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Spatio-temporal Fourier Transformer (StFT) for Long-term Dynamics
Prediction

Da Long * 1 Shandian Zhe 1 Samuel Williams 2 Leonid Oliker 2 Zhe Bai * 2

Abstract
Simulating the long-term dynamics of multi-scale
and multi-physics systems poses a significant
challenge in understanding complex phenomena
across science and engineering. The complex-
ity arises from the intricate interactions between
scales and the interplay of diverse physical pro-
cesses. Neural operators have emerged as promis-
ing models for predicting such dynamics due
to their flexibility and computational efficiency.
However, they often fail to effectively capture
multi-scale interactions or quantify the uncertain-
ties inherent in the predictions. These limitations
lead to rapid error accumulation, particularly in
long-term forecasting of systems characterized
by complex and coupled dynamics. To address
these challenges, we propose a spatio-temporal
Fourier transformer (StFT), in which each trans-
former block is designed to learn dynamics at a
specific scale. By leveraging a structured hier-
archy of StFT blocks, the model explicitly cap-
tures dynamics across both macro- and micro-
spatial scales. Furthermore, a generative residual
correction mechanism is integrated to estimate
and mitigate predictive uncertainties, enhancing
both the accuracy and reliability of long-term fore-
casts. Evaluations conducted on three benchmark
datasets (plasma, fluid, and atmospheric dynam-
ics) demonstrate the advantages of our approach
over state-of-the-art ML methods.

1. Introduction
Predicting long-term spatio-temporal dynamics governed
by partial differential equations (PDEs) is a cornerstone of
scientific and engineering research, with broad applications
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in fields such as climate modeling, plasma science, fluid
dynamics, and beyond. Traditional approaches rely heavily
on numerical solvers, which discretize the domain and itera-
tively solve PDEs using methods like finite difference, finite
element, and spectral methods (Tadmor, 2012). While ef-
fective in many scenarios, these techniques face significant
limitations when applied to complex and large-scale simula-
tions. They require substantial computational resources and
exhibit poor scalability with increasing problem size, render-
ing them impractical for high-dimensional, large-scale, or
long-term physics systems due to excessive computational
costs and memory demands.

Recent advances in deep learning have revolutionized the
field of PDE modeling by introducing data-driven method-
ologies that significantly accelerate computations for sci-
ence while maintaining high accuracy. Supported by univer-
sal approximation theorem (Chen & Chen, 1995), neural op-
erators that learn the mapping between two function spaces
have demonstrated great success in simulating various PDE
systems across multiple scientific disciplines without retrain-
ing for new conditions (Li et al., 2020; Lu et al., 2021). With
the success of transformer in natural language processing
and computer vision (Vaswani, 2017; Dosovitskiy, 2020),
transformer-based neural operators can process multiple in-
put functions while enabling arbitrary querying of output
function locations, offering enhanced flexibility in handling
complex functional mappings (Hao et al., 2023; Li et al.,
2022). A series of neural operators have been developed to
address complex scientific problems, including applications
in weather forecasting, turbulent fluid dynamics, and boiling
phenomena (Pathak et al., 2022; Li et al., 2023b; Bi et al.,
2023; Hassan et al., 2023; Lin et al., 2021).

Despite success of these methods, accurately predicting the
long-term evolution of these systems presents unique chal-
lenges in terms of both computational efficiency and long-
term stability. The inherent multi-scale nature and multi-
physics complexity of such systems necessitate methodolo-
gies that can efficiently represent and integrate dynamics
across disparate spatial and temporal scales while simulta-
neously capturing the complex interactions between distinct
physical processes, such as the influence of micro-scale tur-
bulence on macro-scale flow (Peters, 2009; Natrajan et al.,
2007). For example, large-scale atmospheric pressure sys-
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tems, such as high-pressure ridges and low-pressure troughs,
play a crucial role in shaping local weather patterns. Inac-
curate representation of these systems can cause signifi-
cant errors in forecasting rainfall, wind speed, and tempera-
ture (Wang et al., 2006; Barlow et al., 2019). In magnetically
confined plasmas, the magnetohydrodynamic (MHD) insta-
bilities caused by current or pressure gradients can limit
burning plasma performance and threaten fusion device in-
tegrity (von Goeler et al., 1974; Graves et al., 2012; Seo
et al., 2024). Although neural operators present advantages
over traditional approaches, they still encounter challenges
associated with computational complexity and the demands
for scientific fidelity, especially when the underlying physics
involve rapid changes or high-frequency components. These
challenges are further intensified in high-resolution simu-
lations of multi-scale scenarios. Recent efforts to address
these limitations include decomposing learnable parame-
ters (Kossaifi et al., 2023), and employing linear attention
to reduce computational time (Hao et al., 2023; Cao, 2021).
Furthermore, integrating uncertainty quantification (UQ)
into modeling frameworks is essential for assessing the con-
fidence and reliability of predictions, particularly in complex
systems such as in fluids and weather forecasting (Cheung
et al., 2011; Scher & Messori, 2018). However, most ex-
isting neural operators do not incorporate UQ, which is
particularly important for modeling long-term dynamics,
where even small errors can propagate across scales and
result in significant inaccuracies.

On the other hand, existing approaches for predicting spatio-
temporal dynamics can be classified into two primary cat-
egories. The first category comprises models that directly
forecast future states at a predetermined number of time
steps based on historical observed states (Wang et al., 2024;
Kontolati et al., 2024). The second category includes models
that utilize an autoregressive manner, which addresses chal-
lenges of scaling and fitting complexities as a continuous-
time emulator (Pathak et al., 2022; Rühling Cachay et al.,
2024; Lippe et al., 2023; McCabe et al., 2023). Neverthe-
less, prediction errors that arise in short-term accumulate
over time, resulting in unstable and inaccurate long-term
forecasts. Previous work has sought to alleviate these issues
through techniques such as the pushforward trick, invari-
ance preservation, and iterative refinement (McCabe et al.,
2023; Lippe et al., 2023; Brandstetter et al., 2022). How-
ever, developing robust, multi-scale modeling frameworks
for long-term dynamic predictions of these systems remains
crucial for improving prediction accuracy and understanding
the complex interplay between scales.

In this work, we introduce a spatio-temporal Fourier trans-
former StFT for the forecasting of multi-scale and multi-
physics systems. Each StFT block captures the underlying
dynamics of the physical processes at one specific scale.
Through a hierarchical composition of StFT blocks across

multiple scales, augmented by a generative residual correc-
tion block, our model is capable of learning the intricate
interactions both within the same scales and across different
scales, while also providing meaningful uncertainty quan-
tification. The cascading StFT blocks enable our model to
predict high-resolution dynamics across a spectrum of vary-
ing scales for correlated physical states. By integrating StFT
within an auto-regressive framework, our method achieves
superior accuracy in both short-term and long-term predic-
tions compared to existing state-of-the-art autoregressive
baselines.

Our contributions can be summarized as follows:

• We propose Spatio-temporal Fourier transformer
(StFT), a novel ML model that learns underlying dy-
namics across various scales while incorporating inter-
actions among diverse physical processes.

• We propose StFT-F, which incorporates a residual cor-
rection mechanism to refine the forecasting of StFT
and capture intrinsic uncertainties.

• In each StFT block, we propose an overlapping tok-
enizer and a detokenizer that share boundaries between
adjacent regions, enhancing the smoothness of vision
representation.

• We demonstrate the effectiveness of StFT in an au-
toregressive framework on a diverse set of applica-
tions. Evaluating performance across variables in
each complex system, StFT outperforms the best base-
line, achieving over 600%, 20%, and 50% higher accu-
racy in the plasma, fluid, and atmospheric dynamics
datasets, respectively. Compared with StFT, StFT-F has
an average of 5 percent improvement while simultane-
ously providing meaningful uncertainty quantification.

2. Related Work
Neural Operators. There have been many popular neural
operators and their variants including Fourier neural oper-
ators (Li et al., 2020; Gupta et al., 2021; Tran et al., 2021;
Cao et al., 2023; Li et al., 2023a; Rahman et al., 2022),
DeepONet (Lu et al., 2021; Wang et al., 2021; Jin et al.,
2022; Wang et al., 2022; Kontolati et al., 2023; Prasthofer
et al., 2022), transformer based operators (Hao et al., 2023;
Cao, 2021; Li et al., 2022), image-to-image inspired oper-
ators (Gupta & Brandstetter, 2022; Rühling Cachay et al.,
2024; Long et al., 2024). U-Net, a fundamentally hierarchi-
cal structure model, has inspired several neural operators
(Rahman et al., 2022; Liu et al., 2022b; Gupta & Brand-
stetter, 2022), which allows to solve multi-scale PDEs by
hierarchically aggregating of feature representations pro-
gressing from fine to coarse levels. Recent work in com-
puter vision (Liu et al., 2021; Fan et al., 2021; Zhang et al.,

2



Spatio-temporal Fourier Transformer (StFT) for Long-term Dynamics Prediction

2022) have introduced methods for extracting multi-scale
features through hierarchical architectures. However, these
hierarchical models do not explicit forecast the multi-scale
structures of physical processes. In contrast, our method
begins with a coarse approximation that captures large-scale,
low-frequency phenomena, and incrementally refines the
representation over layers to resolve finer details. These
structured decompositions allow for error diagnosis, enhanc-
ing interpretability of model performance across different
scales, and enable targeted improvements. In contrast, U-
Net like hierarchical models lack explicit refinement mecha-
nisms, which limits the transparency and interpretability of
their multi-scale representations.

Generative Models

Recent years, generative models, especially diffusion mod-
els have demonstrated huge success in various domains,
including vision, audio, robotics, and medical field (Ho
et al., 2020; Song et al., 2020; Tian et al., 2024; Kong et al.,
2020; Wolleb et al., 2022). Video generation techniques
are closely related to spatio-temporal dynamics prediction,
as demonstrated in (Ho et al., 2022; Voleti et al., 2022;
Singer et al., 2022). Recent work emulates the forward
and inverse transformations of diffusion models to learn the
spatio-temporal dynamics (Rühling Cachay et al., 2024).
As an alternative approach in generative modeling, flow
matching has been introduced to enable fast sampling and
has since been applied to video generation (Lipman et al.,
2022; Liu et al., 2022a; Albergo & Vanden-Eijnden, 2022;
Polyak et al., 2024; Esser et al.). While video generation typ-
ically explores a range of creative and diverse possibilities
from text or image prompts, forecasting spatial-temporal
dynamics driven by PDEs necessitates more than mere sta-
tistical resemblance - it requires each prediction is firmly
grounded in the underlying physical laws. To achieve accu-
rate forecasting while capturing the inherent stochasticity of
physical processes, our work incorporates a flow matching
block following the proceeding StFT blocks. This approach
allows our model to precisely recover the true dynamics
while simultaneously offering meaningful uncertainty quan-
tification.

3. Method
We consider an autoregressive formulation for long-term
multi-scale spatiotemporal physical processes. We define a
vector ũt representing the historical snapshots of the multi-
physics variables at timestamps from t−k+1 to t, in a total
of k snapshots. Specifically, ũt = [ut, ut−1, . . . , ut−k+1].
We formulate the probabilistic one-step forward neural op-
erator StFT-F as

ut = Fθd(ũt−1) + rt, (1)
rt ∼ Pθg (r|ũt−1,Fθd(ũt−1)), (2)

where Fθd denote the StFT operator, a deterministic fore-
casting parameterized by θd, and Pθg is the generative
flow matching block parameterized by θg for refining the
forecasting of StFT and providing uncertainty quantifica-
tion. Fθd represents the deterministic evolution of the sys-
tem that encapsulates the predictive dynamics. The term
Pθg (r|ũt−1,Fθd(ũt−1)) captures the probabilistic nature
of the residual of the model. It represents a distribution
conditioned on the current state ũt−1, and the deterministic
prediction, modeling the uncertainty or variations that are
not captured by the deterministic component. The residual
rt calculates deviations from the deterministic prediction,
and its distribution allows the model to account for noise or
inherent stochasticity in the physical processes. Therefore,
by sampling residual rt, our model learns stochastic trajec-
tories from data. Besides providing predictive uncertainties
caused by inherent noise, these stochastic trajectories can
help study the long-term behavior, stabilities, and bifurca-
tions in stochastic systems.

Figure 1 presents the overview of the StFT’s architecture. In
the following subsections, we introduce the overlapping tok-
enizer, detokenizer, StFT block, and the residual refinement
mechanism based on flow matching.

3.1. StFT Block

Figure 2 illustrates the architecture of the StFT block. As-
suming the collected data samples ũt are mapped to a tensor
ofW×H×C, whereW,H are spatial dimensions, andC is
for the number of physical variables. Each StFT block is de-
signed to handle a specific scale; therefore, by employing a
specific patch size, we partition the input at a corresponding
level of granularity. To ensure that the first block captures
the coarsest features or the largest scale, we set the patch
size P 1

w×P 1
h to a large value, allowing it to model broad spa-

tial structures effectively. Overlaps between patches are not
considered in this section. As a result, W

P 1
w
× H

P 1
H
×C patches

or tokens are fed into the variable mixer block, where tokens
corresponding to different physical processes but sharing
the same spatial and temporal locations are mixed into a
single token. Following this, two transformation paths are
performed: one in the spatio-temporal domain, and the other
in the frequency domain. In the spatio-temporal path, the
tokens first pass through a spatio-temporal embedder, after
which the embeddings are processed by multiple standard
transformer layers. In the frequency path, the tokens are first
processed by a 2D/3D Fourier transform, where only low-
frequency components are retained. These low-frequency
components are then passed through a frequency embedder
to obtain frequency embeddings. Subsequently, these fre-
quency embeddings are fed to the standard transformer lay-
ers for further processing. Finally, an inverse 2D/3D Fourier
transform is applied to map the frequency tokens back to the
spatio-temporal domain. Once the tokens from both paths
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are obtained, a linear layer is used to project them back to
the original space, where each token has a shape of P 1

w×P 1
h .

Next, a detokenizer yields the first block prediction u1t+1.
Note that the number of tokens remains unchanged within
the transformer block. Each patch represents a significant
portion of the historical snapshots, encapsulating macro-
scopic structural features. This coarse-level partitioning
reduces the complexity of modeling fine-grained details. By
maintaining a lower granularity, the model prioritizes struc-
tural coherence over extraneous details, enabling it to focus
on capturing and predicting global relationships between
regions more effectively.

3.2. A Hierarchy of StFT Blocks

In the subsequent blocks, we shift our focus to smaller
scales with fine details. Consequently, we concatenate the
prediction u1t+1 with the input ũt, and consider this com-
bined input as the input for the next StFT block. We further
subdivide each patch from the previous level into smaller
patches. The smaller patches allows for less information to
be aggregated within a single patch, thereby minimizing the
risk of losing local variations and enhancing the richness
and informativeness of the fine-scale representation. As a
result, the subdivision increases the resolution or the total
number of patches to the next StFT block. By leveraging the
finer granularity of the patches to focus on smaller regions,
it allows the model to better localize features and capture
their details. In addition, conditioning on the coarser pre-
diction allows the models to iteratively refine its estimates,
beginning with a broad global summary of the correspond-
ing regions. This iterative refinement process mirrors how
humans process images, first focusing on global structures
and then honing in on finer details. Through the repeated
subdivision of the patches, the model progressively refines
its predictions across multiple scales.

3.3. Residual Refinement Based on Flow Matching

Finally, the model refines its predictions through a rectified
flow block, which belongs to the family of flow matching
models (Liu, 2022; Liu et al., 2022a). Flow matching is
formulated as an ordinary differential equation on time t ∈
[0, 1],

d

dt
ψt(x) = νt(ψt(x)), (3)

where the learnable velocity field νt directs the transfor-
mation of each sample X0 from a source distribution p0,
typically a Gaussian distribution, toward the target distribu-
tion X1 ∼ p1, with p1 representing the data distribution. If
we prescribe the velocity field νt such that it guides every
sample along a straight-line trajectory from X0 to X1, it is
referred to as a rectified flow.. In this case, Xt represents
the linear interpolation across the entire timespan between

StFT Block

Spatial Refinement X L

Coarse-to-Fine
Composition

: Variables

STFT STFT Block

W

H

T

Temporal StackingT

1 2 3
4 5 6
7 8 9

1 2
4 5

5 6
8 9

4 5
7 8

2 3
5 6

Variable Mixer

Overlapping Tokenizer

Freq Embedder

Transformer Layer

IFFT

Linear

Overlapping Tokenizer

Overlapping Detokenizer

Transformer 
Layer

Spatiotemporal 
Embedder

Element-wise Add

FFT & Filter

…

!𝑢!

ũt

ul
t+1

ut+1

ũt ul
t+1

ul+1
t+1

Figure 1. Overview of the proposed StFT model. Top right: the
model predicts ut+1 using the past k snapshots ũt, employing L
spatial refinements from coarse to fine scales through the proposed
spatiotemporal Fourier transformer blocks. Bottom left: an illus-
tration of the overlapping tokenizer, where the patch size is 2× 2,
and the overlapping number is 1× 1.

X0 and X1, which can be expressed as

Xt = tX1 + (1− t)X0. (4)

We employ a parameterizedMθg to approximate νt, leading
to the following learning objective:

L(θg) = Et,X0,X1

∥∥Mθg (Xt)− (X1 −X0)
∥∥2 . (5)

In our model, the block takes the prediction uLt+1 from the
final block of StFT and the past snapshots ũt as condition-
ing inputs. Its objective is to generate the distribution of
residuals y −

∑
j u

j
t+1, where y is the ground truth for the

solution at t+ 1. Our training loss then becomes:

EX0∼N(0,I),t∼(0,1)[(Mθg (ũT ,Fθd(ũT ), (1− t) ∗X0

+t ∗ (y −
∑
j

ujT+1))− (y −
∑
j

ujT+1 −X0))
2], (6)

where we use T to denote the timestamp in ũT and uT+1.

3.4. Overlapping Tokenizer and Detokenizer

Next, we introduce the overlapping tokenizer and the over-
lapping detokenizer in our model. The overlapping tok-
enizer is illustrated in bottom left of Figure 1. For any
adjacent two patches, they share a boundary. For instance, a
3× 3 input generates four 2× 2 patches, with gray boxes
representing the shared boundaries. The overlapping detok-
enizer reconstructs these shared boundaries by computing
the mean over the overlapping regions of any two adjacent
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Figure 2. Illustration of the proposed spatiotemporal Fourier trans-
former block for StFT model: first, the past snapshots ũt and a
coarser prediction from the previous layer are temporally stacked.
The stacked discretized function is then passed to the overlapping
tokenizer to generate tokens for each variable. Next, tokens cor-
responding to different variables in the same spatial and temporal
locations are mixed through a variable mixer. Following this, two
paths of transformation are applied on the tokens. After passing
through the overlapping detokenizer, a finer prediction for times-
tamp t+ 1 is obtained.

patches. This strategy effectively mitigates discontinuity
issues at the patch boundaries, which is particularly impor-
tant when the target function that the model aims to predict
is continuous and smooth. In addition, it improves feature
learning and extraction by incorporating shared boundary
features into the patch embeddings. This not only preserves
local continuity, but also enables the model to capture spatial
relationships between patches more effectively, particularly
during the self-attention mechanism.

4. Experiments
4.1. Datasets

In this section, we consider three spatio-temporal multi-
physics systems arising from time-dependent PDEs of

Algorithm 1 StFT

Initialize: For each StFT block l ∈ [1, L], patch sizes
(ph, pw)l, truncation frequencies (mh,mw)l, overlapping
numbers (oh, ow)l, u0t+1 as None, and output ut+1 as
zeros.
Input: ũt ← (ut, ut−1, . . . , ut−k+1)
Output: ut+1

i← i-th token
v ← v-th variable in V
for l = 1 to L do
xt ← TemporalStacking(ũt, u

l−1
t+1)

{xi,t}v ← OLTokenizer(xt, ph, pw, oh, ow)
Frequency Path

x̄i,t,1 ← VariableMixer1({xi,t}v∈V )
fi,t ← FreqEmbedder(FFTFilter(x̄i,t,1,mh,mw))
fi,t ← TransformerBlock1(fi,t)
{xi,t+1,1}v ← Linear1(iFFT(fi,t,mh,mw))

Spatiotemporal Path
x̄i,t,2 ← VariableMixer2({xi,t}v∈V )
ei,t ← StEmbedder(x̄i,t,2)
ei,t ← TransformerBlock2(ei,t)
{xi,t+1,2}v ← Linear2(ei,t)

Merge
{xi,t+1}v ← {xi,t+1,1}v + {xi,t+1,2}v

ult+1 ← OLDetokenizer({xi,t+1}v, ph, pw, oh, ow)
ut+1 ← ut+1 + ult+1

end for
return ut+1

a variety of complexities, including a high-dimensional
plasma dynamics system based on reconstructed equilibrium
of DIII-D experimental discharges, a 2D incompressible
Navier-Stokes equation in velocity-pressure form within
a squared boundaries driven by an external force, and a
viscous shallow-water equation modeling the dynamics
of large-scale atmospheric flows on a spherical domain.
The problem setup and data generation are detailed in Ap-
pendix A.

4.2. Experimental Setup and Baselines

Our goal is to simulate long-time trajectories given a few
initial observations. This task is particularly challenging due
to the multiple correlated variables present in the Navier-
Stokes and plasma magnetohydrodynamics (MHD), with
the test trajectories consisting of snapshots that vary from 71
to 244. We employ an autoregressive framework for all the
methods. During training, each model utilizes five historical
snapshots to predict the subsequent snapshot. For testing,
given the initial five snapshots of a trajectory, all models
forecast the entire trajectories in an autoregressive manner,
iteratively generating future states based on the previously
forecasted outputs from the trained model.
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T=0

T=59

T=119

T=179

T=238

Ground  
truth

AR 
StFT-F

AR 
StFT

AR 
FNO

AR 
ViT

AR 
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Figure 3. Temporal evolution of perturbed electrostatic potential
δϕ contours predicted by different models: StFT-F, StFT, FNO,
ViT and U-Net. Significant phase differences between the predic-
tions of the models appear after T = 59, where StFT and StFT-F
perform stable across the forecasting window.

We evaluate these datasets using the following well-known
and state-of-the-art methods for comparison: autoregres-
sive Fourier Neural Operator (AR-FNO), autoregressive U-
Net (AR-UNet), and autoregressive vision transformer (AR-
ViT). For FNO, we use the authors’ open source implementa-
tion. For U-Net, we employ the implementation of the mod-
ified U-Net as evaluated in the recent BubbleML work (Has-
san et al., 2023), where the modified U-Net demonstrated
superior performance across most of their proposed bench-
marks.

We divide the trajectories of each dataset into training, test,
and validation sets. For each method, we identify the tunable
hyperparameters, specify a range for each hyperparameter,
and conduct a grid search across all the hyperparameters.
For our methods, we implement both StFT, the determinis-
tic component of our model, and StFT-F, our model with
a generative residual refinement block. First, we evaluate
the forecasting performance of all methods by calculating
the mean L2 relative error over the test trajectories. For
StFT-F, in order to obtain the mean prediction for all the
test trajectories, we generate 50 prediction samples at each
autoregressive step, and then inject their mean into the next
step. Additionally, we assess the uncertainty quantification
capability of our method by sampling 100 trajectories for
each test case. For each trajectory, at each autoregressive
step, we generate a single prediction sample, which is sub-
sequently fed into the next autoregressive step to iteratively
foreacst the full sequence. We ensure that all models are
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Figure 4. Results of autoregressive prediction in L2 relative error
across the timespan: (top) perturbed parallel vector potential δA∥
in plasma MHD, and (bottom) magnitude of velocity in shallow-
water equation. The shaded region indicates the uncertainty distri-
bution of 3σ in the relative error of StFT-F.

thoroughly trained by running sufficient epochs. We used
the AdamW optimizer with a learning rate of 1e−4 to train
those models on an A100 GPU with a total memory capacity
of 40 GB. A comprehensive list of all the hyperparameters
along with their respective ranges used for grid search is
provided in the Appendix C.

4.3. Main Results

Table 1 shows the forecasting performance of all the models
on the three applications. Further details regarding the the
problem setup and dataset can be found in Appendix A. We
present several test trajectories and visualize their uncertain-
ties across the forecasting time horizon estimated by StFT-F,
as illustrated in Figure 6.

StFT performs significantly better than all other baselines
across all physical processes in the three applications. In
the plasma MHD dataset, the test trajectory has a total of
six coupled physics variables and 244 snapshots. On aver-
age, StFT achieves a reduction in error by a factor of six
compared to the best baseline, AR-ViT. Although AR-FNO
maintains a high resolution in its long-term prediction, it
fails to capture the correct dynamics of mode evolution,
leading to out-of-phase predictions as shown in Figure 3.

We examine the error growth by plotting the L2 relative
errors over time, as illustrated in Figure 4 for several rep-
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Table 1. Relative L2 error over three spatiotemporal prediction systems, including linear plasma dynamics, Navier-Stokes equations, and
shallow-water equations for multi-scale, multi-physics study. AR-StFT refers to the deterministic model’s results. AR-StFT-F denotes the
outcomes of the deterministic model with a refinement of flow matching layer for uncertainty quantification, where at each autoregressive
step, 50 sampled are generated to get a mean prediction. The best and second best prediction results for each case are marked in blue and
orange.

Dataset Variable(s) AR-StFT AR-StFT-F AR-FNO AR-ViT AR-UNet

Plasma MHD

δϕ 2.80e-2 2.24e-2 2.28e-1 1.73e-1 1.02e0
δA∥ 2.45e-2 2.30e-2 2.30e-1 3.24e-1 8.13e-1
δB∥ 3.05e-2 2.66e-2 2.33e-1 1.95e-1 7.79e-1
δne 2.84e-2 2.45e-2 2.33e-1 2.08e-1 1.01e0
δni 3.28e-2 2.93e-2 2.33e-1 2.18e-1 1.04e0
δue 3.99e-2 3.73e-2 3.18e-1 2.99e-1 6.96e-1

Navier-Stokes
u 3.38e-2 3.30e-2 4.46e-2 5.09e-2 6.16e-2
v 3.60e-2 3.17e-2 4.57e-2 4.60e-2 6.15e-2
p 5.16e-2 4.44e-2 5.90e-2 7.03e-2 7.84e-2

Shallow-Water V 6.25e-2 6.53e-2 9.53e-2 1.33e-1 2.02e-1

resentative variables. In the bottom figure for the shallow-
water dataset, AR-FNO first appears to slightly better than
all other methods during the short term from timestamp 0 to
0.2, and StFT-F shows superior performance soon after. For
the plasma dataset, StFT-F demonstrates dominance starting
from t = 0.2 with a stable performance, while the errors
of all baseline methods begin to propagate from that point
onward, resulting in a rapid decline compared to StFT-F.
Notably, StFT-F exhibits long-term stability relative to the
other methods. We also compare the error over time compar-
ing StFT and StFT-F in Figure 5. StFT-F consistently shows
improved performance throughout the latter half of tempo-
ral domain for the Navier-Stokes dataset. For the plasma
dataset, StFT-F begins to prevail from t = 0.6. These re-
sults indicate that our method achieves superior long-term
stability and accuracy among all other methods.

For the shallow-water and Navier-Stokes datasets, on av-
erage, StFT reduces the errors by an average of 50% and
25%, respectively. In Navier-Stokes and plasma datasets,
StFT-F not only surpasses StFT but also offers the addi-
tional capability of uncertainty quantification, achieving
error reductions of 10% in both cases. In the shallow-water
dataset, we observe a slight increase in error with StFT-F.
More experiment and visualization and results are included
in Appendix D.

4.4. Uncertainty Quantification

Figure 6 presents the distribution of the empirical stan-
dard deviation along with the mean prediction. The gen-
eration of test example predictions follows a stochastic
recursive process. We generate S = 100 sample trajec-
tories for each test example, where at each time step t,
the trajectory sample u(s)t for s = 1, . . . , S is computed
as: u

(s)
t = Fθd(ũ

(s)
t−1) + r

(s)
t , where the residual term

is sampled from: r(s)t ∼ Pθg (r|ũ
(s)
t−1,Fθd(ũ

(s)
t−1)). With
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Figure 5. Results of comparing StFT and StFT-F for the autore-
gressive prediction in L2 relative error across different timestamps.
(top) velocity component u in Navier-Stokes equation, and (bot-
tom) magnitude of velocity in shallow-water equation. The shaded
region represents the standard deviation distribution of the relative
error of StFT-F. In the bottom figure, the uncertainty is negligi-
ble that it is not visually discernible. StFT-F demonstrates better
performance in the latter stages of the forecasting time horizon
compared to StFT.
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Figure 6. Evaluation of the forecasting results for three applications: the ground truth, StFT-F prediction, residual of StFT-F prediction,
and the associated uncertainty across the time horizon, presented across the initial state (left panel) and final state (right panel) for multiple
variables: (a-b) plasma: perturbed electrostatic potential ϕ and electron number density ne, (c-d) Navier-Stokes: velocity component u
and pressure p, (e) shallow-water: velocity field V.

the generated S trajectory samples, we compute the em-
pirical standard deviation as: ūt = 1

S

∑S
s=1 u

(s)
t , and

σt =

√
1
S

∑S
s=1

(
u
(s)
t − ūt

)2
. As observed, regions with

large errors correspond to those exhibiting significant un-
certainties predicted by StFT-F. Additionally, it is evident
that uncertainties increase with time. This aligns with our
expectation, as errors accumulate during the autoregressive
forecasting process. The StFT-F model provides aleatoric
uncertainty quantification for studying and analyzing the
long-term behaviors of complex physical systems.

4.5. Contribution of Each StFT Block

To assess the contribution of each StFT block corresponding
to a specific scale in fitting the training data, we quantify
the weight of each block using the following measure:

Wi =
∥yi∥2
∥y∥2

, (7)

where yi represents the prediction from the i-th StFT block,
and y denotes the ground truth. We normalize the contri-
butions, and present the contribution of each StFT block
for each dataset in Figure 7. A greater contributing fac-
tor from the fine-scale layer in StFT is observed in the
Navier-Stokes and shallow-water equations, attributed to

Plasma Navier-Stokes Shallow-Water
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Figure 7. The contribution of each StFT block across the three
datasets. From bottom to top, the patch size decreases. For this
plasma data, the first two levels are sufficient to capture the muli-
scale structures, whereas for Navier-Stokes and shallow-water
equations, the finest scale contributes more significantly.

the sharper changes and smaller scale structures inherent in
the dynamics of higher-order nonlinearities. Ablation exper-
iments regarding the impact of multi-scale StFT blocks and
frequency path is elaborated in Appendix B.

5. Conclusion
In this paper, we propose a spatio-temporal Fourier trans-
former (StFT) for multi-scale and multi-physics long-term
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dynamics forecasting. Specifically, each StFT block is tai-
lored to address a particular spatial scale, and through a
hierarchical composition of multiple StFT blocks spanning
different scales, StFT learns the interplay between multi-
ple scales and interactions between multiple physical pro-
cesses, resulting in stable and accurate long-term dynamics
forecasting in an autoregressive manner. Furthermore, we
propose and demonstrate the use of a generative residual
correction mechanism, which enables meaningful quantifica-
tion of uncertainties in the predictive model. Our approach
demonstrates superior performance compared to several
state-of-the-art baselines in the domains of plasma, fluid,
and atmospheric dynamics.

Impact Statement
Turbulence remains one of the great unsolved problems in
physics. Yet turbulence, whether driven by gravity, heat-
ing, or magnetic fields, manifests in physical phenomena
spanning multi-scale fluid flow to plasma fusion reactors to
planetary atmospheres to convective layers in stars to the
flow of interstellar gas in stellar nurseries that span trillions
of kilometers. Where mathematics failed, data-driven ma-
chine learning models provide a pathway to understanding
turbulence and gaining insights into not only the origins
and ultimate fate of stars and planetary ecosystems, but also
opens pathways to nearly infinite sources of clean energy.
Our StFT model presented in this paper is a stepping stone
towards obviating the exponentially increasing computa-
tional costs of simulating geophysical systems (an inher-
ently chaotic dynamical system requiring vast ensembles of
high-resolution small time step simulations) as well as real-
ization of digital twins to aid in the design and operational
control of tokamak-based fusion power plants.
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A. Problem Setup and Datasets
A.1. Plasma magnetohydrodynamic (MHD) equations

We consider magnetohydrodynamic (MHD) equations that characterize the plasma instabilities in fusion tokamaks. The
coupled multi-physics system includes the continuity equation solving charge density δn, Poisson’s equation solving δϕ, the
Ampere’s law to solving δu∥, the Faraday’s law with the assumption E∥ = 0 to solving δA∥, and the perpendicular force
balance equation to solving δB∥. The first continuity equation for gyrocenter charge density is expressed as,

∂δn

∂t
+B0 · ∇

(
n0δu∥

B0

)
− n0v∗ ·

∇B0

B0
+ δB⊥ · ∇

(
n0u∥0

B0

)
− ∇×B0

eB2
0

·

(
∇δP∥ +

(
δP⊥ − δP∥

)
∇B0

B0

)

+∇ ·
(
δP∥b0∇× b0 · b0

eB0

)
−

b0 ×∇δB∥

e
· ∇
(
P0

B2
0

)
−
∇× b0 · ∇δB∥

eB2
0

P0 = 0,

(8)

where n is the density, B is the magnetic field, u∥ is the parallel flow velocity, and P is the pressure. The perturbed quantities
are denoted by δ with the equilibrium states including temperature, density, magnetic field and the flux surface from the
reconstruction of DIII-D experiments. Here, δn = δne + qiδni/qe stands for the difference of ion and electron density, and
δu∥ = δu∥e + qiδu∥i/qe denotes the difference of ion and electron flow. We have v∗ = b0 ×∇

(
δP∥ + δP⊥

)
/ (n0meΩe),

where me is the electron mass, and Ωe = eB0/me is the electron cyclotron frequency. The perturbed electron parallel flow
δu∥ can be solved from Ampere’s law,

δu∥ =
1

µ0en0
∇2

⊥δA∥, (9)

where µ0 is the permeability of vacuum. δA∥ is the perturbed vector potential. In the single fluid model, E∥ = 0 is assumed.
Then δA∥ can be solved from

∂A∥

∂t
= b0 · ∇ϕ, (10)

and the electrostatic potential ϕ can be solved from gyrokinetic Poisson’s equation (the quasi-neutrality condition)

c2

v2A
∇2

⊥ϕ =
eδn

ϵ0
, (11)

where c is the speed of light, vA is the Alfvén velocity, and ϵ0 is the dielectric constant of vacuum. The parallel magnetic
perturbation δB is given by the perpendicular force balance,

δB∥

B0
= −βe

2

δP⊥

P0
= −βe

2

∂P0

∂ψ0

δψ

P0
. (12)

The perturbed pressure in the fluid limit can be calculated by

δP⊥ =
∂P0

∂ψ0
δψ − 2

δB∥

B0
P0,

δP∥ =
∂P0

∂ψ0
δψ −

δB∥

B0
P0.

(13)

In these equations, ψ0 and δψ is the equilibrium and perturbed magnetic flux, and the evolution of δψ is solved from

∂δψ

∂t
= − ∂ϕ

∂α0
, (14)

where α0 is from the Clebsch representation of B field, and B0 = ∇ψ0 ×∇α0. We run a linear gyrokinetic simulation with
a 100×250×24 mesh in radial, poloidal and parallel directions. The time step is set to ∆t = 0.005R0/Cs = 1.483×10−8s.
We keep both n = 0, 1 modes, generate a trajectory of 128, 000 time steps, and collect the data every 100 snapshots. We
focus on emulating the dynamics of electrostatic potential δϕ, parallel vector potential δA∥, electron number density δne,
ion number density δni, and electron velocity δue in their trajectories.
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Figure 8. Temporal evolution of normalized perturbed parallel vector potential δA∥ and perturbed electron density δne contours predicted
by different models: StFT-F, StFT, FNO, ViT and U-Net. Significant phase differences between the predictions of the models appear after
T = 59, where StFT and StFT-F perform stable across the forecasting time horizon.

A.2. 2D incompressible Navier-Stokes equations

We consider the 2D incompressible Navier-Stokes (NS) equation on a rectangular domain (x, y) ∈ [0, 1]2,

∂u

∂t
+
∂p

∂x
= −u∂u

∂x
− v ∂u

∂y
+

1

Re
∇2u+ f(x, y),

∂v

∂t
+
∂p

∂y
= −u∂v

∂x
− v ∂v

∂y
+

1

Re
∇2v + f(x, y),

∂u

∂x
+
∂v

∂y
= 0,

(15)

where u and v represent the velocity components in the x and y directions, and p represents the pressure. f(x, y) is the
source term, and we set it to e−100((x−0.5)2+(y−0.5)2). The Reynolds number is set to 1000. We run a finite difference solver
to compute the solutions on a 50× 50 spatial grid, with the temporal domain discretized into a total of 101 timestamps over
T ∈ [0, 20]. We generate a total of 100 trajectories by sampling the four boundary conditions uniformly from (0.1, 0.6).

A.3. Spherical shallow-water equations

We consider the viscous shallow-water equations modeling the dynamics of large-scale atmospheric flows:

DV

Dt
= −fk×V − g∇h+ ν∇2V,

Dh

Dt
= −h∇ ·V + ν∇2h, x ∈ Ω, t ∈ [0, 1],

(16)

where V is the velocity vector tangential to the spherical surface, k is the unit vector normal to the surface, h is the thickness
of the fluid layer, f = 2Ξ sinϕ is the Coriolis parameter (Ξ being the Earth’s angular velocity), g is the gravitational
acceleration, and ν is the diffusion coefficient. The equations are defined over a spherical domain Ω = (λ, ϕ), with longitude
λ and latitude ϕ.

As an initial condition, a zonal flow typical of a mid-latitude tropospheric jet is defined for the velocity component u as a
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Figure 9. 2D incompressible Navier-Stokes equation: pointwise error of the predicted evolution of velocity component u and pressure p
contours across different models: StFT-F, StFT, FNO, ViT and U-Net. For long-term predictions, StFT and StFT-F demonstrate lower
residuals compared to other models.

function of latitude ϕ:

u(ϕ, t = 0) =


0, ϕ ≤ ϕ0,
umax
n exp

[
1

(ϕ−ϕ0)(ϕ−ϕ1)

]
, ϕ0 < ϕ < ϕ1,

0, ϕ ≥ ϕ1,

where umax is the maximum zonal velocity, ϕ0 and ϕ1 represent the southern and northern boundaries of the jet in radians,
and n = exp[−4/(ϕ1 − ϕ0)2] normalizes umax at the midpoint of the jet. To induce barotropic instability, a localized
Gaussian perturbation is added to the height field, expressed as:

h′(λ, ϕ, t = 0) = ĥ cos(ϕ) exp

[
−
(
λ

α

)2
]
exp

[
−
(
ϕ2 − ϕ
β

)2
]
,

where −π < λ < π, and parameters ĥ, ϕ2, α, and β control the shape and location of the perturbation. The parameters α
and β are sampled from uniform distributions α ∼ U [0.1, 0.5] and β ∼ U [0.03, 0.2]. We ran the solver from Dedalus (Burns
et al., 2020) on a 256× 256 spherical grid, and the temporal dimension is discretized into 72 timestamps. We collect a total
of 200 trajectories by sampling α and β.

B. Ablation Study
To evaluate the effectiveness of the hierarchical structure and the frequency path in StFT, we conduct an ablation study of our
model. First, we only keep one layer of StFT while removing the hierarchical structure. Second, we keep the hierarchical
structure, and remove the frequency path in each hierarchical layer.

Table 2 shows the L2 relative errors averaged over all the variables. Note that “mono-scale” denotes a single scale of StFT,
spanning from the coarsest to the finest level, and “multi-scale” represents the multiple layer setting in the hierarchical
structure without frequency path. We find that “multi +F” outperforms both ablation cases. These results demonstrate the
effectiveness of the hierarchical composition of StFT blocks and the frequency path in StFT block. With the hierarchical
composition, for Plasma MHD, the error drops to 0.0307 from 0.0805, and for shallow-water equations (SWE), the error
drops to 0.0625 from 0.0975. We observe that the fine-level layer setting in the SWE achieves the best performance among
the single layer results, and the multi-layer settings further decrease the prediction error. The frequency path in StFT also
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Figure 10. Spherical shallow-water equations: pointwise error of the temporal evolution of velocity field predicted by all the autoregressive
models: StFT-F, StFT, FNO, ViT and U-Net. The prediction error exhibits a temporal growth trend, with our model StFT and StFT-F
consistently demonstrate lower residuals over the forecasting time horizon.
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plays a crucial role, where in Plasma MHD, the error drops to 0.0307 from 0.0404, and in the SWE dataset, the error drops
to 0.0625 from 0.0956.

MHD SWE
mono-scale + F 0.0805/0.105 2.5729/0.101/0.0975

multi-scale 0.0404 0.0956
multi-scale + F 0.0307 0.0625

Table 2. Ablation study results. We run models with the combinations of StFT blocks and the frequency path. “Mono-scale” denotes a
single scale of StFT block from the coarsest to the finest level, and “multi-scale” represents the multiple layer setting in the hierarchical
structure. F stands for the frequency path in StFT blocks.

C. Experimental Details
Training/validation/test data sets. For the plasma MHD data, we split the trajectory of 1221 snapshots into a training set
(the first 927 snapshots), a validation set (the middle 50 snapshots), and a test set (the last 244 snapshots). For the Navier-
Stokes dataset, we have a total of 100 trajectories (101 snapshots for each trajectory), and split them into 80 trajectories for
training, 10 for validation, and 10 for testing. For the shallow-water dataset, we have a total of 200 trajectories (72 snapshots
for each trajectory), and split them into 160 trajectories for training, 20 for validation, and 20 for testing.

Generative residual correction block. We follow a two-step training protocol in training StFT -F: first, we train StFT
thoroughly, and then we train the generative residual correction block. We employ a rectified flow to learn distributions of
the residuals given the prediction of the last layer of StFT and the past snapshots. We implement a similar structure to the
Diffusion Transformer (DiT) as the backbone model (Peebles & Xie, 2023). In each DiT block, we apply adaptive layer
normalization before a self-attention layer and an MLP layer. We use adaLN-Zero for time conditioning. For the historical
snapshots ũt and the prediction Fθd(ũt) from the last layer of StFT , these conditions are incorporated as extra input tokens.

Hyperparameters. For StFT on the plasma dynamics, 3D FFT is used to encode the spatio-temporal inputs in the frequency
path. We use the patch size of 128 for the the first StFT block and and 64 for the second StFT block. The overlapping size is
set to 1. The hidden dimension is set to 128. The depth for each StFT block is set to 6. We keep the lowest 8 frequencies for
each spatial dimension. For the rectified flow block, the depth is set to 8, and the hidden dimension is set to 128. For the
Navier-Stokes equation, StFT uses a patch size of 25 for the coarse block (the first block), 13 for the middle block, and 8
for the last block. The overlapping size is set to 0, and the frequency path is not used. For each block in the hierarchical
structure, the depth is set to 8, and we use a hidden dimension of 512. In the rectified flow block, we use a depth of 4 and set
the hidden dimension to 128. For the shallow-water equation, three levels of StFT blocks are employed, and their patch
sizes are set to 128, 64, and 32 respectively. For each block, the depth is set to 6, and the hidden dimension is set to 512. We
use the 2D FFT to encode the spatio-temporal inputs, and the lowest 8 frequencies are kept for each spatial dimension. The
overlapping size is set to 1. For the rectified flow model, we use a depth of 8 and a hidden dimension of 128.

Baseline. We run enough epochs to make sure all methods are thoroughly trained. For AR-FNO, the number of modes are
selected through a search in [16, 20, 24], the number of layers are searched in [4, 5], and the hidden dimension is set to 256.
For AR-ViT, we vary the hidden dimension from [256, 512], and the patch size from [16, 32, 64]. For AR-UNet, the hidden
dimension of bottleneck embeddings are searched in [64, 128, 256, 512].

Training. We run enough epochs to make sure all methods are thoroughly trained. For the generative residual correction
block, we run 200 epochs after StFT is trained in the first step. We notice that when training the rectified flow on the
residuals, it is crucial to normalize them, and we normalize the residuals by dividing them by their standard deviations.

D. More Visualization Results
Figure 8 illustrates the ground truth and predicted temporal evolution of normalized perturbed parallel vector potential
δA∥ and perturbed electron density δne in plasam MHD using AR-StFT , AR-StFT -F, AR-FNO, AR-ViT and AR-UNet
methods. StFT and StFT-F perform stable across the forecasting time horizon. Figure 9 and 10 show the pointwise error of
all the models compared to the ground truth data in the Navier-Stokes and shallow-water equations, where StFT and StFT-F
demonstrate lower residuals compared to other baseline models.
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