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Abstract

Several connectionist models have been supplying non-classi-
cal explanations to the challenge of explaining systematicity,
i.e., structure sensitive processes, without merely being imple-
mentations of classical architectures. However, lately the chal-
lenge has been extended to include learning related issues. It
has been claimed that when these issues are taken into
account, only a restricted form of systematicity could be
claimed by the connectionist models put forward so far. In this
paper we investigate this issue further, and supply a model and
results that satisfies even the revised challenge.

Introduction

As is well known, in 1988, Fodor & Pylyshyn, arch-defend-
ers of mainstream orthodoxy, threw down the mantle to con-
nectionists, challenging them to explain the (so-called)
systematicity of cognitive capacities without merely imple-
menting a (so-called) classical cognitive architecture. Since
then a number of connectionist models have been put for-
ward, either by their authors or others, as in some measure
either meeting the challenge, or suggesting that the challenge
can be met in principle (for the models, see Pollack 1988,
1990; Smolensky 1990; Chalmers 1990; Niklasson & Shar-
key 1993; Brousse 1993; etc.). Whether these models can or
do meet the challenge has been the subject of much philo-
sophical debate (Smolensky 1988; van Gelder 1990, 1991;
Fodor & McLaughlin 1990; Sharkey & Jackson 1992;
McLaughlin 1993a, 1993b; Clark 1993; Matthews 1994,
etc.). A consensus has emerged that the only way to deliver a
non-classical explanation of systematicity is to construct
models that utilize representations that are compositionally
structured, and hence can be the basis for structure sensitive
operations, but are not constructed by strict concatenation,
which is the hallmark of classical approaches. The model
presented in this paper was constructed in accordance with
this tradition.

In recent and lucid contributions to this debate Robert
Hadley (1992, 1993) introduced a learning-based form of
systematicity, and argued that a number of levels of systema-
ticity, from weak to strong, ought to be distinguished, and
that, while humans at least exhibit (what he defined as)
strong systematicity, careful analysis shows that connection-
ist models have achieved at best (what he defined as) quasi
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systematicity.

In this paper, we first present an alternative hierarchy of
levels of systematicity that is more simple and more gen-
eral. We then present a connectionist model that can be
trained to exhibit systematicity at both Hadley's strong
level, and the (rather different) third level of our hierarchy,
which is the capacity to deal appropriately with all sen-
tences containing a totally novel constituent. This model
demonstrates that the kind of implicit non-classical syntac-
tic structure found in connectionist distributed representa-
tions is quite sufficient to support structure-sensitive
operations, and to underwrite strong systematicity.

Note that this model is much too crude to be put forward
as a serious model of real human capacities. It is intended
as an exploration of the computational capacities of a cer-
tain kind of architecture, and to demonstrate that Fodor &
Pylyshyn were wrong to argue that connectionism cannot,
in principle, deliver a non-Classical explanation of syste-
maticity.

What is Systematicity?

Insofar as the concept of systematicity differs from pro-
ductivity, it was introduced into cognitive science for the
first time in Fodor & Pylyshyn's 1988 paper. In view of
this, it is a surprising fact that Fodor & Pylyshyn charac-
terize systematicity only very vaguely. For example, Fodor
has described systematicity as the idea that "cognitive
capacities come in clumps” (Fodor & McLaughlin 1990, p
184). In this paper, we focus on just one component of the
general phenomenon, the systematicity of inference. The
1988 paper gestured at this phenomenon as follows:

...organisms should exhibit similar cognitive capaci-
ties in respect of logically similar inferences... (p 47)

You don't, for example, find minds that are prepared
to infer John went to the store from John and Mary
and Susan and Sally went to the store and John and
Mary went to the store but not from John and Mary
and Susan went to the store. (p 48)

Roughly, the idea is that any cognitive system that can
perform one inference of a general type can perform other
inferences of that type.

Unfortunately, the precise conceptual and empirical
boundaries of the phenomenon of systematicity of infer-
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ence in humans were left entirely unexplored in 1988, and
indeed still are open issues. This gives rise to two problems.
First, it is difficult to determine whether classical architectu-
res can actually explain human systematicity of inference.
This is because, while the compositional and structure-sensi-
tive nature of classical architectures obviously provide a
promising resource for explaining systematicity, it cannot be
determined whether the nature of the systematicity actually
entailed by the use of a classical architecture aligns suffi-
ciently closely with empirically observable facts about
humans (c.f. van Gelder & Niklasson 1994).

Second, and more relevant here, it was left entirely unclear
what kind of modeling, if any, connectionists could do to
convince Fodor & Pylyshyn et al. that their networks could
deliver a non-classical explanation of systematicity of infer-
ence. The problem is that, while the phenomenon of syste-
maticity of inference has no intrinsic connection with
learning, connectionists are usually primarily interested in
what kind of capacities a model can acquire on the basis of
exposure to examples. The notion of systematicity should be
related to the task that the network is trained to perform. So,
how could the challenge of explaining systematicity be
reformulated as a learning problem for connectionist net-
works?

Hadley focused on precisely this problem, and distin-
guished three levels of systematicity, weak, quasi- and
strong. The relevant one for our purposes here is strong sys-
tematicity:

We shall describe a system as strongly systematic if (i) it
can exhibit weak systematicity, (ii) it can correctly pro-
cess novel simple sentences and novel embedded sen-
tences containing words in positions where they do not
appear in the training corpus (i.e. the word within the
novel sentence does not appear in that same syntactic
position within any simple or embedded sentence in the
training set). (1993 p. 6, his emphasis)

Note that Hadley stresses that this definition is intended to
be read in such a way that the word within the novel sentence
does appear in the training corpus, though not in the same
syntactic position as in the novel sentence.

He then argued that none of the connectionist networks
which seem to exhibit something like systematicity actually
exhibit strong systematicity in this sense.

In our view, Hadley's three levels can be replaced with an
alternative hierarchy that is both simpler and more compre-
hensive. (There is no question about which is the right or
true hierarchy; it is just a matter of settling on a classification
of levels which is the most clear and useful.) A trained net-
work is systematic at level N if it is capable of successfully
processing test sentences which are novel in the sense that:

0. No novelty. Every test sentence appears in the training
set.

1. Novel Formulae. The test sentences themselves never
appear in the training set, but all their atomic constituents
appear in the same syntactic position somewhere in the train-
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ing set.

2. Novel Positions. The test sentences contain at least
one atomic constituent appearing in some syntactic posi-
tion in which it never appeared in the training set.

3. Novel Constituents. The test sentences contain at
least one atomic constituent which did not appear any-
where in the training set.

4. Novel Complexity. The test sentences have a different
level of complexity (embedding) than all sentences in the
training set.

5. Novel Constituents at Novel Complexity. The test
sentences contain at least one novel constituent at a novel
level of complexity.

Strictly speaking, Hadley's strong systematicity corre-
sponds to none of our levels, since it is logically possible
one could get a network that satisfied any one of our lev-
els, and yet failed to exhibit systematicity at Hadley's
strong level. However, it is our belief that satisfying our
level 3 is more demanding than satisfying Hadley's level
of strong systematicity, since it should be more difficult to
get a network to handle an urterly novel constituent than to
get it to handle one that already appeared in the training
set, though not in the same syntactic position. This belief
has been borne out in our modeling experiments.

The Task

The domain chosen here was simple inference in proposi-
tional logic. The aim is to show that a connectionist net-
work that has learned to perform inferences of a certain
type can thereby perform other instances of that type,
including instances which contain an entirely novel con-
stituent. The inference type is Material Conditional (Bone-
vac 1990):

A->B =>
and the reverse.

Simple propositional symbols (p, q, r, s) were allowed
for A, and simple propositional symbols, implications or
disjunctions containing simple symbols (e.g. (p -> q))
were allowed for B. Thus, typical inferences the network
is expected to perform are:

p->q = ~pvq
p->(Qvr) <==> ~pv(qvr)

288 distinct inferences can be generated using the sym-
bols (p, g, 1, s). Of these, 162 contain at least one instance
of the symbol s; 126 contain no instance of 5. A network
was trained to successfully perform all 126 inferences that
contained no instance of the symbol s. This very same net-
work was, without any further training, able to perform
with 100% success the further 162 inferences that can be
formed by using symbol s. The performance of this net-
work was no mere statistical fluke; the same network
architecture was trained 5 times using different randomly
chosen starting weights with the same success rate on the
test corpus. This result would satisfy our definition of sys-
tematicity at level 3.

~AvB
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Figure |: Holistic transformation of p-> (q & r) into~p v (q & 1)

In order to show that the network also is capable of exhib-
iting Hadley's strong systematicity, we made a change in the
training set of the combined model. From the complete set of
inferences, all those containing the symbol s to the left of a
connective, both in simple (e.g., s -> q) and embedded for-
mulae (e.g., p -> (s v q)) were removed, leaving us with a
168-formulae training set. The model was trained starting
from the same five different sets of random weights as men-
tioned above. When tested on the complete set, this model
also was 100% successful in handling the test corpus, in all
of these five runs.

The Model

The model used here is an extension of the Recursive Auto-
Associative Memory (RAAM) model devised by Pollack
1988 and used by Chalmers 1990. These models used two
separate networks; one for encoding/decoding of representa-
tions for complex expressions (EN), and another for trans-
formation of these representations (TN) as show in fig. 1.

The current model is inspired by Chrisman's (1991) archi-
tecture which combined the two separate parts of the models,
mentioned above, into one architecture (as seen in fig. 2), for
language translation.

Output for f(x)

Output for x

Trimsf.k Encoding/

networ Decoding
ED:E?&E::? network
network

C—_—1|Input for f(x)

Input for x

Figure 2: Chrisman's architecture

Our model uses only one dual RAAM as the EN and a TN
directly connected to the hidden layer of that EN (see fig. 3).
The EN has three layers of units, the input and output layers
consist of 2(n+1) units (where n is the number of units cho-
sen to represent an expression, complex or atomic) and the
hidden layer consists of n units. Since the input layer of the
TN is the same layer as the hidden layer of the EN, it, and the
output layer of the TN, therefore consists of n units (for a
more detailed description of the model, see Niklasson
(1993).

Distributed output for f(x)

/’E Transformation

Output for x and f(x)

Encoﬂi."g/ network
ngtcvgo; 8 Distributed input for x

Input for x and f(x)
Figure 3: Our architecture

The important point to notice is that the two parts of the
architecture co-evolve during the training phase, which
means that the transformation part is trained on increas-
ingly “better” representations (resulting from the proceed-
ing training of the encoder/decoder). It is also important to
notice that the input-hidden layer of the encoding/decod-
ing network is updated as a result of the training of the
transformation part, since its error is propagated to the
encoder. This means that the hidden-layer representations
are affected by both the encoding/decoding and the trans-
formation processes. The simulations conducted, indicated
that the model generalizes somewhat better with this feed-
back, than without it,

The Atomic Representation Generator

A connectionist network of the above general kind cannot
be expected to successfully transform formulae/sentences
containing a novel constituent if the representation for that
constituent is utterly unlike anything with which it is
already familiar. That would be like expecting a person to
use a novel word (say zork) properly in sentences without
knowing the slightest thing about the word itself, such as
whether it is a noun or a verb. In our case, the network
must at least somehow be able to tell that the novel con-
stituent is an atomic proposition symbol.

To solve the problem of how to introduce a novel con-
stituent while supplying to the network only the informa-
tion that it is an atomic proposition symbol, we used a
separate network to generate distributed representations
for all atomic constituents. Several options for the genera-
tor are possible (e.g. the use of an Elman 1990, type of
architecture, where the context of a syntax can be used).
Several studies have shown that representations generated
at the hidden layer of recurrent networks, are similar for
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expressions with similar tree structures (e.g. Elman 1990,
Pollack 1990). Here we use a the context of a class hierarchy
to generate our distributed representations for atomic constit-
uents in a RAAM (in a similar vein as Bodén & Narayanan,

Figure 4: Context encoded by the representation generator

All the constituents in this domain (e.g. p, q, r, Proposi-
tion, Connective, Symbol, etc.) were assigned a unique, non-
overlapping, representation of 22 units, of which two were
active for each constituent (e.g. 1100000000000000000000
=p). A 44*22*44 RAAM was trained (with learning rate =
0.1, momentum = 0.1 for 40.000 iterations) to encode/
decode these hierarchies. The distributed representations
(e.g. pD). i.e. the hidden layer representation, for the atomic
constituents were then collected and used in the training of
the combined architecture. Observe that the novel constitu-
ent, 5, is not used in the training process.

Training and Testing of the Model

After training of the representation generator, the hierarchies
are presented and the hidden-layer representation for them
are collected as representations for the atomic constituents.
These representations, are then used in the combined archi-
tecture to encode/decode and transform the formulae in the
training set.

However, using distributed representations poses a new
problem; how can it be decided (during the test phase) when
a decoded representation refers to an atomic or a complex
constituent? In models using pre-structured representations,
it is possible to supply the decoder with information when to
halt (e.g. the number of active units for an atomic constitu-
ent, as used by Chalmers). Here we adopt the technique of
training the decoder, in the combined architecture, to auto-
matically separate atomic from complex constituents. A sin-
gle bit is added to the representations in order to differentiate
atomic (0) from complex (1) constituents (c.f. Niklasson &
Sharkey, 1993).

Car T1T p” T0]
Lar 1] p T0]

Figure 5: Automatic decoding

This explains why the combined architecture uses 2(n+1)
input units.

The model is then trained for about 4000 iterations, using
the standard backpropagation algorithm and a sigmoidal
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transfer function. For the encoder and the transformation
network a learning rate of 0.02 was used, and for the
decoder 0.05 was used. A momentum of 0.1 was used for
all weights,

Before testing the model, a distributed representation for
the novel constituent s, has to be generated. This is done
by presenting a novel representation for s, e.g.
0000000000000000000011, in combination with its con-
text, i.e. the distributed representation for 'Proposition’, to
the representational generator (no additional learning takes
place). The representation formed at the hidden layer (i.e.
sP) is collected and used to generate representations for
the formulae, which are to be used in the combined archi-
tecture.

When the 288 formulae domain was presented as a test
set, all the formulae were correctly encoded, transformed
and decoded. In no case did the decoder incorrectly sepa-
rate an atomic from a complex constituents (by using the
last bit as an indicator) or identify the right atomic constit-
uent incorrectly (by using Euclidean distance to the dis-
tributed representations for all expressions, i.e. both the
representations for the atomic constituents, formed by the
representational generator, and the representations for the
formulae, formed at the hidden layer of the combined
architecture),

Analysis of the Distributed Representations

In order to give an account why the model works, the task
was reduced to transformation of only simple formulae,
according to the following syntax:

A->A <=> AvA

Only the propositional symbols p, q and s, were allowed
for A and the negation was discarded, in order to reduce
the number of dimensions in the representations.

The representation generator was trained to encode dis-
tributed representations for p, q, -> and v, by using the
same type of class hierarchies discussed earlier. 8 units
were used to represent each leaf:

P 10000000
Q 01000000
\ 00100000
-> 00010000
Proposition 00001000
Connective 00000100
Symbol 00000010
Nil 00000000

After the distributed representations had been collected,
the combined architecture had been trained and the model
correctly processed formulae containing the novel constit-
uent s (after that its distributed representation had been
generated by the representation generator, by combining
00000001 with PropositionD), the hidden-layer representa-
tions formed in the RAAM were analyzed. The space
available here prevents us from doing a thorough analysis,
so we will resort to displaying the representations for the



Order of the Formulae:

PVP
pvq
pvs

qvp

18 formulae in this domain, see fig. 6.

Formulae

Figure 6: Hidden-layer representations

It is obvious that the result of the training is that the for-
mulae are placed very systematically in the 8-dimensional
space. We can use this spatial structure to explain how the
network solves the transformation task. We need not even
take the obvious choice of unit number 3, if we want to sepa-
rate disjunctions from implications, as in fig 7.

Unit4

=

Fig. 7 Hidden unit space

>
Unit 2

It should be noted that this systematic spatial structure,
and that the formulae with the novel constituent occupies the
space between the known constituents, can be identified
along all the dimensions.

Conclusion

This non-classical model achieves perfectly systematic per-
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formance at both our level 3 and at Hadley's strong level.
We believe that this level of performance justifies the gen-
eral claim that appropriately configured and trained con-
nectionist networks exhibit systematicity i.e., that the
Fodor & Pylyshyn challenge to connectionism has been
unambiguously met. They would probably disagree and
argue that we have missed the point, as Fodor &
McLaughlin did in their reply to Smolensky:

[the problem] is not to show that systematic capacities

are possible given the assumptions of a connectionist

architecture, but to explain how systematicity could
be necessary how it could be a law that cognitive
capacities are systematic - given those assumptions

(p. 202, their emphasis)

But, as mentioned in the beginning of this paper, since
the concept of systematicity, and the boundaries of the
related clumps of cognitive capacities, are not unambigu-
ously defined, it is, in our view, difficult to determine
whether humans are necessarily systematic. This issue is,
however, somewhat outside the scope of this paper. This
issue aside, it should be noted that the model presented
here is necessarily systematic (or at least shows some very
strong evidence for assuming that it is), if systematicity is
related to learning. Not only did the network exhibit the
same behavior for the five successive runs, but if the hid-
den-layer representations are analyzed (which we unfortu-
nately lack the space to do here in a more thorough
fashion), very distinct mappings in the space can be identi-
fied.

Although Fodor & Pylyshyn did not explicitly relate
systematicity to learning, they made some general remarks



about learning in connectionist models: "..these processes
are all frequency-sensitive" (p 31 their emphasis). As we
have shown, this is not true for all connectionist models,
since the model presented here processes representations
which it has not been explicitly trained on.

Note that the current model has not been shown to be
capable of systematic performance at levels 4 and 5. We
regard these levels of systematicity as important technical
challenges for connectionists. Nevertheless, the current
results demonstrate that there can no longer be any question
about the "in principle” capacities of non-classical connec-
tionist networks to exhibit systematic performance. The
challenge now is to determine which approach to cognitive
architecture is better able to describe and explain the fine
detail of human capacities. However, in order to answer this
question, much more critical attention must be paid to the
concept of systematicity itself, and there must be much more
empirical study of human capacities to ascertain the nature
and limits of systematicity.
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