectively. Specifically, we use the first two data

points of each curve to compute the slope at zero force and the two data points with

largest force values of each curve to compute the slope in the high-force regime.

The resulting distributions of the effective spring constants in both regimes are

shown in Figs. 5.2(B) and 5.2(D). On average, the effective stiffness for high forces

is approximately one order of magnitude higher than for low forces. In addition,

the shape of the distribution changes from a bell shape with fat right tail for low
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Figure 5.2: (A) Force-displacement curves for 10 different network geometries with 2

axial (red) and 4 transverse (blue) pulling directions each, i.e., a total of 60 numerical

pulling experiments. The inset on the left shows the magnified low-force regime. The

green and orange triangle indicates the calculation of the effective spring constants

for the low- and high-force regime, respectively. (B,D) Histogram of effective spring

constants for the low-force and high-force regime respectively and (C,E) the same

data broken down into axial (red) and transverse (blue) pulling.
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Figure 5.3: Close-up views of the filament being pulled at (green) by a point force

(black arrow). All other filaments in the network are shown in gray. (A) Equilibrated

state, i.e., point force magnitude F = 0. (B) Axial loading at F = 1pN. (C) Axial

loading at F = 100pN. (D) Transverse loading at F = 1pN. (E) Transverse loading

at F = 100pN.
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forces, to a rather broad and uniform distribution for high forces. Breaking this

down into axial and transverse pulling experiments results in the histograms shown

in Fig. 5.2(C) and (E). In the low-force regime (Fig. 5.2(C)), this clearly reveals a

strong dependence on the pulling direction relative to the filament orientation. On

average, the stiffness values observed for tangentially applied point forces are a factor

of 2.6 higher than for transverse point forces. This is an expected result, because

slender, semiflexible filaments typically have a significantly larger axial stiffness than

(effective) bending stiffness, making them much more compliant under transverse

loading. In the high-force regime (Fig. 5.2(E)), the picture is less clear and the

difference between both cases is reversed. A close look at the deformed states of the

network (see Fig. 5.3 for an example) suggests a reason for this change. When a

filament is pulled transversely, it deforms as shown in Fig. 5.3 (E). In effect, at high

force the pulled filament (green), after becoming sharply bent, might be thought of

as two axially-tensed filament halves, each of which may generate its own tensile

force chains and thus becoming stiffer to further pulling. When the filament is

pulled axially, however, this effect is weaker – see Fig. 5.3 (C). In that case, we

surmise that the load is imperfectly transferred to two tensile force chains, leading

to a smaller increase in the collective stiffness of the system to these large forces. We

speculate that the reversed effect of slightly higher mean effective stiffness in the case

of transverse loading might originate from the fact that the load is distributed more

evenly on both branches and thus involves a larger fraction of the entire network for

high forces.
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5.2.3.2 Comparison of the resulting displacement field to the analytical

solution for a linear elastic continuum

In this section, we characterize the resulting displacement field in the filament net-

work, and compare it to the analytical solution for an infinite homogeneous, isotropic,

linear elastic continuum. For an isotropic elastic continuum, the displacement ui of

each point xi of the medium with Young’s modulus E and Poisson ratio ν under the

action point force Fi at the origin obeys the equation [99]

(uixi)|~x| =
1 + ν

2πE
(Fixi). (5.1)

Fig. 5.4 characterizes the resulting displacement field in the network at a point

force magnitude of (A) F = 2pN, (B) F = 10pN, (C) F = 20pN, and (D) F = 100pN.

Each scatter plot contains the data of 2000 nodes in the filament network. These

plots show the correlation between the scalar products (uixi) and (Fixi), where ~F

denotes the applied point force vector acting at the origin and ~u and ~x denote the

displacement and position vector of a particular point in the network. Whereas the

analytical solution for a homogeneous, isotropic, linear elastic continuum would be

a straight line with the slope equal to (1 + ν)/(2πE) (see Eq. 5.1), the simulation

results for the filament network show an entirely different behavior.

Irrespective of the force’s magnitude, there is a high concentration of points

around zero displacement, indicating that a large fraction of the network is barely

influenced by the applied point force. The remaining data points become distributed

more widely upon increasing the force magnitude. Only for the smallest force value of

F = 2pN (Fig. 5.4(A)) can one find a linear feature consistent with the solution from

continuum elasticity. We show this as a guide to the eye with a black, dashed line.

Note also the asymmetry of the data with respect to the origin, which again increases
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with the force magnitude. It may be explained by the strong asymmetry of the

filaments to bear tensile versus compressive loads. Altogether, one may conclude –

on the mesoscale considered here – the point force response of a semiflexible filament

network is conceptually different to the response of a continuous elastic medium,

even in the regime of small forces. We now consider other ways to characterize the

distribution of forces within the network.

5.2.3.3 Distribution of axial force in the network

To characterize the stress state of the entire filament network as a result of point

force application, we report the distribution of axial force measured at the center of

each finite element. Fig. 5.5 compares, on a semi-log scale, the distribution obtained

after the equilibration phase (blue) with the one obtained for an applied point force

magnitude of F = 100pN (red). In order to obtain more data points in the long high-

force tail of the distribution, we have included data from thirty numerical pulling

experiments.

As expected, the reference distribution of axial forces in the equilibrated state has

a sharp peak near zero force, with mean value and standard deviation−0.006±0.1pN.

Applying the point force significantly broadens and shifts the distribution towards

tensile, i.e., positive force values with mean value and standard deviation 0.3±1.9pN.

Also, the skewness increases by more than two orders of magnitude, reflecting the

well-known, strong asymmetry between tensile and compressive force transmission

in semiflexible filaments. The median, however, of that distribution changes only

very little from −0.003pN to 0.007pN when compared to the significant increase of

the mean value. This indicates, once again, that the vast majority of the filaments in
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the network remain almost unaffected by the applied point force. Together with the

long tail of the distribution, it provides evidence for the existence and importance of

tensile force chains.

5.2.3.4 Force propagation via force chains

Fig. 5.6(A) shows the concept of force chains to be used for the characterization

of force propagation in filament networks. Filament segments with a total elastic

energy per finite element above 0.75aJ, 0.25aJ, and 0.075aJ are highlighted in red,

blue, and green respectively, while all other filaments are depicted as thin, gray lines.

Choosing and varying this threshold value allows one to track force transmission from

the point of force application to the support at the boundaries. The resulting force-

chain structures are typically connected, and span cone-shaped subregions of the

network volume. To get a clearer picture, all other untensed filaments are hidden in

Fig. 5.6(B). Cross links supporting a force greater than a threshold of 8pN are also

shown in pink to demonstrate that the tensile force chains pass between filaments

via such highly loaded cross links. Finally, Fig. 5.6(C) shows an overlay of three

different pulling directions and the resulting force chains distinguished by color. All

the simulation snapshots shown in Fig. 5.6(A)-(C) correspond to the highest point

force magnitude F = 100pN used in the numerical experiments.

Since the threshold value is fundamentally arbitrary, it is helpful to look at

changes of force-chain-related quantities as function of that threshold. The most

basic quantity associated with the force chains is the fraction of the total filament

length with tensile loading above the chosen threshold. This quantity, which can be

computed at the level of individual finite elements, simply measures how much of
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the network (by filament length) is sufficiently tensed to reach the chosen force-chain

criterion. Specifically, we calculate the total length of those finite elements whose

tensile loading exceeds the threshold and divide that by the total length of all finite

elements in the network. Fig. 5.6(D) shows a double-logarithmic plot of that fraction

of the total filament length making up the force chains as a function of the applied

point force magnitude for three different threshold values (dotted, dashed, and solid

lines). The colors indicate six pulling experiments with different point force direc-

tions. The smallest threshold value 0.01aJ is chosen such that it is exceeded by a

small fraction of filaments already for small point force magnitudes (dotted lines).

We observe that the corresponding filament length fraction approximately increases

with the square root of the point force magnitude in the high-force regime. A second

threshold of 0.1aJ is exceeded only for intermediate to high point force magnitudes

and the corresponding filament length fraction seems to increase linearly for high

force values. The highest threshold value of 1aJ is exceeded only for very high point

force magnitudes and only in a very small fraction of the filament length.

Fig. 5.6(E) gives the complementary picture, where the fraction of filament length

is plotted as a function of the threshold value for three different values of the applied

point force magnitude (dotted, dashed, and solid lines). Again, the colors indicate

six pulling experiments with different point force directions. Naturally, as the elastic

energy threshold approaches zero, the entire network is activated, and so all curves

collapse to unity. For the smallest chosen force magnitude 2pN, we observe a rapid

decrease of the filament fraction decaying approximately ∼ E−6 at large E. This

behavior changes for higher applied force magnitudes, where the fraction of filament

length falls off much slower, especially in the regime of intermediate threshold values.

For the largest threshold values E observed for a given force magnitude, there seems
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to be a similar behavior with ∼ E−6 decay for all three force magnitudes considered

here.

Finally, we note that the topology of the observed force chains was that of a

branching network – see Fig. 6(A,B,C). In the sixty simulations we performed, we did

not observe any loops in these force-chain networks, suggesting that such structures

are quite rare. Moreover, the force chains (at the higher threshold values) were

generally connected; as the threshold force was lowered, we did observe occasional

disconnected pieces of force chains arising in the vicinity of the main, connected

chains.

5.2.3.5 Decay of axial tension along force chains

For a detailed study of the decay of the axial force along the filaments and force

chains, we use a slightly modified setup, which is shown in Fig. 5.7(A). In addition to

all the filaments with (initial, stress-free) length L0 = 4µm (gray), one long filament

with L0 = 20µm (green) is placed along the axis of an elongated simulation box of

size 25×6×6µm. The central filament is discretized with 100 beam finite elements to

ensure a fine spatial discretization. Instead of the filament midpoint, the point force

is now applied to one of the filament endpoints and we only consider tangential tensile

loading. All other parts of the setup and protocol of the numerical experiments as

described in Sec. 5.2.1 and 5.2.2 remain unchanged. In particular, once again 10

different network geometries have been generated by random initial placement of the

straight filaments, simulating the dynamic assembly driven by Brownian motion, and

a subsequent equilibration simulation.

Fig. 5.7(A), (B), and (C) show simulation snapshots of the same pulling exper-
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iment at three different point force magnitudes of F = 100pN, F = 50pN, and

F = 2pN, respectively. All filaments in the force chains for an elastic energy thresh-

old (per finite element) Eel,ele = 0.1aJ are highlighted in blue. This already reveals

that the perturbation of the network in form of the applied point force is transmitted

along a few paths of cross-linked filaments in the vicinity of the location of force ap-

plication. From the persistent wavy form of the left half of the central filament even

for very high point force magnitudes, it becomes obvious that the perturbation is

absorbed quite rapidly. Note in this respect that the force chains reaching from the

central filament to the pinned boundaries typically include a couple of cross links and

thus different filaments such that the pathological edge case of one filament reaching

from the central filament to the pinned boundary is typically not observed in this

simulation setup.

For a quantitative analysis of the tension decay along the filaments, we look at

the axial force along the central filament. The semi-logarithmic plot in Fig. 5.8(A)

shows the mean values over all twenty numerical pulling experiments obtained for

5 different point force magnitudes. In addition, the data for all twenty individual

realizations at the lowest (F = 2pN) and highest (F = 100pN) force magnitude is

plotted (with linear scale on the vertical axis) in Fig. 5.8(B) and (C), respectively.

Most importantly, Fig. 5.8(A) reveals an approximately exponential decay of the

average axial tension with increasing distance from the location of force application

– more or less irrespective of the applied force magnitude. Second, the slope of the

curves and therefore also the characteristic decay length, varies slightly over the five

different applied force magnitudes with the fastest decay being observed for the small-

est force magnitude. Finally, from looking at the data for each individual realization

in Fig. 5.8(B) and (C), a characteristic step-wise decay behavior is revealed. This
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can be explained by the fact that tensile force is transmitted to other filaments at the

(randomly distributed) discrete locations of cross links along the filament axis. To

conclude, this analysis confirms the rapid absorption of tension along the filaments

in a quantitative manner, and reveals an exponential decay, which is consistent with

the theoretical calculations presented in the following section.

5.3 Analytical model

We adopt a simple model of semiflexible filament networks that is often referred to

in the literature as a mikado model [64, 66, 65]. This class of network models imag-

ines that the system is composed of initially straight, stiff filaments cross linked by

permanent bonds that allow for free rotation of the filaments at these connections.

Typically such models are treated in two dimensions. We do so as well, except in

specific instances where we consider three dimensional extensions; these are explic-

itly noted. Inextensible filaments are placed one by one in a cube of volume L3,

truncating at the boundaries. Intersecting filaments are then cross-linked together,

creating a collection of filament segments that form the network. The lower coordi-

nation number of our model differs from those of previous studies on force chains on

lattices [103, 25]. As mentioned above, we study this model in two dimensions. We

believe that this choice is not important for our analysis of force balance at a given

cross-linked node in the network. Dimensionality is important when discussing the

isostaticity condition in the network [170, 114, 82]. It is also likely to be important

in its effect on how branching force chains interact with each other. In three dimen-

sions, we expect them to more rarely intersect than in two. We briefly comment on

these points in the conclusions.
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The mechanics of each filament is controlled by its bending rigidity κ and its lon-

gitudinal modulus µ. In thermalized networks of effectively inextensible filaments,

these two elastic constants are actually connected. The filaments bend and therefore

contract under thermal fluctuations, leading to an entropic effective longitudinal

spring constant kentropic ∼ κ2/(kBT`
3) [107]. Here we treat the longitudinal com-

pliance µ as a simple phenomenological constant. For a large number of regular

filament networks, one can compute the collective elastic constants in terms of these

filament-level elastic quantities [112, 113], as well as for random elastic gels [107].

The Hamiltonian density for a filament segment (directed along x̂ axis) spanning

two cross linked sites on that filament is given by

δH
δs

=
µ

2

(
δ`

δs

)2

+
κ

2

(
δθ

δs

)2

, (5.2)

where δ`(s) is the extensional deformation of the filament as a function of arclength

s, and δθ(s) the change in angle of local filament tangent with respect to the x-axis.

In the presence of an applied force f , a length scale
√
κ/f emerges in the system,

which may be relevant at high forces. In the absence of applied force the system

admits an inherent length scale:

`bend =
√
κ/µ, (5.3)

governing the competition between bending and stretching in the network. The

length `bend sets a tension absorption length, to be confirmed later. Incidentally,

`bend also represents the crossover length for ensemble-averaged semiflexible net-

works to shift from non-affine to affine elasticity [66, 65]. The lowest energy modes

of the mikado model involve filament bending. In one limit where this bending en-

ergy is taken to be zero, these result in so-called floppy modes [69], or zero-energy

deformations of the network.
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Force propagation within the network depends strongly on the boundary con-

ditions imposed at the ends of the filaments. To illustrate this point, consider a

situation where, in the undeformed state, the central filament (along the x axis) is

crossed by a number of filaments normal to that central filament. If one were to

pull on the left end of the central inextensible filament, while leaving the right end

free, one would expect that the displacement of the network would resemble a sort

of “bow and arrow” configuration, in which each crossing filament bends and that

bending transfers the tensile loading on the central filament to these crossing ones.

The displacements of each of these cross-linked points would be equal but nonzero.

On the other hand, if one were to pin the right end of the central filament, these dis-

placement would all vanish and the tensile load would be perfectly transmitted along

the central filament. Another way that the connection to the boundary can play a

role is in the excitation of topologically protected surface modes of the network [191].

We do not consider such surface states here. In our calculations, we assume that the

filament is not directly pinned to the boundary, except where explicitly noted. As

long as the tension applied to the filament in question has been transferred to the

rest of the network before coupling to the boundary, we expect that the effect of the

boundary condition should be small.

5.3.1 Self-consistent theory of tension propagation within linear response

We begin by treating the filaments as linear elastic elements, but accounting for their

different responses to longitudinal and bending deformation. The bending rigidity of

the filaments eliminates the floppy modes of the network. We now apply a tension τ

along a particular filament within the network at an arbitrary point of the filament.
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The point where this force is applied is displaced by ∆x along the x̂ axis. In the

following, we use a self-consistent approach to compute the collective linear response

of the network to this force by computing

k‖ =
τ

∆x
. (5.4)

The self-consistency condition is invoked by demanding that the effective spring con-

stant of the particular filament to which we apply the force, called the central filament

hereafter, is equal to the one of all other filaments cross-linked to it. The validity of

this approximation rests on the assumption that the tension in the crossing filaments

are all selected from the same distribution, and that there are no correlations in those

tensions. The former seems reasonable for a statistically homogeneous network. The

latter is not obviously valid, especially if there are a large number of closed paths, or

loops, in the network along which tensions may propagate. Thus, we do not expect

the self-consistent approach to remain valid for the case of regular lattices, where

such loops abound.

Now, we consider force balance at one node on the central filament labeled i –

see Fig. 5.9. As shown in the inset of that figure, there are six forces acting on the

node on the central filament, shown in blue and green. We treat these forces as

being linearly related to the displacements of the nodes. Specifically, the longitudi-

nal springs associated with the extension of the crossing filaments (shown in black)

have an effective Hookean spring constant k‖, which takes into account both the

longitudinal compliance of that filament and the displacement of other nodes in the

network. This spring constant will be determined self-consistently in the following

calculation. This Hookean spring generates the forces T×i and T̃×i shown in green in

the inset of Fig. 5.9.
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In addition to this force, there is a force associated with the bending of the

filament crossing the central one at node i. This spring constant, k⊥ ∼ κ/`3
c , is

proportional to the bending modulus of the filaments and inversely proportional to

the distance between consecutive cross links along a given filament, `c [187]. The

movement of the neighboring nodes can be taken into account by a diminishing of

this constant: k⊥ → εk⊥ for 0 < ε < 1. This bending spring generates the force

F×i (shown in blue). The central filament may also bend, generating a displacement

of node i in the vertical direction ∆yi. Using the same k⊥, this produces the force

F c
i = k⊥∆yi. We expect that the bending modulus of the central filament will not

be affected by the motion of the surrounding nodes, so that k⊥ > εk⊥ is fixed.

We now apply tension T ci to the filament segment to the left of the node and

in the left direction. Writing down the force-balance conditions along the X and Y

axes, we obtain:

−T ci + T ci+1 + (T̃×i − T×i ) cos θi + F×i sin θi = 0, (5.5)

(T×i − T̃×i ) sin θi − F×i cos θi − F c
i = 0. (5.6)

The forces, written in terms of displacements of node i, are given by:

F c
i = −k⊥∆yi, (5.7)

T̃×i − T×i = −k‖(∆xi cos θi −∆yi sin θi), (5.8)

F×i = −εk⊥(∆xi sin θi + ∆yi cos θi). (5.9)

After some algebra we obtain

T ci − T ci+1 =
εk‖k⊥ + (k‖ cos2 θi + εk⊥ sin2 θi)k⊥

(k‖ sin2 θi + εk⊥ cos2 θi + k⊥)
∆xi. (5.10)

To connect the displacements of the ith and (i+ 1)th nodes (counting to the left),

we include the Hookean extensibility of the central filament segment between these
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nodes to write

T ci = ks(∆xi−1 −∆xi). (5.11)

For many biopolymers, at low forces the longitudinal compliance is dominated by

the pulling out of thermally generated undulatory modes. In that case, the Hookean

spring constant introduced above in Eq. 5.11 can be related to the bending modulus

and temperature via ks = 6κ2/kBT`
4
c [107]. However, nothing in the following anal-

ysis requires this, and the calculation applies equally well to athermal systems. We

solve Eqs. 5.10 and 5.11 numerically to find the self-consistent solution for k‖(ks).

This solution is shown in Fig. 5.10, where we plot the effective longitudinal re-

sponse k‖ of the network as a function of the segment longitudinal spring for different

numbers of cross links N and for pinned (solid) and free (dashed) boundary condi-

tions. Both spring constants are scaled by the underlying bending spring constant

of the network k⊥. On the log-log plot, we observe that for small longitudinal spring

constants, the collective longitudinal spring constant of the network grows ∼ k
3/4
s .

In this region the behavior of k‖ does not depend on the number of cross links or the

boundary conditions on the filament. For larger ks we observe the transition of k‖

to a plateau for free end boundary condition. There is linear growth in the case of

a pinned end boundary condition. This transition occurs at a characteristic spring

constant that depends on the number N of crossing filaments, as shown in Fig. 5.10.

In addition to this numerical solution of the self-consistent equations, there are

two particular cases that admit a straight-forward analytic solution. It is instructive

to look at them to directly observe in detail how tension propagates along the central

filament. The first case applies to perfectly inextensible filaments, ks → ∞. The
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second is a scale-free solution, i.e., one that is independent of the total number of

filaments cross linked to the central one, N . We refer to this solution as a critical

point. The case of the inextensible filament leads to a constant ∆xi = ∆x for all i.

Summing Eq. 5.10 for all i we obtain

T c0 − T cN = ∆x
N∑
i=1

εk‖k⊥ + (k‖ cos2 θi + εk⊥ sin2 θi)k⊥

(k‖ sin2 θi + εk⊥ cos2 θi + k⊥)
. (5.12)

Imposing self-consistency for k‖ forces that spring constant to satisfy

k‖ =

〈
N∑
i=1

εk‖k⊥ + (k‖ cos2 θi + εk⊥ sin2 θi)k⊥

(k‖ sin2 θi + εk⊥ cos2 θi + k⊥)

〉
. (5.13)

Note that the random angle θi at each node is assumed to be uncorrelated with the

other angles , so each average is independent of the others. Thus, we find

k‖ =
N

2π

∫ 2π

0

dθ
εk⊥k‖ + k⊥(k‖ cos2 θ + εk⊥ sin2 θ)

k‖ sin2 θ + εk⊥ cos2 θ + k⊥
. (5.14)

After performing the integral and solving the self-consistent equation we obtain

k‖ =
1

2

(
−2k⊥N + k⊥N

2 + εk⊥N
2
)

(5.15)

+
1

2

(√
(2k⊥N − k⊥N2 − εk⊥N2)2 + 4N2εk⊥k⊥

)
.

In the limit of large N , this simplifies to

k‖ = (k⊥ + εk⊥)N2. (5.16)

The effective spring constant is proportional to N2.

The other case that allows for an analytical solution results from the assump-

tion that the displacements decay exponentially from node to node, i.e., ∆xi+1 =
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(1/q)∆xi for all i and for q > 1. Substituting this ansatz into Eqs. 5.10, 5.11 gives,

after some algebra,

(q − 1)−
(

1− 1

q

)
=

1

ks

εk⊥k‖ + k⊥(k‖ cos2 θi + εk⊥ sin2 θi)

k‖ sin2 θi + εk⊥ cos2 θi + k⊥
. (5.17)

This is consistent with our assumptions if, and only if, the right hand side of the

above equation is also independent of i. This requires that the dependence on the

random angles θi vanishes. The necessary condition for this is εk⊥ = k‖, which leads

to:

q2 −
(

2 + ε
k⊥
ks

)
q + 1 = 0. (5.18)

The solution of this quadratic equation defines the allowed values of q consistent with

our assumption of an exponential decay of displacements and the spring constant

relation k‖ = εk⊥. Depending whether we apply tension (a) between nodes or (b)

directly on the node, we get (a) k‖ = T c0/∆x1, or (b) k‖ = T c1/∆xN . Thus, in the

first case (a)

k
(a)
‖ = ks

(
1− 1

q

)
, (5.19)

and in the second case (b)

k
(b)
‖ = ks(q − 1). (5.20)

We obtain two equations for roots of the polynomial q1,2. One for case (a)

q2
a −

[
2 +

(
1− 1

qa

)]
qa + 1 = 0, (5.21)

and one for case (b)

q2
b − (2 + qb − 1) qb + 1 = 0. (5.22)

The first (a) gives us the roots

qa = 1, 2. (5.23)
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The second (b) gives us a linear equation for qb, having the single root

qb = 1. (5.24)

These roots are now independent of the number of crossing filaments, which means

that the decay of tension and displacement along the central filament is independent

of filament length at this critical point. This ansatz provides an analytic solution.

To test whether that solution is unique, we can compare it to the results of our

numerical solutions of Eqs. 5.10 and 5.11. We did not find other numerical solutions

at or near the critical point that differed substantially from the analytic one. In fact,

it appears that the exponential tension decay is a robust result in this region.

The solution q = 1 corresponds to the previously considered case of inextensible

filaments, which have equal displacements at each node. The other solution, q =

2, is consistent with the assumed exponential decay of those displacements. At

every node, the magnitude of the tension falls by a factor of 2, i.e., T ci+1 = T ci /2.

Substituting this tension relation into the force balance equation for the x̂ direction,

we obtain

(T̃×i − T×i ) cos θi + F×i sin θi = T ci /2, (5.25)

which means that the tensile force exactly splits between the crossing filament and

the central filament at each node.

5.4 Conclusions

Experiments on the force propagation between cells in a filamentous extra-cellular

matrix suggest that forces are transmitted over long distances along particular path-

ways. This observation raises the question: do these force pathways arise naturally
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in randomly structured filament networks, or does the ECM contain particular struc-

tural heterogeneities, such as system-spanning subnetworks of filament bundles, that

prescribe these force-transmitting paths? In our work, we make a preliminary inves-

tigation of this question by addressing the first possibility.

Our simulations of random homogeneous and isotropic networks do indeed show

weakly branching force chains over scales of many mesh sizes in the network. Based

on the imperfect analogy between force propagation in filament networks and force

chains in granular media, such structures are not entirely surprising. We believe

that the high-force pathways observed in simulation are sufficiently similar to those

seen in granular media, so as to warrant using the same terminology. The principle

distinction between the two types of mechanical systems is that filament bending in

the network provides (typically) highly compliant elastic degrees of freedom, which,

in some sense, absorb the tensile loading on a highly tensed filament. In this way,

filament-based force chains naturally terminate over some finite distance.

The simulations demonstrate that the point-force response of the network is

highly heterogeneous. It depends on both the point of loading and the direction

of that applied force. This is, again, in qualitative agreement with the results of

active microrheology experiments in fibrin gels. In particular, we observe that the

microscopic geometry of the network near the point of loading has a large effect

on the collective point-force response of the system. Based on the numerical data

presented here, we believe that the wide distribution of linear response observed

in experiment is qualitatively consistent with our numerical results. In short, our

distribution appears to be narrower than that seen in experiment. There may be

multiple causes for this quantitative difference including necessarily smaller system

sizes explored in our numerical work. An alternative potential cause is that the fibrin
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networks used in experiment are more structurally heterogeneous on the microscale,

either due to bundle formation, or simply length polydispersity.

We also show the expected asymmetry between pushing and pulling on a filament.

This is evident in our simulations, which show force chains propagating only in

the direction associated with tension (rather than compression) in the filaments.

The importance of buckling in limiting the propagation of compressive loading is

clear. This buckling-controlled case seems to correspond to the non-affine bending

regime [67], where force chains were observed, while the linear case fits the affine-

stretching regime [67] with more a homogeneous distribution. In our theoretical

analysis of the collective mechanical response of the network, we treated the crossing

filaments as linear elastic objects, but we did not include compressive loading of

the filament to which the force was applied. In the self-consistent analysis of the

mechanical response functions, these imposition of the elastic nonlinearity affects the

mechanical properties of the entire network through the self-consistently determined

spring constants. In this way we partially included the elastic nonlinearity that

is evident in the simulations. The semi-quantitative agreement of that simplified

analysis with the simulation data suggests that improvements in handling the elastic

nonlinearity of the filaments should be explored in future work.

The effect of this nonlinearity may be weakened in highly tensed networks, where

the applied forces do not typically reach the threshold for Euler buckling. Such tensed

networks may, in fact, behave more like continuum elastic solids with regard to their

point-force response. We do not, as yet, have numerical data to test this supposition.

The recent work on a strain-induced rigidity transition in disordered elastic networks

and athermal filament networks without bending interactions [176, 158, 5, 6] points to

the idea that, quite generally, loading may push the network towards elastic behavior
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consistent with continuum elasticity. In addition, we observe in simulations that the

collective point force response depends quite strongly on the direction of pulling with

respect to the local filament tangent and that there appear to be two distinct types

of response corresponding to a low-force regime and a high-force regime where the

pulling changes the local structure of the network.

We also approached the problem of force propagation in the network through a

simple analytic model of the system using harmonic springs (of two classes: bending

and stretching) and rather simple assumptions of how forces propagate through the

network (which are supported by simulation), i.e., they do not form closed loops.

By invoking self-consistency for the collective longitudinal compliance (which takes

into account the motion of other nodes in the network) of the filament, we obtain

an analytic prediction for the point-force response measured in our numerical exper-

iments.

These calculations qualitatively agree with the simulated results in that they

predict the decay of tension along the filament of force application due to those tensile

forces being transmitted into a combination of bending and tensile loading on the

filaments cross linked the filament of force application. In one analytically tractable

limit, the self-consistent calculation predicts that tensions decay exponentially along

the filament of force application. Numerical solutions away from this point suggest

that the exponential behavior is more broadly applicable.

To quantitatively compare the predicted and observed tension decay lengths, we

need to use parameters from the numerical simulations. Using the average filament

segment length `c = 0.56µm and filament rigidity κ = 5.6×10−2pNµm2, and making

the seemingly reasonable estimate of k′⊥ = κ/`3
c , we obtain a value of ≈ 0.33pN/µm.
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This value is much smaller than the average of k′⊥ ≈ 8.2pN/µm observed in the low-

force regime of our simulations – see Fig. 5.2(D). If we also use the same analysis to

determine k′‖ ≈ 3.4× 102pN/µm, we obtain a prediction for the tension decay length

ξ ∼ 18µm, which is an order of magnitude greater than the ξ = 2.2µm observed for

the lowest magnitude force simulation – see Fig. 5.8(A). There are, however, reasons

to be skeptical of these approximations, particularly in the case of k′⊥, since one

expects the boundary conditions imposed on the other end of these crossing filaments

to significantly change the estimates. Recognizing this, we instead can take our value

of k′‖ and k′⊥ directly from the numerical data – see Fig. 5.2(C). We now obtain a much

more reasonable prediction of ξ ∼ 0.9µm. One might suggest that this discrepancy

between the first estimate of the local bending spring constant and the measured one

is attributable to prestress in the numerically simulated networks. If the filaments

are under tension T = 0.1pN (from the standard deviation of observed tensions in

the equilibrated networks – see Fig. 5.5) then, k⊥ = 4T/lc ≈ 1pN/µm, but this alone

is not sufficient. We suspect that the aforementioned uncertainties associated with

the boundary conditions within the network have an important effect.
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Figure 5.4: Scatter plots showing the correlation between the scalar products (uixi)

and (Fixi), where ~F denotes the applied point force vector acting at the origin and

~u and ~x denote the displacement and position vector of a particular point. The data

contains approx. 2000 nodes in the filament network for one (axial) pulling experi-

ment at a point force magnitude of (A) F = 2pN, (B) F = 10pN, (C) F = 20pN,

and (D) F = 100pN.
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Figure 5.5: Histogram of axial forces at the element center in the entire net-

work for 30 numerical pulling experiments and an applied point force magnitude

of F = 100pN. Note the logarithmic scale on the vertical axis.
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Figure 5.6: Analysis of force chains. (A) Force chains resulting for an elastic

energy threshold (per finite element) of 0.75aJ (red), 0.25aJ (blue), and 0.075aJ

(green) among all other filaments in the network (gray, thin lines). (B) Top view

hiding all other filaments for clarity and showing also all cross links with a force

magnitude above 8pN (pink). (C) Overlay of three different pulling directions and the

resulting force chains (for an elastic energy threshold of 0.1aJ) in one color each. The

simulation snapshots in (A)-(C) show the state for the highest considered point force

magnitude F = 100pN. (D) Fraction of filament length exceeding a certain elastic

energy threshold (per finite element) over the magnitude of the applied point force

for three different threshold values. Colors indicate 6 different pulling experiments.

(E) Fraction of filament length exceeding a certain elastic energy threshold (per finite

element) over the threshold value for three different force magnitudes. Again, colors

indicate 6 different pulling experiments.
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Figure 5.7: Simulation snapshots for an applied point force of magnitude (A)

F = 100pN, (B) F = 50pN, or (C) F = 2pN. The central, long filament is high-

lighted in green in the middle of the network of all other filaments (thinner, gray

lines) and cross links (pink). All filaments in the force chains for an elastic energy

threshold (per finite element) Eel,ele = 0.1aJ are highlighted in blue. The black arrow

indicates the applied point force and the thin shell outside the brown box represents

the region where filaments are pinned.
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Figure 5.8: (A) Semi-logarithmic plot of the axial force N along the central filament

for 5 different point force magnitudes F , using the average over 20 pulling experi-

ments. The error bars indicate the standard deviation at five exemplarily chosen,

equidistant points along the filament. The curves for all individual pulling experi-

ments at a point force magnitude of F = 2pN and F = 100pN are shown in (B) and

(C), respectively. Each pulling experiment is indicated by a different combination

of color and line style. Performing a linear fit to the mean tension decay in (C),

we obtain decay lengths ξ = 2.24, 2.99, 3.55, 3.80, and 3.67µm, in order of increasing

applied force.
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Figure 5.9: Schematic representation of forces and displacements at a single node.

The central filament (deformed, red; undeformed, dashed), pointing in the n̂ci di-

rection, is aligned along the x-axis. The crossing filament (black), in the direction

n̂×i makes an angle θi with the central filament. The network is pulled in the −x̂
direction, leading to two incoming tensions T ci and T×i , and two outgoing tensions

T ci+1, T̃
×
i at node i (see inset). In the self-consistent model of sec. 5.3.1, displace-

ments (wide gray arrow) ∆~xi are with respect to the undeformed state. We show in

the inset the free-body diagram of forces at node i including the effects of tensions

T (green) and bending F (blue) associated with the semiflexible filaments.
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Figure 5.10: Numerical solution of the self-consistent Eqs. 5.10 and 5.11 for both

free (black) and pinned (red) boundary conditions, for a total number of crossing

filaments N = 100 (solid curves) and N = 10 (dashed curves). We set ε = 1.

For small longitudinal spring constants ks the behavior of k‖ is independent of the

number of cross links N and the boundary conditions. The transition to a regime

where boundary condition affect the result occurs at higher ks for larger N .
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CHAPTER 6

The conformation of a semiflexible filament in a

quenched random potential

6.1 Introduction

Semiflexible polymer networks are well known to trap prestress in their formation.

Cross linking molecules typically lock-in curved and thus elastically stressed states

of the filaments. As a consequence of this being an out of equilibrium process,

the cross linkers may, however, trap more thermal energy – kBT – per bending

mode. The result is that cross-linking during network formation typically traps

excess free energy, which then slowly bleeds out of the system. That relaxation

process appears to lead to large, nonequilibrium stress fluctuations, and is associated

with the glassy power-law rheology of the network at very low frequencies. Such

low-frequency power-law rheology has been observed in both simulation [127] and

experiment [14]. Living cells are similarly observed to have soft, glassy, power-

law rheology [169], albeit with a distinctly different power law exponent [100, 19].

The large nonequilibrium stress fluctuations have currently been observed solely in

simulation and we suggest that they should make an intriguing target for future

experiments.
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The underlying dynamics of transiently cross linked semiflexible networks is likely

to be fundamental to the mechanics of both the active biological and passive in vitro

systems. Simulations suggest that both the stress fluctuations and this characteristic

power-law rheology of transiently cross linked networks are associated with the reor-

ganization of progressively larger sections of the network occurring on progressively

longer time scales. Understanding these dynamics presents a theoretical challenge.

In an effort to better understand the excess free energy trapped in such networks,

we consider the problem of a single semiflexible filament at temperature T interacting

with a quenched random potential. We hope that, in this single filament model, the

quenched pinning potential mimics the effect of random cross linking sites that me-

chanically couple the filament in question to the surrounding network. In particular,

we will examine the role of spatial correlations in the pinning potential, which, at

least loosely speaking, introduces an effective mesh size of the surrounding network.

We analyze the disordered-averaged conformational fluctuations of the filament and

the elastic energy stored in the system as a function of persistence length of the

filament and the correlation length of the potential. We compare these predictions

to the results of large-scale finite element Brownian dynamics simulations of such a

semiflexible filament in a random potential.

The study of the statistical mechanics of a single stiff filament in a random po-

tential recalls a number of related systems in which a low-dimensional elastic ob-

ject interacts with a quenched pinning potential. Examples include disorder-pinned

domain walls between symmetry-equivalent ground states [97], vortex lines in su-

perconductors [115, 73, 42], and the three-phase contact line associated with the

spreading of fluids as they wet a disordered substrate [130, 153]. The key distinction

between these systems and the one of current interest is the presence of a bending
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term in the elastic Hamiltonian of the filament. In cases where this term dominates

the statistical weights of various filament conformations, i.e., when filament tension

is sufficiently small or when examining bends on short enough lengths, we expect to

obtain results distinct from those obtained for these previously studied systems.

A filament interacting with a quenched random potential can be characterized

by three lengths: the filament length L0, the thermal persistence length `P, and the

correlation length ξ of the potential. We will focus on the case of stiff filaments (al-

though we introduce alternatives) in which the persistence length is typically longer

than that of the filament itself: L0 < `P. In this case, there are still two distinct

limits. One might imagine that either `P � ξ, in which case the filament should

be flexible enough to follow the twists and turns of the local minima of the random

potential. Alternatively one may consider the case where `P � ξ and the filament is

so stiff that the elastic energy cost for following the valleys of the potential becomes

prohibitive.

Similarly, the problem is endowed with two energy scales: the thermal energy T

(we work in units where Boltzmann’s constant is set equal to unity) and the typical

energy scale of the pinning potential V0. The potential has dimensions of energy per

length. The inverse length scale ν = V0/T must control the states of the filament,

allowing one to examine both “strongly pinned” on scales where L0ν � 1 versus

“weakly pinned” L0ν � 1 cases. The former is more interesting for the system

under consideration.

There are two quantities that will provide insight into the ensemble of filament

configurations. These are the effective persistence length of a filament in the pinning

potential. This length differs from the usual tangent vector correlation length of
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the filament due to its interaction with the pinning potential. It also provides a

clear target for experimental studies of labeled filaments in networks. The effect

of this extra filament bending imposed by the pinning potential (or the network in

experiment) is that the filaments store excess elastic energy. We propose that this

excess free energy is a prediction for the prestress in networks. The single filament

model thus makes two predictions for nonequilibrium networks.

The remainder of this chapter is organized as follows. In section 6.2 we describe

the filament Hamiltonian. We then provide in section 6.3 an analytical calculation

of the averaged free energy of the filament in the strong-pinning limit of a random

potential, described above. We start with the case of the completely flexible filament,

i.e., the filament without bending energy, and then move forward to the more general

case of the semiflexible filament. We then turn in section 6.5 to numerical simulations

of the system using finite element Brownian dynamics of a geometrically exact Simo-

Reissner beam model. We then summarize our results and their implications for

pre-stress in networks in section 6.6, where we conclude with a proposal for new

experiments. Finally, we provide an appendix addressing the applicability of the

replica method to the problem explaining that it provides unphysical results for

many of the measurable quantities.

6.2 The model

We consider a filament in two dimensions that is anchored at both ends. We intro-

duce a coordinate system in which these anchoring sites are at positions (0, 0) and

(L0, 0) respectively. The anchoring sites are assumed to be able to generate arbitrary

constraint forces necessary to hold the filament at these points, but to provide no
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constraint torques. The directed filament is further assumed to be free of overhangs,

allowing its configuration to be described by a function y(x). A representation for a

numerical simulation (to be described in section 6.5) of a few filaments (green lines)

interacting with the potential (heat map) is shown in Fig. 6.1. We will allow the

arclength of the filament between these two anchoring points to vary. In short, the

anchoring points are reservoirs of extra length. A simple mechanical model of this

situation can be thought of as follows. The filament fluctuates on a table whose

height topography in a uniform gravitation field gives the pinning potential. The an-

choring points may be thought of as holes in this table through which more filament

may enter or exit the table’s surface. Weights may also be added below the table to

enforce a fixed tension on the filament. We should notice that for the simulation we

use a slightly different model, with one end fixed and the other free to move in one

direction (see section 6.5). We assume that for the small conformation the difference

between these two models is negligible.

In the small bending limit ( dy
dx
� 1), which should be valid for filaments much

shorter than their persistence length, we can write the filament’s energy functional

as

E[y(x)] =

∫ L0

0

dx

{
1

2
κÿ2 +

1

2
τ ẏ2 + V (x, y (x))

}
, (6.1)

where κ is the filament’s bending modulus defining a thermal persistence length

`P = κ/T . τ is the tension imposed on the filament. V (x, y) is the quenched random

potential (with dimensions of energy per length), described in more detail below. We

have introduced the notation ẏ = dy
dx

. Then the classical partition function for such

a filament at temperature T = 1/β is given by the path integral over all trajectories
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Figure 6.1: (color online) Three tensed filaments interacting with the pinning poten-

tial, shown as a heat map with brighter colors representing higher potential energies.

The lowest filament traverses a saddle between local potential maxima. On the right

of that saddle point it curves into a deep potential minimum (dark). Similar features

may be seen in the other filaments. This is a snapshot from our Brownian dynamics

simulations, discussed in section 6.5.
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of the filament weighted by a Boltzmann factor obtained from Eq. 6.1:

Z =

∫
Dy(x) e−βE[y(x)]. (6.2)

We will later consider averages of the free energy, obtained from Eq. 6.2 in the usual

way: F = −T lnZ, over an ensemble of random potentials.

Turning to the pinning potential, we can consider two rather simple forms for

its probability distribution that allow for a finite spatial correlation length, but do

not break rotational invariance. The first is inspired by the massive scalar field

Lagrangian

PV(V ) =
1

P0

exp

{
− 1

2V 2
0

∫
d2x

[
(∇V )2 + ξ−2V 2

]}
. (6.3)

Here ξ sets the correlation length and V0 the energy scale of the potential. It is

straightforward to see that this model generates an ensemble of random potentials

in which the amplitude of each Fourier mode is selected as an independent Gaussian

random variable from a distribution with zero mean and a width that depends on

the magnitude of the wavenumber k = |k|.

We may also consider a related problem in which the correlation length is assigned

to the force rather than to the potential. Since the force is the (negative) derivative

of the potential, one can obtain the necessary Gaussian probability distribution for

force by introducing another derivative in Eq. 6.3. We obtain

PF(V ) ∼ exp

[
− 1

2V 2
0

∫
d2x ξ2(∇2V )2 + (∇V )2

]
. (6.4)

The first version of the potential in which the Fourier amplitudes of the scalar

potential are Gaussian distributed generates quite large pinning forces at short cor-

relation lengths since the slope of the potential is V0/ξ. We speculate that the second

version of the potential in which the spectrum of pinning forces on the filament is

123



Gaussian distributed is a better approximation of the physical problem since one may

then manipulate the correlation length of the potential (which is our approximation

to the mesh size of a filament network) without changing the scale of forces to which

the filament is subjected. We return to this point in our discussion. Hereafter we

refer to the first type of random potential as the energy controlled distribution while

the second will be called the force controlled distribution.

These distributions can also be expressed in terms of a probability distribution

for the Fourier components of the potentials. Working in terms of those Fourier

modes, we can also introduce another distribution with an exponential suppression

of the higher Fourier modes:

P (Vkx,ky) ∝ exp

{
−LxLy

ξ2

V 2
kx,ky

8V 2
0

exp
(
ξ2(k2

x + k2
y)
)}

, (6.5)

where the rectangular system has an area A = LxLy. This particular form of the

random potential is not convenient for analytic calculations, but generates more nu-

merically stable simulations. See Fig. 6.2 for examples of random potentials selected

from these distributions. The pinning forces generated from these potentials are

shown in Fig. 6.3. The energy controlled potential produces a complex force land-

scape with very short ranged correlations. We do not reproduce that vector field

here.

6.3 The Valley Approximation

There is a considerable simplification to be found if we assume that Lν � 1. In this

strong pinning limit, the ensemble of filament configurations is dominated by states

where the filament is confined to the valleys of the pinning potential. We indeed

124



observe this in simulations. There we also see instances in which filament crosses

from one valley to another over a saddle point of the potential. We will address

escapes from one valley to the next over saddle points later. Excluding such saddle

points for now, we assume that the potential is roughly constant along the bottom

of the valley and that the curvature of the potential in the direction orthogonal to

the path along the valley floor is also constant. Thus, the local form of the pinning

potential is given by

V (x, y) =
k̃

2
[y − y0(x)]2 . (6.6)

We have introduced a curvature (spring constant) scale k̃ = V0

ξ2 . The path of the

valley minimum y0(x) remains a random curve. To analyze the effect of the quenched

distribution of such paths, we may either calculate physical quantities of interest for

an arbitrary curve y0(x) and then average, or use the replica trick to handle the

average over the potential simultaneously with the thermal averaging. The replica

trick, however, provides unphysical results as we explain in appendix C.

6.3.1 Flexible filaments with the energy controlled distribution

We now explore the valley approximation first for a flexible polymer by setting κ = 0.

We require a finite tension so the polymer’s path can be considered to be nearly

straight. In this limit the energy of the polymer in the random potential may be

written as

Eflexible

T
=

∫ L0

0

dx

{
y(x)Oy(x) + ky(x)y0(x) +

ky2
0(x)

2

}
, (6.7)
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where we have scaled the parameters by temperature T : m = βτ and k = βk̃. We

have also introduced the differential operator

O =
m

2
∂2 +

k

2
. (6.8)

The partition function is given by the integral

Zflexible =

∫
Dye−Eflexible[y(x)]. (6.9)

Calculating this partition sum is equivalent to performing the Euclidean path

integral (with x being the time-like coordinate) for a quantum particle with a mass

m in a harmonic potential with spring constant k. In the analogous quantum problem

the effect of the pinning potential is to introduce a time-dependent force −ky0(x).

Since the integral is Gaussian, we can obtain a closed form solution for the partition

function for a particular path of the valley floor:

Z =
1√

detO
exp

[
−
∫ L0

0

dx

(
−k

2

4
y0(x)O−1y0(x) +

ky2
0

2

)]
. (6.10)

If we choose y0(x) = 0 everywhere, Eq. 6.10 reduces to the partition function of an

unforced oscillator. From this we obtain the prefactor, leading us to write

Z

ZSHO

= exp

[
−
∫ L0

0

dx

(
−k

2

4
y0(x)O−1y0(x) +

ky0(x)2

2

)]
, (6.11)

where ZSHO is the well-known result for the simple harmonic oscillator [90]. It is

then straightforward to compute the free energy F of the flexible chain in a particular

realization of the random potential, the one whose valley follows the path y0(x). This

free energy is given by

F = FSHO + T

∫ L0

0

dx

(
−k

2

4
y0(x)O−1y0(x) +

ky0(x)2

2

)
. (6.12)
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We now average the free energy in Eq. 6.12 over a distribution of the paths of the

valley floor that is consistent with our previous random potential distribution given

by Eq. 6.3. To obtain this we weight the paths of the valley floor y0(x) by

P [y0(x)] ∼ exp

[
− 1

2ξ

∫ L0

0

dxẏ2
b

]
= e−

∫ L0
0 y0Gy0dx, (6.13)

where differential operator

G = − 1

2ξ
∂2 (6.14)

incorporates the correlation length of the pinning potential ξ. This weight is analo-

gous to the Euclidean path integral of a free particle. The distribution of quenched

potentials determined by Eqs. 6.6 and 6.13 is not identical to that given by Eq. 6.3.

But the statistical weight associated with valley floors of these potentials has the

same spatial correlations as those valley floors determined by the original potential

distribution in Eq. 6.3.

The averaging over the distribution of these valley floors we obtain a correction

to the simple harmonic oscillator (SHO) free energy

[F ] = FSHO + ∆F, (6.15)

where

∆F = −Tk
2

8
Tr(O−1G−1) +

Tk

4
TrG−1. (6.16)

Here and throughout this article, we use the squared brackets [·] to indicate averages

with respect to the quenched random potential. The angled brackets 〈·〉 represent

thermal averages. We compute these traces by diagonalizing the two relevant op-

erators – see appendix C.1. We find that for long filaments (see appendix A) the

disorder-averaged free energy is

[F ] =
L0

√
V0τ

4

[
1 +

2T

ξτ

]
. (6.17)
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The correlation length of the quenched potential and the tension set a natural

energy scale that controls the free energy correction. When that potential is suffi-

ciently heterogeneous so that its valleys are quite tortuous on the scale of a Pincus

blob [138] ξ < T/τ , the pinning potential has a significant effect on the free energy.

The result above – Eq. 6.17 – cannot be extended to arbitrarily small tensions τ → 0

since our assumption that x(y) is a well-defined function breaks down. In effect our

use of the Monge gauge fails to adequately represent the polymer’s shape.

Finally, we compute the contribution to the length, as compared with the length

of the filament in the absence of the pinning potential. We recall that the contour

length of the filament

L =

∫ L0

0

dx
√

1 + ẏ2 ≈ L0 +
1

2

∫ L0

0

dx ẏ2. (6.18)

where the Taylor expansion of the integrand is justified by the fact that the filament

is nearly straight when under sufficient tension. The quantity of interest is thermal

average 〈L〉. As the integrand is nonnegative, this average 〈L〉 is necessarily longer

than the separation of the end points L0. In fact, in the absence of a bending

modulus (as assumed here), 〈L〉 is divergent; there is an infinite amount of contour

length trapped in the high wavenumber modes of deformation. It is thus useful to

define the change in the contour length of the polymer due to the quenched pinning

potential. We introduce

∆L = [〈L〉]− 〈L〉|V0=0 (6.19)

as the difference between the thermal average of the filament’s contour length when

averaged again over ensemble of pinning potentials at fixed V0 and ξ and the same

quantity with no pinning potential, i.e., the problem obtained by setting V0 = 0.
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This difference remains finite. We find that

∆L

L0

=
1

8

√
V0

τ

[
1− 2T

τξ

]
. (6.20)

Once again we see that the corrections due to the pinning potential enter through

the dimensionless ratio of the Pincus blob length to the correlation length of the

potential. The negative sign in Eq. 6.20 may appear to be counterintuitive. One

might imagine that a shorter correlation length would, in fact, create more transverse

undulations in the filament as it tries to follow the more sinuous potential minimum.

A shorter correlation length ξ would then be expected to increase ∆L. It does not.

The tensed flexible polymer has large undulations on length scales below that of the

Pincus blob. The effect of a decreasing potential correlation length at fixed V0 is to

increase the curvature of the potential, making the harmonic constraint forces on the

filament stronger. These larger forces straighten out the filament on scales below the

Pincus blob length, decreasing ∆L by straightening it out on these small scales.

The first term in Eq. 6.20 increases the ∆L of the filament with increasing po-

tential (or decreasing τ). This reflects the expected effect of the potential. In a

stronger potential the filament is forced to follow more precisely the tortuous valley

of the potential minimum and thereby use more arclength. We return to this idea in

the case of semiflexible filaments. From this analysis, we see that one may wish to

consider an ensemble of random potentials for which the typical scale of the pinning

forces remains fixed even as the correlation length is changed.

6.3.2 Semiflexible filaments: energy controlled distribution

We now include the bending modulus in the filament Hamiltonian. Using the same

valley-based approximation for the random potential, the energy of the semiflexible
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filament takes the form

E

T
=

∫ L0

0

dx

[
`Pÿ

2

2
+
mẏ2

2
+
k(y(x)− y0(x))2

2

]
. (6.21)

We introduce `P = βκ, the normal thermal persistence length of the filament. The

partition sum is then given by

Z =

∫
Dy(x)e−E/T . (6.22)

In Eq. 6.22 we restrict the paths by imposing boundary conditions such that the

filament begins and ends at x = 0, L0 respectively. Moreover, it starts and ends at

zero tangent angle with respect to the mean direction (along the x axis): ẏ(0) =

ẏ(L0) = 0.

Following our previous procedure, we may formally integrate over all paths y(x)

by introducing the inverse of the differential operator

Oκ =
`P

2
∂4 − m

2
∂2 +

k

2
(6.23)

and write the partition function as

Z =
1√

detOκ
e−

∫ L0
0 dx(− k

2

4
y0(x)O−1

κ y0(x)+
ky0(x)2

2
). (6.24)

The prefactor in the above equation is the partition function of a modified harmonic

oscillator (MHO), previously discussed in Ref. [89]. Leaving the details of that aside

for the moment, we write free energy of the system as

F = FMHO + T

∫ L0

0

dx

(
−k

2

4
y0(x)O−1

κ y0(x) +
ky0(x)2

2

)
. (6.25)

We must now average this free energy over the ensemble of paths taken by the

local potential minimum. We average over y0(x) in an ensemble where we weight
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each such path by Eq. 6.13. Doing so, we obtain

[F ] = FMHO −
Tk2

8
Tr(O−1

κ G−1) +
Tk

4
TrG−1, (6.26)

where G is defined by Eq. 6.14. Once again, we are required to compute the traces

of the relevant operators, defined by Eqs. 6.14 and 6.23. The analogous exercise for

the flexible filament was relegated to appendix C.1. We expand on that discussion

for the case of semiflexible filaments here.

First we note that one can factor Oκ into two commuting operators

Oκ =
`P

2

[
∂2 − ω2

1

] [
∂2 − ω2

2

]
, (6.27)

where we have introduced the (potentially complex) frequencies:

ω2
1,2 =

m

2`P

[
1±

√
1− 4`Pk

m2

]
. (6.28)

Expanding in a complete eigenbasis of the two operators those product make up Oκ,
we obtain a form of the disorder averaged free energy in terms of an infinite sum

over the (discrete) eigenvalues of Oκ indexed by

zn = nπ/L0, (6.29)

where n = 0, 1, . . . . The resulting free energy is

[F ] = FMHO −
ξk2

2`P

∞∑
n=0

1

z2
n

1

(z2
n + ω2

1)

1

(z2
n + ω2

2)
+
ξk

2

∞∑
n=0

1

z2
n

. (6.30)

The MHO free energy is given in the appendix C.2. If we take the limit of a

vanishing bending modulus (`P → 0), we find that ω1 →∞ and ω2 →
√
k/m. This

returns us to the previous calculated free energy (up to a constant) for the flexible
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filament in the disordered potential – see appendix C.1. As the bending modulus

increases from zero, the two frequencies become complex when `P ≥ m2/4k – see

Eq. 6.28 . The free energy, however, remains real since ω2
1,2 are complex conjugates.

Finally, we note that the product of fractions in the above summation can be

broken up into a set of three independently convergent sums. This allows one to

write the disorder-averaged free energy in terms of a sum of cotangents of ω2
1,2L0.

We consider that solution in the limit of long and stiff filaments ω1,2L0 � 1, obtaining

a simple algebraic expression

[F ] = FMHO +
1

2

kL0

2q

(ω2
2 + ω1ω2 + ω2

1)

ω1ω2(ω1 + ω2)
. (6.31)

Using Eq. 6.28, we reintroduce the original model parameters. That result is most

succinctly expressed in terms of the dimensionless parameter

φ =
√
`Pν

T

ξτ
. (6.32)

In terms of φ we find the disorder-averaged free energy to be

[F ] = FMHO +

√
kmL0

4q

1 + φ√
1 + 2φ

. (6.33)

Physically, we see that this dimensionless quantity φ is the ratio of the Pincus

blob size to the correlation length (as was observed in the flexible polymer case)

multiplied by a correction factor that incorporates the strength of the random po-

tential. Specifically, we see that this correction factor is given by the square-root of

the ratio of two length scales in the problem: the persistence length `P of the filament

and the arclength of the filament ν−1 = T/V0 required for the potential energy of

pinning to equal thermal energy. We may interpret the effect of a finite persistence

length as extending the size of the underlying Pincus blobs. This result extends the
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disorder-averaged free energy of a flexible polymer to the semiflexible regime, and

may be compared to the previous result found in Eq. 6.17. The effect of the finite

bending modulus enters in both the difference between FSHO and FMHO in the first

term on the right hand side of Eq. 6.33 and in second term on the right hand side

of the above equation, where the filament’s bending modulus enters solely through

the persistence length incorporated into the dimensionless parameter φ defined in

Eq. 6.32.

We can now calculate the effect of the pinning potential on the length of the chain

between the two pinning points. Following the same approach and using the same

definitions as used for the flexible filament, we now find

∆L = LMHO +
ξ
√

k
m
L0

8

1 + 3φ

(1 + φ)3/2
(6.34)

The pinning potential always increases the arclength, but its contribution becomes

smaller as the filament’s bending modulus is increased, i.e., for larger φ. Using the

result for the MHO and reintroducing the original model parameters, we write

∆L

L0

=
T

4
√
τκ

(
1√

1 + 2φ
− 1

)
+

1

8

√
V0

τ

1 + 3φ

(1 + φ)3/2
. (6.35)

The first term in the above expression is proportional to the ratio of the Pincus

blob size ζ = T/τ to the bending length `b =
√
κ/τ , which sets the cross over

length between a regime where tension dominates the statistical ensemble of filament

configurations at longer lengths and the bending modulus at shorter lengths. The

second term in the above expression is proportional to the ratio of the same Pincus

blob size and the length scale set by the pinning potential ν−1 = T/V0. In the

limit of very stiff filaments so that `Pν � 1 and φ � 1 we see that the first term

provides a negative change in length, as observed for the flexible polymer, but the
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second term increases the filament arclength with a contribution ∼ √ζνφ−1/2. The

interpretation is similar to that given regarding the flexible polymer. The first term

produces filament straightening as discussed there. The second term provides for the

increase of the arclength due to the tortuosity of of the potential minima.

6.3.3 Semiflexible filaments: force controlled distribution

We now consider the semiflexible filament to be interacting with the smoother, force

controlled distribution. The calculation proceeds in a manner analogous to the pre-

vious two sections. The key difference is that the differential operator appearing in

the statistical weight of valley paths G is replaced by a new one accounting for the

fact that the typical curves along bottom of the valleys of the potential now have

their own persistence length. Thus the differential operator G is replaced by

GF =
ξ

2
∂4 − 1

2ξ
∂2. (6.36)

Following the methods outlined above, we arrive at an expression for the free energy

of the filament in the quenched potential, written in terms of a sum over the eigen-

values of the differential operators Oκ and GF. We find that the disorder-averaged

free energy is given by

[F ] = FMHO + ∆F, (6.37)

where the first term is the free energy of the modified harmonic oscillator, as discussed

in appendix B. The second term is the correction due to complex geometry of the

valleys of the potential. It is given by

∆F =
Tk

2ξ

∞∑
n=0

z2
n + ω2

2 + ω2
1

(z2
n + Ω2) (z2

n + ω2
1) (z2

n + ω2
2)
, (6.38)
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where Ω = 1/ξ. The frequencies ω1,2 are defined in Eq. 6.28 and zn is defined in

Eq. 6.29. This result simplifies considerably when we examine the limit of very short

or very long filaments. If the former case, where ω1,2L0 � 1, only zeroth term

survives and we get

∆F =
Tk

2ξ

ω2
2 + ω2

1

Ω2ω2
1ω

2
2

. (6.39)

In the latter case, where ω1,2L0 � 1, we may change the summation to an integration

over z = πn
L0

, obtaining

∆F =
TkL0

2ξπ

∫ ∞
0

dz
z2 + ω2

2 + ω2
1

(z2 + Ω2) (z2 + ω2
1) (z2 + ω2

2)
. (6.40)

The summation for the general case can also be performed, producing a quite lengthy

expression that we do not reproduce here. Performing the integral in Eq. 6.40, we

find

∆F =
TkL0

4ξ

(ω2
1 + ω2

2)(ω1 + ω2) + Ω(ω2
1 + ω2

2 + ω1ω2)

Ωω1ω2(ω1 + ω2)(ω1 + Ω)(ω2 + Ω)
. (6.41)

We now wish to compute the average arclength of the filaments to observe the

effect of the pinning potential upon their ensemble of conformations. This calculation

involves taking the derivative of the free energy with respect to the tension, which

is conjugate to the length. First, we write the free energy difference in terms of two

auxiliary functions f and g whose argument is r = m/`P:

∆F =
T
√
k`PL0

4

f(r)

g(r)
, (6.42)

where

f(r) = Ω(r + s) + r
√
r + 2s (6.43)

g(r) =
√
r + 2s(Ω2 + Ω

√
r + 2s+ s) (6.44)
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and s =
√

k
`P

. Then taking the appropriate derivative, we compute the difference

in excess arclength between the filament in the confining potential and the same

filament without it

∆L = ∆LMHO +
L0

4

√
k

`P

f ′(r)g(r)− g′(r)f(r)

g2(r)
. (6.45)

The first term, which is the excess arclength of the semiflexible filament in a uniform

harmonic potential, is calculated in appendix C.2.

We plot the ∆L versus applied tension in Fig. 6.4. There we see the decrease in

excess arclength of the filament with increasing tension τ . There are two regimes

characterized by a different power laws ∆L ∼ τa+ const (there is a finite constant in

the low tension regime) in the low and high tension regimes, referred to as weak and

strong in the figure caption. In the weak tension regime, the filament is better able

to track the valley of the potential minimum. As the applied tension is increased,

the ensemble of filament configurations becomes restricted to straighter ones that

cannot follow these valleys with high fidelity.

In comparing the theoretical calculation to the numerics, we freely adjusted the

curvature and correlation length of the valley to obtain the fit.

6.4 Prestress and excess free energy of the pinned filament

From the results for the excess free energy, we have a prediction for the increase of

the energy density of a network due to the effect of pinning. This enhancement of the

energy density should be interpreted as the observed pre-stress found in biopolymer

networks. Pre-stress can be considered to be stored in at least two separate manners.

First, there should be excess bending and stretching energy of the filaments as they
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are pinned by the network (represented by the quenched potential in our analysis)

into configurations that store more than T/2 per bending mode – the amount of

energy storage consistent with the equipartition theorem. Secondly, there may be

excess energy stored in the strain associated with the cross links themselves. We

cannot directly measure this quantity in our model. To obtain the excess energy

stored in the filament due to the pinning potential, we simply compute the disorder

average of the thermal expectation value of the squared amplitude of each Fourier

mode of the filament.

6.4.1 Strong tension

First we work under the assumption of strong tension in which the filament is nearly

straight. We start by expanding the undulations of the filament

y(x) =
∞∑
n=1

un sin (znx) . (6.46)

In terms of these Fourier modes the energy in a particular realization of the force-

controlled pinning ensemble is

E =
L0

4

∞∑
n=1

{(
κz4

n + τz2
n

)
u2
n + 2fnun

}
, (6.47)

where fn are the Fourier modes of the pinning force so that

f(x) =
∞∑
n=1

fn sin (znx) . (6.48)

In this Fourier expansion of the pinning force, we assume that the potential is

defined in a box of size [Lx × Ly] with periodic boundary conditions and we set

Lx = L0. Now, we may use the equipartition theorem to demand that each Fourier
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mode stores T/2 energy. This leads to

〈u2
n〉 =

2T

L0 (κz4
n + τz2

n)
+

fn
2

(κz4
n + τz2

n)2 . (6.49)

We now average the above result using the force-controlled distribution for the

potential from Eq. 6.4 in Fourier representation

P (Vkx,ky) ∝ exp

{
−LxLyV 2

kx,ky

(
ξ2

8V 2
0

(k2
x + k2

y)
2 +

1

8V 2
0

(k2
x + k2

y)

)}
. (6.50)

where Fourier modes are defined in a standard way

V (x, y) =
∑
kx,ky

Vkx,ky sin(kxx) sin(kyy). (6.51)

We now express fn from Eq. 6.48 in terms of the gradients of Vkx,ky

fn =
∑
ky

kyVkx,ky (6.52)

with kx = πn
L0

= zn Using Eq. 6.52 and Eq. 6.50 we obtain

[f 2
n] =

∑
ky

k2
y

2LxLy

(
ξ2

8V 2
0

(k2
x + k2

y)
2 + 1

8V 2
0

(k2
x + k2

y)
) . (6.53)

Taking Ly to be large we replace the summation with integration to obtain

[f 2
n] =

2V 2
0

Lxξ2
(√

z2
n + 1

ξ2 + zn

) . (6.54)

Since only the second term in Eq. 6.49 depends on the pinning potential the

average over the quenched disorder yields an expression for the mean excess bending

energy of the filament

Ebend
n =

Tκz4
n

2(κz4
n + τz2

n)
+ ∆Ebend

n . (6.55)
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in which the second term contains all the information about the filament’s interaction

with the pinning potential. That second term is

∆En =
κz4

nV
2

0

2(κz4
n + τz2

n)2ξ2
(√

z2
n + 1

ξ2 + zn

) . (6.56)

The first term is merely the standard result from the equipartition theorem for a

semiflexible filament [108]. It follows similarly that contribution from the potential

to the mean energies stored in filament tension and in the pinning potential are given

by

∆Eten
n =

1

`2
t z

2
n

∆Ebend
n (6.57)

Epot
n =

k

κz4
n

∆Ebend
n . (6.58)

In Fig. 6.5 we plot the bending energy stored in the filament as a function of

dimensionless wavenumber q = ξzn for a variety of pinning potential strengths (at

fixed external tension) (upper panel A) and a variety of tensions at a fixed value of

the strength of the pinning potential (lower panel B). From dimensional analysis we

note that there is a single scale that sets the strength of the pinning potential

Ẽ =
V 2

0 ξ

Tτ
. (6.59)

When this quantity is large Ẽ � 1 we expect the pinning potential to control the sta-

tistical ensemble of the filament configurations. Conversely, we expect high tension to

straighten out the filament so that it cannot follow the local potential minima. Higher

tension leads to both straighter typical filament configurations and configurations for

which the effect of pinning becomes harder to distinguish against a background of

thermal undulations. This transition between pinning dominated states of the fila-

ment and thermally dominated ones is wavenumber dependent. At sufficiently high
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wavenumbers q = ξzn > q? the modes of the filament are generically freed from the

pinning potential.

In Fig. 6.6 we observe this transition from strongly pinned modes, where the pin-

ning contribution to the bending energy Epin is greater than the thermal component

ET for q < q? to effectively unpinned ones.

Since the work done by tension to extend the filament is τ∆L, we can use

Eqs. 6.56,6.57 to compute the excess length

∆L =
∞∑
n=1

V 2
0

2(κz2
n + τ)2z2

nξ
2
(√

z2
n + 1

ξ2 + zn

) . (6.60)

The sum is rapidly convergent so the first terms will dominate. In the limit of a

short correlation length ξ/L0 � 1, L0

√
τ
κ
� 1 we get

∆L =
∞∑
n=1

V 2
0

2τ 2z2
nξ
. (6.61)

The summation results in

∆L =
V 2

0 L
2
0

12τ 2ξ
. (6.62)

If instead we consider the case of the large bending we should take the limit

L0

√
τ
κ
� 1 and

∆L =
∞∑
n=1

V 2
0

2κ2z6
nξ

=
V 2

0 L
6

1890κ2ξ
(6.63)

For the case of large correlation length, ξ/L0 � 1, large tension L0

√
τ
κ
� 1 we

get

∆L =
∞∑
n=1

V 2
0

2τ 2z3
nξ

2
, (6.64)
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which results in

∆L =
V 2

0 L
3
0

4π3τ 2ξ2
ζ(3) (6.65)

where ζ(x) is Riemann ζ-function. Since the correlation length is much larger than

that the filament, we expect that the filament feels an essentially uniform force field,

much like that of a hanging rope in a gravitational field. Indeed, the result for the

excess length in this classical problem is ∆L =
g2L3

0

6τ2 , which demonstrates the same

power law dependence on tension τ and the separation of the end points L0.

6.4.2 Weak tension

For case of weak tension where the filament can better follow the potential minima,

we are free to use the valley approximation. In this case the filament’s energy is

given by Eq. 6.21. Doing the same calculation for the variance of each Fourier mode

of the filament in a valley whose bottom curve is described by the Fourier modes of

y0(x), yn0 , we find

〈u2
n〉 =

2T

L0

(
κz4

n + τz2
n + V0

ξ2

) +
V 2

0 (yn0 )2

ξ4
(
κz4

n + τz2
n + V0

ξ2

)2 . (6.66)

Once again, the first term is independent of the disorder in the valley, but does

depend on the curvature of the potential. This result corresponds to the case of a

semiflexible filament in a straight parabolic potential [167]. The second term corrects

this result for the tortuosity of the valley. To compute this correction we note that

[
(yn0 )2

]
=

1
L
2ξ
z2
n + Lξ

2
z4
n

. (6.67)

From this result and from energy function – see Eq. 6.21, we immediately find that
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[
Ebend
n

]
=

Tκz4
n

2(κz4
n + τz2

n + V0

2ξ2 )
+

κV 2
0 z

4
n

4ξ4
(
κz4

n + τz2
n + V0

ξ2

)2 (
1
2ξ
z2
n + ξ

2
z4
n

) . (6.68)

Again the first term represents the bending energy associated with the semiflexible

filament in a straight parabolic potential. The potential decreases the bending energy,

as is physically reasonable. The potential suppresses the normal thermal undulations

of the filament. The second term, however, represents an increase in the mean

bending energy associated with the curvature of the potential valleys. For a fixed

local mean curvature of the pinning potential, V0/ξ
2 = const, the dependence of this

tortuosity correction is nonmonotonic in wavenumber. We examine this in Fig. 6.7.

There we see that the wavenumber dependent bending energy goes through a local

maximum at the scale of the potential’s correlation length,i.e., where znξ = 1.

6.5 Simulations1

The established computational framework for the Brownian dynamics of semiflexible

filaments proposed in [29] and used e. g. in [127] has been extended to account for

forces resulting from the random potential field.

6.5.1 The finite element Brownian dynamics simulation framework

A single filament is modeled by nonlinear, geometrically exact, 3D Simo-Reissner

beam theory and discretized in space using finite elements [74]. In terms of the

1The numerical simulations were performed by Kei Müller, Maximillian Grill and
Wolfgang Wall, Technical University of Munich
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structural rigidity of the filament, we thus account for axial, torsional, bending,

and shear deformation. To model the Brownian motion, we include viscous drag as

well as thermal forces, each distributed along the entire filament length. More pre-

cisely, viscous forces and moments are computed assuming a quiescent background

fluid and individual damping coefficients for translations parallel and perpendicu-

lar to the filament axis as well as rotation around the filament axis, respectively.

Thermal forces are determined from the stochastic Wiener process in accordance

with the fluctuation-dissipation theorem. Finally, an Implicit-Euler scheme is used

to discretize in time and a Newton-Raphson algorithm solves the resulting nonlin-

ear system of equations. Further details on this simulation framework including all

formulae can be found in [29].

6.5.2 Incorporation of the background potential field

As described in section 6.1, the potential field V acting on the filament has dimensions

of energy per length. Its contribution to the virtual work required for the weak,

variational formulation of the problem can be stated as

δΠ = −
∫ L0

0

ds
{

(∇V (r(s)))T δr(s)
}

(6.69)

where r ∈ R3 is the centerline position and s ∈ [0, L0] denotes the arclength co-

ordinate in the stress-free reference configuration of the filament. Subsequent dis-

cretization of the admissible centerline variations δr according to the finite element

method yields the contributions to the discrete element force vector. We apply the

trapezoidal rule on each finite element to numerically evaluate the integral along the

filament. Regardless of the fact, that we only consider planar problems throughout

this article, the entire simulation framework as well as Eq. 6.69 is capable of model-
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ing arbitrary filament configurations in 3D. Note that the potential exerts forces on

the filament, however, as it models a surrounding network, it is independent of the

filament motion. This is commonly denoted as one-way coupling.

To mention the most important algorithmic details: In a pre-processing step, we

use a random number generator, apply a discrete Fourier transformation, and finally

a finite difference scheme to arrive at the force field −∇V on a sufficiently fine grid

in the entire simulation domain. In each iteration, we then interpolate these grid

values to compute −∇V at the current position of each node and evaluate Eq. 6.69

element-wise.

6.5.3 Simulation setup and results

The simulation setup consists of a single filament of length L0 = 20µm and per-

sistence length Lp ≈ 14µm. Its initial, stress-free reference configuration is cho-

sen straight and parallel to the global x-axis, as shown in Fig. 6.8 (A). By means

of Dirichlet boundary conditions, the filament is constrained to the xy-plane and

simply supported, i. e., free to rotate at both ends, however only free to move in

x-direction at one endpoint. Its circular cross-section is specified by the area A =

1.9 × 10−5µm2, area moment of inertia I = 4.3×10−12µm4 and polar moment of

inertia Ip = 8.6×10−12µm4. The material is defined by the Young’s modulus E =

1.3 × 1010pN/µm2 and the Poisson ratio ν = 0.3. Temperature is set to T = 293K

and the dynamic viscosity of the quiescent background fluid to η= 10−3 Pa s. The

filament is discretized in space using 400 linear beam finite elements and the time

step size is chosen as ∆t = 0.01s.

Two variants of the potential field have been considered in simulations. First,
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the potential with exponential suppression of high Fourier modes defined by Eq. 6.5

and second, the force controlled distribution defined by Eq. 6.4.

6.5.3.1 Results for the potential with exponential suppression of high

wavenumber modes

For the results presented already along with the theoretical prediction in Fig. 6.4, we

applied the potential from Eq. 6.5, using 3096 Fourier modes, a correlation length

of ξ ≈ 1.6µm and V0 = 0.175pN. In addition, a single point force τ = 10−2 . . . 50pN

was applied in global x-direction to the (right) endpoint of the filament that is free to

move in this direction. Each simulation was run for 5× 104 time steps. To speed up

simulations, we made use of parallelization and simulated systems of five filaments

at a vertical spacing much larger than ξ and without any interactions between the

filaments. Each data point in Fig. 6.4 results from the statistical ensemble of 70 to

100 such systems with five filaments each, depending on the deviation in results that

was higher for the small tension values. Finally, the excess arclength ∆L is obtained

from simulation data as the negative displacement of the (right) filament endpoint

in x-direction.

6.5.3.2 Results for the force controlled distribution

While the simulations using the potential with the exponential suppression of the

high wavenumber modes are more robust, the theory assumes a force controlled

distribution. Therefore, unlike for the previous variant of the potential distribution,

there are no adjustable parameters necessary to directly compare these numerical

results to the theory. We consider two parameter sets: one representing the case of
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large tension and another one representing the case of large bending and zero tension.

The first parameter set is given as V0 = 1/2562 pN, τ = 0.006 pN, ξ = 1µm,

L0 = 5µm. The simulation gives us 〈∆L〉 = 2.0 ± 0.6 × 10−5µm, while Eq. 6.61

predicts ∆L ≈ 1.3 × 10−5µm. The second parameter set is V0 = 1/2562 pN, τ = 0,

ξ = 1µm, L0 = 5µm, κ ≈ 0.0125 pNµm2. Here, the result from our simulations

is 〈∆L〉 = 2.2 ± 0.4 × 10−5µm, while Eq. 6.63 predicts ∆L ≈ 1.2 × 10−5µm. We

performed sixteen simulation runs for each parameter set.

6.6 Discussion

We have examined the statistical mechanics of a single semiflexible filament in a

quenched pinning potential as a model for studying how the network environment

changes the typical stored elastic energy of filaments and leads to prestress. Based on

these calculations we propose that there are two experimental quantities for which we

may make predictions even with our single filament model. The first is that we expect

the pinning environment of the network to impose a different (and nonequilibrium)

statistical weight to filament configurations. One way to parameterize this difference

between the ensemble of filament configurations in a network and of a filament in

isolation is that the effective persistence length of the network filament will no longer

be `P = κ/T .

Using our results for the disordered-averaged Fourier modes of the filament’s

undulations, we may directly compute the tangent tangent correlations. We find

that

G(x1, x2) = 〈ẏ(x1)ẏ(x2)〉 ∝ e−|x1−x2|/˜̀
P , (6.70)
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where the nonthermal persistence length ˜̀
P is given by

˜̀
p = max

{
1

Re(ω1)
,

1

Re(ω2)
, ξ

}
, (6.71)

where ω1,2 are the eigenvalues introduced in Eq. 6.28. We examine the dependence

of the effective, disorder-influenced persistence as a function of tension and potential

correlation length in Fig. 6.9.

For the case of sufficiently strong tension or weak pinning potential τ � V0, we

find that the tangent correlations do not decay exponentially with separation along

the filament. Instead they decay as a polylogarythmic function of the separation:

Li2(eiπ|x1−x2|/L). In that case, no persistence length can be defined. See Fig. 6.10 for

the behavior of the correlation function

Turning to the case of prestress, we offer a prediction for the mean excess free

energy density of the network due to trapped elastic deformations of its constituent

filaments. To arrive at this prediction within our one filament model, we assume the

excess free energy density may be computed by summing the excess bending and

tension energy ∆Ebend + ∆Eten of a filament due its interaction with the pinning

potential and then dividing that quantity by the area occupied by that filament. In

our two dimensional calculation this is simply L0 × ξ. To make a prediction for a

three dimensional network we assume that there are two independent polarization

states of the filament’s undulations (which is reasonable for small bending angles)

resulting in a prediction

∆F '
(
2∆Ebend + ∆Eten

)
L−1

0 ξ−2. (6.72)

We expect that this quantity should set the scale for the anomalous nonequilib-

rium stress fluctuations observed in transiently cross linked networks of semiflexible

filaments.
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There are limits to the single filament description of the collective phenomenon

of network structure and excess free energy. Following the example of mean field

models of magnets, one might imagine finding a self consistent description of net-

work structure in which the statistics of the pinning potential are determined by the

calculated properties of a filament in that potential in a sort of Weiss molecular field

description. We leave such self-consistent calculations to future work.

We also note that our description of a single filament is inadequate for studying

the crumpling of filaments in a even stronger pinning environments. States of larger

deformation, as might be expected in flexible polymers without sufficient tension,

cannot be described by our framework; their description requires more complex and

inherently nonlinear elasticity. Fortunately, nature provides numerous examples of

semiflexible protein filaments for which our analysis should be sufficient. Transiently

cross linked networks of such stiff filaments are an arena for the study of the role of

quenched disorder on their ensemble of shapes and elastic energy storage.
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Figure 6.2: Examples of the random potentials V (x, y) (shown as a heat map with

contour lines) selected from different distributions: (A) Energy controlled distribu-

tion. (B) Force controlled distribution. (C) Exponential suppression of high modes.

The correlation length is fixed in all three so that Lx/ξ = 20.
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Figure 6.3: (color online) Detail views of the force fields resulting due to the ran-

dom pinning potentials shown in Fig. 6.2. (A) Force controlled distribution. (B)

Exponential suppression of high modes.
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Figure 6.4: (color online) The excess arclength ∆L – see Eq. 6.19 of a semiflexible

filament in the quenched pinning potential (with persistence length `P ≈ 14µm)

as a function of tension τ . At high tension (orange, dashed) the filament cannot

track the bottom of potential valleys, while at low tension (green, thick) or small

bending modulus the filament does track the potential valleys with higher fidelity.

The (blue) dots with errorbars represent simulation results and the errors show the

standard deviations of about five hundred filaments. The pinning potential is defined

by V0 = 0.175pN , ξ ≈ 1.6µm.
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Figure 6.5: (color online) (A) Ebend(q), the energy energy per mode of a tensed,

pinned filament (in units of T ) as a function of q = ξzn. The pinning potential

strength is set by dimensionless Ẽ = V 2
0 ξ/Tτ using the exponential potential distri-

bution. The small q modes typically have more bending energy than expected for

a thermalized filament without the pinning. The high q modes are effectively un-

pinned. (B) The effect of changing tension on bending energy: τ = 0.1, 1, 5τ0 where

τ0V
2

0 ξ/T . We set κ = ξ2τ0.
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Figure 6.6: (color online) For a given value of the pinning strength and tension, there

is a transition at q? between pinned modes q < q?, which trap a significant excess

energy as compared to the free filament and free modes q < q?, which do not. We

examine this transition by plotting the ratio of the excess bending energy resulting

from the pinning potential Epin to the energy of that mode without the pinning

potential ET. The pinning potential and the tension are T/(2ξ) and
√

2κV0/ξ. The

figure is qualitatively the same for other values of these parameters.
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Figure 6.7: The maximum value for the energy stored in the potential is reached at

ξ = 1/zn which resembles the resonance absorption spectrum. Here ξ is measured in

the units of 1/zn, V0 = 20(τ + κ) in these units.

(A) (B)
Figure 6.8: (A) Simulation snapshot of the initial setup. An initially straight,

stress-free filament is constrained to the xy-plane and simply supported at its end-

points. It interacts with a random potential V (x, y) that is shown as a heat map

with contour lines. (B) Simulation snapshot of a deformed configuration showing the

forces on the filament resulting from the pinning potential.
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Figure 6.9: Weak tension persistence length

Figure 6.10: Strong tension correlation function
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Figure 6.11: Prestress
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Part II

Neural networks
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CHAPTER 7

Microcircuit synchronization and heavy tailed

synaptic weight distribution in preBötzinger

Complex contribute to generation of breathing

rhythm

When one studies a physical system, mere observation is good starting point. How-

ever, a significantly richer understanding of the system can be obtained by looking at

the response of the system to external perturbation [46]. For the case of the system

at hand, the preBoötC, the external perturbation in living animals is highly non-

trivial, because the Complex is deep in the brainstem. However, one can study the

behavior of the system in vitro, i.e., on the slices of preBötC outside of the animal.

A useful perturbation of the dynamics of the preBötzinger Complex is the exter-

nal photostimulation of a small subset of neurons, performed in Ref. [80] (Figure 7.1).

This external activation may trigger an ectopic burst (i.e., the burst occurs earlier

that it was supposed to following the rhythm). This exogenously induced burst hap-

pens with some probability. When it happens, there it occurs with some delay time

after the intervention. Both the bursting probability and the latency time depend

on the number of activated neurons. To understand this process in more detail and
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analyze how the network’s connectivity influences it, we constructed the simplest

possible model that still accounts for the temporal sequence of neuronal spiking by

considering leaky integrate-and-fire (LIF) neurons on a network with various connec-

tivity patterns and synaptic strengths. We set the dynamical properties of the model

neurons to be consistent with known dynamics of preBöTC Type I neurons; these pa-

rameters are listed in Table 7.1. We demonstrate that this model indeed reproduces

the results of the above mentioned experiment with the neuronal parameters taken

from the physiological range. Moreover, the model is very sensitive to the network’s

connectivity, which allows us to use the experimentally observed collective dynamics

of the network to constrain the putative types of connectome of the preBötC.

We organize the rest of the chapter as follows. In the section 7.1, we review

the LIF neuron model, as well as the physiologically motivated network connectivity

patterns we explored. In addition, we introduce a quantity derived from the con-

nectome, senderness, that quantifies the information about the network and choice

of initially activated neurons into a single class of scalar variables. We show that

some of these scalars are good predictors of burst initiation. In the section 7.2, we

explore how different connectivity patterns affect the probability of bursting and the

burst latency time as a function of the number of initially stimulated neurons using

senderness to provide insight into why some stimulation experiments succeed or fail

in eliciting a burst. We also see, both by direct observation of the networks and by

exploring senderness, the critical effect of the non-linearity in the neuron activation

function, which leads to tremendous differences between network dynamics having

lognormal and uniform synaptic weight distributions. We discuss experimental tests

of these ideas and speculate implications of our findings for the physiological system

in the Discussion.
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Figure 7.1: Left: Examples of 3 different experiments of multiple trials with holo-

graphic photostimulation (top frames) of 4, 6 or 9 neurons with XIIn recording (bot-

tom) in rhythmic slice preparations; photostimulation onset indicated by triangles:

red triangles indicate success and blue triangles indicate failure to elicit an ectopic

I-burst. Middle: Latency to induce I-burst after the onset of photostimulation in

minimum number (threshold) of stimulated inspiratory-modulated neurons, ranging

between 4-9, required to induce an I-burst (h). Right: Same as middle but with

additional 1-3 stimulated neurons. For (H-I), n=4 experiments with 5-10 trials each.

All data expressed in mean±SEM.
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7.1 Model

We modeled the preBötC by treating its constituent neurons as low dimensional,

nonlinear dynamical systems interacting on a quenched (and frequently random) di-

rected graph, an approach pioneered in other neural networks [41, 51, 50, 136]. In

such studies, neuronal models fall into two distinct classes: (i) firing rate models that

treat neuronal output in terms of a single firing rate variable but ignore the temporal

structure of the underlying spike trains, or; (ii) spiking models that consider the tim-

ing of each spike in the network where neuronal interactions depend on the temporal

coincidence of discrete excitatory postsynaptic potentials (EPSPs) rather than on

their rate-based, highly smoothed temporal summation [96, 36, 12, 102, 180]. The

majority of preBötC models are based on firing-rate models [9, 154, 62, 32, 8, 13],

which are computationally simpler, but are incompatible with recent findings sug-

gesting that inspiratory burst initiation is a consequence of the progressive synchro-

nization of neuronal spiking within the rhythmogenic microcircuit [7]. Firing-rate

models also cannot account for the observation that the simultaneous stimulation of

a small subset of neurons (4-9) can induce a global response, i.e., a network burst,

at considerable delay, ∼60-400 ms in vitro [80]. Consequently, we focus solely on

spiking models.

7.1.1 Neuronal Dynamics

In the leaky integrate-and-fire (LIF) model for point neurons, the change of somatic

potential Vi of the ith neuron at time t is controlled by [51]:

τm
dVi
dt

= Vrest − Vi(t) +R
∑
j

Ii,j(t), (7.1)
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where Vrest is the resting potential, τm is the membrane time constant, R the input

resistance, Ii,j the input current from the jth to ith neuron, and the sum is over all

neurons that synapse onto ith one. Vrest was set at either at –60 mV or –65 mV

depending on the simulated experimental conditions. The current is defined as in

Ref. [16]:

Ii,j(t) =


Wi,j

R
(t− tj −∆tij) e

−
t−tj−∆ti,j

τs t ≥ ti + ∆ti,j

0 t ≥ tj + ∆ti,j.

(7.2)

Here tj is time of spike initiation in the jth neuron. The synaptic weight Wij controls

the magnitude of the effect of the spike going from the jth to the ith neuron, while

τs sets the temporal width of the spike. ∆ti,j is the spike’s transmission delay time.

For single spikes, these equations can be solved analytically. Assuming neuron i

to be at its resting potential before the arrival of a spike, the solution for its potential

(which is the waveform of the resulting EPSP) is

V (t) =
γ1Wi,j

γ2
3

[
e−γ1t′ − (1 + γ3t

′) e−γ2t′
]

(7.3)

with t′ = t− tj−∆tij, γ1 = 1/τm, γ2 = 1/τs, and γ3 = γ2−γ1. We discuss the choice

of the parameters, shown in Table 7.1, in more detail in the Appendix

The deterministic neuronal spike generation was controlled as follows. When

the neuronal potential exceeds the threshold V ∗, the neuron fires and its potential

instantaneously returns to Vrest, with the boundary condition that the neuron cannot

again fire during a refractory period of τrefractory = 3 ms [7, 41, 51]; the potential

then once again obeys Eq. 7.1. The initial stimulation was modeled by raising the

potential of chosen neurons above threshold multiple times (see Appendix D.1 for

details). For some studies we allowed spontaneous stochastic firing (Figure 7.5 only),

which is known to occur due to inherent neuronal excitability regardless of potential.
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Table 7.1: Model parameters

Parameter Value

Vrest -60 mV, -65 mV (figure 7)

V ∗ -48 mV

τm 25 ms

τs 0.5 ms

∆tij 1.3±1.1 ms

Wij 300±160 (mean ± SD) mV/ms =15±8 in step size (0.05 ms)

τdelay 20±3 ms

Tlaser 39±5 ms

nspikes 7

fnoise 0.5-2 Hz

In that case, baseline firing was modeled as a Poisson process with the frequency

0.5Hz < fnoise < 2.0Hz, creating background uncorrelated network activity [58].

7.1.2 Network Structure

We considered four distinct ensembles of random directed graphs: (i) Erdős–Rényi

(ER) [40, 52] directed graphs; (ii) directed graphs with an increased number of

directed 3-simplicies (small world; see definition below); (iii) localized graphs, and;

(iv) hierarchical graphs. In the ensemble of directed ER graphs, the probability

for any two rhythmogenic preBötC neurons to be unidirectionally connected was

the same p = 0.065 based on experimental data [148]. Bidirectional connections,

which were not observed experimentally [148], were not forbidden, although their
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probability of occurrence p2 was negligible.

To create small-world networks [182] having a preponderance of directed 3-simplices

over that expected in a typical ER network, we used the following technique: we

added 3-simplicies to ER networks to exceed the average number of simplices in

the ER network by approximately 11% by taking ER networks and adding directed

synaptic connections to create directed 3-simplicies. A directed 3-simplex consists

of three neurons A,B, and C such that neuron A synapses onto both neurons B and

C, while neuron B synapses to neuron C. While for the ER network the number of

directed 3-simplices is Ns = (pN)3, for some neuronal networks, including neocortex,

the number of directed 3-simplices is significantly higher [50, 136].

The localized networks formed as follows: we placed ∼ 1000 neurons in a planar,

square array with neighboring neurons separated by unit distance. We then added

directed edges to form a network, such that the probability for two nodes to be

connected decayed exponentially with distance (measured in the usual way), i.e.,

the probability of a direct connection between neurons i and j was given by pij ∝
exp(−d2

ij/λ
2), where dij is the distance between them and λ is the mean connection

length. The case λ � 1000 corresponds to the ER network. The motivation for

exploring this sort of network is based on the fact that synaptic connections in some

compact neural microcircuits decrease with interneuronal distance [136]. This model

may be generalized to higher dimensional networks, but we did not pursue that here.

Finally, we considered the ensemble of (c, q)-hierarchical networks of N neurons

with c central groups of at least q neurons each, and one large peripheral group

containing the almost all neurons of the network – N � cq; q was chosen such that

q simultaneous EPSPs incident on a neuron was required to produce a spike. Each
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neuron in the peripheral group synapsed onto each neuron in the first central group.

Each neuron in the first central group synapsed onto each neuron in the second central

group, & etc. Neurons in central groups were all-to-all connected, while neurons in

the peripheral group were not connected to each other. Finally, each neuron from the

last central group synapsed onto each neuron in the peripheral group. We introduced

multiple central groups in order to avoid bidirectional connections between pairs of

neurons, as these have not been observed experimentally [148]. These hierarchical

networks were the most likely to produce a burst. Indeed, in this network, the

synchronous firing of q peripheral neurons, which make up the vast majority of the

neurons, was sufficient to initiate a burst. For any network, the synchronous firing of

q neurons was a necessary condition for the activation of the next neuron, but in the

other network ensembles this condition was generally not sufficient. Therefore, there

is no network we studied that was more likely to synchronize than the hierarchical

one.

7.1.3 Generalized Senderness

To introduce more general network quantities related to the efferent synaptic con-

nectivity and neuronal activity, we first denote the initial state of the network by

the vector X(0), where its ith component is one if the ith neuron was initially stimu-

lated and zero otherwise; the number of these stimulated neurons is
∑

iX(0)i. The

quenched random matrices of synaptic weights W with matrix elements Wij com-

pletely defines an instance of a network draw from one of the four ensembles discussed

above. These matracies are generally sparse and have nonnegative (excitatory) en-

tries, which can be selected from any distribution, although we focussed on lognormal
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distributions.

With these definitions, matrix multiplication generates a new vector

X(1) = W ·X(0), (7.4)

which gives the list of neurons that receive inputs from the initially stimulated ones,

weighted by the appropriate synaptic strength. This vector essentially encodes the

effect of the initially stimulated neurons on the rest of the network. However, it has

no information about next order neighbors of the initially stimulated neurons. To

include this information about higher order neighbors, one may simply iterate this

procedure multiple times introducing

X(n+1) = W ·X(n). (7.5)

While this formally takes into account next-nearest and higher-order neighbors, using

this the expression Eq. 7.5 to investigate how the initial stimulus propagates through

the network implicitly assumes a linear weighting of neuronal active propagating

from one order to the next via a simple synatpic weight multiplication. In reality,

we face an extra complication when we consider that the activation function of the

neuron is non-linear, having a threshold. If this were not the case, the continuous

activation level of neurons in the nth generation of nearest neighbors would simply

follow from Wn. Assuming W to be diagonalizable, one then immediately observes

that the emerging activation pattern of the nth generation of nearest neighbors will be

dominated by the (right) eigenvectors of W corresponding to the eigenvalues having

the largest amplitudes. As n increases the relative importance of these particular

eigenvectors grows exponentially.

To account for the nonlinearity, we propose a nonlinear generalization of the
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above quantity:

X(n)i1i2...in =

[
W ·

(
W ·

(
W ·X(0)

i1
)i2)i3

. . .

]in
, (7.6)

where Xi is element-wise ith power of the vector X, i.e., each component is indepen-

dently raised to that power. Finally, to obtain a single scalar quantity, we sum over

the elements of the vector X, to obtain our definition generalized senderness

S(n)i1i2...in =
∑

X(n)i1i2...in . (7.7)

We emphasize that we have defined an infinite set of increasingly complex measures of

neuronal activity propagation through the network. We note that the index n counts

the number of generations of neighbors that S(n)i1i2...in covers, while the superscripts

list the (element-wise) exponentiation of the evolving vector Xn at the nth generation.

Higher exponents increase the effect of nonlinearity of the neuronal response function.

In the following we will consider both low order (small n) and weakly nonlinear (small

integer ik for all 1 ≤ k ≤ n) versions of generalized senderness. We later address

the question of which of these quantities is predictive for burst initiation using a

machine-learning based filter.

7.2 Results

7.2.1 Burst probability and latency time after stimulation: The effect of

network structure

The principal quantities accessible to current experiments on the exogenous stim-

ulation of the preBötC [80] are the burst probability after stimulation, and, where

bursts occur, the latency time, measuring delay between stimulation and bursting.
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Both quantities are measured as a function of the number of stimulated neurons. In

experiments we defined a burst by a voltage criterion that corresponds roughly to the

simultaneous stimulation of the entire network. In simulations, we used the criterion

that the potential averaged over all neurons in the network was above the individual

neuron’s firing threshold as the definition of the burst. Our results depended only

weakly on this threshold because typically the entire network becomes active in a

burst. Having the criterion allowed us to distinguish bursts from burstlets, which are

transient maxima in activation of the neuronal population that subside rather than

progressing to a true burst. These are also seen in the experimental system.

We demonstrate a typical process of the burst generation in our simulations us-

ing Fig. 7.2. In five separate runs the same set of seven randomly chosen neurons

in the same network was activated. Due to different spiking times of initially acti-

vated neurons, each run produces dynamics with different burst delay times, and, in

one case (red curve), no burst at all. In these representative trials, network activity

growth due to spiking synchronization can be divided into two epochs. During the

first, the activity growth is insignificant (Figure 7.2C), the activity of stimulated

neurons appears to be insufficient to initiate a burst. In fact, in some cycles, spikes

from activated neurons did not induce any substantial spiking in their downstream

(postsynaptic) neurons, e.g., the first set of spikes for R1-R3 in Figure 7.2A. Conse-

quently, network activity died down to baseline once these neurons stopped firing in

response to their initial stimulus (Figure 7.2B-C first set of spikes between 0-50 ms).

With repeated activation of stimulated neurons, their spikes bore higher coincidence

in certain intervals due to the inherent jitter in activation times so that temporal

summation of synaptic potentials in their postsynaptic neurons activated of a suffi-

ciently large group of neurons to drive synchronization, which initiated the second
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epoch. During this epoch, the transient network activity continued and spread syn-

chronous activity that fueled a rapid and sudden amplification of network activity,

i.e., a burst. At this point, the simulations were terminated. For a run that did not

end with network synchronization (Figure 7.2A-C, R2), the simulation trial ended

with the last spike of initially activated neurons (Figure 7.2A) and quenching of the

whole system (Figure 7.2B-C, red trial).

In experiment, one does not know how these stimulated neurons are connected to

the rest of the microcircuit. In the simulations, we choose the exogenously stimulated

neurons randomly with equal probabilities, but can use our measures of senderness

post facto to understand why the stimulation of equal numbers of neurons do not

always lead to the same bursting outcome, as described below. In order to address the

probabilistic nature of eliciting a burst, each numerical experiment was performed

5 times (each curve on the Figure 7.3). A second source of stochasticity in the

simulations is random neuronal firing, which we allow in some simulations. We

return to this point later.

Ensembles of networks with differing connectomes demonstrate different patterns

of behavior (see Fig. 7.3). Each colored curve is the different network from the same

ensemble; grey rectangles show the range of experimental results reported in Ref. [80].

The ER network has the largest variability of the mean delay time as one changes

the number of initially stimulated neurons. Moreover, the probability curve for the

ER networks is smooth, especially when compared to abrupt jumps in probability

observed in the other network connectivities tested. This can be understood from the

point of view of clusterization. An ER network does not cluster. In an ER network,

if neurons A and B have both synapse onto a third neuron C, the probability that

they have additional common output neurons other than C remains same as for any
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Figure 7.2: ER graphs with lognormal synaptic weights reproduced the robustness

of preBötC synchronization and trial to trial variability in the latency to synchronize

seen in experiments. A. Model output when the same set of randomly selected 7

neurons (on the dashed lines) was stimulated to fire seven spikes each as in ([80]).

Spike times for all neurons represented by circles color coded for 5 trials (green, blue,

black, purple, red). Y-axis represents arbitrary order of 1000 neurons. In 4 trials

(green, blue, black and purple), the network synchronized, indicated by temporal

alignment of spikes in all neurons, but at various latencies. In the 5th trial (red), the

network did not synchronize, i.e., no vertical alignment of red dots. B. firing rate

(FR) of stimulated neurons and their postsynaptic activated neurons in A (color

coded as in A) in 5 ms bins showing waxing and waning of their activity during and

poststimulation. C, average firing rate of network computed by averaging network

activity in a moving window of 40 ms with 5 ms step increment. Dashed boxes in

(B) and (C) represent unusual intervals where despite of relatively high synchronous

activity, emerging from stimulated and their recruited neuronal firing, the network

did not synchronize fully.
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two neurons, regardless of the first criterion. Due to connectivity correlations, this

is not the case for neurons in the other three networks. All of them has property

of clusterization, i.e., if two neurons have common output, they are likely to be

close to each other (localized), or, in general, to be parts of the same cluster, which

necessarily leads to a higher probability for them to have more common output

neurons. Clusterization is crucial for sharp, nearly discontinuous behavior of the

probability and delay time curves in the non-ER networks we studied. Indeed, if

the network is clustered, then it is more likely that neuronal activation inside one

cluster leads to the burst, while activation of neurons in different clusters will not.

The synchronization between activated neurons plays a marginal role in this picture.

As a result the bursting probability in these other networks rapidly jumps between

zero and one. While this does not prove that ER networks are uniquely consistent

with the extant data, we infer that any connectome with clustering will produce

synchronization dynamics inconsistent with the data.

Similar reasoning rationalizes the observed latency time as the function of the

number of activated neurons. When small numbers of neurons are stimulated, it

is likely that the number of spiking neurons will initially grow one by one in the

ER network (see Appendix for more detailed analysis and analytical calculations of

this process for the ER network), allowing for relatively long latency times when

the number of initially stimulated neurons is small. Moreover the latency time will

decrease continuously as growing shortly as the number of initially stimulated neu-

rons is increased. In clustered networks, however, neuronal simulation is more likely

to lead to subsequent activation of clustered groups of neurons, which significantly

reduces the latency time. Of course, the outliers are possible, e.g., the red trace for

the localized matrix in Fig. 7.3C where the long delay time reflects many synchro-
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nization attempts between the initially stimulated neurons where only the last met

with success. Since the experimental data suggests that the delay time smoothly

NO I MEAN STRONGLY NOT SMOOTHLY varies as one changes the number of

activated neurons, we observe this further supports our inference that clustering-

free networks (such as the ER) are necessary to reproduce consistently all of the

dynamical data on synchronization and bursting.

7.2.2 The non-linearity of neuronal activation and the synaptic weight

distribution.

The spiking output of the simulated neurons is a nonlinear function of the (linear)

sum of input EPSPs. Here we address the implications of this essential nonlinearity

on the collective dynamics of microcircuit in two ways. First, we compare the dynam-

ics of the network with two different distributions of synaptic weights: lognormal and

uniform. If the neuronal nonlinearities are relevant for understanding bursting, the

change in the synaptic weight distribution will play an important role. Conversely,

as long as we choose the mean synaptic weight to be the same between the two dis-

tributions, the collective dynamics of networks with lognormal and uniform synaptic

weight distributions will remain similar as long as the inherent neuronal nonlinearity

plays a minimal role in the network’s collective dynamics (when averaged over many

realizations of the network).

ER networks (see Fig. 7.4) with a uniform distribution of synaptic weights were

significantly less likely to produce a burst - we needed more than double the number

of initially activated neurons in comparison with the lognormal one. This indicates

that the main drive for the burst initiation is not related to the mean synaptic weight,
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Figure 7.3: Synchronization probability (A,B,C,D) and mean latency to synchronize

(E,F,G,H) for localized, hierarchical, ER and small world network respectively as a

function of number of initially activated neurons. Each colored trace represents a

different network from the same ensemble where synchronization probability and the

mean latency to synchronize was computed over 10 trials; error bars show standard

deviations; grey boxes span the parameter space that lie within the experimental

range (170 ms-370 ms) ([80] ) for threshold number of stimulated neurons to induce

preBötC bursts.
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but is due to those neurons with anomalously strong synaptic connections in the “fat

tail” of the lognormal distribution. This is a strong indicator of the importance of

the non-linearities.

A second way to explore the nonlinearities in the system is by comparing the

predictive efficacy of linear (ik = 1 for all k in Eq. 7.7) and nonlinear senderness

variables (see section 7.1). If the nonlinear measures of senderness (ik > 1 for some k

in Eq. 7.7) are uniformly more predictive of global networks synchronization leading

to a burst, then senderness incorporates information about the choice of initially

activated neurons and the network connectivity into a single scalar quantity, that

can be either linear or non-linear with respect to the synaptic weights. If non-linear

senderness possesses more information about the dynamics of the system, we see

another confirmation of the crucial role of non-linearities in the system.

To assess and compare the predictive power of the various linear and non-linear

measures of senderness, we used the CatBoost machine learning algorithm (MLA) [141]

as follows. We trained the model to predict whether a burst will occur based solely

on the value of a particular subset of generalized senderness quantities S(k)i1i2...ik .

The networks used for training and subsequent studies of the predictive power of the

MLA were constructed so that their synchronization probability was close to 50%

in order to make the classification problem as difficult as possible 1. By focusing

on the incremental change in MLA prediction accuracy as function of the choice of

the senderness variables S(k)i1i2...ik , we produced a measure of the relative informa-

tion content of these quantities as measured by their utility in providing an accurate

classification of bursting and non-bursting trials using the fixed classification algo-

153% of the networks in the training and test sets synchronized
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Figure 7.4: A-B, Synchronization probability (A) and latency to synchronize (B)

for 5 different ER networks with uniformly distributed synaptic weights that were

equal to mean weight used in Figures 2-3. C, Voltage of 5 randomly selected neurons

from an ER network with uniform weights when a different set of randomly selected 7

neurons was stimulated like simulations in Figure 3A. D, Same as (C) when the same

network connectivity was incorporated with lognormal weight distribution. The net-

work synchronized at ∼78 ms and voltage traces reveal better coincidence detection

in this network; vertical lines ∼78 ms represent action potentials. E-F, Average fir-

ing frequency (E) and spike probability (F) of individual neurons when 10 randomly

selected synaptic inputs (out of 50) were activated at 6 different Poisson frequencies

(10-200 Hz; indicated at bottom of F), with either lognormal (LN) or uniform (Unif)

synaptic weight distributions; these are composite results from 3 trials each of 10

different neurons at each stimulation frequency; p values for KS test. G, Histogram

of LN weights used (E) and (F) (red) compared with the distribution of weights of

Figure 3; corresponding EPSP amplitudes for the weights are indicated in blue.
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rithm. We interpreted the subset that provided the greatest increase in the MLA’s

predictive power as indicating the class or classes of active network motifs that were

the strongest determinants of network synchronization (see Table 7.2). Looking at

these results, one sees that all linear measures of senderness, or senderness where

information enters into the next-order neighbors linearly (i.e., i1 = 1), are uniformly

poor predictors. Specifically, the worst predictor among the non-linear senderness

measures generated a 66% accuracy for the classification algorithm, while the best

prediction coming from the exclusive use of linear senderness provided a less accu-

rate 59% success rate (see Table 7.2). Among nonlinear quantities, the one that had

information about next-nearest order neighbors demonstrated slightly better predic-

tion accuracy, but the difference was not as pronounced as that between all the linear

and all non-linear senderness quantities. We infer that the non-linear properties of

the neuron activation function are indeed crucial for the system dynamics.

These results gives us an additional tool to set conditions on possible network

architectures, and to form an hypothesis regarding the principal features of the con-

nectome necessary to achieve synchronization and bursting. We first note that (with

the exception of S(1)4, all of the more predictive senderness measures involve next

nearest neighbor couplings. The inclusion of higher order neighbors, at least up to

third order, did not improve the predictive success of senderness. Based on these

results, we propose that network motifs involving high senderness (many and high

synaptic weight) efferent connections of next nearest neighbors greatly enhances the

efficacy of the exogenously stimulated neurons to produce a global synchronization

event. Moreover, ER networks naturally generate the requisite number of such motifs

to reproduce the sensitivity of the experimental system.

But, for chosen neuron parameters (that are taken from the physiological range)
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Table 7.2: Prediction accuracy of various generalized S quantities for network burst.

Parameter Accuracy

S2
32 0.73±0.01

S2
41 0.72±0.02

S2
33 0.72±0.006

S2
42 0.72±0.009

S1
4 0.72±0.01

S2
43 0.71±0.01

S1
6 0.7±0.01

S2
31 0.7±0.01

S1
3 0.7±0.01

S2
23 0.7±0.01

S1
9 0.69±0.008

S1
8 0.69±0.008

S2
22 0.68±0.009

S2
21 0.66±0.009

S1
2 0.66±0.01

S2
13 0.59±0.008

S1
1 0.57±0.02

S2
12 0.57±0.01

S2
11 0.56±0.01
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ER networks with uniform synaptic weight distributions clearly are less sensitive

to the external stimulation than those observed in experiment. ER networks with

lognormal weight distributions, however, have an increased sensitivity consistent with

experiment. Combined with the previous argument regarding the observed latency

time distribution, we propose that only networks with a low degree of clusterization,

and having a fat-tailed synaptic weight distribution can simultaneous reproduce all of

the currently measured dynamical properties of bursting in the preBötC. In addition,

the feature of these networks generating bursting is related to the strength of the

efferent connections of the second nearest neighbor neurons to the initially stimulated

ones.

7.2.3 Noise-driven burst and burstlet generation

So far we have considered a purely deterministic version of our model in which the

only source of initial spiking activity was derived from the external stimulation.

The in vitro preBötC, however, in the slice preparation produces bursts even in

the absence of such external activation. To explore self-driven bursting, we observe

that, even during the interburst intervals, neurons are not absolutely silent, but

fire at approximately 0.5 - 2 Hz rate. We model this spontaneous firing as random

Poisson process fixing only the mean firing rate (see section 7.1). This distribution

implies that there are no temporal correlations between spikes in a given neuron.

We recall then that the mean firing rate completely characterizes firing probability

density, and emphasize that interneuronal spiking correlations are driven only by

synaptic connections. To incorporate the fact that not all neurons in preBötC can

fire without stimulation, we allow only a fraction of them (randomly chosen on each
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network) to fire stochastically, while the rest can fire only under stimulation, but

we also explored networks in which that fraction reaches one. We often observed a

noticeable rise in spiking activity across the network that did not lead to a burst – a

burstlet, as indicated in Fig. 7.5A by ∗. This is appears to be consistent with observed

burstlets in experiment. Burstlets had higher overall spiking frequency across the

network than would be expect from the typical fluctuations of the stochastically

firing neurons. This is demonstrated by looking at the integrated firing activity

of a network with no synaptic couplings (Fig. 7.5A black curve). Such networks

cannot produce identifiable burstlets, which indicates that the observed burstlets in

synaptically coupled networks resulted from chains of activation of other neurons

initiated by the the stochastically spiking neurons, and that these chains failed to

achieve a sufficiently global level of synchronous firing to push the burstlet into a

full-fledged burst. Bursts were also observed – see Fig. 7.5A, green trace.

We now return to our basic question of how the connectome of the network

influences both the reliability of the network to burst in response to endogenous

stochastic stimulation and the dependence of bursting on the mean firing rate of

the neurons. By comparing dynamics on networks with lognormal synaptic weight

distributions (Fig. 7.5B, red traces) with uniform distributions (Fig. 7.5B, black

traces), one sees that the former are clearly more sensitive to endogenous spiking.

Since there is no exogenous stimulation to set an initial time, we cannot compute

the latency to burst, but we can compute the time to burst for a quiescent network.

The results are shown in Figs. 7.5C. It is clear that global spiking synchronization

and bursting occurs at lower mean spiking frequency of the neurons in lognormal

synaptic weight distributions, showing, once again, that such lognormal ER neurons

are significantly more sensitive to endogenous spiking. These networks are both
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easier to entrain to an external signal and more sensitive to internal spiking, making

them more robust bursting circuits.

Comparing network dynamics of systems in which differing fractions of the net-

work are capable of spontaneous stochastic activity, we see in Fig. 7.5D that as

the number of spontaneously firing neurons is reduced, the network generates more

burstlets before producing a true burst. Eventually, when that fraction falls be-

low ∼ 40%, both burstlets and bursts were not observed. If the lognormal synaptic

weight distribution is replaced with a uniform one (Fig. 7.5E), one observed the same

trends, but generically more burstlets occur before a true burst. This shows, once

again, that the network is less liable for global synchronization when the synaptic

weight distribution does not have a fat tail.

7.3 Discussion

The rhythmogenic dynamics of the preBötC is currently understood to rely on two

distinct features. Spiking synchronization of excitatory typeI neurons leads to the

progression of global excitation of the network, followed by a period of activity sup-

pression thought to be due to dentritic adaptation. In this manuscript, we focused on

the former property synchronization dynamics by constructing a simple yet predic-

tive numerical model that illuminates how the connectivity of the underlying network

influences bursting dynamics. We looked for three specific emergent features in our

model. First, we expected to observe global spiking synchronization of the network

– bursting – in response to the exogenous stimulation of less than one percent of the

network. Based on experiment, bursting should be an inherently stochastic process,

leaving a observable of the probability that stimulation induces a burst. Second,
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Figure 7.5: A. Average firing rate of ER networks with zero weights (black), uniform

(red), lognormal (green and blue), when all neurons stochastically fire at 0.5 Hz.

Dotted lines mark 99.75% range of firing rate for the network with zero weight.

For lognormal note the partial synchronization and subsequent desynchronization

of network activity (*) is similar to experimentally observed burstlets [80]. B-C.

Probability (B) and mean latency to burst (C) of 10 ER networks with uniform

(black) and lognormal weight distribution (red) when all neurons were made to fire

at various Poisson distributed frequencies (Neuronal firing rate) indicated. D. Firing

rate of an ER network with lognormal weight distribution when various fractions of

its neurons (as indicated in color-code) stochastically fire at a frequency around 1

Hz. E, Same as (D) but with uniform weight distribution; note that the partially

synchronized network activity (burstlets ), preceding the full network burst, are more

prominent and can be generated with a lesser fraction of randomly spiking neurons

in networks with LN weights (D) as compared to the ones with uniform weight (E).
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there is a reproducible distribution of time delays or latency times between the initi-

ation of the stimulus and the induced burst. Finally, when one examines a network

that is driven not by exogenous perturbations, but by the stochastic spiking by some

or all of the network’s constituent neurons, one should also observe induced bursts;

these mimic the endogenous rhythmogenic activity of the microcircuit.

One of the open questions regarding the structure of the preBötC is its connec-

tome. For the specific case of the preBötC, there is reliable data on the mean number

of synaptic connections, and there is strong evidence that the circuit’s connectome

shows large variables amongst individuals. Its detailed structure is not unique, but

appears to be drawn from a statistical ensemble of networks, whose topology re-

mains poorly understood. To better identify the physiological ensemble of preBötC

connectomes in a population, we consider a variety of random graphs drawn from

ensembles that were selected based on previous work on brain microcircuits. To fur-

ther reduce the space of potential numerical models, we used neuronal parameters

consistent with the spiking behavior of typeI neurons in the preBötC.

This reduction of the search space in let of all network of O(103) is necessary

as the space is combinatorially large and thus unsearchable. However, when we

focused on classes of networks previously suggested to be physiologically plausible,

we found that both the burst probability and latency time to bursting as a function

of the number of stimulated neurons were quantitatively consistent with the data

only for ER networks with both the physiological mean number of synapses and

lognormally distributed synaptic weights. Secondly, we observed that, when we

included temporally uncorrelated (beyond a refractory period) spiking of some or

all of the constituent neurons, the system not only produced bursts, but also its

dynamics included burstlets – periods of incipient spiking synchronization across the
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network that reached a subthreshold maximum before decaying. Both bursts and

burstlets are experimentally observed on conditions without exogenous stimulation.

This ignorance of the detailed structure of the preBötC microcircuit is not unique

in neurophysiology and teasing out the detailed structure of circuits of thousands of

neurons is not currently feasible. This presents an intriguing challenge for modeling:

if one can strongly constrain the statistical properties of ensembles of connectomes

by studying their simulated dynamics, one can strongly constrain the features of the

hard to measure network structure using more accessible voltage dynamics of either

selected neurons of the collective output of the circuit itself. Indeed, we observed that

the dynamics of the system were extremely sensitive to both the connetome and to

the distribution of synaptic weights within it. This sensitivity allows us to conclude

that, amongst the plausible network ensembles explored, only ER graphs with fat-

tailed distributions produced dynamics consistent with both the observed stimulated

and stochastic dynamics of the circuit. It remains for future work to more precisely

quantify how precisely one can make predictions regarding network structure and

synaptic weight distribution based solely on the observed collective dynamics, but

the present work comparing the ER and small-world graphs containing an only slight

higher density of three-simplices suggests that dynamics alone provides a sensitive

measure of the statistical properties of the underlying network.

A second line of analysis presented here considers how one can understand more

mechanistically why certain exogenous stimulation events were more likely to elicit

a burst. To address this question, we explored which features of the network’s struc-

ture and the selection of stimulated neurons more reliably lead to a burst using a

set of scalar measures of senderness, which incorporate both the network structure

of a particular network (including its fixed stochastic weights), the particular stim-
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ulated neurons, and their nonlinear response. To evaluate the predictive power of

these various measures of senderness, we used a machine learning algorithm (MLA)

to classify simulated experiments into those that lead to a burst and those that did

not using a training set of numerical experiments. To make the classification prob-

lem as difficult as possible, we chose an ensemble of networks for which the bursting

probability was near to one half. Using the assumption that the most predictive

measure of senderness, when solely given to the MLA, incorporates the most infor-

mation about the subsequent network dynamics after stimulation, we showed that

only nonlinear measures of senderness using both the initially stimulated neurons

and their nearest neighbors provided the uniquely best predictor. From this we infer

two things, the nonlinearity of the senderness measure implies that the fat tail of the

synaptic weight distribution dominates the network’s response. Secondly, we note

that input convergence at second order neighbor plays and important (but not as

important and the fat tail) role in eliciting a burst. We suggest that this short of

MLA-enabled search for predictive measures of senderness might be a more broadly

useful tool to extract the important features of network topology and interactions

associated with emergent collective phenomenon, with application to other neural

circuits and perhaps more broadly.

We note that there remain a number of open questions. For instance, since we

have studied here only the dynamics of burst initiation, clearly the same sorts of

questions discussed here apply to burst termination. Burst termination is believed

to be driven by dendritic depression associated with the number of EPSPs received

by the dendrtic arbor during a period much longer than the temporal width of

an individual spike. As a result, precise spike timing probably does not play as

important a role in burst termination as it does in initiation. Understanding what
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new constraints one can place on network structure by modeling burst termination

remains an intriguing, related question, and one that may help to elucidate how

relaxing the important of spiking synchrony will change the complex interplay of

neuronal dynamics and network structure.
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CHAPTER 8

Dynamical phase separation on rhythmogenic

neuronal networks

8.1 Introduction

As we discussed in the Chapter 1, we need to add the inhibition to the model of

the preBötzinger Complex [43, 154] to obtain the rhythmic behavior. In [154] such

model was explored, with simplification of the neuron dynamics model to firing-rate

based model. This simplification is reasonable, because the characteristic time of

oscillation is significantly larger than inverted firing rate of neurons, so the averaging

is well justified.

In addition to the stably oscillating phase of the network, this model was shown

to admit two other phases: a quiescent phase, characterized by steady-state low-

firing rate throughout the network, and a high-activity phase, characterized by a

high firing-rate [154]. A dynamical phase diagram of this system was obtained as

a function of network size and basal (low calcium) neuronal excitability both in

a mean-field analysis and numerically on a set of Erdős-Rényi (ER) graphs [154].

Intriguingly, the numerically obtained phase boundary between the stably oscillating

and high activity phases demonstrates significant deviations from the mean-field
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theory predictions, with discontinuous “jumps” whose position on the phase diagram

corresponds to numbers of neurons at which the highest k k-core [37] of the network

vanishes [154].

In this chapter, we continue to explore the rhythmogenic properties of the model.

In order to understand the underlying mechanism leading to the breakdown of mean

field behavior and the emergence of k-cores affecting the dynamical phase bound-

aries, we study broadly the phase behavior of the model over a wide parameter

range that includes the current best understanding of physiological preBötC. As a

result, we observe a type of dynamical permutation symmetry breaking in which neu-

rons dynamically separate into high- and low- firing rate groups on a network that

maintains the permutation symmetry of the neurons’ connectivity. This dynamical

symmetry breaking - spontaneous activity phase separation - is responsible both for

the unexpected roughness of the phase boundaries and for the emergence of k-cores

in locating the steps in those boundaries. Moreover, we observe that the dynamical

phase space of the model is much richer than previously thought. In particular, we

find that region of phase space consistent with stable oscillations is bounded in both

network size and neuronal basal excitability. This is inconsistent with the mean-

field predictions. We analyze activity phase separation on random networks both

numerically and analytically, showing that the connectivity disorder of the random

networks guides the separation process. After having broadly investigated the model

over a wide range of parameters, we present results for systems with the expected

physiological parameters. We note that the current bonds on these physiological

parameters are rather large. Consequently, we mention which of our results are ro-

bust with respect to changing those parameters. Finally, we note that the model

system is, remarkably robust to point (i.e., neuron) damage; this robustness is in
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semi-quantitative agreement with experimental observations.

We organize the rest of the manuscript as follows. In section 8.2, we demonstrate

spontaneous activity separation using small network to elucidate the process. We

show how activity phase separation generates the observed roughness of the phase

boundaries, a feature not captured by mean field theory. For the special case of an all-

to-all coupled network, one can analytically derive activity phase separation. We do

so, and compare these results to numerical simulations on all-to-all coupled networks

in section 8.3. From that analysis, we learn that the steepness of the neuronal

firing rate function (as a function of somatic potential) controls this spontaneous

symmetry breaking on the network. In section 8.4, we move to the case of more

sparsely connected networks, chosen from the ensemble of ER networks, where we

prove that the activity separated solution, if it exists, is stable for sufficiently sharp

neuronal firing-rate functions. The cases where such activity separated solutions

do not exist is reminiscent of converse symmetry breaking [132], where symmetric

solutions can be paradoxically stabilized by system asymmetry.

In section 8.5, we consider the role of k-cores in determining which neurons fall

into the high-activity state in sparsely connected networks. We prove that, when

setting the low somatic voltage firing rate to zero, activity phase separation is exactly

controlled by the k-cores. We suggest that k-cores remain relevant in controlling the

phase boundary between the quiescent and high activity phases of the disordered

system, but these topological features cannot alone account the roughness of the

high-activity/stable oscillation phase boundary.

In section 8.6, we summarize our main results on activity phase separation, and

discuss the implications of our analysis for the physiological preBötC. The reader
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primarily interested in our predictions for the in vitro preBötC system may choose

to turn to that section. Reader interested in simulations will find a reference to our

software and appropriate parameters in Appendix E.5.

8.2 The Feldman Del Negro model

Following Ref. [154], we describe the two-compartment neuron model of preBötC

neurons. The ith neuron is characterized by two dynamical variables, its somatic po-

tential Vi and its dendritic calcium concentration Ci. Their dynamics are controlled

by the equations

dVi
dt

=
1

τV
(Veq − Vi) + ∆V (Ci)

∑
j

Mijr(Vj) (8.1)

dCi
dt

=
1

τC
(Ceq − Ci) + ∆C

∑
j

Mijr(Vj), (8.2)

where ∆V (C) and r(V ) are defined by

∆V (C) = ∆Vmaxσ

(
C∗ − C
gC

)
(8.3)

and

r(V ) = (rm − rb)σ
(
V − V ∗
gV

)
+ rb. (8.4)

In Eqs. 8.3, 8.4 we have introduced the standard sigmoid (Fermi) function

σ(x) =
1

1 + e−x
. (8.5)

Here and throughout the manuscript we work in dimensionless calcium concentration

units obtained by setting Ceq = 0 and C∗ = 5.

Eq. 8.1 is typical of a leaky integrate and fire model for an excitatory neuron. The

principal addition in the two-compartment model is dendritic adaptation, which is
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built into ∆V (Ci) defined in Eqs. 8.3 and 8.5. An incoming EPSP produces both an

increase in dendritic calcium concentration ∆C and somatic potential ∆V (C). But

above a threshold concentration C∗, ∆V (C) becomes small, rendering the neuron

insensitive to subsequent EPSPs. In the absence of incoming EPSPs, the dendritic

calcium concentration returns to Ceq on a time scale of τC at which point the neuron

is once again sensitive to EPSPs.

The parameter space of the neuron model is controlled by a small set of physi-

ological constants. There are the steady-state dendritic calcium concentration and

somatic potential Ceq and Veq respectively. The voltage-dependent firing rate is

determined by the basal and maximal firing rates rb and rm as well as gV , which

controls the steepness of the transitions around the threshold voltage V ∗. Dendritic

adaptation is parametrized by the maximum voltage increment associated with an

EPSP ∆Vmax, a calcium concentration threshold C∗ and a steepness parameter gC ,

analogous to gV discussed above. In addition to the two time scales τV < τC for

the relaxation of somatic potential and dendritic calcium, there is a fixed calcium

concentration increment ∆C associated with the response to an EPSP. Table 8.1

provides the currently available values of the model parameters.

The model also depends on the size and connectivity of the underlying network of

synaptic connections between the neurons. The network’s structure can be encoded

by an adjacency matrix M whose matrix elements Mij = 1 if neuron i synapses on

neuron j, and equal to zero otherwise. In this manuscript, we consider only networks

built from uncorrelated stochastic connections – Erdős Rényi directed graphs [40].

An ensemble of such networks is determined by a single probability p that any non-

diagonal matrix element is equal to one. We exclude the possibility of a neuron

synapsing on itself. The all-to-all network is simply the case of such an ER graph
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Table 8.1: Model parameters known from experiment

Parameter Approximate value References

Veq -65 mV [92]

V ∗ -50 mV [92]

τV 20 ms [146],[7]

rm 40 Hz [146],[7]

rb 0.1 Hz [7]

∆Vmax 2.8 mV [146],[7]

p 0.065 [146]

N 103 [146], [57]

with p = 1.

8.2.1 Dynamical phase diagram

For a given set of parameters and given network of N neurons, the dynamical sys-

tem evolves deterministically from a set of 2N initial conditions leading to either a

fixed point, limit cycle, or chaotic dynamics at long times. We find multiple fixed

points, which can be further distinguished as quiescent (Q) where the somatic po-

tential averaged over the network of neurons 〈V 〉 lies below the transition to the

high-firing state V ∗, or high activity (HA), where 〈V 〉 > V ∗ [154]. Similarly, we can

distinguish three classes of stable limit cycle oscillations: below threshold oscillations

(BTO) where the oscillatory average voltage remains below the threshold for high

firing rate, above threshold oscillations (ATO), where the oscillatory average volt-

age remains above the threshold for high firing rate, and true metronomic activity
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(TMA), where the stable limit cycle oscillations carry the system between high and

low firing rates, producing the physiologically observed inspiratory rhythm. While

these three oscillatory phases were not distinguished in [154] we do so here to give

more precise picture of the model’s dynamical states.

To examine the dynamical phase behavior of the system, we vary the basal ex-

citability of the neurons and the size of their network – ∆Vmax and N – while fixing

the rest of the parameters. We study a range of network sizes 10 ≤ N ≤ 103 , using

the smaller networks (N ≈ 102 ) for their computational efficiency 1 and the larger

networks (N ≈ 103 ) to approach the size of the physiological preBötC. We find

that our principal results: activity phase separation and phase boundary roughness

appear in both small networks and larger ones. In section 8.6, we return to the

question of the model’s large N limit, where we demonstrate that one can explore

arbitrarily large N networks via a scaling relation.

Typical results for dynamical phase diagrams of the networks are shown in Fig. 8.1

for three different choices of the fixed variables. We observe in Fig. 8.1A the numer-

ically determined phase diagram for all-to-all coupled networks, which agrees with

the mean field solution of the model shown in Appendix C. In general, we find that

the numerically determined phase diagram agrees with the mean field approxima-

tion in all-to-all networks (for arbitrary initial conditions) as long as the transition

in dendritic sensitivity is sufficiently smooth, i.e. gC & 1 (see Appendix E.2 ). In

this limit we observe all five dynamical phases: Q (light blue, lightest gray), BTO

(blue, lighter gray), ATO (purple, darker gray), TMA (green, middle gray) and HA

(dark red, darkest gray).

1Simulation time scales as N2 for a single network and as N3 to map the phase diagram for a
particular set of network parameters
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There are two ways to invalidate the mean-field predictions. The first is to make

the dendritic calcium adaptation more abrupt, i.e., decrease gC . 1 while retaining

the all-to-all coupling. In that case, we encounter a much more complex phase space

as shown in Fig. 8.1B where the phases mix on a small scale in the parameter space.

We also observe a dependence upon initial conditions. We discuss the quasi-periodic

pattern arising in this case in the Appendix E.4. In effect, the dynamical phase

diagram is not only highly heterogeneous, but also the regions that we associate

with a particular phase may depend on the choice of initial conditions. The mean-

field analysis is non-predictive, and one may say that the even the introduction of a

dynamical phase diagram is not as well defined as in the mean-field case.

The second way to invalidate the mean-field predictions is more interesting. We

maintain the smooth neuronal sigmoids, but reduce the number of network connec-

tions. In that case, as shown in Fig. 8.1C, the phase behavior of the network is once

again insensitive to initial conditions. Moreover, the general structure of the mean-

field phase diagram is preserved, but the phase boundaries are distorted. Both the

HA (dark red, darkest gray) and Q (light blue, lightest gray) phases expand, while

the physiologically relevant TMA (green) phase shrinks. Both the TMA and BTO

(blue, lighter gray) phase are now bounded, whereas they extended to arbitrarily

large ∆V in the mean-field prediction. In this regime, we do not see chaotic dynam-

ics unlike in the cases where gC is small. Changing other parameters of the model

changes the shape of the phase boundaries, but does not introduce new dynamical

phases. Both routes to the breakdown of mean field theory (small gC and more

sparsely connected networks) are related to an inherent instability toward activity

phase separation. We discuss this in more detail below.

Before discussing the phase separation, we note that the roughness of the phase
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Figure 8.1: (Color online) Dynamical phase diagram of the model as a function of

the size of the network N and basal neuronal excitability ∆V . (A) An all-to-all

coupled network with large gC = 3 produces phase behavior consistent with mean–

field predictions, but (B) sharp sigmoids (small gC = 0.01) produce a disordered

diagram in which all dynamical phases are strongly mixed and the network dynam-

ics is highly dependent on initial conditions. Finally, in (C) randomly connected

networks (p = 0.2) with large gC = 3, have initial-condition independent results with

a modified dynamical phase diagram. In all three panels the phases are: Q (light

blue, lightest gray), BTO (blue, lighter gray), HA (dark red, darkest gray), ATO

(purple, darker gray), TMA (green, middle gray). All parameter values are listed in

appendix E.5.
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Figure 8.2: (Color online) Reentrant behavior along the of the TMA-HA phase

boundary. k-cores transitions are shown as black lines, and colors are the same as at

the previous figure.). All parameter values are listed in appendix E.5.

diagram in the non-mean-field regime, as shown in Fig. 8.1C, implies that the physio-

logically desirable stably oscillating phase (TMA) admits a type of reentrant behavior

in which one can remove neurons (decrease N) from a network in the high activity

state to render it in the stably oscillating TMA phase. In Fig. 8.2 we see examples

of such possible transitions at ∆V = 18mV (indicated by the vertical dashed line)

where by decreasing the number of neurons from N = 90 to N = 65, one encounters

transitions TMA-HA-TMA-HA, before remaining in the HA phase below N = 72.

This suggests a specific experimental test of the fundamental model that can be

made by looking for these reentrant dynamical transitions upon killing neurons in

the network. In this figure we also show with black horizontal lines the values of

N at which various k-cores of the network vanish. The positions of the tongues of

extra stability of the oscillating TMA phase appear to be bounded by these k-core
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transitions, suggesting that the disappearance high-k k-cores changes the stability of

the oscillatory (TMA) phase. We return to this point in section 8.5, where we show

that k-cores play a dominant role in the phase stability of a somewhat simplified

version of the model.

The fact that removing neurons from the network can enhance its ability to

maintain stable oscillations seems to be counter-intuitive. This reentrant behavior

appears at many phase boundaries in the system, including the one between the high-

activity (HA) and quiescent (Q) phases. An example of such reentrant behavior at

this phase boundary is shown in Fig. 8.3. To understand how this behavior emerges,

it is simpler to study this case where the neurons’ dynamics reaches a fixed point

rather than a limit cycle. Consider a fixed point of the system; setting the time

derivatives on the left hand side of Eqs. 8.1, 8.2 equal to zero, we obtain

Vi = Veq + ∆V (Ci)τV
∑
j

Mijr(Vj) (8.6)

Ci = Ceq + ∆CτC
∑
j

Mijr(Vj) (8.7)

For neuron i to be rapidly firing, it must receive a number of EPSPs consistent with

both Vi > V ∗ and Ci < C∗. In this way, its somatic voltage is maintained above the

threshold, and it remains sensitive to EPSPs. Too many EPSPs will drive Ci > C∗,

resulting in the neuron’s somatic potential falling below that threshold, while too

few EPSPs will allow Vi < V ∗ even while maintaining dendritic sensitivity. As a

result, the stable configuration of Vi > V ∗ and Ci < C∗ can be destroyed by either

adding or removing neurons that synapse on neuron i. We can see precisely how this

works in an example of a small network of seventeen neurons poised near the HA-Q

boundary.

196



Figure 8.3: (Color online) Phase diagram showing reentrant behavior at the Q (light

blue, lightest gray) HA (dark red, darkest gray) phase boundary. There are also

small regions of the oscillatory phases: TMA (green, middle gray), ATO (purple,

darker gray), BTO (blue, lighter gray). Black vertical dashed line shows reentrant

behavior. The moving along this line is shown in Fig.8.4. All parameter values are

listed in appendix E.5.
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Figure 8.4: (Color online) Example of reentrant high activity on a small network.

Red (dark gray) neurons have V > V ∗ and dark yellow (light gray) V < V ∗. The

neurons are numbered and the last neuron in each network is removed when going

A → B → C → D. With the removal of neuron 16 (from A to B) , the somatic

potential of neuron 11 drops below the threshold, as it has insufficient voltage input,

and the average network voltage falls below V ∗, too. Going from B to C neuron 15,

which synapses to neuron 4, is removed, which lowers its calcium concentration. As a

consequence, the somatic potential of the neuron 4 increases as well as its firing rate,

resulting in increasing the firing rate and voltage input to neuron 7. The somatic

potential of neuron 7 then goes above the threshold too. The increasing firing rate of

neuron 4 also raises the somatic potential of neuron 0, which raises somatic potential

of neuron 13, which in turn raises it for the neuron 11. Although somatic potentials

of neurons 0 and 13 do not exceed V ∗, for neuron 11 it does. As a result, the average

voltage of the network rises above V ∗. Finally, when neuron 14 is removed (from C

to D), all neurons are deactivated and ∆V must increase to restore high activity. All

parameter values are listed in appendix E.5.
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In Fig. 8.4 we see that eliminating a low-firing rate neuron (number 16) from

the network causes neuron 11 to change from high to low firing rate. Removing

an excitatory neuron has the expected behavior of reducing the total activity of

the network. But the subsequent removal of another low-firing rate neuron (neuron

15) results in neurons 7 and 11 once again returning to high firing rate. Finally, by

removing the low-firing rate neuron 14, the entire network collapses into the quiescent

state.

8.3 Spontaneous symmetry breaking on all-to-all networks

In this section we explore phase separation on all-to-all coupled networks, i.e., those

having an adjacency matrix of the form Mij = 1 for all i 6= j and Mii = 0 for all i.

The steady-state of the system spontaneously breaks the permutation symmetry of

the neurons. To explore this symmetry breaking, we first investigate the symmetry

preserving solution, that is obtained from the pair of differential equations

dV

dt
=

1

τV
(Veq − V ) + (N − 1)∆V (C)r(V ) (8.8)

dC

dt
=

1

τC
(Ceq − C) + (N − 1)∆Cr(V ), (8.9)

which results from setting Ci = C(t) and Vi = V (t) for all i in Eqs. 8.1, 8.2 and using

the all-to-all adjacency matrix.

We demonstrated numerically that the dynamics of the full system Eqs. 8.1, 8.2

evolves towards this permutation symmetric solution for arbitrary initial conditions

if the sigmoidal functions P (V ) and ∆V (C) are smooth enough (see Fig. 8.5C, D).

If, on the other hand, these sigmoids are sharper, the system becomes unstable

towards activity phase separation (breaking the original permutation symmetry of
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the underlying network) into time-independent subnetworks of high and low firing

rate neurons, when the initial conditions are not themselves identical across the

network (see Fig. 8.5A, B). The phenomenon of activity phase separation in all-to-

all biological networks has been observed in a model of cell regulatory networks [122,

151].

The symmetry broken state is, of course, not captured by the mean field analysis.

To explore it, we need to analyze the full system of equations. Defining the sum of

firing rates over the entire network as R =
∑

i r(Vi), we rewrite the dynamical system

as

dVi
dt

=
1

τV
(Veq − Vi) + ∆V (Ci) [R− r(Vi)] (8.10)

dCi
dt

=
1

τC
(Ceq − Ci) + ∆C [R− r(Vi)] . (8.11)

Now we can look for a self-consistent solution of this system, i.e., we find Vi(R) such

that R =
∑

i r(Vi). Studying the nullclines of Eqs. 8.10, 8.11, we see that it can

have one to three fixed points. The cases of one and three fixed points are shown

in Fig. 8.6, where we see the intersections of the nullclines of Eqs. 8.10 and 8.11 in

orange (light gray) and blue (dark gray) respectively.

Since we are looking for a self-consistent solution, we can not analyze its stability

directly from the graph; however, we can find the fixed points and later analyze their

stability. For neuronal parameters consistent with smooth sigmoids, there is only

one fixed point (Vf , Cf ) for a fixed value of R. This self-consistent solution is both

permutation symmetric and consistent with our mean field prediction. In contrast,

for sharp sigmoids, there is more than one fixed point, so it is possible to find some

fraction of the network neurons at a high-voltage fixed point, while the remainder

is at a low-voltage fixed point. The number of neurons in these two categories is
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Figure 8.5: Activity phase separation on all-to-all connected network of N = 10

neurons. The traces show somatic potential of individual neurons as a function of

time. (A) One neuron is at high voltage , nine are quiescent, gV = 0.3 mV, gC = 0.5

. (B) Two neurons oscillate, eight are quiescent, gV = 0.3 mV, gC = 0.5 . (C)

Synchronous oscillations of all neurons, gV = 0.1 mV, gC = 1.1 . (D) All neurons

at high voltage, gV = 1.8 mV, gC = 10.8 . All parameter values are listed in

appendix E.5.
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Figure 8.6: (Color online) Nullclines of the all-to-all N = 10 network described by

Eqs. 8.10 (orange, light gray) and 8.11 (blue, dark gray) in the text. There are

either three fixed points or one fixed point depending on parameters. Assuming

R is constant (and not fixed self-consistently) two of the fixed points annihilate in

a standard pitchfork bifurcation [173]. (A) gV = 0.5 mV, gC = 0.3, three fixed

points. (B) gV = 5 mV, gC = 3, one fixed point. All parameter values are listed in

appendix E.5.
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determined by the condition R =
∑

i r(Vi). There is also a range of parameters with

gV > 0, gC = 0, such that the self-consistent solution does not exist.Therefore, there

is no fixed point, and only oscillations are allowed. See Appendix E.4 for the details

of the analytical calculation.

For the small values of gC (sharp sigmoid), the phase separation into firing and

quiescent neurons is the only stable state. For intermediate values of gC we still

observe this stable state shown in Fig. 8.5A. We also show activity separation into

oscillating and quiescent subnetworks in Fig. 8.5B. Continuing to increase gC we

obtain synchronous oscillations of the whole network in Fig. 8.5C, and, finally, fixed

point with constant uniform activity in Fig. 8.5D.

For the case of the large physiological-like network N = 1000 neurons we also ob-

serve phase separation in the case of the sharp sigmoid (Fig.8.7), which demonstrates

that the separation is not the finite-size effect.

8.3.1 Step function limit: All-to-all networks

To better understand activity phase separation on the network, it is useful to consider

a non-physiological limit of the model in which the sigmoidal functions describing

both the firing rate and the dendritic adaptation are taken to be infinitely sharp,

i.e., step functions: gV = gC = 0. In this case, neurons with above-threshold voltage

V ∗ fire at the maximal rate rm, while neurons below that threshold voltage fire at

the basal rate rb. If the number of high and low firing rate neurons are nh and nl

respectively (nh + nl = N ) we find that
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Figure 8.7: Activity phase separation on all-to-all connected network of N = 1000

neurons. The left panel shows nullclines as in Fig.8.6, the right panel shows corre-

sponding traces of voltage versus time, as in Fig.8.5. The upper panel demonstrates

activity separation for gV = 0.05 mV, gC = 0.03. The lower panel show no such

phase separation but synchronous oscillation with gV = 2 mV, gC = 1. All parame-

ter values are listed in appendix E.5.
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Vh = Veq + ∆V (Ch)τV [(nh − 1)rm + nlrb] (8.12)

Ch = Ceq + ∆CτC [(nh − 1)rm + nlrb] . (8.13)

Similarly, the low firing-rate neurons have

Vl = Veq + ∆V (Cl)τV [(nl − 1)rb + nhrm] (8.14)

Cl = Ceq + ∆CτC [(nl − 1)rb + nhrm] . (8.15)

One can check that rate of spikes received by a high firing-rate neuron Rhigh =

[(nh − 1)rm + nlrb] is less than that received by a low firing-rate neuron Rlow =

[(nl − 1)rb + nhrm]. However, the condition for being at a high firing rate is V ∗ < Vh

and a low firing rate is V ∗ > Vl. For these inequalities to hold simultaneously with

the result that Rhigh < Rlow, one needs the high firing-rate neurons to be more

sensitive to incoming spikes than the low firing-rate ones. Thus we conclude that

this state requires Cl > C∗ > Ch. From this conclusion, we find nl, the number of

low-firing rate neurons, to be

nl =

⌊
(Nrm − rb)∆CτC + Ceq − C∗

∆CτC(rm − rb)

⌋
, (8.16)

where we have introduced the floor function: bxc = the integer part of the real

number x.

To observe the phase separated state, we require that the high-firing rate neurons

remain sufficiently sensitive to incoming spikes. The lower bound of their sensitivity

∆V (Ch) is given by

V ∗ − Veq < ∆V (Ch)τV [(nh − 1)rm + nlrb] . (8.17)
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Figure 8.8: Number of stable fixed points as a function of the network connectivity

probability p for N = 100 neurons. For p = 1 this number coincides with n!
nl!nh!

,

and rapidly falls to one or zero when p . 0.9 . All parameter values are listed in

appendix E.5.

While the number of neurons at low firing-rate neurons nl is fixed by Eq. 8.16,

the identity of these neurons is determined solely by the initial conditions on the

all-to-all network. There are a large number n!
nl!nh!

of otherwise identical fixed points

that are related by permutation symmetry of the network. If, however, the network

is more sparsely connected and thus does not have this permutation symmetry, there

are fewer fixed points, as is discussed in the following section.

8.4 Symmetry breaking on sparse networks

If we randomly remove edges from the all-to-all network, we break the permutation

symmetry of the neurons, and produce an instance of a network selected from ensem-

ble of ER networks with probability p < 1 of a directed connection between neurons.
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This leads to a rapid reduction in the number of stable fixed points with decreasing

p, as shown in Fig. 8.8.

Below p ≈ 0.9 the number of stable fixed points drops to just one or vanishes

entirely, resulting in only an oscillatory or approximately chaotic solution. For the

case of the step function neurons, or for sufficiently sharp sigmoidal responses, we

do not typically observe globally synchronized oscillations. The asynchronous firing

of different neurons results in many self-crossing for the network averaged V vs. C

graph, as shown in Fig. 8.9.

While for the smooth sigmoids the most common case when oscillations occur is

an unstable fixed point, this is not possible when sigmoids are very sharp. Indeed,

any fixed point that not exactly on the threshold in this case is stable, as shown in

Appendix E.3. Therefore, the only opportunity for the oscillatory or approximately

chaotic behavior is the absence of fixed point.

8.4.1 Oscillations on star networks

In order to understand how all fixed points vanish in sparser networks, we consider

the special case of a star network, in which one central neuron is bidirectionally

coupled to N − 1 other neurons. Those other neurons are not coupled to each other.

Such a network is shown in Fig. 8.10.

We choose parameters such that the range of the central neuron’s firing rate is

large enough to take the peripheral neurons across their firing-rate threshold:

∆V (0)τV rb < V ∗ < ∆V (0)τV rm. (8.18)

Furthermore, we require that all the peripheral neurons firing together at their basal
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Figure 8.9: Phase trajectories in the averaged V − C plane for networks with step–

function neurons. (A) Almost chaotic behavior. True chaos is not observed since the

number of possible states is finite, but the voltage varies wildly. (B) Limit cycle with

self-intersections, indicating asynchronous firing. (C) Standard limit cycle with syn-

chronous firing, corresponding to true metronomic activity (TMA), rarely observed

in the step-function limit. 208



Figure 8.10: A star network with N = 9 neurons. The peripheral neurons are

bidirectionally coupled to the central neuron, but not to each other.

rate are able to excite the central neuron over threshold. If, however, the central

neuron’s dendritic calcium is above threshold, then all the peripheral neurons firing

at their maximal rate are collectively insufficient to excite the central neuron:

(N − 1)∆V (C > C∗)τV rm < V ∗ < (N − 1)∆V (0)τV rb. (8.19)

We also demand two conditions on the calcium threshold. First, a single neuron

cannot fire rapidly enough to push another neuron’s dendritic calcium over threshold:

C∗ > ∆CτCrm. (8.20)

N − 1 neurons, however, firing at their maximal rate can induce calcium concentra-

tions over threshold in the central neuron:

(N − 1)∆CτCrb < C∗ < (N − 1)∆CτCrm, (8.21)
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but they cannot do so when they are all firing at their basal rate.

By obeying all of the above inequalities, the system cannot reach a fixed point.

Instead the network with these step-function neurons oscillates. The central neuron

excites the peripheral ones and then those neurons drive the central neuron’s calcium

concentration above threshold rendering it insensitive. As a result, the central neuron

returns to its low firing state and then so do the peripheral ones. At this point, the

cycle begins again.

Recall, however, that the step-function neurons on the all-to-all coupled network

do not oscillate, instead they reach one of many fixed points characterized by activity

phase separation. By breaking the permutation symmetry of the network, the star

network admits a new synchronous oscillatory phase. This is reminiscent of an

effect called converse symmetry breaking [132], where the necessary condition for

synchronous activity of a coupled network of oscillators is an asymmetry of this

system. We observe a similar stability of globally synchronous oscillations in random

networks that break the permutation symmetry such as the ER graphs discussed

above.

8.5 The effect of network heterogeneity on phase separation

We have established that the neuron model leads generically to activity phase sep-

aration. On permutation symmetric all-to-all networks, this phase separation is a

form of a spontaneously broken symmetry, but it exists on more sparse networks too.

This poses the question: how does the network topology modify phase separation?

To address this, we consider another simplified limit of the model by setting rb = 0

(i.e. a neuron is either firing or not), using a step function firing rate (gV → 0),
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and eliminating dendritic adaptation by taking C∗ → ∞. The system in this limit

is equivalent to coarse-grained neuronal network considered in [104] that based on

mutualistic ecosystem network studied in [125]. It was shown that in such model

k-core exactly coincides with the most stable part of the system (the active voxels in

subliminal state in [104] and surviving species in [125]). We repeat below the deriva-

tion of this effect in terms of the system at hand based on [104, 125] demonstrating

that, in this case, the cluster of firing neurons will be a k-core of the network with k

determined by neuronal parameters.

Consider ni actively firing input neurons synapsing on neuron i. From the fixed

point condition V̇i = 0 we find

Vi
τV

= ni∆V rm. (8.22)

For the ith neuron to be part of the group of actively firing ones, Vi > V ∗, which

implies that number ni of firing inputs exceeds a lower bound:

ni ≥
V ∗

τV ∆V rmax
. (8.23)

We intend to relate the actively firing group with a topological feature of the

network: a k-core. This structure is defined to be the maximal subnetwork, such

that within it each neuron has k or more inputs from the other neurons in that

subnetwork. k-cores have been discussed in a variety of applications in neuroscience,

bioinformatics, ecology, and the study of social networks [125, 10, 157, 98]. The

condition for a neuron to be in the actively firing group, Eq. 8.23, is equivalent to

membership within a k-core with the integer k given by

k =

⌊
V ∗

τV ∆V rmax

⌋
. (8.24)
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If a k-core with some k given by Eq. 8.24 is absent from the network, the dynamical

system on that network relaxes to the quiescent fixed point, but if such a k-core is

present, the neurons making up the k-core become fixed in the HA phase. We note

that for typical values of k, most of the network will be part of that k-core [37] because

for k > 2 the probability of a neuron being part of the k-core has a discontinuous jump

from zero to a significant value as a function of the density of synaptic connections

(in the thermodynamic limit of large networks).

Figure 8.11: (Color online) The phase diagram for the simplified model discussed in

section 8.5. There is no oscillatory phase, only quiescent (Q, light blue, lightest gray)

and high activity (HA, dark red, darkest gray). Black horizontal lines correspond to

k-core transitions. We see almost exact correspondence between k-cores transtions

and steps on the phase boundary. Small deviations are due to the fact that the

average voltage of the whole network can be below V ∗ even in the presence of the

active k-core due to the averaging over all neurons including quiescent ones. All

parameter values are listed in appendix E.5.
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We compare our predicted phase boundary of the system and k-cores in Fig.

8.11. The predicted k value for a particular set of n and ∆V parameters corresponds

exactly to the point in phase space where the HA phase gives way to the Q phase.

For this restricted version of the Feldman Del Negro model, at least, there is a

precise correspondence between the neuronal network’s dynamical phase behavior

and the prediction made purely from the topology of the underlying network. k-cores

completely determine the dynamical phase transition of the neurons interacting on

them, and how the network phase separates into groups of high and low activity

neurons.

8.6 Discussion and applications to the preBötzinger complex

We have explored the FDN model of oscillations in the preBötC and found a form of

dynamical phase separation on the network in which groups of neurons separate into

high and low firing-rate fixed points. This firing-quiescent phase separation plays

the crucial role in the termination of the TMA phase. One feature that emerges

from this work is that the permutation-symmetric system (the all-to-all coupled

network) admits a type of spontaneous symmetry breaking into these high and low

activity phases. In more sparse networks such as in the physiological preBötC, this

permutation symmetry is broken by the network. The details of network connectivity

modify the inherent instability of the system toward phase separation into groups of

high and low firing-rate neurons. In one particular limit of the model, we found that

this interaction of neuronal dynamics and network topology is particularly simple.

By examining only the k-core structure of the network, one can precisely predict

both the dynamical phase diagram and which neurons will end up in the high and
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low firing rate groups.

In the full model, the effect of the k-cores in determining the phase boundaries

of the dynamical system remains, but no longer does it completely control these

dynamics. The incomplete influence of k-cores was observed earlier [154]. Here we

believe we have better elucidated the underlying mechanism and explained why their

control of the dynamics is not complete.

To assess the importance of these observations for the physiological preBötC,

we first present the numerically computed phase diagram for 1000 neurons using

parameters consistent with physiological measurements. This is shown in Fig. 8.12.

Please see appendix E.1 for a discussion of how the neuronal and network parameters

were selected.

As discussed in the appendix, there is a remaining uncertainty in determining the

value of ∆C. Moreover, the full preBötC has somewhere between two to three times

as many neurons as used in the simulation. We note, however, a scaling argument,

based on the mean-field analysis of the model, that allows us to shift ∆C as a way

of effectively changing the network’s size. In the mean-field theory, three parameters

∆C, ∆V , and pN appear in only two combinations pN∆V and pN∆C. As a result,

if we change ∆C → ∆C
λ

, ∆V → ∆V
λ

, and pN → pNλ the mean-field solutions are

invariant. We can test this scaling hypothesis in the full model by comparing the

phase diagram of the N=1000 network with ∆C = 2.5 × 10−2, shown in Fig. 8.13,

to a much smaller network of N = 100 and ∆C = 0.1, shown in Fig. 8.1C. Their

correspondence supports out exploration of larger networks using calcium scaling.

The scaling hypothesis suggests that, if we were able to expand the network size

used in Fig. 8.12 to the preBötC’s true physiological size, we would find that the
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Figure 8.12: (Color online) Phase diagram of the network with physiologically rele-

vant parameters. It shows three stable dynamical phases: true metronomic activity

(TMA, green, middle gray) consistent with the preBöC’s physiological dynamics, as

well as a high activity (HA, dark red, darkest gray), and a quiescent (Q, light blue,

lightest gray) regime. There is a narrow band of above threshold oscillations (ATO,

purple, darker gray). The diagram corresponds to the part of the phase diagram

in Fig.8.13 in the black frame under rescaling, thus does not have all the possible

phases present. All parameter values are listed in appendix E.5.

region of stable oscillations is bounded from above as well as for high and low neu-

ronal excitability. We see in Fig. 8.13 that the large N network has a rough phase

boundary between the TMA and Q on the right side of the bounded TMA domain,

which is incompatible with the mean-field analysis and reflects the role of dynamical

phase separation on the network. This result makes an interesting prediction in that

there are regions of the phase diagram in the physiological system where increas-

ing neuronal excitability can actually produce globally quiescent networks, through
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calcium inhibition. This feature cannot be reproduced by the mean-field model.

Another consequence of this large N phase diagram is that we can predict the

robustness of the network to damage. From Fig. 8.13, we see that under optimal

conditions, one can destroy about eighty percent of the network before causing the

collapse of the oscillating phase. This agrees with experimental observations [57].

One may notice that the crucial condition for this robustness is the smoothness of

the sigmoids. If we make sigmoids sharper, the system becomes highly sensitive not

only to damage but also to the initial conditions (see Appendix E.2 for the influence

of parameters gV and gC controlling the sharpness of sigmoids).

We propose three types of experimental tests of the above analysis. The first

of these, alluded to above, is that the network should be able to be silenced by

increasing neuronal excitability. Secondly we predict that the roughness of the phase

boundaries, particularly when N is large, suggests presence of multiple reentrant

transitions in which the network goes from being oscillatory to quiescent, and back

to oscillatory as neurons are removed from it. Third, one should be able to directly

observe dynamical phase separation in the system. In either the high activity or

quiescent phase, one should be able to find neurons trapped at the other fixed point

so that the globally quiescent state of the network should harbor some fixed fraction

of high firing rate neurons. Conversely, the network in its globally highly active state

should contain a subpopulation of neurons trapped in their low firing-rate state.
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Figure 8.13: (Color online) Phase diagram of large networks with N up to 1000.

All five phases are present: true metronomic activity (TMA) is green (middle gray),

below threshold oscillations (BTO, blue, lighter gray), above threshold oscillations

(ATO, purple, darker gray), high activity (HA, dark red, darkest gray), and quiescent

(Q, light blue, lightest gray). The right TMA-BTO and BTO-Q boundaries demon-

strate the reentrant behavior. In general, the pattern is approximately the same as

in Fig. 8.1C, supporting the scaling argument. The black frame shows the part of

the diagram that maps into the phase diagram in the Fig.8.12 under rescaling. All

parameter values are listed in appendix E.5.
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APPENDIX A

Appendix for ”Topological defects produce kinks

in biopolymer filament bundles”

A.1 Additional information for collagen experiments

A.1.1 Pepsin extracted collagen

We observed kinking only in pepsin-extracted collagen. Acid-extracted collagen (Te-

loCol 5225, Advanced BioMatrix) produces bundles with no observable kinks under

confocal microscopy. Structural differences between acid- and protein-digested col-

lagen have been previously described in literature [152]. It is possible that defects in

the bundles are introduced during the reconstitution process with a higher probabil-

ity when the covalent cross links between collagen molecules are removed during the

pepsin digestion, which allows greater freedom to the collagen subfibrils during the

early stage of collagen hydrogel reconstitution. However, this is not easy to explore

experimentally. We reconstituted the collagen by adjusting the pH of the soluble

collagen solution to 7 with NaOH followed by dilution in PBS (phosphate buffered

saline, Gibco). We did not add any cross-linking enzymes or chemicals at any point.

We estimated the range of number of filaments per bundle in our system from pub-

lished SEM images of similarly reconstituted type-1 collagen bundles to be xxx -xxx.
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([123, 60, 143]).

A.1.2 Work flow for measuring curvature of bundle from image using

splines

We determined the curvature of the bundle in the four steps. First, we obtain the

brightness of each pixel in the raw image of the bundle. Second, for each value of po-

sition X we consider the brightness of the pixel as the function of y. Third, for each

x, we do a Gaussian fit of this function, obtaining the mean and standard deviation,

which we consider to be y position of this piece of the bundle and the measurement

error respectively. Fourth, we use MATLAB fit function in smoothspline mode to

obtain the trace of the filament y(x) before calculating the curvature to regularize

non-physical, extremely large values of curvature that are just an artefact of data

collection [3, 34, 35]. Finally, we repeat the last step with addition of the random

errors, that have a uniform distribution on the interval ±1 pixel to estimate propa-

gation of error in position to error in curvature. See Fig. A.2 for the illustration of

the work flow.

A.1.3 Angle of kink over time

We recorded 50 images of each bundles in total. However, the kinks are not visible

in every frame due to movement of the bundle. The measured angle may vary – see

Fig. A.1 for the measurement of the single kink angle in different frames using the

angle tool in imageJ ([4]). For the general results, we measured the angle of the kink

in at least three different images using imageJ and we reported the average of these

angles – see results for all bundles in the Fig. 2.1 in main document.
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A.1.4 Measured angle compared to true kink angle

The experimentally measured kink angle is actually the angle of the 2D projection

of the kink onto the microscope’s focal plane. To estimate the true kink angle

distribution, we perform the following numerical algorithm. First, for each physical

3D kink angle φ in the interval (0◦, 180◦) with 5◦ steps, we generate bundles (two

straight line segments, each with length 3µm, joined at the specified angle φ) in 3D

with random orientations distributed uniformly over the unit sphere. The centers

of the kinks were also randomly positioned with respect to the focal plane. As a

result, most physical kinked bundles have little overlap with the focal plane, having

less than 3 microns of visible bundle length on either side of the kink. These bundles

are rejected just as they were in experiment. The bundles that completely fit in the

focal plane of thickness 1 µm are then projected onto this plane, and the angle of

the projection is measured.

We gather 1000 such projections for each possible 3D kink angle φ. We thus

obtain the distribution of the measured angles for each particular 3D angle. From

these thousand cases, we construct a vector representing the frequency of kink angles

lying within five-degree bins of observed kink angle in our two-dimensional projection

d2. Of course, this should correspond to the actual histogram data, which is shown

in Fig. 1C of the main text. In actuality, we wish to solve the inverse problem:

Given that we observe a particular distribution of projected kink angles onto the

focal plane, what is physical distribution of those kink angles in three-dimensions?

We call this latter distribution d3 in analogy to the just introduced vector d2. The

error introduced by our two-dimensional projection of the three-dimensional kinks

can be estimated by comparing these two vectors.
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Taking the numerically obtained mapping of d3 to d2, we introduce the matrix

M relating them:

d2 = Md3. (A.1)

Inverting this, we obtain the desired information – how to relate the observed d2 to

the physical distribution of kink angles ds3, namely

d3 = M−1d2. (A.2)

Using the experimentally observed distribution d2, we obtain the most likely distribu-

tion of physical kink angles, which is shown in Fig. A.3A. The nonphysical negative

frequency values at small kink angles are caused by the fact that we underestimated

the number of small kinks in the data. We surmise that these low-angle kinks were

rejected as being straight, or unkinked bundles. Artificially increasing the number of

such weakly kinked bundles in the observed data – see Fig. A.3B – leads to positive

frequencies for all the physical, three-dimensional kink angles.

The most likely physical kink distribution obtained from this data analysis does

not dramatically differ from the observed kink angle distribution obtained from the

focal plane projections. This can be understood simply because we required that one

observe enough of the straight bundles on either side of the kink to ensure that the

plane of physical, kinked bundle is nearly parallel to and lies within the focal plane of

the instrument. Quantitatively, we observed less than ten percent differences between

the relative frequency of the projected and inferred physical kink angle frequencies

in the more highly populated bins around thirty degrees. The differences between

these frequencies approached twenty percent for the smallest kink angle bins. For

nearly vanishing kink angles, the projection effect introduced greater uncertainties

since there are more orientations of a weakly kinked, nearly straight bundle that kept
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the bundle within the focal plane.

A.1.5 Estimation of ζ for collagen bundles

The exact mechanism by which reconstituted collagen forms bundles from a sol-

uble state is poorly understood [178, 183, 83, 55, 49, 23, 159]. Relevant to this

manuscript, the stiffness of native collagen bundles has been measured for both

dry and hydrated states, and scanning electron micrographs reveal network ultra-

structure, including potential kinks. Importantly, while the aforementioned studies

used predominantly native collagen bundles, we examine here samples of reconsti-

tuted fibrous collagen hydrogels, which have been depleted of telopeptides that form

many of the intramolecular covalent cross links. Due to pepsin digestion and lack

of cross-linking enzymes in the hydrogels, we infer that cross linking is driven by

electrostatic interactions. Molecular simulations using a coarse-grained model pro-

vides estimates of parameters µ, a, and κ, where κ is derived from measurements

of native collagen. This model includes an array of intramolecular interactions of

strength 11.06 kcal mol−1, and effective spacing of 14.72 Å, and filament stiffness

14.98 kcal mol−1 (see Ref. [17, 33, 39]). These electrostatic interactions are reversible,

a key feature of our model and simulations. ζ can be estimated from the course grain

model as follows:

µ =
7.7× 10−20J

1.4× 10−9m
(A.3)

a = 1.47× 10−9m (A.4)

κ =
(
1.381× 10−23J/K

)
(300K) (23.4nm) = 9.695× 10−29m J. (A.5)
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These values lead to an estimate of ζ for collagen filament bundles of:

ζ ≈ 1.2. (A.6)

A.2 Further information about the numerical model and the

setup of the computational experiments

A.2.1 Setup of the computational experiments

Initially, all filaments were chosen to be straight and parallel without any cross

links, as mentioned in the main article. The number of filaments in the bundle

was varied between N = 2 and N = 225. In the plane perpendicular to the initial

direction of the filaments, the filaments were arranged on a hexagonal grid with

spacing d = d0 = 100nm between the filaments. We also conducted simulations

using a square grid and did not observe any noticeable influence of this initial lateral

arrangement of the filaments on our results. Unless otherwise stated, the filaments

were free to move in 3D. In the minimal setup of two filaments in 2D, the two parallel

filaments were constrained to move only in the plane by means of Dirichlet boundary

conditions on all beam nodes. Upon beginning the simulation at time t = 0s, the

stochastic thermal forces acted on the filaments in combination with the random

binding and unbinding of cross links give rise to the self-assembly of the bundles.

The bundle shapes, including, for instance, the curvature of the bundle centerline

along its length, as well as the distribution of cross links were analyzed over the

entire simulation time of up to 1000s.
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A.2.2 Filament model

As mentioned in the article, each filament is described by means of nonlinear, geo-

metrically exact, 3D Simo-Reissner beam theory [145, 160]. In terms of the struc-

tural rigidity of the filament, we thus account for axial, torsional, bending, and

shear deformation. All filaments are chosen to be initially straight with a length

of L0 = 20µm and persistence length Lp ≈ 7µm. The geometrical and material

parameters resemble F-actin, which is a key constituent of the cytoskeleton. A

complete specification is given by the cross-section area A = 1.9 × 10−5µm2, area

moment of inertia I = 2.85×10−11µm4, polar moment of inertia Ip = 5.7×10−11µm4,

Young’s modulus E = 109pN/µm2, Poisson ratio ν = 0.3, and shear correction fac-

tor κs = 0.75. By default, we discretized each filament with 100 beam finite elements

using linear Lagrange shape functions for the centerline discretization [74]. Alter-

natively, we used 20 beam finite elements with cubic Hermite polynomials for the

centerline interpolation [118].

A.2.3 Brownian dynamics model

As mentioned in the article, we account for the Brownian dynamics of the filaments

by including stochastic thermal forces and viscous drag forces acting as line loads

along the beam axis [28, 29]. Viscous forces and moments are computed assuming a

quiescent background fluid and individual damping coefficients for translations par-

allel and perpendicular to the filament axis, as well as rotation around the filament

axis. Thermal forces are determined from the stochastic Wiener process in accor-

dance with the fluctuation-dissipation theorem. Finally, an implicit Euler scheme

is used to discretize in time and a Newton-Raphson algorithm solves the result-
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ing nonlinear system of equations. In our simulations, the temperature is set to

T = 293K and the dynamic viscosity of the quiescent background fluid is assumed to

be η= 10−3 Pa s. We applied a base time step size of ∆t = 0.01s and an adaptive

time stepping scheme, which iteratively reduces the time step size if needed.

A.2.4 Cross-link model

All details on the applied cross-link model can be found in Reference [129]. This

numerical model tracks linker molecules explicitly as they switch between three pos-

sible states: free, singly bound, or doubly bound. Free linker molecules experience

Brownian motion until eventually all binding criteria are met and they establish a

first, and later possibly a second, connection to a filament. In the doubly bound

state, i.e., a cross-link spanning two filament binding spots on different filaments,

each linker is treated as an additional, very short beam element, which can transmit

forces and moments between the filaments. The binding decision is made based on

a given binding rate kon and a distance criterion that takes into account the spatial

extent L` ±∆L` and thus action range of the linker molecule. Moreover, the linker

molecule is assumed to have a preferred orientation with respect to the filaments,

which is expressed in terms of two scalar angles. The first angle αf denotes the

mutual angle of the filament tangents at the binding spots. The second angle α`

describes the angle between the cross-linker axis and (either one of) the filament

tangents. Finally, the orientation preference of a linker molecule is specified as the

allowed range of angles αf ±∆αf and α`±∆α`. In order to establish a cross-link, all

angle criteria, as well as the aforementioned distance criterion and the probability

criterion based on the binding rate need to be met.
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The length of the linker is chosen to be L` = 100nm (with a tolerance of

∆L` = 2nm) and the angle preferences are set to αf = 0rad (i.e. parallel filament

axes, with a tolerance of ∆αf = π/100rad) and α` = π/2rad (i.e. perpendicular

cross-linker and filament axes, with a tolerance of ∆α` = π/4rad. For all 3D sim-

ulations, the total number of linker molecules has been set to N` = 20000. This

results in a volume number density of ρ` ≈ 36µm−3, because the size of the periodic

simulation box has been chosen to be 22× 5× 5µm. In the special case of the two-

filament bundle in (pseudo) 2D, the linker density ρ` has been kept constant and the

total number of linker molecules has been set to N` = 20000 for a reduced box size

of 22 × 5 × 1µm. The binding spots along the filament are assumed to be located

equidistantly with a spacing of ∆sbs = 0.02µm, resulting in 1000 binding spots per

filament. It is important to note that each binding spot can be occupied by at most

one cross linker. Unless otherwise stated, the binding and unbinding rates specifying

the reaction kinetics are set to kon = 90s−1 and koff = 3s−1. Only for the experiments

studying the dynamics of defects, an increased unbinding rate of koff = 6s−1 has

been applied to speed up the reorganization of cross-links and be able to observe,

for instance, the dynamics and interaction of braids within feasible simulation times.

These parameter values are chosen based on experimentally measured rate constants

of F-actin crosslinker proteins. Typical values reported for different species such as

alpha-actinin [53, 121], filamin [53], myosin [116], and fascin [177] lie in the range of

10 < kon < 100 s−1 for binding and 0.1 < koff < 10 s−1 for unbinding. Note, however,

that the measured chemical reaction rate for binding depends on the reactants’ con-

centrations and therefore needs to be converted to the binding rate of a single linker

in our numerical model based on its effective reaction volume. More details can be

found in our previous article [30].
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The material specification of the cross links, which are thought to be short, stiff

rods, is given as follows. Each cross link is included as one additional beam el-

ement with cross-section area A = 4.75 × 10−6µm2, area moment of inertia I =

4.5×10−11µm4, polar moment of inertia Ip = 9.0×10−11µm4, Young’s modulus E =

1010pN/µm2, Poisson ratio ν = 0.3, and shear correction factor κs = 0.75. These

parameter values aim to mimic the properties of actin binding proteins, which are

another key constituent of the cytoskeleton, and is thus in accordance with the F-

actin-like filaments described above.

A.2.5 Additional plots of simulation results

Figs. A.4 and A.5 provide additional plots of simulation results. In Fig. A.4 we show

the time evolution of the number of cross linkers within the bundle (left) and the

number of braids (right). In the former, we observe the rapid quench to a fully cross

linked bundle in about 20s of simulated time in all five runs shown. In the latter,

we see the initial quenching of braids. Typically there are a number of such defects,

but their number is rapidly reduced over time due to either braid annihilation or

diffusion off the edges. Typically, one or more of these braids become a long-lived

defect on the bundle.

In Fig. A.5B-D we plot the curvature of the bundle’s centerline at three different

points in time. The configuration of the two-filament bundle shown in Fig. A.5A

corresponds to the curvature data plotted in D. This complements the plot of the

mean (black) and standard deviation range (red) of the curvature shown in Fig.

2.1E of the main manuscript, which is reproduced here in Fig. A.5E for the reader’s

convenience. In summary, Fig. A.5 illustrates the connection between the braids in

227



the bundle and the peaks in the curvature as well as the curvature fluctuations at

these locations.

A.3 Details of theoretical calculations

A.3.1 Loops

We consider the case of two-filament bundle, where uncross-linked segments of the

first and second filaments with lengths L1 and L2 respectively are trapped between

two cross links. The extra trapped length makes the filaments bend, resulting in a

kink - see Fig. A.8. We assume here for simplicity that the cross-links are of zero

length. These cross-links completely fix both the angle and position of the filaments

at the point of binding so that they are parallel. If we parametrize the conformation

of ith filament by the angle its local tangent makes with respect to a fixed coordinate

axis as a function of arc length s, α(s), the energy of the two-filament bundle (shown

in Fig. A.8) is given by

E = µL+
κ1

2

∫ L1/2

−L1/2

dsα′21 (s) +
κ2

2

∫ L2/2

−L2/2

dsα′22 (s), (A.7)

where κ1,2 are bending moduli of the two filaments, L1,2, is the trapped length of the

two filaments in the loop, and µ is binding energy of the cross-links per unit length.

L = max(L1, L2) is the uncross-linked part of the bundle, which incurs an energy

increase of µL due to the absence of cross linker binding energy within the loop. At

the ends of this uncross-linked region, we impose boundary conditions on the x and
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y coordinates of the position of the filament ends∫ L1/2

−L1/2

ds sinα1(s) =

∫ L2/2

−L2/2

ds sinα2(s) (A.8)∫ L1/2

−L1/2

ds cosα1(s) =

∫ L2/2

−L2/2

ds cosα2(s), (A.9)

and on the angles at the ends of the loop

α1

(
±L1

2

)
= α2

(
±L2

2

)
. (A.10)

We rescale the integration variable ds = Lidz to have the same integration limits

over both filaments in Eqs. A.8, A.9.

E = µL+

∫ 1/2

−1/2

dz

[
κ1α

′2
1

2L1

+
κ2α

′2
2

2L2

]
. (A.11)

Renaming the tangent angles at the ends of the loop φ = 2αi
(
−1

2

)
and ψ =

2αi
(

1
2

)
, and gathering the boundary conditions into the rescaled loop energy integral

Eq. A.7 using delta functions (where necessary) and six Lagrange multipliers (λ±i and

λc,s) to impose the various boundary constraints, we write:

E = µL+

∫ 1/2

−1/2

dz

{
κ1α

′2
1

2L1

+
κ2α

′2
2

2L2

+ .

+ λs (L1 sinα1 − L2 sinα2) + λc (L1 cosα1 − L2 cosα2) +

+ λ+
1

(
δ

(
s− 1

2

)
α1 −

φ

2

)
+ λ−1

(
δ

(
s+

1

2

)
α1 +

ψ

2

)
+

+ λ+
2

(
δ

(
s− 1

2

)
α2 −

φ

2

)
+ λ−2

(
δ

(
s+

1

2

)
α2 +

ψ

2

)}
.

Minimizing this energy with respect to α1,2(s) we obtain

κ1α
′′
1

L1

= λsL1 cosα1 − λcL1 sinα1 + λ+
1 δ

(
s− 1

2

)
+ λ−1 δ

(
s+

1

2

)
(A.12)

κ2α
′′
2

L2

= −λsL2 cosα2 + λcL2 sinα2 + λ+
2 δ

(
s− 1

2

)
+ λ−2 δ

(
s+

1

2

)
. (A.13)
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To satisfy these equations, we need to impose four boundary conditions at the fila-

ment ends si/Li = ±1/2
κi
Li
α′i

(
∓1

2

)
= ±λ∓i , (A.14)

and demand that the tangent angles α1,2(s) obey the differential equations

κ1

L1

α′′1 = λsL1 cosα1 − λcL1 sinα1 (A.15)

κ2

L2

α′′2 = −λsL2 cosα2 + λcL2 sinα2. (A.16)

in the interior.

Eqs. A.15, A.16 are familiar in that their express the equation of static equilibrium

for a beam subject to forces appplied at their ends. These forces are exerted by the

filaments on each other via the cross links at the ends of the loop. We choose our

coordinates so that the x̂ axis passes through the first cross link on each side of the

loop shown as black circles in Fig. A.8. These forces are equal and opposite; to ensure

that there is no unbalanced torque on the loop, they must lie in the x̂ direction. This

leads to λs = 0. So

κ1

L1

α′′1 = −λcL1 sinα1 (A.17)

κ2

L2

α′′2 = λcL2 sinα2. (A.18)

Minimizing the energy with respect to the angles φ and ψ, we obtain

λ+
1 + λ+

2 = 0 (A.19)

λ−1 + λ−2 = 0, (A.20)

which leads to

κ1α
′
1

(
1
2

)
L1

+
κ2α

′
2

(
1
2

)
L2

= 0 (A.21)

κ1α
′
1

(
−1

2

)
L1

+
κ2α

′
2

(
−1

2

)
L2

= 0 (A.22)
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using Eqs. A.14. Due to the symmetry of the problem, the solution should have φ = ψ

so both αi(s) are odd functions. Using these solutions for the Lagrange multipliers

in the force balance equations Eqs. A.17,A.18 and returning to the dimensionful arc

length independent variable we find the conditions for force balance

κ1α
′′
1 − F sinα1 = 0 (A.23)

κ2α
′′
2 + F sinα2 = 0, (A.24)

where F = λc is the force acting on the end. The conditions for torque balance at

the ends of the loop are

κ1α
′
1

(
±L1

2

)
= τ (A.25)

κ2α
′
2

(
±L2

2

)
= −τ (A.26)

using Eqs. A.21 and A.22 and observing that τ = λ+
1 is the torque.

Let us consider the limit of small angles between the filaments’ tangents and the x̂

axis, αi(s)� 1. Then for nearly straight filaments Eqs. A.23,A.24 can be linearized:

κ1α
′′
1 − Fα1 = 0 (A.27)

κ2α
′′
2 + Fα2 = 0. (A.28)

The solution of Eqs. A.27,A.28 with boundary conditions Eqs. A.25,A.26 is

αi(s) = (−1)i+1 τ

κiωi cosh
(
ωiL

2

) sinh (ωis) (A.29)

with ω2
1 = F/κ1 and ω2

2 = −F/κ2. The boundary conditions Eqs. A.8,A.10 then give

L1−
τ 2L1

4κ2
1ω

2
1

(
2 tanh

(
ω1L1

2

)
ω1L1

− 1 + tanh

(
ω1L1

2

)2
)

= L2−
τ 2L2

4κ2
2ω

2
2

(
2 tanh

(
ω2L2

2

)
ω2L2

− 1 + tanh

(
ω2L2

2

)2
)
,

(A.30)
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and

τ

κ1ω1 cosh
(
ω1L1

2

) sinh

(
ω1L1

2

)
= − τ

κ2ω2 cosh
(
ω2L2

2

) sinh

(
ω2L2

2

)
(A.31)

respectively. Eq. A.9 is automatically satisfied since αi(s) are odd functions. To

obtain a simple solution of these equations, consider the case where κ1 = κ2 = κ.

Then ω1 = iω2 = iω. We simplify Eq. A.31 to

tan

(
ω1L1

2

)
= − tanh

(
ω2L2

2

)
(A.32)

If we further assume that the trapped length is approximately the same for both

filaments, i.e., ∆L = L2 − L1 � L1. Then we find from Eq. A.32 that

ωL1 ≈ ωL2 ≈ 2x (A.33)

where x ≈ 2.365, which is the first nonzero solution of tanx = − tanhx. Then

Eq. A.30 gives

τ =

√
2∆L

L

2κx

L
(A.34)

The bundle’s energy is

E = µL+
4∆Lκx2

L2
(A.35)

This energy is still subject to minimization with respect to the length of the loop L.

Doing so we obtain

L = 2

(
∆Lκx2

µ

)1/3

(A.36)

Finally, we obtain the kink angle by substituting into Eq. A.29:

φ = 2
∆L1/3µ1/6

κ1/6x1/3
tanh(x). (A.37)

The kink angle grows continuously as ∆L1/3. This analytic result is graphed in

Fig. 2.6A of the main manuscript.
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A.3.2 Braiding

In this subsection, we explore the energetics of braided bundle configurations with

three filaments. We consider first the limit of stiff filaments, which allows us to make

certain mathematical approximations detailed in the next subsection.

A.3.2.1 Stiff filaments

When filaments are stiff, i.e., a2µ
κ1,2
� 1, we use two ansätze: the small slope approx-

imation and L2µ
κ1,2
� 1. The small slope approximation requires that the filaments’

tangents always lie near to the x̂ the direction parallel to the tangent of the bundle

in its undeformed, mechanical ground state. In that case, it is useful to characterize

the conformation of the ith filament by its contour y(x). Note that we have replaced

arc length s by the x position as the independent variable. In the small angle approx-

imation, the difference between these independent variables is small and contributes

only at higher than quadratic order in the filament’s Hamiltonian. We may write

the energy of the filament in this approximation as

E =
∑
i=1,2

∫ b/2

−b/2
dx

{
κi
2

(y′′i )2 + µ(1 +
1

2
y′2i )

}
, (A.38)

where b is the length of the braided region where the cross linking density vanishes.

This will be determined later by energy minimization. Once again, µ is the binding

energy per unit length of the filament. This term indicates the energy loss associated

with the fact that there is no cross-links coupled to the filament in the braid. The

boundary conditions are yi(±b) = ±ai cosφ, y′(±bi) = ± tanφ with a1 + a2 = a, the

size of the cross link. After we minimize the energy Eq. A.38 of the bundle filament
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with respect to the conformations of the filament y(x) we obtain

Ei = bµ+ 2κiω

(
a2
iω

2
i cos2

(
φ
2

)
− tanh

(
ωib
2

)
+ ωib

2

+
tan2

(
φ
2

)
sinh

(
ωib
2

) cosh

(
ωib

2

))
(A.39)

where i = 1, 2 and ωi =
√

κi
µ

.

The second ansatz is equivalent to ωib � 1 once we assume small slopes. Then

the bundle energy is

E = bµ+ 4
∑
i=1,2

(
12κia

2
i cos2

(
φ
2

)
b3

+
κi tan2

(
φ
2

)
b

)
. (A.40)

Minimization of the energy Eq. A.40 with respect to ai leads to

E = bµ+ 4

(
12a2κ1κ2 cos2

(
φ
2

)
(κ1 + κ2)b3

+
(κ1 + κ2) tan2

(
φ
2

)
b

)
. (A.41)

Minimization of Eq. A.41 with respect to b gives an equation for b:

µb4 − 4(κ1 + κ2) tan2

(
φ

2

)
b2 − 144a2 κ1κ2

κ1 + κ2

cos2

(
φ

2

)
= 0 (A.42)

with solution

b2 = 2
(κ1 + κ2) tan2

(
φ
2

)
±
√(

(κ1 + κ2) tan2
(
φ
2

))2
+ 36µa2 κ1κ2

κ1+κ2
cos2

(
φ
2

)
µ

. (A.43)

From Eq. A.43 we obtain

ω2
i b

2 = 2

(κ1 + κ2)

κi
tan2

(
φ

2

)
±
√(

(κ1 + κ2)

κi
tan2

(
φ

2

))2

+ 36(ωia)2
κ1κ2

(κ1 + κ2)κi
cos2

(
φ

2

) .

(A.44)

Since both ωia � 1 and tanφ � 1, all terms in Eq. A.44 are small, thus validating

the ansatz ωib� 1 as long as the small slope approximation (φ� 1) holds. We also
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check that b
a
� 1 what is necessary for the small slope approximation:

b2

a2
= 2

(κ1 + κ2) tan2
(
φ
2

)
±
√(

(κ1 + κ2) tan2
(
φ
2

))2
+ 36µa2 κ1κ2

κ1+κ2
cos2

(
φ
2

)
µa2

>

>
12
√

κ1κ2

κiκ1+κ2
cos2(φ/2)

ωia
� 1.(A.45)

To perform the minimization of energy Eq. A.41 with respect to the kink angle

φ, we introduce a change of variable u = 1/ cos2
(
φ
2

)
, which makes calculations more

transparent. Then tan2
(
φ
2

)
= u − 1, cos2

(
φ
2

)
= 1/u, and the energy Eq. A.41 can

be rewritten as

E = bµ+

(
48a2κ1κ2

(κ1 + κ2)ub3
+ 4

(κ1 + κ2)(u− 1)

b

)
. (A.46)

Then the minimization of the energy Eq. A.46 determines u at the minimum, which

is

umin =

√
12a2 κ1κ2

κ1+κ2

(κ1 + κ2)b2
(A.47)

By definition u > 1. This means that, unless umin > 1, the only possible solution is

u = 1. Since a � b (see Eq. A.45), we have umin < 1 so minimum energy occurs at

u = 1, which implies a zero kink angle φ = 0. As a result, braids in stiff filaments do

not lead to kinks; the braided configuration has a region lacking cross linkers, but

the average contour of the braided bundle is straight.

A.3.2.2 More flexible filaments

In the case of more flexible filaments, we can no longer use the small slope approx-

imation; we return to the description of the bundle in terms of angles αi(s). The
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boundary conditions in this notation are

αi

(
±Li

2

)
= ±φ

2
(A.48)

and ∫ L1/2

−L1/2

ds sin(α1(s)) =

∫ L2/2

−L2/2

ds sin(α2(s)) + 2a cos

(
φ

2

)
(A.49)∫ L1/2

−L1/2

ds cos(α1(s)) =

∫ L2/2

−L2/2

ds cos(α2(s)), (A.50)

where a is the size of the cross link, which becomes relevant in this case. We can use

Lagrange multipliers to incorporate the boundary conditions Eqs. A.49,A.50 into the

integral form of the bundle’s energy:

E = λc

[∫ L1/2

−L1/2

ds cos(α1(s))−
∫ L2/2

−L2/2

ds cos(α2(s))

]
+

+ λs

[∫ L1/2

−L1/2

ds sin(α1(s))−
∫ L2/2

−L2/2

ds sin(α2(s))− 2a cos

(
φ

2

)]
+

+

∫ Li/2

−Li/2
dsκi

α′2i
2

+ λ̃i

[
δ

(
s+

Li
2

)
αi +

φ

2Li

]
+ λ†i

[
δ

(
s− Li

2

)
αi −

φ

2Li

]
+ µL

(A.51)

where λi, λ̃i ,λ†i , λs and λc are Lagrange multipliers. We vary the energy Eq. A.51

with respect to α, obtaining the equation of state:

κ1α
′′
1 = λs cosα1 − λc sinα1 + λ̃1δ

(
s+

L1

2

)
+ λ†1δ

(
s− L1

2

)
(A.52)

κ2α
′′
2 = −λs cosα2 + λc sinα2 + λ̃2δ

(
s+

L2

2

)
+ λ†2δ

(
s− L2

2

)
. (A.53)

Eqs. A.52,A.53 give us λ̃i = κiα
′
i

(
−Li

2

)
and λ†i = −κα′i

(
Li
2

)
. Easy to see that λs = 0

cannot simultaneously satisfy Eqs. A.52,A.53, boundary conditions,and the integral

condition. If λs = 0 the solution α(s) must be an odd function, which immediately
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causes the boundary condition integral to vanish since it is the integral of an odd

function sin(α(s)) over symmetric limits. Thus, we cannot satisfy the boundary

condition Eq. A.49 . If we consider to be a continuous function of its arguments

λs = λs(µ, a, κ), we note that it cannot change its sign - otherwise it would be

zero somewhere, according to Bolzano’s theorem. Therefore, since, for small a2µ/κi,

λs < 0, then λs must be negative everywhere.

Minimizing the energy Eq. A.51 with respect to Li we obtain equations∫ L1/2

−L1/2

ds
(
−κ1

2
α′21 + µ+ λc cosα1 + λs sinα1

)
= 0 (A.54)∫ L2/2

−L2/2

ds
(
−κ2

2
α′22 + µ− λc cosα2 − λs sinα2

)
= 0. (A.55)

Using the Eqs. (A.52 , A.53), we obtain two conserved quantities (the analog of first

integrals of a dynamical system) Ii, dIi/ds = 0

I1 =
κ1

2
α′21 − λs sinα1 − λc cosα1 (A.56)

I2 =
κ2

2
α′22 + λs sinα2 + λc cosα2. (A.57)

Comparing Eqs. A.56,A.57 and Eqs. A.54,A.55 we get

I1 = I2 = µ. (A.58)

Substituting Eqs. A.56,A.57 into Eq. A.58 we obtain

4λs sin
(
φ
2

)
α′1
(
L1

2

)
− α′1

(
−L1

2

) = κ1

[
α′1

(
L1

2

)
+ α′1

(
−L1

2

)]
(A.59)

− 4λs sin
(
φ
2

)
α′2
(
L2

2

)
− α′2

(
−L2

2

) = κ2

[
α′2

(
L2

2

)
+ α′2

(
−L2

2

)]
. (A.60)

Finally, the variation of the total energy Eq. A.51 with respect to φ gives

∂E

∂φ
= 4λsa sin

(
φ

2

)
+ λ̃1 + λ̃2 − λ†1 − λ†2. (A.61)
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Using boundary conditions Eqs. A.52,A.53 we simplify Eq. A.61 to

∂E

∂φ
= 4λsa sin

(
φ

2

)
+ κ1α

′
1

(
−L1

2

)
+ κ2α

′
2

(
−L2

2

)
+ κ1α

′
1

(
L1

2

)
+ κ2α

′
2

(
L2

2

)
.

(A.62)

Substituting Eqs. A.59, A.60 into Eq. A.62 we find

∂E

∂φ
= 4λs sin

(
φ

2

)[
a+

2

α′1
(
L1

2

)
− α′1

(
−L1

2

) − 2

α′2
(
L2

2

)
− α′2

(
−L2

2

)] . (A.63)

Eq. A.63 shows that φ = 0 is an extremum. To decide whether it is a maximum or

minimum, we must determine the sign of the term in square brackets above. From

the small slope analysis, we observed that when a2µ/κ� 1, the zero angle (no kink)

is a minimum so in that in case, the term in brackets is negative there. The transition

from minimum to maximum occurs when the expression in square brackets increases

to zero:

a+
2

α′1
(
L1

2

)
− α′1

(
−L1

2

) − 2

α′2
(
L2

2

)
− α′2

(
−L2

2

) = 0. (A.64)

The terms α′i are the signed curvatures of their respective filaments. At the kinking

transition where φ = 0, we can determine the signs of the these curvatures introduc-

ing positive radii of curvature R1,2(±L1,2/2):

R1

(
±L1

2

)
= ∓ 1

α′1
(
±L1

2

) (A.65)

R2

(
±L2

2

)
= ± 1

α′2
(
±L2

2

) . (A.66)

Writing down Eq. A.64 in terms of these absolute radii of curvature, we obtain the

condition for the kinking transition

a =
2

1

R1(L1
2 )

+ 1

R1(−L1
2 )

+
2

1

R2(L2
2 )

+ 1

R2(−L2
2 )

. (A.67)

238



Because of Eqs. A.56,A.57, the radii of curvature at the ends of the two filaments

are equal: R1,2 = R1,2

(
L1,2

2

)
= R1,2

(
−L1,2

2

)
. Then we simplify Eq. A.67

a = R1 +R2. (A.68)

For stiff filaments R1,2 � a as can be seen from the small slope analysis. For

more flexible filaments, however, the length of the uncross-linked region should as

small as possible, e.g., L−a
a
� 1 since loss in length is prohibited by large µ, while

sharp bends are feasible since κ is small. This leads to size of the braid b � a,

that inevitably leads to R1,2 � a. Between these cases of very flexible and very

stiff filaments we should have an intermediate result where Eq. A.68 is satisfied, and

transition occurs.

For further analysis of this transition let us explore the case κ1 = κ2 = κ. To

investigate the behavior of kink angle near the critical point, we introduce a symmetry

ansatz, namely, α1(s) = −α2(−s). This ansatz obviously solves equation of state

Eqs. A.52,A.53. We have numerically checked that this symmetric solution indeed

provides the global energy minimum – see Fig. 2.6B in the main document. Using

the symmetric approach, we obtain from Eqs. A.56 and A.57

I = κ
α′2

2
− λs sinα− λc cosα (A.69)

I = κ
α′2

2
− λs sinα + λc cosα. (A.70)

Eqs. A.69,A.70 require λc = 0, so the conserved quantity I simplifies to

I = κ
α′2

2
− λs sinα. (A.71)

Using Eq. A.71 and the fact that I = µ (see Eq. A.58), we obtain

α′
(
±L

2

)2

= 2

(
µ

κ
± λs sin

(
φ

2

))
. (A.72)
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Using the same symmetry, we also simplify Eq. A.64 to

a+
4

α′
(
L
2

)
− α′

(
−L

2

) = 0. (A.73)

We transform Eq. A.73 and obtain

α′
(
L

2

)2

− 2α′
(
L

2

)
α′
(
−L

2

)
+ α′

(
−L

2

)2

=
16

a2
. (A.74)

We substitute Eq. A.72 to Eq. A.74, finding

− α′
(
L

2

)
α′
(
−L

2

)
=

8

a2
− µ

κ
. (A.75)

After taking the square of Eq. A.75 and substituting into it Eq. A.72, we obtain

λ2
s sin2(φ/2) =

8κ2

a4
(
µa2

κ
− 2) (A.76)

Eq. A.76 has a solution for φ only if µa2

κ
≥ 2. Therefore, the critical point is µa2

κ
= 2.

Near this critical point we expect square-root like behavior of φ.

A.3.3 Braid group and knot theory for our model

We start with a brief review of the mathematical apparatus of the braid group for a

braid with three filaments Br3 . When we refer to the filaments by their label (1,2,3),

in the discussion related to the braid group we refer to that filament’s position in

the bundle cross section and not to its physical identity. The most left filament is

always filament 1, the most right is filament 3, and the filament 2 is in the middle.

After each swap, when one filament passes above another filament, in the next cross

section we correspondingly swap their indices. The braid group has two generators:

σ1, corresponding to passing filament 2 over the filament 3, and σ2, corresponding

to passing filament 3 over filament 1. These operators are not their own inverses.
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For example σ−1
1 6= σ1 corresponds to passing filament 3 over filament 2. We also

introduce an operator σ3, corresponding to passing filament 1 over filament 2, which

can be written in terms of the two generators: σ3 = σ1σ
−1
2 σ−1

1 . Finally, there is braid

group relation, equivalent to the third Reidemeister move in knot theory

σ3σ1σ3 = σ1σ3σ1. (A.77)

Note that the first Reidemeister move (looping) is not allowed for braids, and the

second is just the definition of the inverse operator.

We apply this mathematical apparatus to a three-filament bundle. Consider a

projection of that bundle onto the plane containing filaments 1 and 3 in a segment

of the bundle. Filament 2 can either be above or below this plane, which we denote

as ∆- or ∇-states respectively. All braids and twists of the bundle can be expressed

in terms of these group operators of the tensor product of the braid group and the

permutation group of two elements Z2: Br3 ⊗ Z2. The Z2 group takes into account

whether the bundle segment is in the ∆ or ∇ state.

We introduce operators bi, corresponding to the braiding of the ith filament, and

r±, corresponding to the twist of the bundle by ±π
3
. We write down the elements of

the group Br3 ⊗ Z2 as two-component vectors, where first and second components

correspond to the states ∆ and ∇ respectively. Then the operators bi and r± can be
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written as (see Fig. A.10):

b1 =

 0 σ−1
1 σ3

σ1σ
−1
3 0

 (A.78)

b2 =

0 1

1 0

 (A.79)

b3 =

 0 σ3σ
−1
1

σ−1
3 σ1 0

 (A.80)

r+ =

 0 σ−1
1

σ−1
3 0

 (A.81)

r− =

 0 σ3

σ1 0

 . (A.82)

It can be shown that b2b2 = b1b3 = r+r− = 1. There are two different subgroups

in Br3 ⊗ Z2 – one generated by braids b1,2,3 and the other generated by rotations

r±. These two subgroups do not have common elements except 1. This is easy

to prove by introducing the weight of a group element as follows. We write every

element in terms of σ1, σ3 and their inverses, as we have already done above. Using

this decomposition of the group elements, we define the weight of an element as the

number of σ1s plus the number of σ3s minus number of their inverses. The identity

Eq. A.77 does not change the weight. Moreover, the weight is additive under the

action of the group. Every element of the braid group has weight 0, but all elements

of the rotation group other than the identity have a nonzero weight. Hence, 1 is the

only common element.

The complete description of the possible states of the bundle also requires that one

studies the case when we rotate the segment of the bundle while fixing its endpoints.
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For example, consider a bundle segment containing a b2 braid and apply a clockwise

rotation to the bundle while fixing the triangles of filament cross sections at both

end. That clockwise rotation or twist leads to the insertion of operators r+ and r−

at the ends and changes the nature of the braid: b2 → b3 for ∆ state and b2 → b1 for

∇ state. After direct substitution of definitions of b1,2,3 – see Eqs. A.78, A.79, A.80,

A.82,A.81 – and using the Reidemeister move Eq. A.77, we see that the resulting

operator is still b2. Therefore, the rotation does not change the group structure of

the bundle segment. If instead we have a braid and then apply equal and opposite

twists to the ends of bundle segment containing that braid (applying the operators

r+ and r− on either side of the braid), then the braid turns into different braid. This

resulting braid depends on whether the bundle was originally in the ∆ state and ∇
state. As a result of this reasoning, any combination of braids and rotations acting

on either the ∆ or ∇ state can be written as a rotation times some combination of

braids. Since rotations are continuous transformations that can be relaxed at the end

of the bundle, these rotations are not relevant to our analysis. We are interested only

in the interactions of braids so we may concentrate on the structure of the subgroup

of Br3 ⊗ Z2 generated by b1,2,3.

To simplify the further calculations, we introduce A = σ1σ
−1
3 , B = σ−1

1 σ3, C =

243



σ1σ3, and D = σ3σ1. Then we can rewrite the braid operators bi as

b1 =

0 B

A 0

 (A.83)

b2 =

0 1

1 0

 (A.84)

b3 =

 0 A−1

B−1 0

 . (A.85)

The Reidemeister condition written in terms of A,B,C,D is

D = CA = BC. (A.86)

Using Eq. A.86 we rewrite bi as

b1 =

0 CAC−1

A 0

 (A.87)

b2 =

0 1

1 0

 (A.88)

b3 =

 0 A−1

CA−1C−1 0

 . (A.89)

There are no additional conditions on A and C akin to the Reidemeister condition

so that they form a free group – all distinct sequences of A’s and C’s are unequal. We

can reduce products of bi only by using AA−1 = CC−1 = 1. Combinations of braids

can be simplified only by the three contractions b1b3 = 1, b3b1 = 1, and b2b2 = 1 .

As a result, braid dynamics on a three-filament bundle are defined solely by these

relations for braid combination. Assuming that braids b1, b2, b3 are distributed with
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equal probability along the bundle, we ran Monte-Carlo simulations of braid dynam-

ics using the following rules. Braids diffuse locally along the filament as required

by translational invariance. We note that there are no long-range interactions either

between braids or between a braid and the edge of the bundle because the configura-

tion of the filaments near to the braid as already returned to that of the undeformed

bundle. When two braids collide during their diffusion, they merge into one braid

because, by putting the two braids together, the bundle recovers more cross linkers.

If they pair of braids form a braid - antibraid couple, then they annihilate through a

local rearrangment of the filaments so that all of the lost cross linkers are regained by

the bundle. Finally, if a braid reaches the end of the bundle, it vanishes by diffusing

off the end. The number of braids as the function of time for a single run of the

simulation is shown in Fig. A.6.
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Figure A.1: Measurements of a single kink over time. A) Multiple images of a bundle

with a kink. Not all snapshots of the bundle are shown in this figure. Yellow lines

overlaid on the bundle are from the angle measurement tool in ImageJ. B) Histogram

showing the measured angles for this single kink.
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Figure A.2: Process of determining curvature of the bundles from the images.

(A)Fluorescence confocal image of a bundle. (B) Blurred and background subtracted

image. (C) Line intensity profile across the bundle. (D) Gaussian fit of the line inten-

sity profile is used to determine the y axis location of the bundle at the x position of

the line profile. (E) Cubic spline of the points generated from the Gaussian fit. (F)

Summary of all the curvatures of the spines. (G) 50 splines with errors introduced in

the position (uniformly distributed between 0.5 and -0.5) from which the spline is cal-

culated. (H) Summary showing the mean curvatures (black) and standard deviation

(red) of the 50 splines with error introduced.
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Figure A.3: Distribution of the measured 2D projected kink angles (blue) and of

3D kinks angles inferred from measured distribution using Eq. A.2 (red). (A) The

distribution for the observed angles is taken from the experiment. Negative values

for inferred kinks angles are caused by underestimation of the observed number of

kinks with small angles. (B) Artificially increasing the amount of small angle kinks

from the experimental data leads to disappearance of negative frequency values at

small kinks.
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Figure A.4: Number of cross-links (A) and number of braids (B) over time, observed

in five independent simulation runs. 249



Figure A.5: Curvature of the bundle centerline observed in 2D simulations. (A)

Bundle centerline (black dashed line), individual filaments (blue and red) and braids

(black dots) for the configuration plotted in (D). (B)-(D) Curvature of the bundle

centerline at three different points in time. (E) Mean of the curvature (black) over

100 configurations with a time interval of 1s each. Red lines indicate one standard

deviation.
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Figure A.6: (Blue) Inverted square of the number of kinks as the function of time as

the result of the single run of Monte-Carlo simulation. (Red) linear fit of obtained

data. In spite of sticking events, the trend is linear, supporting the analysis in Sec.

3D of the main document.
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Figure A.7: Several examples of bundles exhibiting z shaped kinks. This shape may

be due to 2 loop defects forming as 2 filaments slide in opposite directions. Only a

single snapshot is shown here, but these kinks persisted over the observation time.
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Figure A.8: A schematic diagram of a loop made by two filaments. There is an excess

of length between the cross links (black circles) of the blue filament as compared

to the red one. This length mismatch generates a localized bend (kink) in the

energy-minimized structure.

Figure A.9: Schematic description of the 2D braid used for the analytic calculations.

The blue lines are filaments, and red lines represent cross links.
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Figure A.10: Illustration of the braid group generators b1,2,3 acting on a bundle in

∇-state with filaments 1,2,3. For example, b1 corresponds to first passing filament 1

over filament 2, which is done by operator σ3. After that, the former filament 1 is

now filament 2, and vice versa. The second and final step in the braid operation is

passing the new filament 2 (i.e., old filament 1) under filament 3, which is performed

by operator σ−1
1 . We obtain the formulae for other operators in the same way.
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APPENDIX B

Appendix for ”Thermal Schwinger Effect: Defect

Production in Compressed Filament Bundles”

B.1 Loops Generation as a Kramers’ escape problem

B.1.1 Forming a z-bend: The Energetics of a Loop Pair Production

We considered the energetics of a loop in the absence of the external force in

Ref. [163]. There I found that, for a particular amount of excess trapped length

∆L, the angle of the loop that minimizes the energy is

φ = 2
∆L1/3µ1/6

κ1/6x1/3
tanh(x), (B.1)

where x ≈ 2.365 is a first non-zero solution of the equation tan x = − tanhx. We

can also express the minimum energy E of the loop and its size L (the length of the

shorter filament(s) that is not cross linked to the looping filament) as the function

of the trapped length:

E = 3µ2/3∆L1/3κ1/3x2/3 (B.2)

and

L = ∆L1/3 2κ1/3x2/3

µ1/3
. (B.3)
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From Eqs. B.1,B.2, and B.3 I observe that amount of the trapped excess length ∆L

fully controls the kinking angle φ, the energy of the defect E and the length of the

defected region L. As a result, if the trapped length is equal and opposite for two

loops (the excess length on one set of filaments in the first defect compensates for

the length deficit on the same filaments in the second defect), the angles φ of the

two defects will also be equal and opposite. Similarly, the loop sizes L and energies

E of the two defects will be equal. If the total size of the uncross-linked region is `

(comprising two loop defects), then L = `/2, and I can express φ and E in terms of

`:

φ =
`µ1/2

2κ1/2x
tanh(x) =

1

g2

√
µ

κ
` (B.4)

and

E = 3µ
`

4
tanh(x)2/3 = g1µ`/2. (B.5)

These are easily obtained from Eqs. B.1 and B.2 above using ` appropriately. This

pair of length-compensating loops together constitute a single z-bend, as discussed

in the main text.

If I now assume that the compression force F is small enough, I may ignore the

finite-force corrections to the angle. Then, for a given compressive load F acting

on a bundle containing a pair of length-compensating loop defects that produce a

z-bend where a length R separates the two loops, the decrease of the bundle’s energy

is the work done by the compressive load in shortening it: −FR(1− cosφ). Taking

this into account, I obtain the total energy of the z-bend as the sum of this work and

energy cost of the formation of the two defects

Etot = g1µ`− FR(1− cosφ). (B.6)

As long as F � µ, changes in R of the order of ` produce small changes to the
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energy when compared to the first term in Eq. B.6. Thus, in this limit it does not

matter whether I define R to be the distance between the defect centers or the defect

edges. For consistency, I consider R to be the distance between the closest edges of

the defects, i.e., when the defects are starting to separate, R grows from 0.

B.1.2 The Thermal Production of Loop Pairs as a Kramers’ Escape Pro-

cess

We now consider the process of z-bend formation as the thermally activated produc-

tion of two loops. This process has two essentially distinct steps. In the first, two

loops are created on the bundle. To conserve the length of filaments involved, the

excess trapped length in one loop is compensated by an equal amount of trapped

length in the other loop but now associated with the other filament. In short, one

can look at this process as the exchange of a conserved amount of length trapped

between cross links in two overlapping structures, forming a loop pair. In the second

part of this process, the two loops diffusively separate to form the z-bend. During

the first part of this process, the two loops can easily continue to exchange length so

that the trapped length within in the loops changes. Once the loops separate, such

exchanges of length would require the reconfiguration of the all the cross links in the

bundle section between the two loops. This is energetically prohibitive so the loop

sizes are now fixed.

These two distinct processes can be combined into a single one using a particular

reaction coordinate, which represents the changing amount of trapped length in the

first part and then the inter-loop separation in the second part. The effect potential
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associated with this single reaction coordinate can be written as follows:

U(x) =


g1µx, x < `0

g1µ`0 − F (1− cosφ)(x− `0), x > `0.

(B.7)

In the following it is helpful to define A = g1µ and B = F (1 − cosφ). Then,

for a loop pair containing excess length equal to `0, the effective potential for the

reaction coordinate may be written simply as an initially linearly increasing function

with slope A connected to a linearly decreasing function with slope −B. These two

sections are joined at the point of loop pair separation where the reaction coordinate

is equal to `0. For reference, the potential is

U(x) =


Ax, x < `0

A`0 −B(x− `0), x > `0.

(B.8)

The average escape time 〈T 〉 for a loop pair of a given size `0 is then given by

the mean first passage time to escape this potential well at x = 0. Using standard

results for this problem, I may write

〈T 〉 =
1

D

∫ x0

0

dyeβU(y)

∫ y

0

dze−βU(z). (B.9)

The first integral is taken from initial state of the system at x = 0 (no loops at all)

where the potential vanishes U(0) = 0, to the point x0 > 0, where the potential is

again zero U(x0) = 0. This condition is satisfied at x0 = (A+B)`0/B. Substituting

the potential U(x) from Eq. B.8 into Eq. B.9 I find that I must perform the integrals

〈T 〉 =
1

D

(∫ `0

0

dy

∫ y

0

dzeβA(y−z) +

∫ x0

`0

dy

∫ `0

0

dzeβ(A`0−B(y−`0)−Az) +

∫ x0

`0

dy

∫ y

`0

dzeβB(z−y)

)
.

(B.10)
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Doing so, I obtain

〈T 〉 =
1

D

[
1

βA
(

1

βA
(eβA`0 − 1)− `0) (B.11)

+
1

βA

1

βB
(eβA`0 − 1)(1− e−βB(x0−`0))

+
1

βB
(x0 − `0 −

1

βB
(1− e−βB(x0−`0))

]
.

We substitute x0 to get

〈T 〉 =
1

D

[
1

βA

1

βA
eβA`0 − 1

βA

1

βA
− 1

βA
`0 + (B.12)

+
1

βA

1

βB
eβA`0 − 2

1

βA

1

βB
+ e−βA`0

1

βA

1

βB
+

+
1

βB
A`0/B −

1

βB

1

βB
+ e−βA`0

1

βB

1

βB

]
.

We now further assume that B � A, which implies that the compressive force

driving the loops apart is small compared to the work per unit length necessary to

create a loop of a specific size. In this limit, I investigate the case in which the

thermal activation of loop pairs should be rather rare. The opposite limit of large

compressive force implies that loops rapidly proliferate so that the rapid collapse of

the bundle becomes a different and complex dynamical problem. In this marginal

case of weak forces being just able to generate loop pairs, I simplify the mean escape

time to

〈T 〉 =
1

D

[
1

β2AB
eβA`0 +

1

β2B2
(βA`0 − 1 + e−βA`0)

]
. (B.13)

Furthermore, in limit of small angular bends of the loops φ (consistent with small

amounts of excess trapped length) I approximate: 1 − cosφ ≈ φ2/2. Substituting
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A,B and expressing the total size of the uncross-linked region `0 in terms of the loop

angle using Eq. B.4 I obtain

〈T 〉 =
1

D

4

β2F 2φ4

(
τφ2

2g1

eηφ + ηφ− 1 + e−ηφ
)

(B.14)

with η = g1g2βκ
1/2µ1/2 and τ = F/µ.

To find the angle produced with maximal rate (minimal escape time r = 1
〈T 〉), I

introduce an auxiliary variable ψ = ηφ in order to write

〈T 〉 =
1

D

4η4

β2F 2
f(ψ), (B.15)

with

f(ψ) = Cψ−2eψ + ψ−3 + (e−ψ − 1)ψ−4, (B.16)

where C = τ
2g1η2 . For C � 1 I look for ψ? such that f ′(ψ?) = 0 in order to extremize

the mean escape time. Using the ansatz ψ � 1, I find that

f ′(ψ) ≈ Cψ−2eψ − 3ψ−4. (B.17)

From this result, I find the condition for the minimum escape time to be

Cψ2eψ = 3, (B.18)

which in the limit C � 1 has the approximate solution

ψ? = log
3

C
� 1. (B.19)

Using the above result for ψ?, I calculate the minimum escape time

f(ψ?) ≈ 3 log

(
3

C

)−2

, (B.20)
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working in the same approximation C � 1. Leading to our estimate for the maximal

loop pair production rate

rmax =
1

〈T 〉min

=
D

3

τ log
(

6g1η2

τ

)
2βκ

2

. (B.21)

B.2 Braids

B.2.1 Forming a u-bend: Energetics of Braid Pair Production

We first consider the energetics of a braid under the compression, using the same

approach as in Ref. [163]. There I showed that the energy of the most simple braid of

three filaments can be mapped onto a two-dimensional projection of the 3D braid onto

the plane. The 2D pseudobraid consists of only two filaments. This simplification

results from the observation that in a torsion-free braid of filaments in 3D, two of the

three filaments take identical paths (have identical conformations) through the defect

and maintain their cross linking within that pair, while the third takes a different

path and loses cross links to the other two. As a result, I can lump the energetics

of the two identical filaments into one in the analysis of the 2D pseudobraid. We

characterize the conformation of the filament by the angle α(s) between its local

tangent and a fixed axis, which I take to be the x-axis, as a function of arc length s

To analyze the pseudobraid, one should consider the case in which the two fila-

ments have differing bending moduli. This makes the analytical solution problematic.

For simplicity, in this analytical part I focus only on the case of the equal bending

moduli of two filaments in the projection κ1 = κ2 = κ, that presumably results in

the symmetric u-bend - two braids with equal angle. We address the case of differing

bending moduli by direct numerical minimization. Finally, following Ref. [163], I
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introduce a symmetry ansatz: α1(s) = −α2(−s) = α(s), which is justified by later

comparing the results with numerical minimization of the energy.

The boundary conditions are the same as in Ref. [163]

α

(
±L

2

)
= ±φ

2
(B.22)

and ∫ L/2

−L/2
ds sin(α(s)) = −

∫ L/2

−L/2
ds sin(α(s)) + 2a cos

(
φ

2

)
. (B.23)

The first of these requires the filaments to once again be parallel at the ends of the

braid defect and ensure that the tangent rotates through the full kink angle as the arc

length variables moves through the braid defect. The second enforces their normal

separation of a as fixed by the cross-linking molecules at each end of the braid defect.

In addition to this previous analysis of braids in bundles with free ends, the

energy from Ref. [163] now needs a contribution from the compression FR cosφ:

E = 2

[
λs

[∫ L/2

−L/2
ds sin(α(s))−−a cos

(
φ

2

)]
+

+

∫ L/2

−L/2
dsκ

α′2

2
+ λ̃

[
δ

(
s+

L

2

)
α +

φ

2L

]
+ λ†

[
δ

(
s− L

2

)
α− φ

2L

]]
+ µL+ FR cosφ, (B.24)

where λ, λ̃ ,λ†, and λs are Lagrange multipliers fixing boundary conditions given in

Eqs. B.22 and B.23.

We vary the energy Eq. B.24 with respect to α(s), obtaining the equation of

elastic equilibrium, which is the same as the one obtained in Ref. [163] for the braid

with free boundaries:

κα = λs cosα1 + λ̃1δ

(
s+

L1

2

)
+ λ†1δ

(
s− L1

2

)
. (B.25)
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Eq. B.25 requires us to impose the equalities: λ̃ = κα′
(
−L

2

)
and λ† = −κα′

(
L
2

)
.

Repeating arguments from [163] I show that λs must be negative everywhere. Mini-

mizing the energy Eq. B.24 with respect to the length of the defect L I obtain∫ L/2

−L/2
ds
(
−κ

2
α′2 + µ+ λc cosα + λs sinα

)
= 0. (B.26)

(B.27)

Using Eq. B.25, I find a conserved quantity (the analog of first integrals of a dynam-

ical system) I such that dI/ds = 0. This first integral is given by

I =
κ

2
α′2 − λs sinα. (B.28)

Comparing Eq. B.28 and Eq. B.26 I find the value of this first integral, which is the

binding energy per unit length of the cross linkers:

κ

2
α′2 − λs sinα = µ. (B.29)

From the result the rate of change of the tangent angle at the ends of the braid defect

are fixed. I find

α′2
(
±L

2

)
= 2

[
µ

κ
± λs sin

(
φ

2

)]
. (B.30)

Subtracting in the Eq. B.30 the upper sign equation from the lower sign one, I obtain

a helpful expression for later use:

4λs sin
(
φ
2

)
α′
(
L
2

)
− α′

(
−L

2

) = κ

[
α′
(
L

2

)
+ α′

(
−L

2

)]
. (B.31)

Finally, the variation of the total energy Eq. B.24 with respect to φ gives

∂E

∂φ
= 4λsa sin

(
φ

2

)
+ 2λ̃− 2λ† − FR sin (φ) . (B.32)

263



Using boundary condition Eq. B.25, I simplify Eq. B.32 to

∂E

∂φ
= 4λsa sin

(
φ

2

)
+κα′

(
−L

2

)
+κα′

(
−L

2

)
+κα′

(
L

2

)
+κα′

(
L

2

)
−FR sin (φ) .

(B.33)

Substituting Eqs. B.31 into Eq. B.33 I find

∂E

∂φ
= 4λs sin

(
φ

2

)[
a+

4

α′
(
L
2

)
− α′

(
−L

2

) +
FR

2λs
cos(φ/2)

]
. (B.34)

Eq. B.34 shows that φ = 0 is an extremum.The transition from minimum to maxi-

mum occurs when the expression in square brackets is zero:

a+
4

α′
(
L
2

)
− α′

(
−L

2

) − FR

2λs
cos(φ/2) = 0. (B.35)

While this transition from minimum to maximum indicates the second order phase

transition, I also may have a situation in which there is another potential minimum

at φ 6= 0 . If, at some value of system parameters, this minimum becomes deeper

than the minimum at φ = 0 (even when it is still minimum, not maximum), I obtain a

first order phase transition instead of the second order one. As I see using numerical

energy minimization, the symmetric case corresponds to the second order phase

transition, while the asymmetric produces a first-order kinking transition. Here I

continue to study the symmetric case to analytically explore the second order phase

transition.

Let us consider the critical point at which the braided bundle transitions from

an unkinked state with φ = 0 to one with finite kinking angles. Assuming the

transition is second order so that the kinking angle grows continuously from zero at

the transition, I may study this point by first setting φ = 0. Eq. B.30 then transforms

to

α′
(
±L

2

)
= ±

√
2
µ

κ
. (B.36)

264



Using it, I simplify Eq. B.35 to

a− 2√
2µ/κ

=
FR

2λs
. (B.37)

As I move through the braid, α increases from 0 to its maximal value αmax and

then decreases back to 0. αmax is determined by α′max = 0, so Eq. B.29 gives

µ = −λs sinαmax, (B.38)

and

αmax = arcsin(−µ/λs). (B.39)

Due to symmetry of the problem the maximum angle occurs at the origin of the

arc length variable: αmax = α(0). The integral condition Eq. B.23 for φ = 0 gives∫ L/2

−L/2
ds sinα = a. (B.40)

Due to symmetry, the integral can be transformed to∫ 0

−L/2
ds sinα = a/2, (B.41)

where α grows from 0 to αmax. Denoting z = sinα(s) so that α(s) = arcsin z, and

α′(s)ds =
dz√

1− z2
. (B.42)

Then Eq. B.29 gives

α′ = ±
√

2(µ+ λsz)/κ. (B.43)

Then on the interval under consideration, α grows so

ds =
dz√

1− z2
√

2(µ+ λsz)/κ
. (B.44)
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Figure B.1: The compressive load required to produce Euler buckling in a three-fil-

ament bundle as a function of ζ. Green dots - results of numerical minimization of

the energy. Dashed line - guide for the eye.
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Substituting this identity into the integral in Eq. B.41 I may write∫ −µ/λs
0

zdz√
1− z2

√
2(µ+ λsz)/κ

= a/2. (B.45)

Finally, I use Eq. B.37 to determine λs and after some some algebra, I obtain an

equation relating compressive load and ζ at critical point∫ 1

0

((√
2ζ − ζ

)
2κ
FRa

)2
tdt√

1−
((√

2ζ − ζ
)

2κ
FRa

)2
t2
√

1− t)
=
√
ζ/2. (B.46)

This implicit relation between between ζ and the critical compressive load F ? =

F ?(ζ) can be solved numerically. The results are shown in Fig.3 of the main text.

B.3 Euler buckling of the bundle

We determine the critical force for buckling of a three-filament bundle by numerically

minimizing its energy:

E = −F∆L+ µ`+
N∑
i=1

∫
ds
κi
2

(
∂st̂i
)2
. (B.47)

In this minimization, I do not insert either braid or loop defects, but the bundle when

bent does loose cross linkers. This uncross-linked region may be viewed as some sort

of localized defect, but it is not one of the defects whose annealing requires a system-

sized rearrangement of cross links.

We observe that, for a strong enough compression, the state where the central

part of the bundle bends has less energy than the straight bundle. The size of the

bent part ` is determined by the minimization of the energy Eq. B.47. We find the

threshold compression value at which bundles transform from straight to bent, as

a function of ζ (see Fig. B.1 SI). We observe that this value is significantly bigger
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than the braid-induced kinking threshold (see Fig. 3 main document), showing that

defect production occurs before buckling upon increasing force.
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APPENDIX C

Appendix for ”The conformation of a semiflexible

filament in a quenched random potential”

C.1 Calculating the traces

In this appendix we discuss the calculation of the trace of the operator O−1G−1

obtained in Eq. 6.16. The operators O and G were introduced in Eqs. 6.8 and 6.14

respectively. To calculate the traces, we need the complete spectrum of the two

differential operators in question. In other words, we must solve

OΨ = EnΨ (C.1)

subject to the fixed-end boundary conditions Ψ(0) = Ψ(L0). The solution is a

constant and the set of standing waves satisfying the boundary conditions: Ψ(y) =

A sin(zny), where, as discussed in the main text, zn = nπ/L0 for nonnegative integer

n. Defining ω =
√

k
m

we may write the trace as

TrG−1 = 2ξ
∞∑
n=0

1

z2
n

. (C.2)

Since both operators can be simultaneously diagonalized, it is also possible to write

Tr(O−1G−1) =
4ξ

k

∞∑
n=0

1

z2
n

1

z2
n + ω2

(C.3)
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Using the above results and Eq. 6.16, one finds directly that

∆F =
mξ

2

∞∑
n=0

1

z2
n

(
1− ω2

z2
n + ω2

)
. (C.4)

The second term in the product occurring in the summand removes the singularity

associated with the n = 0 term.

∆F =
kξ

2

∞∑
n=0

1

z2
n + ω2

(C.5)

The summation can be done in closed form leading to the disorder-averaged free

energy:

[F ] = FSHO +
kξ

4

1 + ωL0 coth(ωL0)

ω2
(C.6)

C.2 The Modified Harmonic Oscillator

In this appendix we review the partition function of the modified harmonic oscillator.

The modified harmonic oscillator Hamiltonian has an addition p4 where p → −i∂
is the momentum operator. This leads to a time-independent Schrödinger operator

of the form Oκ introduced to discuss the semiflexible filament in the text. A more

complete exposition of this problem can be found in Refs. [89] and [45]. We begin

by factoring the differential operator Oκ, defined in Eq. 6.23 into a product of two

commuting second order differential operators as shown in Eq. 6.27:

Oκ = O1O2, (C.7)

where

Oj = ∂2 + ω2
j . (C.8)

It immediately follows that the partition sum for the modified harmonic oscillator is

given by a product of the partition functions of two separate harmonic oscillators Z1
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and Z2,

ZMHO =
1√

detO1

1√
detO2

= Z1Z2, (C.9)

with frequencies ω1 and ω2 respectively. The free energy immediately follows. From

Eq. C.9, it is the sum of the free energies of the two harmonic oscillators introduced

above in Eq. C.7,

FMHO = F1 + F2 = T ln(2 sinh(ω1L0/2)) + T ln(2 sinh(ω2L0/2)). (C.10)

The remainder of this appendix uses the above result.

We first compute the free energy of the filament in a confining potential (finite

k). Since the mass term in the equation of motion represents tension m = τ/T

– see Eq. 6.8– and since tension is conjugate to arclength in the Hamiltonian, the

derivative of the free energy with respect to mass gives us mean arclength that we

seek.

〈L〉 =
1

T
∂mF. (C.11)

There is one complication. The free energy is divergent in the limit that k → 0. We

require the arclength of the unconfined filament in order to compute ∆L, as defined

in Eq. 6.19. To address this problem, we compute the mean arclength at finite k,

take the necessary derivative, and then take the limit k → 0, which then provides a

finite result.

We first recall the (possibly complex) frequencies ω1,2 and use them to compute

derivatives of the free energy in Eq. C.10.

∂mFMHO

T
=
∂mω1L0 cosh(ω1L0/2)

2 sinh(ω1L0/2)
+
∂mω2L0 cosh(ω2L0/2)

2 sinh(ω2L0/2)
(C.12)

We know that ω2
1 + ω2

2 = m
`P

and that ω1ω2 =
√

k
`P

. When there is no confining

potential k = 0, one frequency vanishes. This implies that the spectrum of the
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corresponding operator includes a zero eigenvalue, which, as discussed above, will be

problematic for the analysis. In preparation for taking the k → 0 limit we keep only

the lowest terms in k here. Expanding to lowest order in k we find that

ω2
1 + ω2

2 ± 2ω1ω2 =
m

`P

± 2

√
k

`P

, (C.13)

which means

ω1 ± ω2 =

√
m

`P

± 2

√
k

`P

(C.14)

Solving for ω1,2 we find that

ω1 =

√
m

`P

(C.15)

ω2 =

√
k

m
. (C.16)

These results allow us to take the appropriate m derivatives:

∂mω1 =
1

2

√
1

m`P

(C.17)

∂mω2 = −1

2

√
k

m3
. (C.18)

By assuming that the filament is long we may take ω1L0 � 1. We also assume that

k may be sufficiently small so that ω2L0 � 1 (we will take it to zero shortly). The

free energy of the filament is then

FMHO = Tω1L0/2 + T ln (ω2L0) . (C.19)

Taking the derivative as shown in Eq. C.11, we obtain the mean length

〈L〉|k=0 =
1

4

√
1

m`P

L0 −
1

2m
. (C.20)

For large L0 the last term can be ignored, leaving us with the k = 0 result.
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We now turn to the case where k remains finite. Then for long filaments we have

ω1L� 1 and ω2L� 1, allowing us to write FMHO, defined in Eq. C.10 as

FMHO = T (ω1 + ω2)
L0

2
=
TL0

2

√
m

`P

+ 2

√
k

`P

. (C.21)

Then, taking the m derivative as above, we obtain the mean arclength of the

filament with a confining potential k 6= 0:

〈L〉MHO =
1√
m`P

1√
1 + 2φ

L0

4
(C.22)

Subtracting the equivalent quantity for the k = 0 case, shown in Eq. C.20, we obtain

an expression for the change in excess mean arclength due to the presence of the

confining potential

∆LMHO =
1√
mb

1√
1 + 2φ

L0

4
− 1

4

√
1

m`P

L0 (C.23)

Returning the original, physical parameters of the semiflexible filament model, this

expression becomes

∆LMHO =
1

β
√
τκ

(
1√

1 + 2φ
− 1

)
L0

4
. (C.24)

C.3 Replica Trick

The core idea of the replica trick is the following. We want to find [lnZ] where the

average is over the ensemble of quenched potentials. We may rewrite this in the

following form

[lnZ] = lim
R→0

[
ZR − 1

R

]
(C.25)

In many cases the straightforward calculation of the left hand side is intractable,

while it is possible to compute on the right hand side for positive integer R and
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then take the limit. The reader is referred to Ref. [119] for further details of this

approach. We first demonstrate the utility of the replica method in a simplified

model. We assume a Gaussian Hamiltonian so that the partition function has the

form

Z =

∫
Dy(x)e−

∫
yAy+2y0By (C.26)

where A,B are operators acting on the variable y. The variable y is affected by a

quenched potential, y0 whose statistics are fixed by the Gaussian distribution

P(V ) ∝ e−
∫
y0Cy0 , (C.27)

controlled by another operator C. This problem is designed to be sufficiently simple

that it can be solved without the replica trick. It is also directly related to valley

approximation, as the reader may confirm. A straightforward calculation of the

partition function, followed by taking the logarithm and then averaging the resulting

free energy over the quenched potential distribution leads to

[lnZ] = ln
1√

detA
− 1

2
tr(C−1BA−1B). (C.28)

If we now repeat the calculation using the replica trick, we first replicate the

Hamiltonian to form ZR:

ZR =

∫
Dyr(x)e−

∫ ∑R
r=1 yrAyr+2y0Byr , (C.29)

where the replicated variables are indexed by r: yr, r = 1, . . . , R. We now average

the replicated partition sum over the quenched potential (notice we are swapping the

order of the two averages) to obtain

[
ZR
]

=

∫
Dyr(x)Dy0(x)e−

∫ ∑R
r=1 yrAyr+2y0Byr+y0Cy0∫

Dy0(x)e−
∫
y0Cy0

. (C.30)
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Introducing ~y = (y0, y1...yR) we can write Eq. C.30 in the form

[
ZR
]

=

∫
D~y(x)e−

∫ T
0 ~yA~y∫

Dy0(x)e−
∫
y0Cy0

(C.31)

where the matrix A can be written in the block form

A =

C B̃T

B̃ Ã

 . (C.32)

The Ã block is the R×R matrix coupling the replicated variables. The B̃ block is an

R × 1 matrix coupling the R replicated variables to the quenched disorder y0. The

remaining calculation involves performing the Gaussian integrals over ~y. We find

[ZR] =

(
detA
detC

)−1/2

(C.33)

The determinant of the block matrix can be written as

detA = det Ã det
(
C − B̃T Ã−1B̃

)
, (C.34)

and we observe that, in our model, the variables yr, r = 1, . . . , R are noninteracting

so that the det Ã = detAR. As a consequence,

[ZR] =
{

detAR det(1−RBTA−1BC−1)
}−1/2

. (C.35)

By taking the R→ 0, we reproduce the exact result, Eq. C.28.

Now, we consider using the replica trick for the problem at hand. Specifically,

we examine a flexible polymer at temperature T interacting with a quenched delta-

correlated random potential. The polymer has tension τ and length L. We will

examine the average potential energy of the filament in the pinning potential. For

later computational convenience, we introduce a coupling constant α controlling the

interaction of the polymer with pinning potential.
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The partition function is

Zα =

∫
Dy(x)e

−β
L∫
0

dx τ
2
ẏ2+αV (x,y)

(C.36)

We can calculate the average potential energy as

∂F

∂α

∣∣∣∣
α=1

=

〈∫
V (x, y(x))dx

〉
. (C.37)

After this thermal average, we take the average of the potential over the ensemble

of pinning potentials

∂[F ]

∂α

∣∣∣∣
α=1

=

[〈∫
V (x, y(x))dx

〉]
(C.38)

We assume that averaging and differentiation commute. We expect that the mean

potential energy should be negative. Indeed, the random potential will pick negative

and positive values with the same probability. The polymer, however, will prefer the

negative regions to the positive.

We now perform the necessary averages using the replica trick with, as before,

the replica index being r = 1..R. The replicated partition sum is now

ZR
α =

∫
Dyi(x)e

−β
L∫
0

dx
R∑
i=1

τ
2
ẏ2
r+αV (x,yr(x))

. (C.39)

The average over the pinning potential, once again, couples the replicas. We first

write that average over the distribution of V (x, y),

[
ZR
α

]
=

∫
Dyre

−β τ
2

∫ L
0 dx

R∑
i=1

ẏ2
r

∫
DV P(V )e

−β
∫ L
0 dx

∫
dy

R∑
i=1

αV (x,y)δ(y−yr(x))
(C.40)

Since P(V ) is a Gaussian with fixed variance σ we can directly perform the

Gaussian integral over V . We also notice that the delta functions δ(y− yr(x)) allow

us to do the integral over y in the exponent. Doing both steps we obtain
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[
ZR
α

]
=

∫
Dyre

−β(
L∫
0

dx
R∑
i=1

τ
2
ẏ2
r−σβα2

R∑
i,j=1

δ(yi(x)−yj(x))

. (C.41)

Eq. C.41 now appears to be the partition function of R particles interacting

through a delta-potential. It can be written in the form

[Zn
α ] =

∫
Dyre−L0H(y1(x),...,yR(x)) (C.42)

where the multi-particle Hamiltonian is

H =
R∑
r=1

1

2βτ
p2
r − σβ2

R∑
i,j=1

α2δ(yj(x)− yi(x)). (C.43)

Notice that in Eq. C.42 that the length of the polymer L0 plays the role of inverse

temperature 1/T for the fictitious particles. Of course, L0 6= β, which is the inverse

temperature of the polymer. We also note that x plays the role of time in this

dynamical system of interacting particles.

Since the sum contains the term i = j, there is a positive infinite constant C in

the Hamiltonian. Separating these terms explicitly we rewrite the Hamiltonian as

H =
R∑
i=1

1

2βτ
p2
i − 2σβ2

∑
i<j

τ 2α2δ(yj(x)− yi(x))− Cσβ2τ 2α2. (C.44)

Reflecting on the fact that the path integral in Eq. C.42 is analogous to the

quantum transition amplitude for the system of fictitious particles [140] and that

the long polymer limit L0 → ∞ corresponds to the zero temperature limit for that

system, we may focus on the ground state wavefunction [85, 84]. To find the ground

state wavefunction, we use the Bethe ansatz:

Ψ0 = C0 exp

(
−κ
∑
α<β

|yα − yβ|
)
. (C.45)
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The constant C0 is chosen to satisfy the normalization condition. The constant κ

is set so that the discontinuity of the first derivative cancels the delta-function, i.e.,

2
βτ
κ = 2σβ2α2 .

We transform the sum by choosing a particular ordering of the R particles on

the y line: y1 < y2 < . . . < yR. In this ordering the sum in Eq. C.45 is particularly

simple: ∑
α<β

|yα − yβ| =
∑
α

(2α− n− 1)yα. (C.46)

From this we obtain the ground state energy

ER = RCσβ2τ 2α2 − 1

2βτ
κ2R(R + 1)(R− 1)

3
(C.47)

Then the partition function is

ZR = e−βER (C.48)

and the free energy is

βF = −[logZ] = − lim
R→0

[
ZR − 1

n
] = β lim

R→0

ER
R
. (C.49)

Taking the limit we get

F = Cσβτ 2α2 +
1

6
σ2β4α4τ. (C.50)

Using Eq. C.38, we obtain the potential energy of the thermalized polymer in the

random pinning potential, averaged over an ensemble of such potentials:[〈∫
V (x, y(x))dx

〉]
= 2Cσβτ 2 +

2

3
σ2β4τ (C.51)

This potential energy is positive definite, which is clearly unphysical. The result

shows that the replica trick fails to find the averaged potential energy of the polymer
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in the pinning potential. The problem may lie in either the introduction of the

infinite constant C, or in the replica trick itself.

We conjecture that the failure of the replica trick in this case is related to the

failure of the analytical continuation inherent in the method. To expand on this idea

we consider an example related to directed polymers (without a bending energy) in

a complex random potential with zero correlation length (ξ → 0), as explored by

Zhang [190]. In that work [Eq. (11) of that article] the author asserts that∫
dFP (F )e−nF = e−t(nF0−an3), (C.52)

where P (F ) is the probability distribution of free energies of the directed polymer

due to the statistical ensemble of quenched potentials in its environment and n is

the replica index. The left hand side of this expression is [Zn]. Now P (F ) should

decay exponentially or faster for negative F , otherwise the integral will be divergent.

The result on the right hand side, arrived at through a saddle point evaluation of

the integral, is exact for all positive integer n in the limit of large t. The goal (as in

our case too) is to examine the n→ 0 limit.

To examine this point let us perform the integration in Eq. C.52 by first Taylor

expanding the exponential and then integrating term by term.∫
dFP (F )

∞∑
k=0

(−nF )k

k!
=
∞∑
k=0

(−(nF0 − nβ))k

k!
. (C.53)

From Ref. [93] we know that the large positive F behavior of P (F ) is ∼ exp(−F 5
2 ),

ensuring the convergence of these integral and justifying the swapping of the order

of summation and integration. The sum on the right hand side can be reorganized

in terms of powers of the replica index n so that each term in the summand takes

the form dkn
k. In this form that sum can be combined with integral on the left to
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write an infinite sum that is now equal to zero.

∞∑
k=0

ckn
k = 0 (C.54)

where

ck =

∫
dFP (F )

(−F )k

k!
− dk. (C.55)

If we were allowed to assert that each term in the sum Eq. C.54 separately

vanished, then we would be able to calculate all moments of the free energy directly

from the known coefficients dk. This process for k = 1 is the essence of the replica

trick as used to compute the mean free energy. Unfortunately, this conclusion is not

necessarily valid. A simple counter example can be obtain from the Taylor expansion

of the function F (z) = f(z) sin(πz), where f(z) is an analytic function. Let ak be

Taylor expansion coefficients for F (z). Then it is easy to see that if we choose ck = ak
k!

we will get Eq. C.54, but not all ck are zero. The same issue appears in Ref. [85].

280



APPENDIX D

Appendix for ”Microcircuit synchronization and

heavy tailed synaptic weight distribution in

preBötzinger Complex contribute to generation of

breathing rhythm”

D.1 Choice of the physiological parameters

While ∆tij can be taken directly from the experimental data [148], we need to fit

parameters τm, τs, and Wij obtain approximately the same EPSP profile as observed

experimentally. The EPSP decay time constant 20 is almost τm (τm � τs). We then

chose τs to fit the EPSP rise time. The lognormal distribution for EPSP amplitudes

was determined from published parameters[148]. Specifically, the unitary EPSP am-

plitude of inputs from putative rhythmogenic neurons was distributed as 2.8 ±1.5

mV (mean±SD). The high variance of EPSP amplitude requires a heavy tailed dis-

tribution in order to capture the entire range of EPSPs without incurring negative

values, i.e., assuming a symmetric normal distribution 99.75% (mean±3SD) range of

EPSPs would be -1.7 mV to 7.3 mV. Furthermore, this EPSP distribution of preBötC

rhythmogenic neurons is consistent with the notion that biologically plausible, log-

normal distributions of unitary EPSP amplitudes seen in several brain regions 22 are
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essential to explain their behavior. Thus, we modeled EPSP amplitudes by fitting

the parameters of a lognormal distribution for synaptic weightsWij to reflect the

experimental range of unitary EPSP amplitudes. In terms of the model parameters,

an EPSP amplitude of 2.8 mV required a synaptic weight of Wij = 300 mV/ms.

D.1.1 Simulations for stimulation of 1-10 neurons

Stimulation (by holographic photolysis of caged glutamate [80] of 4 - 9 of preBötC

neurons induces inspiratory bursts (I-burst) through synchronization of preBötC

rhythmogenic neurons with a ≥ 80% success rate, with latencies ranging from 57

ms - 360 ms that are inversely related to the number of stimulated neurons (Fig-

ure 7.1G-I). Specifically, the minimum number of co-stimulated neurons that induced

an I-burst (henceforth referred to as the threshold number of neurons) ranged from

4 - 9 with the latency to I-burst generation ranging from 170 ms – 370 ms (255±43

ms; mean±SEM) (Figure 1H). For experiments with suprathreshold number of stim-

ulated neurons, consisting of 1 - 3 additional neurons, the latency to induce I-burst

ranged from 57 ms – 160 ms (125±23 m; mean±SEM; Figure 1I)[80]. We simulated

the effects of experimental photostimulation of preBötC neurons by “depolarizing”

chosen neurons to produce a similar spiking pattern [80]. We characterized the spik-

ing pattern by the time between activation and the first spike τdelay, average period

of spiking of the laser stimulated neurons, Tlaser, the standard deviation, ∆T , of

the spiking period distribution, and the number of spikes produced nspikes, all based

on experimental measurements [80]. The parameters used for the model are listed

Supplementary Table S1. To model the experimental conditions in a connected

population of 1000 LIF point neurons (the same order as the number of preBötC
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rhythmogenic neurons), we mimicked the effect of 9 mM [K+] in the extracellular

bathing solution on neuronal excitability by incorporating a constant depolarizing

potential that put Vrest ∼ −60 mV while keeping the threshold for spikes at –48

mV; for the purposes of the model, this was represented by a 12 mV depolarization

from baseline potential, defined as 0 mV. To simulate the holographic photolysis

experiments [80], we initiated spiking in 1 - 9 neurons in a connected population[148]

of 1000 LIF neurons, q.v., MODEL section, at 25±3 Hz per their experimentally

characterized firing behavior [80] (Figure 7.1 E-F).

D.1.2 Seeding neurons with low-frequency uncorrelatied firing for burst

initiation

The preBötC Type I inspiratory neurons, which are putatively rhythmogenic [7, 58,

147, 137] start firing at very low frequencies (∼0.5-1 Hz) in the late interburst interval,

referred to as the preinspiratory (preI) period. Their activity leads to progressive

network synchronization in the preI period that culminates in an inspiratory burst.

We modeled this preI activity by initializing the neurons in the network to fire

randomly at Poisson-distributed frequencies (mean range: 0.5 to 2.0 Hz), to “seed”

the network with low levels of uncorrelated activity, as observed, preceding each

burst, in experiments [7, 58, 147, 137]. After this initialization of neuronal activity,

we computed the network firing rate in 5 ms bins as a measure of instantaneous

synchrony in the network [149]. We chose this temporal window to capture correlated

firing, i.e., synchrony, among neurons as this window (of coincidence) was too short

for any neuron to spike more than once (their refractory period was set to 3 ms

in all the models, a reasonable boundary condition based on experimental data,
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Supplementary Table S1). Next, we computed average network activity from the

firing rate computed in 5 ms bins, as a two-pass moving average, with a 25 ms

moving window and 5 ms steps size.

D.2 On-off model for ER network

To acquire more general understanding of the processes during the burst formation

in the preBötC, we consider the simplified version of the neuron model, namely on-

off. In such model, the neuron can be either in ”on” state, or in ”off” state. When

neuron has q or more ”on” neighbors that synapse onto it, it also transits to the

”on” state on the next step of the simulation. This model is a drastic simplification

of the LIF model. Basically, one may think about it as LIF model where all synaptic

weights are equal and initially chosen neurons were activated in an ideal synchrony.

The model then resembles the disease spreading dynamics [63] in which the on

and off states of the neurons are analogous to the infected and susceptible states of

individuals. The principal difference is that firing-quiescent model is deterministic,

while the disease spreading model includes stochastic transitions between susceptible

and infected individuals. We discuss this analogy below.

Since the class of ER networks is the only one found that gives physiologically

relevant results, we concentrate on this type of network hereafter. We first estimate

the probability that an arbitrary chosen neuron A be activated in the on-off model.

We introduce the quantity pi,m, the probability that exactly i neurons out of the m

initially activated neurons synapse onto any particular neuron A. This probability

is clearly independent of the choice of neuron A. From the definition of an ER graph
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we have p1,1 = p. More generally, we note that

pi,m =

(
m

i

)
pi(1− p)m−i (D.1)

where
(
m
i

)
= m!

i!(m−i)! is the number of ways to take i elements out of n. This results

relies on the fact that there are no correlations between network connections in an ER

network. The probability to be connected to not less than q neurons out of n neurons

is simply determined by the appropriate sum of pi,m since the different numbers of

connections are mutually exclusive events. We may write that probability as

p>q,m =
m∑
i=q

(
m

i

)
pi(1− p)m−i. (D.2)

By setting the lower limit to q, we have computed the probability that them activated

neurons activate the neuron in question, A.

It then follows that the average number of the neurons that will switch to the

synchronized firing state on the next time step is

n1 = Np>q,m, (D.3)

where N is the total number of the neurons in the network, and the averaging is

over the ensemble of ER graphs. Clearly there are three cases of interest. First, if

n1 � 1 with high probability we may assert that no neuron switches to the firing

state at the next step. As a result synchronization does not spread. In contrast,

if n � 1 then typically a large number of neurons are activated at the next step

and global network synchronization is essentially assured. Between these two limits

there is a transition at the threshold of n1 ≈ 1. This point is the most interesting

and complicated to study, but understanding the synchronization dynamics at the

threshold is vital for understanding the slow growth of synchronization in the ER
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Figure D.1: (color online) Comparing the mean-field theory and simulations of the

firing-quiescent model for a small network of 100 neurons. We observe a wide range

of minimal growth rate for small m above the synchronization threshold. The error

bars show the standard deviation of the mean for each data point.

network near the synchronization threshold. This slow growth underlies the strong

dependence of the mean time delay for synchronization with increasing m, observed

in our simulations.

Not all ER networks admit these threshold dynamics. Within the space of all ran-

dom network ensembles, parameterized by network size and connection probability

{N, p}, only some support n1 ≈ 1. In the other ER network ensembles, synchro-

nization is either immediate or impossible as discussed above. In particular, finite

size effects are essential: N → ∞ results in either n1 = 0 for m < q or n1 → ∞ for

m ≥ q. Neither option is consistent with experiment. We note that the maximum N

that supports the observed variations of mean time delay with the number of initially

stimulated neurons is given by

Nmax = p−q (D.4)
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Figure D.2: (color online) Comparing the mean-field theory and simulations of the

firing-quiescent model for a large network of 1000 neurons. We observe a much

smaller range of minimal growth rate at small m above the synchronization threshold

as compared to that of smaller networks. The error bars show the standard deviation

of the mean for each data point.

Figure D.3: (color online) The probability to synchronize as function of N un-

der keeping α to be constant. The curves from top to bottom correspond to

α = 2.0, 1.0, 0.5, 0.2
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easily obtained from setting n1 to unity in Eq. D.3. The best current estimates for

these quantities in the burstlet forming preBötC are N ∼ 103 and p ∼ 0.065 while the

number of coincident neuronal spikes necessary to activate the postsynaptic neuron

is q = 3. Thus we estimate from Eq. D.4 that Nmax ≈ 3.6 × 103, which is indeed

bigger than the estimated number of neurons involved. It may be noted that the

value of q is critical: If q were reduced to two, the maximum network size capable of

sustaining a threshold regime of slow synchronization growth would be reduced to

about two hundred, much smaller than the physiological system. Measurements of

q are perhaps the best way to invalidate our model.

We further explore how the process of synchronization depends on the param-

eters N, p, q,m by rewriting our model as a moving of the agent along the inter-

val with obstacles, with coordinates of obstacles given by Eq. (D.2 )with m =

minitial,minitial+1...N and neurons as points uniformly distributed along this interval

(see subsection D.3 for the details and the proof of equivalence). In this representa-

tion we can prove that the average time of synchronization as function of the number

of activated neurons approximately obeys the relation 〈TD(m)〉 = 1 + 〈TD(m + 1)〉
in the range of m where the probability of synchronization is small (which can be

the case only when N < Nmax ). Physically this statement corresponds for the acti-

vation of only one neuron per step. Numerical simulations validate this theoretical

prediction (see Fig. D.1, D.2 )

Second, we explore the probability to synchronize as a function of N, p, q,m and

prove that for large N it is a homogeneous function on N and p with critical exponent

q:

288



P(N, p, q,m) = f(Npq,m, q) = f(α,m, q) (D.5)

with α = Npq. Easy to see that the criticality condition is simply α = 1. We

numerically check this statement by calculating the synchronization probability for

different N but varying p correspondingly to keep α the same. Fig. D.3 demonstrates

that probability as function of N for different α is constant.

D.3 Analytical description

D.3.1 Transformation of the model

To make more predictions using the firing-quiescent model it is convenient to make

a few transformations of it, that does not change any of the probability distributions

and averages we are interested in.

The first simplification comes from the fact that for all the runs of the simulations

we studied the doubling of the initial number of neurons always eventually leaded

to the burst. Moreover, the time from the initiation to the burst was essentially

defined by the time from initiation to the doubling. Therefore, we do not have to

run our simulation till we reach 0.6N active neurons threshold, but we can stop at

2m neurons.

Second simplification follows from the fact that initially activated neurons are

chosen randomly from ER network without any correlation with its connectivity.

Therefore, we do not have to generate the whole ER network beforehand, but can

define only the neighbors of the neurons that are already active (in the same way

as we do for the whole network). Since m � N we can safely assume that the
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activation of already active neurons does not happen. This way we do not need

N × N connectivity matrix, but only 2m × N . We start with its first half m × N ,

and we add m + ith row if previous matrix (m + i− 1)×N has i or more columns

with not less than q ones (which is equivalent to adding newly activated neurons to

the set of active).

This procedure is equivalent to the motion of the agent along the interval [0,1]

with obstacles in points p>q,m+i defined by Eq. (D.2) and uniformly distributed along

the interval N bonus points. Each time the agent meets the bonus point it collects

it, and the agent loses one bonus point at each obstacle. If the agent does not have

bonus points he can not pass the obstacle.

Indeed, the probability that given column with i + m − 1 neurons has not less

than q ones is given by p>q,i+m from Eq. (D.2) . For the motion of the agent, the

probability that given bonus point is before the ith ostacle, is p>q,i+m too. We add

m+ ith row if the number of columns with i+m−1 neurons is i or more. The agent

passes ith obstacle if the number of bonus points before it is i or more. Therefore, the

transitions and their probabilities are the same. Hence, these two models describe

the same dynamics.

D.3.2 Homogenity of the probability finction and critical exponents.

Average time delay.

The description of the process as the moving of the agent can give us a few insights

about the behavior of this system. First, let us consider the probability of the burst

as the function P(N, p, q,m). In the thermodynamical limit N → ∞ , p → 0 such

that Npq ≈ const we have p>q,m ≈
(
m
q

)
pq. The probability to have exactly n bonus

290



points out of total N at the subinterval [0, p>q,m] is
(
N
n

)
(p>q,m)n ≈ ((mq ))n

n!
(Npq)n. We

see that N and p enter this value only as a combination Npq. Therefore, after the

summation over all possible distributions that lead to the burst we obtain that the

probability of the burst is a homogeneous function on N and p with critical exponent

q:

P(N, p, q,m) = f(Npq,m, q) = f(α,m, q) (D.6)

where we introduced the new variable α = Npq.

We can also make a prediction about the slope of the function 〈TD(m)〉 near the

threshold. First we would like to demonstrate that the dominant scenario of the burst

for the case when we are close to the threshold will be one when we activate only

one neuron at the first step. To do it we need to introduce a few new probabilities.

First,

pi =


p>q,i+m−1 for i = 1

p>q,i+m−1 − p>q,i+m−2 else

(D.7)

is a probability for the particular bonus point to be in the ith subinterval.

The probability exactly for n bonus points to be in the ith subinterval is

Pi,n =

(
N

n

)
pni (1− pi)N−n (D.8)

Rewriting them using α in the limit N →∞ we have p>q,m ≈
(
m
q

)
α
N

. Hence
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pi =


(
i
q

)
α
N

for i = m((
i
q

)
−
(
i−1
q

))
α
N

else

(D.9)

or we can rewrite it

pi =


(
i
q

)
α
N

for i = m(
i−1
q−1

)
α
N

else

(D.10)

Let us simply write

pi = g(q, i)
α

N
(D.11)

where we incorporated both cases to the definition of g(q, i) In the limit N →∞
we also rewrite Pi,n

Pi,n =

(
N

n

)
pni (1− pi)N−n =

Nn

n!
pni (1− pi)N−n (D.12)

or, substituting the definition, we get

Pi,n =
g(q, i)n

n!
αn(1− pi)N−n (D.13)

Near the threshold we assume the probability of the burst to be close to zero.

Therefore, we assume α to be small. Then we get

Pi,n =
g(q, i)n

n!
αn (D.14)
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Let us compare the probabilities that two bonus points will go to the first subin-

terval with the probability that one will go to the first and one to the second. The

first probability is

Pi,2 =
g(q, i)2

2
α2 (D.15)

The second is

Pi,1Pi+1,1 = g(q, i)g(q, i+ 1)α2 (D.16)

Their ratio is

Pi,1Pi+1,1

Pi,2
=

2g(q, i+ 1)

g(q, i)
(D.17)

For i = m we have

Pm,1Pm+1,1

Pm,2
=

2
(
m
q−1

)(
m
q

) (D.18)

That is

Pm,1Pm+1,1

Pm,2
=

2q

m− q + 1
(D.19)

We see that near the threshold, q � m− q , the dominant term for the passage

time and probability will be the one that starts with one bonus point at the first

subinterval (i.e., one neuron activated at the first step). Already from this we can

qualitatively predict that near the threshold increasing m by one should lead to

decreasing delay time by one step. Let us obtain it more precisely.
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Let us find 〈TD(m)〉 in this approximation. We have

〈TD(m)〉 = 1 + Pm,1
P̃m+1

Pm
〈T̃D(m+ 1)〉+ ... (D.20)

where P̃m+k and 〈T̃D(m+ k)〉 are probability and time to pass starting from the

kth obstacle (assuming we just passed it). We can write

Pm = Pm,1P̃m+1 + Pm,2P̃m+2 + ... (D.21)

〈T̃D(m+ 1)〉 = 1 + Pm,2
P̃m+2

P̃m+1

〈T̃D(m+ 2)〉+ ... (D.22)

and

〈TD(m+ 1)〉 = 1 + Pm,2
P̃m+2

Pm+1

〈T̃D(m+ 2)〉... (D.23)

Leaving only dominant terms we get

Pm = Pm,1P̃m+1 (D.24)

P̃m+1 = Pm,2P̃m+2 (D.25)

Pm+1 = Pm,2P̃m+2 (D.26)

〈T̃D(m+ 1)〉 = 1 + Pm,2
P̃m+2

Pm,2P̃m+2

〈T̃D(m+ 2)〉 = 1 + 〈T̃D(m+ 2)〉 (D.27)
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and

〈TD(m+ 1)〉 = 1 + 〈T̃D(m+ 2)〉... (D.28)

That gives

〈TD(m)〉 = 1 + 〈TD(m+ 1)〉+ ... (D.29)

what we wanted to demonstrate.
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APPENDIX E

Appendix for ”Dynamical phase separation on

rhythmogenic neuronal networks”

E.1 Determining physiological parameters for the model

To prepare Fig. 8.12 we must address the current understanding of the physiological

parameters of the neurons as well as the network connectivity parameters. Most of

them can be fixed using experimental data shown in Table 8.1. (To obtain value for p

from [146] we use the fact that out of 23 pairs of neurons, three were unidirectionally

connected, which gives 3/23 probability for the connection in any of two direction,

and twice less for the connection in the particular direction). The exception is the set

of parameters related to the dendritic calcium concentration, that are not currently

as well known. We chose them to reproduce the observed dynamics of the system.

Specifically, we set τC to reproduce the observed period of stable oscillation. Tak-

ing into account that, for us, the units for the calcium concentration are arbitrary as

is the choice of the zero for that concentration, we are left with only two independent

parameters: gC and ∆C. gC is chosen to be large enough that we have reproducible

phase behavior, avoiding highly heterogeneous and initial-condition dependent re-

sults as shown in Fig. 8.1B. We also require it to be small enough to produce a true
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Figure E.1: (Color online) (A) Phase diagram for the all-to-all coupled network,

using arbitrary initial conditions and smooth sigmoids. It is identical to (B), the

mean-field phase diagram. Phases are: Q (light blue, lightest gray), BTO (blue,

lighter gray), HA (dark red, darkest gray), ATO (purple, darker gray), TMA (green,

middle gray). All parameter values are listed in appendix E.5.
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Table E.1: Parameters used in the simulation

Fig. gC gV C∗ V ∗ − Veq τC τV rm rb ∆C ∆Vmax p N

Units - mV - mV ms ms Hz Hz - mV - -

8.1A 3 5 5 15 500 10 75 5 0.1 0-100 1 2-20

8.1B 0.01 5 5 15 500 10 75 5 0.1 0-100 1 2-20

8.1C 3 5 5 15 500 10 75 5 0.1 0-100 0.2 2-100

8.2 5 5 15 15 500 10 75 5 0.035 0-25 0.75 2-100

8.3 0 0 15 15 500 10 75 5 0.1 5-30 0.5 2-20

8.4 0 0 15 15 500 10 75 5 0.1 10 0.5 6-9

8.6A 0.3 0.5 5 15 500 10 75 5 0.1 50 1 10

8.6B 3 5 5 15 500 10 75 5 0.1 50 1 10

8.5A 0.3 0.5 5 15 500 10 75 5 0.1 50 1 10

8.5B 0.3 0.5 5 15 500 10 75 5 0.1 50 1 10

8.5C 1.1 0.1 5 15 500 10 75 5 0.1 50 1 10

8.5D 10.8 1.8 5 15 500 10 75 5 0.1 50 1 10

8.7A,C 0.03 0.05 5 15 500 10 75 5 0.001 2.5 1 1000

8.7B,D 1.0 2.0 5 15 500 10 75 5 0.001 2.5 1 1000

8.8 0 0 20 15 500 10 70 5 0.015 7.3 0.5-1 100

8.11 0 0 ∞ 15 500 10 70 5 0.1 1-5 0.5 1-50

8.13 3 5 5 15 500 10 75 5 0.025 1-50 0.083 1-1000

8.12 3 5 5 15 500 20 40 0.1 0.007 1-10 0.065 1-1000

E.1 3 5 5 15 500 10 75 5 0.1 0-100 1 2-20

E.2 0-3 0-20 5 15 500 10 75 5 0.1 0-100 1 2-20

E.3 0 5 5 15 500 10 75 5 0.025 0-15 1 2-50
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threshold for calcium inactivation of the dendrite, i.e., Ceq−C∗
gC

> 1. The last param-

eter to be fixed is ∆C. The proper choice of ∆C is facilitated by scaling behavior

observed in the mean-field approximation of the model.

Indeed, consider Fig. 8.1C. To quantitatively fit the in vitro data, the network

must support stable oscillations when ∆V ≈ 2.8 mV, which is the average magnitude

of an EPSP [146]. To do that, we choose ∆C = 0.007 and find, with no remaining

fitting parameters, that stable oscillations occur for networks N ≈ 103 neurons –

see Fig. 8.12. It is computationally difficult to study networks with N > 2000,

but we can use the rescaling property, observed in the mean-field approximation, to

qualitatively predict the behavior for larger N . If we choose ∆C = 0.025, p = 0.083,

we obtain the phase diagram, shown in Fig. 8.13. The result is quite similar to that

shown in Fig. 8.1C, which describes on a much smaller system.

E.2 Mean-field solution

The mean field solution is obtained by assuming that somatic potentials and dendritic

calcium concentrations of all the neurons are the same: Vi = V,Ci = C. Another

assumption is that the network is on average homogeneously connected, i.e. each

neuron on average has pN inputs and outputs, with N the total number of neurons

and p the connection probability. Then Eqs. 8.1, 8.2 are rewritten as pair of equations

for V and C

dV

dt
=

1

τV
(Veq − V ) + ∆V (C)p(N − 1)r(V ) (E.1)

dC

dt
=

1

τC
(Ceq − C) + ∆Cp(N − 1)r(V ), (E.2)
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The phase diagram for such system is shown in Fig. E.1B. One may see that it

is identical to the phase diagram for the all-to-all coupled network in Fig. E.1A in

case of smooth transition in dendritic sensitivity. The mean-field approximation is

valid for large gV and gC but breaks down when they become smaller. More detailed

results are shown in Fig. E.2.

Figure E.2: (Color online) The results of the simulations for different gV and gC .

Blue, light region (red, dark region) points correspond to the case where the dynamics

agree (disagree) with mean field predictions, as determined by a visual inspection of

the numerically obtained phase diagrams. The blue region exhibits both insensitivity

to initial conditions and robustness in the face of damage. Conversely, the red region

is highly sensitive to both initial condition and damage. All parameter values are

listed in appendix E.5.
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E.3 Stability of fixed points on sparse networks

For the smooth-sigmoid neurons, we found in section 8.3 that there was only a single

fixed point – see Fig. 8.6. When that fixed point is unstable, the system executes

limit cycle oscillations. To determine the parameter range of these oscillations, here

we investigate the stability of that fixed point. Expanding the equations of motion

near the fixed point {V f
i , C

f
i } in the 2N dimensional space of Vi, Ci, we define vi =

Vi − V f
i , ci = Ci − Cf

i and obtain

dvi
dt

= − vi
τV

+ ∆V ′(Cf
i )ci

∑
j

Mijr(V
f
j ) +

+∆V (Cf
i )
∑
j

Mijr
′(V f

j )vj (E.3)

dci
dt

= − ci
τC

+ ∆C
∑
j

Mijr
′(V f

j )vj (E.4)

Using r(V ) and ∆V (C) from Eqs. 8.3, 8.4, we find

dvi
dt

= − vi
τV
− 1

gC
∆Vmaxσ

′(
C∗ − Cf

i

gC
)ci
∑
j

Mijr(V
f
j ) +

+
1

gV
(rm − rb)∆V (Cf

i )
∑
j

Mijσ
′(
V f
j − V ∗
gV

)vj, (E.5)

and
dci
dt

= − ci
τC

+ ∆C(rm − rb)
∑
j

Mijσ
′(
V f
j − V ∗
gV

)vj. (E.6)

Dynamical phase separation requires that neither C∗−Cf
i nor V ∗−V f

i vanish. There-

fore, if gV and gC are small, the terms with sigmoids are exponentially suppressed.

Neglecting these, we see that only the first term on the right hand side of Eqs. E.5

301



and E.6 remains. This implies the stability of the fixed point. For large gC and

gV , however, we cannot ignore the terms proportional to σ′, which destabilize the

phase-separated fixed point.

E.4 Quasi-periodic phase diagrams

We consider the case gC = 0, gV > 0, where quasi-periodic phase diagram can emerge.

Following subsection 8.3.1 by assuming activity phase separation to nh neurons with

Vh, Ch and nl neurons with Vl, Cl we write equations for the fixed point:

Vh − Veq = ∆V (Ch)τV [(nh − 1)r(Vh) + nlr(Vl)] (E.7)

Ch − Ceq = ∆CτC [(nh − 1)r(Vh) + nlr(Vl)] . (E.8)

and

Vl − Veq = ∆V (Cl)τV [(nl − 1)r(Vl) + nhr(Vh)] (E.9)

Cl − Ceq = ∆CτC [(nl − 1)r(Vl) + nhr(Vh)] . (E.10)

In the case where gC = 0, we have ∆V (Cl) = 0,∆V (Ch) = ∆Vmax (for Ch <

C∗, Cl > C∗ . Then as in section 8.3.1, we obtain the number of neurons firing at

low rate

nl =

⌊
(Nr(Vh)− r(Vl))∆CτC + Ceq − C∗

∆CτC(r(Vh)− r(Vl))

⌋
, (E.11)

and simplify the equations for the somatic potentials to get Vl = Veq and
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Vh − Veq
∆VmaxτV

= Nr(Vl)− r(Vh) +

⌈
C∗

∆CτC
− (N − 1)r(Vl)

r(Vh)− r(Vl)

⌉
(E.12)

where the ceil function dxe is the smallest integer that is larger or equal to x.

Eq. E.12 does not have a solution for Vh for some parameters. Due to the ceil

function on the right hand side, the changes happen when its argument is incremented

by one, what causes quasi-periodic structure of the phase diagram (see Fig. E.3).

E.5 Simulation details

The code is published at https://github.com/mbibireata/Networks. We use the pa-

rameters for all figures from Table E.1
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Figure E.3: (Color online) (A) Phase diagram for the all-to-all coupled network,

gC = 0, gV > 0. All five previously mentioned phases are present. There is a

quasi-periodical pattern on the BTO (blue, lighter gray) - Q (light blue, lightest gray)

boundary. This phase diagram fits the theoretical prediction (B) where blue (lightest

gray) corresponds to the case that Eq. E.12 has a solution and dark red (darkest gray)

to the case that it does not. All parameter values are listed in appendix E.5.
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tion of small subsets of prebötzinger complex inspiratory neurons. Journal of
Neuroscience, 33(8):3332–3338, 2013.

[81] NG Van Kampen. Stochastic processes in physics and chemistry. North Hol-
land, 2007.

[82] CL Kane and TC Lubensky. Topological boundary modes in isostatic lattices.
Nature Physics, 10(1):39–45, 2014.

[83] Pekka Kannus. Structure of the tendon connective tissue. Scandinavian journal
of medicine & science in sports, 10(6):312–320, 2000.

[84] M Kardar. Statistical Physics of Fields. Cambridge University Press, New
York, 2007.

[85] Mehran Kardar. Replica bethe ansatz studies of two-dimensional interfaces
with quenched random impurities. Nuclear Physics B, 290:582 – 602, 1987.

[86] KE Kasza, CP Broedersz, GH Koenderink, YC Lin, W Messner, EA Millman,
F Nakamura, TP Stossel, FC MacKintosh, and DA Weitz. Actin filament length
tunes elasticity of flexibly cross-linked actin networks. Biophysical journal,
99(4):1091–1100, 2010.

[87] M Keating, A Kurup, M Alvarez-Elizondo, AJ Levine, and E Botvinick. Spa-
tial distributions of pericellular stiffness in natural extracellular matrices are
dependent on cell-mediated proteolysis and contractility. Acta biomaterialia,
57:304–312, 2017.

[88] Kitware Inc. Paraview 5.8.0, 2020.

[89] H. Kleinert. Path integral for second-derivative lagrangian. Journal of Math-
ematical Physics, 27:3003, 1986.

[90] Hagen Kleinert. Path Integrals in Quantum Mechanics, Statistics, and Polymer
Physics. World Scientific, Singapore, 1995.

[91] Maurice Kleman. The Topological Classification of Defects. Springer US,
Boston, MA, 1995.

312



[92] Christof Koch. Biophysics of Computation: Information Processing in Single
Neurons (Computational Neuroscience Series). Oxford University Press, Inc.,
New York, NY, USA, 2004.

[93] I. V. Kolokolov and S. E. Korshunov. Explicit solution of the optimal fluc-
tuation problem for an elastic string in a random medium. Phys. Rev. E,
80:031107, Sep 2009.

[94] Maxwell A Kotlarchyk, Samir G Shreim, Martha B Alvarez-Elizondo, Laura C
Estrada, Rahul Singh, Lorenzo Valdevit, Ekaterina Kniazeva, Enrico Gratton,
Andrew J Putnam, and Elliot L Botvinick. Concentration independent modu-
lation of local micromechanics in a fibrin gel. PloS one, 6(5):1–12, 2011.

[95] Hendrik Anthony Kramers. Brownian motion in a field of force and the diffusion
model of chemical reactions. Physica, 7(4):284–304, 1940.

[96] Arvind Kumar, Stefan Rotter, and Ad Aertsen. Spiking activity propagation in
neuronal networks: reconciling different perspectives on neural coding. Nature
Reviews Neuroscience, 11(9):615–627, 2010.

[97] Matthew C. Kuntz and James P. Sethna. Rheology of Semiflexible Bundle
Networks with Transient Linkers. Physical Review B, 62:11699, 2000.

[98] Nir Lahav, Baruch Ksherim, Eti Ben-Simon, Adi Maron-Katz, Reuven Co-
hen, and Shlomo Havlin. K-shell decomposition reveals hierarchical cortical
organization of the human brain. New Journal of Physics, 18(8):083013, Aug
2016.

[99] L D Landau and E M Lifshitz. Theory of Elasticity 3rd edition. Oxford, 1986.

[100] Guillaume Lenormand, Emil Millet, Ben Fabry, James P. Butler, and Jeffery J.
Fredberg. Rheology of Semiflexible Bundle Networks with Transient Linkers.
Journal of the Royal Society Interface, 1:91–97, 2004.

[101] O Lieleg, KM Schmoller, Mireille MAE Claessens, and Andreas R Bausch. Cy-
toskeletal polymer networks: viscoelastic properties are determined by the mi-
croscopic interaction potential of cross-links. Biophysical journal, 96(11):4725–
4732, 2009.

[102] BG Lindsey, KF Morris, LS Segers, and R Shannon. Respiratory neuronal
assemblies. Respiration physiology, 122(2-3):183–196, 2000.

313



[103] C-h Liu, Sydney R Nagel, DA Schecter, SN Coppersmith, Satya Majumdar,
Onuttom Narayan, and TA Witten. Force fluctuations in bead packs. Science,
269(5223):513–515, 1995.

[104] Francesca Arese Lucini, Gino Del Ferraro, Mariano Sigman, and Hernán A.
Makse. How the brain transitions from conscious to subliminal perception.
Neuroscience, 411:280 – 290, 2019.

[105] X. Ma, M.E. Schickel, M.D. Stevenson, A.L. Sarang-Sieminski, K.J. Gooch,
S.N. Ghadiali, and R. T. Hart. Fibers in the extracellular matrix enable long-
range stress transmission between cells. Biophysical Journal, 104(7):1410–1418,
2013.

[106] F. C. MacKintosh, J. Käs, and P. A. Janmey. Elasticity of semiflexible biopoly-
mer networks. Phys. Rev. Lett., 75:4425–4428, Dec 1995.

[107] F. C. MacKintosh, Josef Käs, and P. A. Janmey. Elasticity of semiflexible
biopolymer networks. Physical review letters, 75(24):4425, 1995.

[108] F.C. MacKintosh, J. Käs, and P.A. Janmey. Rheology of Semiflexible Bundle
Networks with Transient Linkers. Phys. Rev. Lett., 75:4425, 1995.

[109] M. Maier, K. W. Müller, C. Heussinger, S. Köhler, W. A. Wall, A. R. Bausch,
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