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Abstract

Graph-based Image Restoration

by

Amin Kheradmand

Digital photography has experienced great progress during the past decade. A lot of

people are recording their moments via digital hand-held cameras. Pictures taken with

digital cameras usually undergo some sort of degradation in the form of noise/blur

depending on the camera hardware and environmental conditions in which the photos

are taken. This leads to an ever-increasing demand for effective and efficient image

enhancement algorithms to achieve high quality output images in digital photography

systems. In this dissertation, a new graph-based framework is introduced for different

image restoration applications. This framework is based on exploiting the existing

self-similarity in images. We introduce a new definition of normalized graph Laplacian

matrix for image processing. We use this new definition to develop effective enhancement

algorithms for image deblurring, image denoising, and image sharpening.

First, we develop a regularization framework for image deblurring by con-

structing a new graph-based cost function. Minimizing the corresponding cost function

yields effective outputs for different blur types including out-of-focus and motion blurs.

Our proposed deblurring algorithm based on the new definition of normalized graph

Laplacian provides performance and analysis advantages over previous methods. We

have shown its effectiveness for several synthetic and real deblurring examples.

xi



Second, we develop a new graph-based framework for image denoising. The

proposed denoising method exploits the similarity information in images by constructing

the similarity matrix which in turn is used to derive the corresponding graph Lapla-

cian. A graph-based objective function with new data fidelity and smoothness terms is

constructed and minimized. We also establish the relationship between our proposed

regularized framework and two well-known iterative methods for improving the per-

formance of kernel-based denoising methods; namely, diffusion and boosting iterations.

We compare the performance of the proposed denoising method with that of NLM

algorithm [11] and demonstrate that our proposed algorithm is able to enhance over

NLM. Furthermore, we present a graph-based analysis framework for multi-layer image

decomposition using diffusion and boosting iterations.

Third, we propose a new data-adaptive sharpening algorithm based on the

notion of difference of smoothing operators. We provide an interpretation of our pro-

posed sharpening method as the image-derived version of difference of Gaussians (DoG)

operator broadly used in numerous image processing and computer graphics tasks

[66,121,122].

Finally, we provide a theoretical study on the reported range of the eigenvalues

of various definitions of normalized graph Laplacian for different graph structures. This

sheds light on the existing ambiguity on the spectral range of such matrices in different

applications.
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Chapter 1

Introduction

Abstract - In this chapter, we discuss various sources of distortion in imag-

ing systems. We describe the mathematical model for image formation process. We

also review some of the existing methods for removing distortions in images. Finally,

we briefly discuss the contributions of this dissertation for different image restoration

applications.

1.1 Imaging Pipeline and Different Sources of Distortion

With ever-increasing demand for high quality images in applications ranging

from medical imaging, astronomical imagery, microscopy, aerial and satellite imagery,

and photography using cell-phone cameras, there is a tremendous need for efficient and

effective image enhancement methods. In order to develop such methods, having a

good understanding of different sources of image degradation is essential. Capturing

scene radiance and converting it to digital images in current digital cameras takes place

1



in different stages as shown in Fig. 1.1. During the image capturing process, several

distortions are introduced to the final digital pictures. Noise and blur are two main

factors which hinder producing pleasing output images. Noise usually comes from the

imaging circuitry and lack of enough light captured by the imaging device. However,

blur has more complicated sources, e.g., relative motion between camera and the objects

in the scene. The incident light from the scene is focused by the camera lens on camera

sensor (CCD or CMOS). In this step, defocus blur is produced due to imperfect lens

settings or limited depth of field. The camera sensor contains color filter arrays which

are sensitive to different wavelengths in the incoming light. The arriving photons are

accumulated in the sensors and are converted to electrical voltage which in turn is stored

in digital formats using Analog to Digital converters (A/D). In this step, quantization

noise is introduced which is an important source of distortion, especially when the

image bit-depth is limited. Dark current noise and thermal noise are introduced due

to the camera pipeline circuitry which increase in proportion to the exposure time of

the camera. Also, fixed pattern noise is noticeable for longer exposure shots where

particular pixels are vulnerable to producing brighter intensities above the background

noise. There is another type of noise called shot noise which originates from the particle

nature of photons. The number of photons hitting the camera sensor is signal dependent

and can be described by a Poisson distribution [30]. When the exposure time is large

enough such that the number of photons reaching camera sensor is sufficient, the Poisson

distribution will be similar to the Gaussian distribution and the noise can be modeled as

zero mean independent and identically distributed Gaussian noise [30]. A demosaicking

2



process is used to interpolate the color data collected by color filter arrays. Gamma

correction, color correction, and white balancing are among other steps that are used

in the camera pipeline for generating the final output image.

As regards various types of blur, diffraction-limited blur is related to resolution

limits due to diffraction [8]. Atmospheric turbulence blur is another type of blur which

is prevalent in long-distance imaging systems [130]. Motion blur is caused because of

the motion of the camera itself or the motion of the objects in the scene. This situation

happens especially in cases where the camera can not be held fixed. For instance, for

pictures taken with existing cell-phones, camera shaking is inevitable. Motion blur is

more severe in situations where the camera exposure time is long or there is motion

in the objects within a scene. In poorly lit scenes, we need longer exposure times to

reduce the noise which in turn results in more complex motion blurs in the final image.

Therefore, there is always this tradeoff between reducing the amount of noise versus

having a sharper image. In this dissertation, we propose solutions for cases where the

input image is noisy and/or blurry.

1.2 Image formation model

The process of image formation can be mathematically described using the

following model:

y = Az + n, (1.1)
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Figure 1.1: Block diagram of camera imaging pipeline.

in which z is an n × 1 lexicographically ordered vector representation of the original

(distortion free)
√
n ×
√
n image Z. n is a noise vector consisting of independent and

identically distributed zero mean noise with standard deviation σ, and A is an n × n

blurring matrix. Also, y is an n× 1 vector representation of the input degraded image.

In this dissertation, we use the model in equation (1.1) to develop our restoration

algorithms for image deblurring and sharpening. For image denoising, A = I with I

identity matrix, for which the model in (1.1) reduces to

y = z + n. (1.2)

1.3 Contributions

In this dissertation, we propose a general data-adaptive, graph-based frame-

work for image restoration. We develop new methods for different restoration tasks

including image deblurring, image denoising, and image sharpening. In what follows,
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we briefly discuss our contributions in different chapters of the dissertation.

• Chapter 2 - A Graph-based Regularized Framework for Image Deblurring

We develop a regularization framework using the existing interrelationship among dif-

ferent parts of images. Self-similarity in images provides us with an effective tool for

regularizing the ill-posed deblurring problem. We introduce a new definition of the nor-

malized graph Laplacian with advantages for image processing applications. Using this

new definition of graph Laplacian, we construct a cost function with new data fidelity

and regularization terms whose minimization gives the final estimate for the deblurring

problem. The proposed deblurring algorithm is successfully applied to synthetic and

real out-of-focus and motion deblurring examples.

• Chapter 3 - Graph-based Denoising And Smoothing: Interpretation Based

on Diffusion and Boosting Iterations

We use our definition of the normalized graph Laplacian and the corresponding regular-

ization term in Chapter 2 along with a new graph-based data fidelity term to develop

an iterative algorithm for image denoising. We provide a framework to describe the

underlying mechanism in kernel similarity-based methods and offer a path for their

further improvement. We specifically study the relationship between our proposed de-

noising algorithm and two well-known iterative methods widely used for improving the

performance of similarity-based denoising algorithms; namely, diffusion and boosting
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iterations [69]. Moreover, we introduce an analysis framework for multi-layer image

decomposition using our smoothing and Laplacian matrices.

• Chapter 4 - Data-adaptive Image Sharpening Based on The Difference of

Smoothing Operators

There are many applications in image processing, computer vision, and computer graph-

ics in which difference of Gaussians (DoG) operators are used for different purposes. In

Chapter 4, we exploit the data-adaptive filtering and Laplacian matrices to develop a

simple yet effective sharpening algorithm. We establish its connection with the DoG

operator in [66, 121, 122]. We use synthetic and real examples to demonstrate efficacy

of our algorithm for image sharpening.

• Chapter 5 - A Discussion on The Range of The Eigenvalues of Different

Normalized Graph Laplacians

Eigenvalues of graph Laplacians are important factors in revealing the structural prop-

erties of the underlying graphs. We provide a theoretical study on the range of the

eigenvalues of different normalized graph Laplacians for different graph structures. This

sheds light on the existing ambiguity in the literature regarding the range of spectra of

such matrices.
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1.4 Existing Methods for Image Deblurring, Denoising,

And Sharpening

In image deblurring, the goal is to invert the effect of blur in the input image

while avoiding noise amplification and ringing artifacts in the final solution. For this

purpose, any deblurring algorithm needs to incorporate appropriate mechanisms to

regularize the ill-posed inverse problem. Several regularization approaches have been

used in existing deblurring algorithms in the literature. Some non-blind deblurring

papers use TV regularization terms [75, 115]. Nonlocal TV-based regularization terms

are used in [127]. In [48], a hardware attachment is used to deblur images. Also,

a progressive inter-scale intra-scale approach has been exploited for non-blind image

deconvolution in [124]. Shan et al. have proposed a cost function for motion deblurring

with different derivative terms in the data fidelity term [97]. Cho et al. propose a blur

model for handling outliers in deblurring problem [16]. In [126, 131], multiple images

are used to improve the performance of deblurring. Some other papers connect the idea

of graph signal representation and associated Laplacian matrix in graph theory with

nonlocal similarity in image restoration [29,69,99].

There is a very rich literature on different methods to come up with a desirable

estimate of the latent image for image denoising. In general, regularization methods

for denoising can be divided into two categories. The first group are those classical

methods that take advantage of some prior knowledge about images. Algorithms that

exploit either image smoothness priors [93] or sparsity of image spectral coefficients in

7



some specific basis (e.g., Wavelet or DCT) [26] fall into this group. The second class of

methods exploits the existing self-similarity in images. Kernel-based denoising methods

like bilateral, nonlocal means (NLM), and LARK [11,69,105,112], fall into this category.

In a wide angle view, all the above mentioned algorithms perform denoising based on

some type of subset selection or shrinkage operation in a fixed or adaptive basis. Note

that state-of-the- art image denoising methods like BM3D try to find the optimal type

of shrinkage operation by combining self-similarity information with sparsity property

of image spectrum coefficients in some appropriate domain [21].

Similarly, there is a vast literature on different techniques for image sharpen-

ing and contrast enhancement. There are many methods based on improving the linear

unsharp masking technique. [87] is based on the idea of adaptive tuning of the sharpen-

ing parameter based on local characteristics of the input image. [55] tries to learn the

strength parameter of unsharp mask from an external set of training images. In [5],

sigma filtering is combined with unsharp masking and a clipping process is added to

control the noise and overshoot effects. Another variant of unsharp masking using an

exploratory data model has been presented in [23]. Also, a nonlinear unsharp mask

algorithm is used for mammogram enhancement in [77]. Methods based on the his-

togram of input images constitute another category of algorithms for contrast enhance-

ment [2,86,123]. While the aforementioned methods are simple to implement, they still

produce noise amplification and overshoot artifacts which deteriorates the quality of

the final results. Anisotropic diffusion [80, 110, 118] and shock filters [76] are nonlinear

scale-space PDE-based approaches widely used for edge enhancement in different image
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processing applications. [1,34,37] are among variants of those PDE-based seminal works.

PDE-based methods provide a powerful mechanism for edge enhancement. However,

they can lack texture and fine detail preservation in the final output images. Bilateral

filter [112] has been used widely as an edge preserving smoothing filter for different

image processing and computer vision tasks [57]. In [125], the adaptive bilateral filter is

proposed by introducing an offset to the range kernel definition of the original bilateral

filter. This enables the filter to switch its behavior from smoothing to sharpening based

on the pixel-wise adjustment of the offset parameter using a training procedure [125].

Guided filtering (GF) [43] is another edge preserving filter widely used for different image

processing tasks [96]. In [83], a variant of GF based on the same shifting idea in [125] is

used for sharpness enhancement and noise reduction. Also, a weighted version of GF is

presented in [62] based on a similar pixel-wise regularization parameter tuning in [32,71]

for detail manipulation. In [128], a restoration algorithm for noisy and weakly blurred

images based on kernel regression [105] is introduced. In [19, 108], nonlocal multi-scale

approaches have been exploited effectively for image editing and automatic sharpness

enhancement, respectively. Diffusion maps for edge aware image editing are introduced

in [31]. An image enhancement method based on piecewise linear directional smoothing

and sharpening has been proposed in [94]. Local Laplacian filters in [78] reduce the

halo artifacts prevalent in methods based on Laplacian pyramid. Also, a fast realization

of this technique has been proposed in [3]. While these methods produce good results,

there still exists room for performance improvement, especially when the input image is

noisy and the goal is to simultaneously remove the noise and boost the sharpness. Also,
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there is a need for a more general framework to provide a better understanding of the

underlying lowpass and highpass filters involved in the sharpening operation.
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Chapter 2

A Graph-based Regularized Framework

for Image Deblurring

Abstract - Any image can be represented as samples of a function defined on

a weighted graph, in which the underlying structure of the image is encoded in kernel

similarity and associated Laplacian matrices. In this chapter, we develop an iterative

graph-based framework for image deblurring based on a new definition of the normalized

graph Laplacian. We propose a cost function which consists of a new data fidelity term

and a regularization term derived from the specific definition of the normalized graph

Laplacian. The normalizing coefficients used in the definition of the Laplacian and the

associated regularization term are obtained using fast symmetry preserving matrix bal-

ancing. This results in some desired spectral properties for the normalized Laplacian

such as being symmetric, positive semi-definite, and returning the zero vector when ap-

plied to a constant image. Our algorithm comprises of outer and inner iterations, where
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in each outer iteration, the similarity weights are recomputed using the previous esti-

mate and the updated objective function is minimized using inner Conjugate Gradient

(CG) iterations. This procedure improves the performance of the algorithm for image

deblurring, where we do not have access to a good initial estimate of the underlying

image. Moreover, the specific form of the cost function allows us to render the spectral

analysis for the solutions of the corresponding linear equations. Experimental results

verify the effectiveness of the proposed algorithm on both synthetic and real examples.

2.1 Introduction

Most real pictures exhibit some amount of degradation depending on the cam-

era and settings used to capture the scene, environmental conditions, and the amount

of relative motion between camera and subject, among other factors. Restoration al-

gorithms aim to undo undesired distortions like blur and/or noise from the degraded

image. In this chapter, we concentrate on problems where the main distortion of the

image comes from blurring. We assume linear shift invariant point spread functions

(PSFs), such that the blurring process is described through the following linear model

y = Az + n. (2.1)

In this model, the blurring matrix A is constructed from the corresponding PSF and

usually has a special structure depending on the type of boundary condition assumptions

[24,42].

Most existing deblurring methods rely on optimizing a cost function of the
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form

E(z) = ‖y−Az‖2 + η R(z) (2.2)

with respect to the unknown image vector z. The first term in the above is the data

fidelity term and the second term implies a prior term which regularizes the inherently

ill-posed problem. In such algorithms, the parameter η controls the amount of regular-

ization to keep the final estimate from being too smooth or exhibiting unpleasant noise

amplification and ringing artifacts. Deblurring algorithms can be classified based on the

type of blurs they deal with, and also different choices of the regularization term they

exploit to solve the deblurring problem [27,132]. A large class of deblurring algorithms

take advantage of a total variation (TV)-type regularization term [14, 75, 115]. They

mostly differ in the specific definition of the TV term and the optimization method for

solving the resulting cost function. Other methods use a nonlocal differential operator as

the regularization term with different norms [82, 106, 127]. Sparsity-based methods are

also motivated by sparse representation of images in some appropriate domain [25,73].

In [59], a Hessian norm regularization is used for deblurring, with biomedical appli-

cations. Example-based manifold priors are used in [74] to regularize the deblurring

problem. In [17], a prior term is added to encourage the estimate to have a gradient

distribution similar to a reference. Furthermore, some recent algorithms are based on

the idea of decoupling deblurring and denoising and exploiting the powerful BM3D algo-

rithm [21] in their denoising phase [22,61]. In [22], BM3D frames are defined explicitly

and based on a generalized Nash equilibrium approach, the two objective functions for

denoising and deblurring parts are balanced. This algorithm is one of the best existing
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deblurring methods for symmetric blurs (e.g., Gaussian and out-of-focus blurs). For

motion deblurring applications [58, 60], a hyper-Laplacian prior based on the statistics

of natural images is used. Shan et al. [97] have proposed a cost function in which the

data fidelity term involves different derivative terms for motion deblurring of natural

images.

In this chapter, we propose a new approach for kernel similarity-based image

deblurring by introducing a novel data-adaptive objective function. We also show that

a special case of the proposed approach can be used for image sharpening. Figure 2.1

depicts a block diagram of our iterative deblurring method. As shown in Fig. 2.1 and

Algorithm 1, the proposed method consists of a number of steps (outer iterations), such

that at each step k, an updated objective function is minimized using Conjugate Gra-

dient (CG) inner iterations to obtain the corresponding estimate ẑ(k). To clarify the

differences and contributions of this work as compared to some other nonlocal regular-

ization works [9, 10,35,36,68,82,104,109,127], it is worthwhile listing them here.

1. We propose a new cost function (2.15) for image restoration based on a new

definition of the normalized graph Laplacian. The proposed cost function (2.15)

includes a normalized regularization term derived from this new definition of the

graph Laplacian as well as a new data fidelity term. The normalizing coefficients

are obtained from a fast symmetry preserving matrix balancing algorithm [56].

This results in some desired spectral properties for the graph Laplacian. Namely,

the proposed Laplacian is symmetric, positive semi-definite, and when applied to

a constant vector, it returns the zero vector. In this chapter, we will discuss the
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spectral properties of the proposed graph Laplacian and compare its attributes

and performance with the existing graph Laplacians.

2. Taking advantage of the quadratic form of the proposed cost function as well

as spectral properties of the proposed Laplacian matrix, we present a filtering

interpretation for different terms in our objective function as a tool for spectral

analysis of the resulting restoration algorithms. Moreover, the symmetric and

sparse nature of the resulting filtering and Laplacian matrices equips us with the

required tools for efficient implementation of the algorithm using CG and fast

sparse matrix-vector products.

3. The way we initially compute the kernel similarity values is different in the sense

that we start with a once denoised version of the input noisy and blurry image, and

hence avoid the contribution of the noise and ringing artifacts of other deblurring

algorithm to the computation of the similarity weights as in e.g., [127]. This

denoised initial image is also exploited as a plug-in estimator of Az (blurred clean

image) used in the Predicted Mean Squared Error (PMSE) measure for stopping

the inner CG iterations. We allow the weights to be updated during the outer

iterations to improve the performance of the algorithm by computing the similarity

weights from the enhanced versions of the input image through the outer iterations.

4. Our approach is quite general in the sense that it is able to handle a variety of

different PSFs including symmetric PSFs and more challenging motion blur PSFs.

As compared to [70], our approach is different in the following respects:
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algorithm 

Figure 2.1: Block diagram of our proposed iterative deblurring method. K is the kernel

similarity matrix, and W is the doubly stochastic filtering matrix. ẑ(k) is the estimate

corresponding to optimization of the objective function at the kth outer iteration of the

algorithm.

5. Although the general symmetrizing idea is similar, [70] focuses on symmetrizing

smoothing filters, in which it starts from a non-symmetric smoothing filter and

returns its symmetrized version using the original Sinkhorn matrix balancing algo-

rithm in [100] with performance and analysis advantages described in [70]. In this

chapter, we start from the symmetric and non-negative similarity matrix K and

use a different fast matrix balancing algorithm, designed for scaling symmetric and

non-negative matrices, with fast convergence and symmetry-preserving properties

even when the matrix scaling algorithm is stopped early [56].

6. We use the symmetric and doubly stochastic output of [56] to define the normalized

Laplacian and we use it in a variational graph-based formulation for the underlying

restoration problems.

2.2 Related Graph-based Regularization Approaches

In this section, we summarize some of the existing methods based on the idea

of nonlocal regularization in a graph-based framework. We first clarify our notation
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Normalized Laplacian Un-normalized Laplacian

Figure 2.2: Graph representation of images and construction of kernel similarity matrix

K, un-normalized Laplacian D −K and normalized Laplacian I − C−1/2KC−1/2.

and summarize some of the definitions commonly used in the nonlocal regularization

approaches in the literature. As depicted in Fig. 2.2, any image can be defined as an

intensity function on the vertices V of a weighted graph G = (V,E,K) consisting of a

finite set V of vertices (image pixels) and a finite set E ⊂ V × V of edges (i, j) with

the corresponding weights K(i, j) which measure similarity between vertices (pixels) i

and j in the graph (e.g., Eq. 2.10). The function (intensity) values of the image can be

denoted as a vector z = [z(1), ..., z(n)]T . The similarity weights are represented as an

n× n matrix K, which is symmetric, positive definite, and non-negative valued.

As shown in Fig. 2.2, graph Laplacian matrix is derived from K and plays

an important role in describing the underlying structure of the graph signal. There

are three different definitions of the graph Laplacian commonly used in the literature

in the context of graph signal and image processing, each having different spectral

properties [20, 98, 99]. In this chapter, we present a fourth one, a new normalized

graph Laplacian for image processing purposes. In Table 2.1, we have summarized the
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properties of different types of normalized Laplacian used in the literature along with

those of our proposed definition.

In [9, 29], the difference of a function z : V → < on an edge (i, j) ∈ E of the

graph G is defined as:

(dz)(i, j) =
√
K(i, j)(z(j)− z(i)). (2.3)

Also, the gradient vector of a function z at a vertex i ∈ V can be expressed as:

∇z(i) = [dz(i, j1), ..., dz(i, jm)]T , ∀(i, j) ∈ E. (2.4)

Accordingly, the Laplace operator of z at a vertex i is derived as:

∆z(i) =
∑
j,j∼i

K(i, j)(z(i)− z(j)). (2.5)

where j ∼ i stands for the vertices j in the graph such that j is connected to i; i.e.,

(i, j) ∈ E.

The authors in [9, 29] propose a nonlocal regularization approach using the

Dirichlet energy function:

R(z) =
1

2

n∑
i=1

‖∇z(i)‖2 =
1

2

n∑
i=1

∑
j,j∼i

K(i, j)(z(i)− z(j))2. (2.6)

The regularization functional R essentially enforces the similar pixels of the image -as

measured by the function K(., .)- to remain similar in the final estimate. By minimizing

the above cost function with respect to the unknown z, they recover the desired image.

Note that the regularization term (2.6) can be expressed based on the un-normalized

graph Laplacian D −K as [9, 99,114]:

R(z) = zT (D −K)z, (2.7)
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Table 2.1: Properties of different normalized graph Laplacians. Last row is our defini-

tion.

Reference Graph Laplacian Symmetric DC eigenvector Stochastic property

[68] I −D−1/2KD−1/2 Yes No No

[104,109] I −D−1K No Yes D−1K is row-stochastic

ours I−C−1/2KC−1/2 Yes Yes W is doubly-stochastic

where D = diag{K1n} is a diagonal matrix whose ith diagonal element is the sum

of the elements of the ith row of K, and 1n is the n-dimensional vector of all ones.

In [9,29], the authors also introduce the Laplace operator associated to the normalized

graph Laplacian I − D−1/2KD−1/2. However, they do not use this definition of the

Laplacian in their formulation because of the fact that the output of this operator is

not null when the input is constant.

In [36], the authors introduce the gradient-based and difference-based regular-

izing functionals, respectively as (we consider here their discrete versions):

J(z) =
n∑
i=1

φ(‖∇z(i)‖2) =
n∑
i=1

φ(
∑
j,j∼i

K(i, j)(z(j)− z(i))2), (2.8)

Ja(z) =
n∑
i=1

∑
j,j∼i

φ(K(i, j)(z(j)− z(i))2), (2.9)

in which φ(s) is a positive function, convex in
√
s, with φ(0) = 0. They consider the

quadratic case φ(s) = s, where the above functionals coincide. They also investigate

the case φ(s) =
√
s, for which nonlocal TV and anisotropic nonlocal TV functionals are

derived from the gradient-based and difference-based approaches, respectively. They

have applied their framework to inpainting and detecting and removing irregularities

from textures.
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In [104], Szlam, Maggioni, and Coifman propose function-adapted diffusion

processes (using the random walk Laplacian I −D−1K). They also propose a filtering

procedure using a type of thresholding of the expansion coefficients of the input func-

tion on the linearly independent bases of the operator D−1K. Reference [109] is also

based on the same idea (expansion of the input data on the space spanned by the right

eigenvectors of random walk Laplacian) for surface smoothing with weights derived lo-

cally in a non data-adaptive manner. In [10], a patch-based functional is considered for

denoising 3-D image sequences acquired via fluorescence microscopy. This functional is

based on minimizing a difference penalty term which is defined using the weighted dif-

ference between its patches rather than the weighted difference between its pixels. The

minimizer of such a cost function can be equivalently expressed as a nonlocal filtering

process; i.e., ẑ = D−1Ky. In [127], Zhang et al. propose two efficient algorithms for

solving nonlocal TV-based image deconvolution1. They also provide a weight updating

strategy within these iterative methods which was found to be ineffective in improving

the performance of their algorithms. Therefore, they chose to compute the similarity

weights only once from the simple Tikhonov regularization based deblurring estimate.

Also, [82] proposes a regularization technique using total variation on nonlocal graphs

for inverse problems, when the input data has undergone linear degradation as well as

additive noise. Note that our deblurring algorithm uses a different nonlocal approach,

in which the corresponding regularization term is defined using the normalizing coeffi-

cients derived from Sinkhorn’s algorithm in [56]. Moreover, based in our experiments,

1As mentioned, the corresponding regularization term is derived using φ(s) =
√
s in Eq. (2.8).
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the weight updating strategy is indeed effective in improving the performance of the

proposed algorithm within the same quadratic framework. Furthermore, according to

the analysis provided in [97], using the data fidelity term involving different derivatives

of the residual is better able to model the underlying process for deblurring problems

(especially for real motion-blurred images).

2.3 Derivation of Building Block Matrices of The Pro-

posed Algorithm

In this section, we introduce the kernel similarity matrix K and a closely

related doubly stochastic symmetric matrix W as the main filtering building blocks of

our iterative algorithm from a graph point of view. Having these matrices at hand, we

can define the normalized Laplacian matrix whose spectral properties are crucial for

analyzing the behavior of the algorithm.

2.3.1 Kernel Similarity Matrix K And Filtering Matrix W

While our approach is general enough to include any valid kernel similarity

function [44,69], the (i, j)th element of the kernel similarity matrix K is computed here

using the nonlocal means (NLM) definition as [11]

K(i, j) = exp(−‖z̃i − z̃j‖2

h2
), (2.10)
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in which z̃i and z̃j are patches around the pixels i and j of the image z̃, and h is a

smoothing parameter. Note that at each outer iteration, the kernel similarity weights

are re-computed from the estimate at the previous iteration. As a result of the above

definition for the kernel similarity weights, the matrix K would be a symmetric non-

negative matrix. Furthermore, we only compute the similarity between each patch and

a small neighborhood of patches around it (e.g., a search window of size 11 × 11 of

patches around each patch). Therefore, the matrix K is sparse. This sparse structure

is appealing from a computational point of view.

Applying Sinkhorn matrix balancing procedure [100] to the matrix K yields

the doubly stochastic filtering matrix2 W . We use a recent fast version of the original

algorithm for symmetric non-negative matrices [56]. This balancing algorithm returns

a diagonal scaling matrix C−1/2, such that the resulting matrix W = C−1/2KC−1/2

is a symmetric non-negative doubly stochastic matrix. Since W is symmetric, it can

be decomposed as W = V SV T , where V is an orthonormal matrix whose columns are

the eigenvectors of W , and S = diag{λ1, λ2, ..., λn} is a diagonal matrix consisting of

eigenvalues of W as its diagonal elements. Moreover, since W is doubly stochastic, it

has unity spectral radius [69]. The largest eigenvalue is exactly equal to 1 with the

corresponding DC eigenvector v1 = (1/
√
n)[1, 1, ..., 1]T = (1/

√
n)1n [69]. Intuitively,

this means that applying W to a signal preserves the DC component of the signal. This

is a desirable property for filtering purposes. Note that the spectral analysis of the

matrix W reveals its inherent low-pass nature (the largest eigenvalue corresponds to

2A matrix with non-negative entries is doubly stochastic if each of its rows and each of its columns
sum to 1.
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the DC component) [70].

2.3.2 Normalized Graph Laplacian Matrix

At this point, we define our normalized graph Laplacian matrix as

I −W = I − C−1/2KC−1/2. (2.11)

This is the proper definition of the normalized graph Laplacian matrix for image filtering

purposes, as opposed to its earlier definition in graph theory literature I−D−1/2KD−1/2

[99,114]. It is worthwhile comparing this traditional definition of the normalized Lapla-

cian with our proposed definition which is based on a very different scaling of the simi-

larity matrix K using matrix balancing [56]. Our definition of the normalized Laplacian

(I −W = I − C−1/2KC−1/2) is symmetric, positive semi-definite, with the zero eigen-

value associated to the constant eigenvector 1√
n
1n. Hence, when applied to a constant

function, it returns a zero vector. The traditional definition of the normalized graph

Laplacian lacks the desired filtering property of having DC eigenvector as one of the

basis eigen functions [99]. As a result, the definition of normalized graph Laplacian in

(2.11) is proposed and used in this dissertation. This definition has the desired spec-

tral properties for our specific applications as well as a nice filtering interpretation. In

fact, the set of eigenvectors of I −W can be considered as the basis functions of the

underlying graph, and its eigenvalues can be thought of as the corresponding graph

frequencies. Also, note that the Laplacian I −W has a high-pass filtering nature (with

null eigenvalue corresponding to the DC eigenvector). This property is consistent with
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the expected behavior of the Laplacian filter in image processing. Consequently, when

applied to an image, I −W can be directly interpreted as a data-adaptive Laplacian

filter. Therefore, it enables us to incorporate different types of filters in the data term

coupled to the regularization term based on the application at hand. In the “random

walk” Laplacian I − D−1K, (from the theory of Markov chains), the (i, j)th element

of D−1K represents the probability of moving from node i to node j of the graph in

one step, given that we are in node i [67]. A similar random walk interpretation can

be provided by our symmetric doubly stochastic filtering matrix W = C−1/2KC−1/2,

with analysis and performance advantages over D−1K for image filtering, as discussed

in [70] 3. Furthermore, for image deblurring applications, another advantage is that our

resulting linear equations are symmetric and positive definite, providing us with fast

methods for solving large linear systems of equations with optimization methods like

CG.

In order to better demonstrate the different expressions of the difference and

Laplacian operators as well as the regularization term corresponding to our normalized

Laplacian, we state them here. We can define the difference operator corresponding to

the proposed normalized graph Laplacian as:

dz(i, j) =
√
K(i, j)(

z(j)√
C(j, j)

− z(i)√
C(i, i)

), (2.12)

where C(j, j) and C(i, i) are the corresponding j and ith diagonal elements of the

diagonal matrix C derived from the matrix balancing algorithm [56, 70]. From the

3In fact, W can be thought of as the transition probability matrix of the Markov chain defined on
the graph.
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above equation along with the definition of the divergence operator [9], the Laplace

operator corresponding to the normalized Laplacian I − C−1/2KC−1/2 is:

4z(i) =
1√
C(i, i)

∑
j,j∼i

K(i, j)(
z(i)√
C(i, i)

− z(j)√
C(j, j)

), (2.13)

As a result, our proposed regularization term can be written as:

R(z) =
1

2

N∑
i=1

∑
j,j∼i

K(i, j)(
z(i)√
C(i, i)

− z(j)√
C(j, j)

)2 = zT (I −W )z. (2.14)

Note that the Laplace operator in (2.13) describes the effect of our normalized Laplacian

at each pixel i, when applied to an input vector z. As the Laplace operator is a second

order derivative operator, the name Laplacian for the corresponding matrix operator is

appropriate, and common in graph theory. In the next section, we will describe how to

use the proposed graph Laplacian to develop a new restoration algorithm.

2.4 Proposed Deblurring Method

As depicted in Fig. 2.1, the proposed algorithm consists of inner and outer

iterations. The reason is that for computing the data-adaptive matrix K, a good rough

estimate of the underlying unknown image is needed. This estimate is gradually im-

proved as we proceed through iterations. In each outer iteration, the matrix W is

computed once and used to define the following objective function to be minimized

with respect to the unknown image z

E(z) = (y−Az)T {I + β(I −W )}(y−Az) + η zT (I −W )z, (2.15)
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where β ≥ 0 and η > 0 are the parameters to be tuned based on the amount of noise and

blur. Note that in the above objective function, data and prior terms are coupled via

the matrix W . This coupling is controlled by means of the parameter β. The first term

favors a solution z such that its blurred and then filtered version is as close as possible

to the filtered version of the input y. Frequency selectivity of this common filter is

determined by the parameter β according to the amount of the noise and blur. The

second term is essentially a data-adaptive difference term favoring certain smoother

solutions based on the structure of the underlying data encoded in the normalized

Laplacian matrix I −W , defined in the previous section.

Let us take a look at the cost function in (2.15) from a filtering point of

view. This filtering interpretation provides a more intuitive perspective on the objective

function. For this purpose, Eq. (2.15) is rewritten in the following form

E(z) = ‖{I + β(I −W )}1/2(y−Az)‖2 + η‖(I −W )1/2z‖2. (2.16)

Note that I + β(I −W ) = V ΛV T is a symmetric and positive semi-definite

matrix. Therefore, the matrix {I + β(I −W )}1/2 = V Λ1/2V T has a filtering behavior

similar to that of I + β(I −W ). Once we have the eigendecomposition of the filtering

matrix W , the ith diagonal element of the matrix Λ can be written in terms of the

associated ith diagonal element of S (that is λi) as 1 + β(1 − λi). Since the matrix

I −W is a high-pass filter, with β > 0, I +β(I −W ) behaves like a sharpening filter on

the residuals y−Az, and so does {I+β(I−W )}1/2. According to the analysis provided

in [97], using the data fidelity term involving different derivatives of the residual is better
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able to model the underlying phenomenon for deblurring problems (especially for real

images). The same analysis applies to the second term in (2.16), where both Laplacian

I−W , and its square root (I−W )1/2, are adaptive high-pass filters. Consequently, the

resulting regularization expression in (2.16) adaptively penalizes high frequencies in the

final solution to avoid unpleasant artifacts due to the noise amplifications and ringing

artifacts while maintaining fine details in the restored image.

In order to minimize the cost function in (2.15) at each step, the corresponding

gradient is set equal to zero as

∇E(z) = −2AT {I + β(I −W )}(y−Az) + 2η(I −W )z = 0, (2.17)

which results in the following symmetric positive definite system of liner equations

(AT {I + β(I −W )}A+ η(I −W ))z = AT {I + β(I −W )}y. (2.18)

Conjugate Gradient is then used to solve the above system. Also, note that A and

AT are interpreted as blurring with the PSF or its flipped version, respectively. Our

experiments show that three outer iterations suffice to get the desired deblurred output

in most cases. Also, note that the only restriction on the parameter β is that it should

be selected such that the corresponding system of linear equations in (2.18) remains

positive definite. The matrix I + β(I −W ) is also required to be positive semi-definite

for the existence of its square root in the data fit term in (2.16). A sufficient condition

is β ≥ 0.
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Algorithm 1 iterative restoration algorithm

Inputs: blurred noisy image y, blurring matrix A

Output: deblurred estimate z?

Initializations:

1. Estimate the noise standard deviation σ̂ in y using algorithm in [47].

2. Denoise y using denoising algorithm in [21] to derive ẑ(0).

3. Set k = 0.

while not converged do

- Compute K from ẑ(k) using Eq. (2.10).

- Apply Sinkhorn algorithm in [56] to K to get the diagonal matrix C−1/2.

- Compute the filtering matrix as W = C−1/2KC−1/2.

- Solve objective function in (2.15) using CG to compute ẑ(k+1).

- Set z? = ẑ(k+1), and k = k + 1.

end while

return z?
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2.4.1 Spectral Analysis of The Overall Deblurring Algorithm

For analysis purposes, we are able to provide a filtering interpretation of the

final estimate at each outer step of the algorithm. Note that the minimizer of the cost

function in (2.16) can be expressed as:

ẑ = F (A,W )AT (I + β(I −W ))y, (2.19)

where

F (A,W ) = {AT (I + β(I −W ))A+ η(I −W )}−1. (2.20)

Eq. (2.19) can be interpreted as (1) filtering y by I + β(I −W ), (2) back projection

through multiplication by the transpose of the blurring matrix A, and (3) applying the

symmetric matrix F (A,W ). In other words, if we consider the spectral decomposition

of this symmetric matrix as F (A,W ) = ΘΥΘT , the columns of the matrix Θ serve as

an orthonormal basis for filtering the vector AT (I + β(I −W ))y, thereby providing a

spectral filtering interpretation for the corresponding deblurring solution at each outer

step of the algorithm. Since an inverse operation is involved in (2.19), we consider a

simple experiment investigating the condition number of the matrix AT (I+β(I−W ))A+

η(I−W ). For this purpose, we use the MATLAB code in [41] to explicitly construct the

blurring matrix A related to out-of-focus blur with radius 7. Table 2.2 illustrates the

condition number of AT (I+β(I−W ))A+η(I−W ) for different values of the parameters

η and β. The condition numbers of AT (I + β(I − W ))A + η(I − W ) for different

values of η in comparison to the condition number of ATA show the effectiveness of our

procedure for regularizing the ill-posed deblurring problem and the corresponding linear
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Table 2.2: Condition number of (AT (I +β(I −W ))A+ η(I −W )) for different values of

η and β and blurring matrix A corresponding to out-of-focus blur with radius 7. The

condition number of ATA is 5.74× 1020.

η = 0.05 η = 0.1 η = 0.2 η = 0.3

β = 0.1 2.02× 103 1.17× 103 705 459

β = 0.5 1.97× 103 1.15× 103 700 402

β = 0.7 1.95× 103 1.14× 103 699 543

Figure 2.3: (a) From left to right: original 41 × 41 image, and the eigenvectors of

F (A,W ) corresponding to the four largest eigenvalues for β = 0.7 and η = 0.2.

equations. Also, the basis eigenvectors in Θ corresponding to the four largest eigenvalues

of F (A,W ) are depicted in Fig. 2.3. As can be seen in Fig. 2.3, the eigenvectors

associated with the largest eigenvalues of F (A,W ) indicate the data-adaptive nature of

the corresponding filter.

2.5 Image Sharpening As a Special Case of The Proposed

Objective Function

It is interesting to consider a special case of the above objective function in

(2.15) for image sharpening when the input image contains a moderate blur, but no
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information about the blurring process is available. In such cases, one can resort to the

following cost function

E(z) = (y− z)T {I + β(I −W )}(y− z), (2.21)

which comes from Eq. (2.15), by setting A = I and η = 0. Optimizing the above

objective function using gradient descent (GD), yields4:

ẑ
(1)
` = ẑ

(1)
`−1 + µ{I + β(I −W )}(y− ẑ

(1)
`−1). (2.22)

By selecting the step size parameter µ = 1, and with zero initialization of the GD

iterations in (2.22); i.e., ẑ(0) = 0, the first iteration takes the form

ẑ
(1)
1 = {I + β(I −W )}y. (2.23)

For β > 0, Eq. (2.23) can be interpreted as data-adaptively adding to the input

image some amount of its high-pass filtered version. This procedure results in a sharper

image. Although there is no access to the exact PSF, since the matrix W is computed

from the input blurred image, it contains some information about the original image

as well as the blurring process. Therefore, Eq. (2.23) provides us with a data-adaptive

sharpening (or to say rough deblurring) technique.

2.6 Implementation Details

The first step of the iterative algorithm is to compute the kernel similarity

matrix5 K. At each outer iteration k, we compute this matrix from the final estimate of

4We consider the first outer iteration here.
5This is computed from the denoised version of the input image at the beginning of the algorithm.
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Set of color images used for evaluation of our method: (a)Building image

(480 × 640), (b)Bikes image (494 × 494) , (c)Girl image (496 × 700), (d)Street image

(480× 640), (e)Boat image (420× 520), and (f)Book shelf image (580× 520).

the previous step, i.e., from ẑ(k−1), as shown in Fig. 2.1. The values of the regularization

parameters η and β are selected based on the noise variance and blurring scenario, and

are kept fixed at each step of the algorithm, for all the test images. For deblurring

examples, for instance, the parameter β lies in the range (0, 1), and the parameter η is

empirically selected in the range (0, 0.4). The closer is β to 1, the larger is the effect of

the data-adaptive high-pass filter I + β(I −W ) in the data term of the cost function

in (2.15), which results in encouraging higher frequencies of Az to be close to those of

y. Similarly, the larger is the value of η, the more penalty is put on the norm of the
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Table 2.3: SSIM and PSNR performance of the kernel similarity-based algorithm and

IDDBM3D [22] for Gaussian blur kernel of size 25× 25 with standard deviation 1.6 and

out-of-focus blur generated using disk function of radius 7. In each cell, the first number

denotes SSIM value, and the second number represents PSNR value in dB.

Blur
Building Bikes Girl Street Boat Book shelf

ours [22] ours [22] ours [22] ours [22] ours [22] ours [22]

Gaussian 0.972 0.979 0.976 0.979 0.969 0.975 0.973 0.977 0.964 0.965 0.982 0.984

(σ2 = 0.2) 28.57 29.30 27.56 28.36 33.18 33.84 28.80 30.29 29.11 29.49 27.25 28.15

out-of-focus 0.951 0.963 0.954 0.960 0.937 0.948 0.952 0.961 0.928 0.931 0.971 0.970

(σ2 = 0.2) 28.44 29.64 26.92 28.08 32.28 33.00 29.71 31.35 28.79 28.75 27.60 28.19

Gaussian 0.957 0.968 0.962 0.967 0.952 0.963 0.962 0.967 0.944 0.950 0.971 0.978

(σ2 = 1) 27.59 28.62 26.24 27.22 32.34 32.97 28.34 29.33 28.00 28.62 26.27 27.31

out-of-focus 0.917 0.936 0.897 0.917 0.905 0.920 0.905 0.934 0.865 0.883 0.940 0.953

(σ2 = 1) 26.90 27.80 25.04 25.75 30.85 31.42 27.19 29.00 26.77 27.35 25.63 26.64

high-pass filtered version of the desired solution z. For instance, larger values of η and

smaller values of β are used when the amount of noise is high in the input image, and

the image is moderately blurred. Similarly, when the amount of noise is low while the

image is severely blurred, larger values of β and smaller values of η are used. These

tunings are done for each scenario of blur and noise for a set of test images to have

visually pleasant results, and are kept fixed for all other input images with the same

degree of degradation, as shown in the next section.

In experiments, in order to avoid noise amplification and ringing artifacts,

the maximum number of inner and outer iterations are set beforehand based on the

amount of degradation6, and then the iterations are stopped using a rough estimate of

6For more blurry images, we need more iterations for convergence of CG iterations. Also, as we
initialize the CG iterations with more enhanced images as we proceed through the outer iterations, the
number of inner iterations is decreased by a step nDec, as the number of outer iterations increases.
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Predicted-MSE (PMSE) measure as7

̂PMSE(q, k) =
1

n
‖Âz−Aẑ

(q)
k ‖

2, (2.24)

where Âz is an estimate of the blurred clean image (Az), which is derived by denoising

input noisy blurry image, and ẑ
(q)
k is the corresponding estimate of the desired image at

the kth CG iteration of the qth outer iteration. That is, we stop CG iterations whenever

̂PMSE(q, k + 1) > ̂PMSE(q, k).

There are two main computational burdens for the algorithm. First is the

computation of the kernel similarity coefficients, where its special form allows us to take

advantage of the idea of integral images [46]. This technique is very effective to reduce

the computational complexity of the algorithm. Second is the matrix-vector products

required at each iteration of CG method for optimizing the objective function in (2.15).

However, because of the special structure of the matrices involved, it is possible to

implement the algorithm using Fast Fourier Transform (FFT) and fast sparse matrix-

vector products. It is also possible to exploit the symmetric structure of the kernel

similarity matrix K (and of course that of W ) to reduce memory requirements.

2.7 Numerical Experiments

In this section, the effectiveness of our iterative approach is verified through

a number of synthetic and real experiments. Throughout the deblurring experiments,

our focus is on more practical cases with severe blur and small amount of noise in

7Predicted-MSE is defined as PMSE(q, k) = 1
n
‖A(z− ẑ

(q)
k )‖2 [111].
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Table 2.4: Set of parameters in different synthetic color image deblurring examples in

this chapter. nInner is the maximum number of the inner CG iterations.

Experiment η β h nInner

Symmetric (σ2 = 0.2) 0.003 0.2 5.5 100

Symmetric (σ2 = 1) 0.008 0.001 7.5 100

motion blur (σ2 = 0.2) 0.006 0.4 6 100

motion blur (σ2 = 1) 0.01 0.01 6.5 80

the captured images. We report experiments for Gaussian, out-of-focus, and nonlinear

camera motion blur. For all cases, we have compared the performance of our algorithm

with some of the best existing non-blind deblurring algorithms. Also, for both motion

and out-of-focus blurs, the iterative algorithm is applied to real images to evaluate its

performance for such more complicated cases. Since the proposed method is a non-

blind deblurring algorithm, for real deblurring examples, we use PSFs derived from

other existing blur kernel estimation methods. For this purpose, in case of real out-

of-focus blur, the PSF is estimated using ’deconvblind’ MATLAB function. In case of

real motion deblurring, the estimated PSFs from [15, 97] are used. For color images,

the proposed deblurring algorithm is applied independently to R, G, and B channels of

the input color image to get the final estimate. In all the experiments, object oriented

MATLAB functions in [72] are used for performing matrix-vector products of the form

Az and AT z. PSNR in dB and the SSIM index are used for comparison purposes [117].

SSIM index is shown to be a more reliable metric for comparison of deblurring algorithms

than the widely used PSNR measure [117].
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(a) (b)

(c) (d)

Figure 2.5: Deblurring example with Gaussian blur: (a)clean Bikes image, (b)blurred

noisy image, (c)output of [22], and (d)output of our algorithm.

2.7.1 Symmetric Blurs

Two kinds of symmetric blur are considered for these examples: Gaussian blur

and out-of-focus blur. A 25×25 Gaussian blur with standard deviation 1.6 is convolved

with a set of color images8 shown in Fig. 2.4. Also, out-of-focus blur is produced using a

8Test images are from Kodak Lossless True Color Image Suite (http://r0k.us/graphics/kodak/) and
the web page for [40].
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(a) (b)

(c) (d)

Figure 2.6: Deblurring example with out-of-focus blur: (a)clean Girl image, (b)blurred

noisy image, (c)output of [22], and (d)output of our algorithm.

disk function with radius 7 and is used to generate the corresponding blurred examples.

Then, additive white Gaussian noise with variances equal to 0.2 and 1 is added to the

blurred images. We compare the performance of our algorithm with that of IDDBM3D

algorithm in [22]. Periodic boundary conditions are used in these examples [42]. Also,

we use patch size of 5×5, search neighborhood size of 11×11, number of outer iterations

equal to 3, and the step decrement of the number of inner iterations equal to 30 in these

experiments. The values of the parameters η, β, h, and maximum number of inner

CG iterations have been summarized in Table 2.4. Note that, the parameters of both
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(a) (b) (c)

(d) (e) (f)

Figure 2.7: Real sharpening examples: left column: input blurred noisy image, middle

column: output of Focus Magic software at http://www.focusmagic.com, and right

column: output of our algorithm (η = 0.1 and β = 0.06 for both images).

algorithms are set for best performance in each case for this set of images, and for the

given blurs and noise variances.

Figures 2.5 and 2.6 depict deblurring outputs of our algorithm compared to

those of IDDBM3D for noise variance of 0.2 and synthetic Gaussian and out-of-focus

blurs, respectively. Also, Table 2.3 summarizes the numerical deblurring results. As can

be seen in Table 2.3, our kernel similarity-based algorithm shows very close performance

to the state-of-the-art IDDBM3D algorithm in [22] in the case of Gaussian blur. Also,
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our iterative algorithm performs acceptably in the case of out-of-focus blur. In some

cases, our algorithm exhibits slightly better visual quality as can be seen, e.g., in smooth

parts of the face of the Girl image in Fig. 2.6. There is one key difference between

our proposed algorithm and IDDBM3D. IDDBM3D is a two step algorithm, in which

denoising and deblurring are decoupled. Each step of IDDBM3D essentially involves

solving two different objective functions, one for deblurring and the other for denoising.

Regarding the computational complexity, even though our algorithm has been written

entirely in MATLAB (except the initial denoising step which we use the code provided

by the authors in [21]) 9, our algorithm runs faster, making it more appropriate for

practical image deblurring applications. To be more specific, for a 480×640 color image,

the MATLAB implementation of our kernel similarity-based method runs 4 times faster

than the code for IDDBM3D run on a 2.8 GHz Intel Core i7 processor. Furthermore, our

method just relies on an initial denoising, whereas IDDBM3D depends on an appropriate

estimate from another deblurring algorithm in its grouping phase. In addition, as we

demonstrate in the remaining experiments, the proposed method has the flexibility to

be applied to a wide variety of blurs including both symmetric and non-symmetric blurs,

while IDDBM3D has been designed and tested specifically for symmetric blurs.

Figure 2.7 shows the output of our algorithm when applied to real noisy and

out-of-focus blurred images compared to the outputs of the Focus Magic deblurring

software. As can be seen, our algorithm is better able to handle noise amplification

related issues. In the following subsections, we consider the effect of different factors on

9In contrast, the computational demanding parts of IDDBM3D have been implemented in C++
using MATLAB mex files.
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the performance of the proposed deblurring method.

2.7.1.1 Effect of The Patch Size on The Performance of The Proposed

Algorithm

In this subsection, we add an experiment investigating the relationship between

the patch size and blur kernel width in the deblurring algorithm for the case of out-of-

focus blur. Synthetic examples are produced by applying out-of-focus blur kernels with

radii 5, 7, 9, and 11 to the Girl image. White Gaussian noise with variance σ2 = 0.4 is

also added to the blurred images. The corresponding SSIM values are plotted in Fig.

2.8 versus the patch size for different radii of the out-of-focus blur10. It can be seen

that for out-of-focus blur, the best performance is not strongly dependent on the patch

size regardless of the out-of-focus blur kernel radius. It shows that for such blur kernels,

the structure around each pixel is described well just by considering a small 5× 5 patch

around it. In other words, there is no specific relation between the patch size and the

size of the blur kernel. In fact, one can fix this parameter and change other parameters

like the regularization parameter η to control the quality of the output image.

2.7.1.2 Effect of The Smoothing Parameter h on The Performance of The

Proposed Algorithm

In order to investigate the effect of the parameter h, we apply out-of-focus blur

with radius 7 to the clean Girl image and then add noise with two different variances (0.2

10We consider patch sizes 3, 5, and 7.
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Figure 2.8: The relationship between the patch size and blur kernel width for Girl

image and out-of-focus blur with different radii.

and 1) to it. The results are shown in Fig. 2.9. Note that the same set of parameters are

used for both cases of noise variance. As can be seen, with the same set of parameters,

the optimal smoothing parameter h is greater for the higher noise level. Also, it is

evident from Fig. 2.9 that the algorithm is not very sensitive to the selection of this

parameter.

2.7.1.3 Effect of The Initialization of The CG Iterations on The Perfor-

mance of The Algorithm

In order to investigate the effect of the specific initialization for CG iterations

at first step of the deblurring algorithm, we consider a simple experiment with Girl

image for Gaussian blur with standard deviation 1.6 and noise variance σ2 = 1. We

consider two different initializations, of CG iterations with (1) the denoised version of

the input noisy and blurred image versus (2) initializing it with zero image, i.e., ẑ0 = 0.

41



10 20 30 40 50 60 70 80 90 100
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

h

S
S

IM

 

 

σ
2
=0.2

σ
2
=1

Figure 2.9: The effect of the smoothing parameter h in the kernel similarity function

for Girl image and out-of-focus blur with radius 7 for two different noise variances.

As can be seen in Fig. 2.10, in case of initializing with the denoised image, the algorithm

converges faster. However, with simple zero initialization, we obtain the same result, but

after more CG iterations. The proposed algorithm is not sensitive to the initialization.

2.7.1.4 Effect of Oracle Scenario on The Performance of The Proposed

Algorithm

It is instructive to show reconstructions starting from the oracle scenario where

the true images are used for the weights and applied to noisy data. We consider a

deblurring scenario in which test images are synthetically blurred with 25×25 Gaussian

blur kernel with standard deviation 1.6 and the additive white Gaussian noise with

variance 0.4 is added. Then, we compare the performance of the proposed algorithm,

when the similarity weights are computed from the oracle images compared to the cases

when these weights are derived from the given input (blurred, noisy) images. The results
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Figure 2.10: Convergence plots of the CG iterations for different initializations.

Table 2.5: PSNR oracle performance of the proposed algorithm vs. the low-noise case.

Image Girl Bikes Street Building

Oracle 33.06 27.27 29.07 28.43

Algorithm 1 32.42 26.29 28.11 27.95

are summarized in Table 2.5. As expected, using the oracle image for computing the

similarity weights improves the performance of the algorithm. Also, it can be seen that

for practical cases when the amount of noise is low, the results of the algorithm are not

much different from their oracle counterparts.

2.7.1.5 Effect of The Noise Level in The Computation of The Similarity

Weights

We add an experiment considering the effect of noise in computing the similar-

ity weights. The Girl image is blurred by out-of-focus blur (of radius 7), and different

amounts of noise (up to standard deviation equal to 30) are added to the blurred image.
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Table 2.6: ISNR values for the Girl image and out-of-focus blur with different noise

standard deviation when the weights are computed from the input noisy blurred image.

σ = 1 σ = 3 σ = 6 σ = 9 σ = 20 σ = 30

ISNR 4.20 3.63 3.73 4.25 6.54 8.87

We fix all the parameters for different noise levels except the smoothing parameter h

which is changed proportional to the noise standard deviation as h = 0.05σ. In all the

experiments, the similarity weights are computed from the noisy blurred input image

in the first step of the algorithm. Table 2.6 shows the ISNR values for different noise

levels11. As can be seen even for very high noise levels and with computation of the

weights from the input image, the algorithm is able to provide improvement with re-

spect to the input degraded image. Although one can assume that the algorithm will

fail at some noise level, we can conclude that it is robust enough to the errors in the

input image for computing the similarity weights.

2.7.2 Synthetic Motion Blur

For assessing the performance of the algorithm in case of motion deblurring,

we use the complex camera motion blur kernel provided by Shan et al. [97]. Again,

noise with variances equal to 0.2 and 1 is added to the blurred images. In this case,

we compare the proposed algorithm with two of the best available non-blind motion

deblurring works. Periodic boundary conditions are used in these examples [42]. Also,

11ISNR is defined as the difference between the PSNRs of the output image and the input noisy
blurred image.
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Table 2.7: SSIM and PSNR performance of the kernel similarity-based algorithm in

comparison with those of motion deblurring methods in [58] and [97] for synthetic

camera motion blur. In each cell, the first number denotes SSIM value, and the second

number represents PSNR value.

Image
σ2 = 0.2 σ2 = 1

ours [58] [97] ours [58] [97]

Building
0.9743 0.9734 0.9741 0.9525 0.9507 0.9572
29.47 29.74 29.51 28.45 28.48 28.45

Bikes
0.9756 0.9731 0.9692 0.9589 0.9470 0.9496
28.04 28.26 26.95 26.89 26.45 26.51

Girl
0.9636 0.9624 0.9586 0.9354 0.9351 0.9379
33.54 33.53 33.15 32.15 31.99 32.08

Street
0.9791 0.9766 0.9741 0.9584 0.9507 0.9558
31.11 31.50 31.00 29.75 29.32 29.35

Boat
0.9634 0.9687 0.9532 0.9342 0.9311 0.9344
29.91 29.81 28.37 28.57 28.38 28.27

Book shelf
0.9857 0.9839 0.9821 0.9711 0.9680 0.9693
28.81 29.24 28.42 27.31 27.61 27.21

we use patch size of 5×5, search neighborhood size of 11×11, number of outer iterations

equal to 3, and the step decrement of the number of inner iterations equal to 30 in these

experiments. The values of the parameters η, β, h, and maximum number of inner

CG iterations have been summarized in Table 2.4. The parameters of all algorithms

are set for best performance. Table 2.7 illustrates the quantitative results in this case.

From the numerical results in Table 2.7, it is evident that our proposed kernel similarity-

based algorithm shows very good performance in the case of non-blind nonlinear motion

deblurring.
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(a) (b)

(c) (d)

Figure 2.11: Real motion deblurring example: (a)input blurred noisy image, (b)output

of hyper-Laplacian algorithm [58], (c)output of [97], and (d)output of our algorithm

(η = 0.031, β = 0.6).

2.7.3 Real Motion Deblurring

Now, we deal with more challenging motion blur situations where the blur

kernel is estimated using two of the existing blur kernel estimation methods [15,97] from

real motion blurred test images. The estimated blur kernels are used independently to

derive the final deblurred images. The performance of the proposed method is compared

with those of [97] and [58], which are among the best non-blind motion deblurring

methods.
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(a) (b)

(c) (d)

Figure 2.12: Real motion deblurring example: (a)input blurred noisy image, (b)output

of hyper-Laplacian algorithm [58], (c)output of [97], and (d)output of our algorithm

(η = 0.25, β = 2.5).

For all examples, the patch size and search window size are selected to be

5 × 5 and 11 × 11, respectively. Also, we use reflective boundary conditions for these

experiments [42,72]. Figures 2.11, 2.12, and 2.13 show the outputs of different methods,

when the blur kernels are estimated using the algorithm in [97]. Also, Figures 2.14 and
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(a) (b)

(c) (d)

Figure 2.13: Real motion deblurring example: (a)input blurred noisy image, (b)output

of hyper-Laplacian algorithm [58], (c)output of [97], and (d)output of our algorithm

(η = 0.018, β = 0.9).

2.15 illustrate the results of different algorithms when applied to real blurred images

using corresponding estimated blur kernels from [15]. As can be seen, our iterative

deblurring algorithm produces high quality outputs as good as the state-of-the art.
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(a) (b)

(c) (d)

Figure 2.14: Real motion deblurring example: (a)input blurred noisy image, (b)output

of hyper-Laplacian algorithm [58], (c)output of [97], and (d)output of our algorithm

(η = 0.031, β = 0.6).

2.7.4 Comparison With Traditional Normalized Graph Laplacian

In this section, we set up an experiment to investigate the performance of

the proposed graph Laplacian with respect to that of the traditional normalized graph

Laplacian. If we denote WD = D−1/2KD−1/2, then the traditional normalized graph

Laplacian would be I−WD. We define the following cost function by replacing W with
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(a) (b)

(c) (d)

Figure 2.15: Real motion deblurring example: (a)input blurred noisy image, (b)output

of hyper-Laplacian algorithm [58], (c)output of [97], and (d)output of our algorithm

(η = 0.032, β = 0.6).

WD in (2.15) as

ED(z) = (y−Az)T {I + β(I −WD)}(y−Az) + η zT (I −WD)z. (2.25)

The out-of-focus blurred Girl image in Figure 2.16(b) and the motion blurred Street

image in Figure 2.17(b) are used for the experiments. The deblurring results from
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Original Image

(a) (b)

(c) (d)

Figure 2.16: Deblurring examples with blurred noisy Girl image by out-of-focus blur

with radius 7 and additive white Gaussian noise with standard deviation σ = 1 : (a)clean

image, (b)blurred noisy image, (c)output of the deblurring algorithm with the corre-

sponding traditional normalized Laplacian (PSNR = 29.40dB, SSIM = 0.8734), and

(d)output of our proposed deblurring algorithm (PSNR = 30.58dB, SSIM = 0.9058).

minimizing (2.25) related to traditional normalized graph Laplacian along with those of

our proposed method are shown in Figures 2.16 and 2.17. As can be seen, our proposed

normalized Laplacian produces deblurring outputs with higher quality within the same

framework. Also, these experiments show that other definitions of the graph Laplacian

can be used within our proposed framework and still produce acceptable results.
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(a) (b)

(c)

deblurred image

(d)

Figure 2.17: Motion deblurring examples with blurred noisy Street image by synthetic

motion blur kernel and additive white Gaussian noise with standard deviation σ = 1 :

(a)clean image, (b)blurred noisy image, (c)output of the deblurring algorithm with the

corresponding traditional normalized Laplacian (PSNR = 27.93dB), and (d)output of

our proposed deblurring algorithm (PSNR = 29.75dB).

Summary - In this chapter, we proposed a general framework for kernel

similarity-based image restoration. We have introduced a new objective function for

image deblurring by coupling the data and prior terms via structurally encoded filtering

and Laplacian matrices. Also, we have presented a graph-based filtering interpretation

of the proposed method, providing better intuition for data-adaptive approaches as well
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as a path for further improvement of such approaches. Through experiments, the effec-

tiveness of the kernel similarity-based method has been verified for a range of blurring

scenarios via comparison with some of the existing state-of-the-art algorithms. Also, a

special case within the proposed framework was highlighted for image sharpening. This

kernel similarity-based approach is general enough to be exploited for many different

restoration tasks, as long as there is a reasonable way to estimate the kernel similarity

matrix K.
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Chapter 3

Graph-based Denoising And Smoothing:

Interpretation Based on Diffusion and

Boosting Iterations

Abstract - As shown in the previous chapter, any image can be represented as

a function defined on a discrete weighted graph whose vertices are image pixels. Each

pixel can be linked to other pixels via graph edges with corresponding weights derived

from similarities between image pixels (graph vertices) measured in some appropriate

fashion. Image structure is encoded in the Laplacian matrix derived from these similar-

ity weights. Taking advantage of this graph-based point of view, we present a general

regularization framework for image denoising. A number of well-known existing denois-

ing methods like bilateral, NLM, and LARK can be described within this formulation.

Moreover, we present an analysis for the filtering behavior of the proposed method based
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on the spectral properties of Laplacian matrix. Some of the well established iterative

approaches for improving kernel-based denoising like diffusion and boosting iterations

are special cases of our general framework. The proposed approach provides a better

understanding of enhancement mechanisms in self similarity-based methods, which can

be used for their further improvement. Experimental results verify the effectiveness of

this approach for the task of image denoising.

3.1 Introduction

In the past decade, algorithms that exploit the existing self-similarity in im-

ages have shown promising denoising results. Denoising algorithms like bilateral, non-

local means (NLM), and LARK [11,69,105,112] are among such kernel similarity-based

methods. All the above mentioned algorithms perform denoising based on some sort of

shrinkage operation in an adaptive basis. There are other approaches that attempt to

use the non-local similarity idea in a variational formulation [29,69,81,85,99]. Inspired

by these works, in this chapter, we present a general graph-based framework for im-

age denoising. An objective function is formulated and iteratively optimized in which

data fidelity and smoothness terms are coupled via Laplacian and similarity matrices

of the underlying image. Two widely used iterative denoising methods are discussed as

special cases of the proposed framework. Moreover, taking advantage of filtering and

Laplacian matrices, we propose a graph-based analysis framework for multi-layer image

decomposition.
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3.2 Kernel Formulation for Denoising

We propose the following unified cost function for kernel-based image denois-

ing:

E(z) = (y− z)TF (K)(y− z) + η zTG(L) z, (3.1)

in which K is a data-dependent kernel similarity matrix whose (i, j)th element is the

kernel similarity coefficient between pairs of pixels i and j. L is the corresponding

Laplacian matrix computed from K, and η is a positive regularization parameter which

balances the first term (data fidelity term) and the second term (smoothness term).

Also, F (.) and G(.) are functions of K and L, to be specified shortly. While the core

discussion is applicable to any valid choice of kernels [69], to keep focus here, we use

the NLM kernel as a canonical example in the remainder of the chapter. Kernel weight

coefficients are computed from a pre-filtered version of the observed image. In what

follows, we discuss two instances of the above energy function.

3.2.1 Case 1: Un-normalized Laplacian

By defining G(L) = L = D −K and F (K) = K, we have

E(z) = (y− z)TK(y− z) + η zT (D −K) z. (3.2)

Note that, as discussed in the previous chapter, D −K is the un-normalized Laplacian

matrix widely used in graph theory [20, 114]. The first term is essentially a weighted

data fidelity term and the second term is a difference term that adaptively penalizes

large derivatives based on the structure of data encoded in the Laplacian matrix. The
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gradient descent (GD) iterations can be used to minimize (3.2) with respect to z:

ẑk = ẑk−1 − µ∇E(z)|z=ẑk−1

= ẑk−1 + µK(y− ẑk−1)− µη(D −K)ẑk−1 (3.3)

Here, µ is the step size for GD iterations. At convergence, the corresponding estimate

would be

ẑ = (K + η(D −K))−1Ky. (3.4)

Interestingly, with K as e.g., the NLM kernel, and for the specific choice of η = 1 (both

terms contribute equally strongly), we have precisely the NLM denoising algorithm:

ẑNLM = D−1Ky. (3.5)

Moreover, as shown in Section 3.5, with a fixed smoothing parameter h, tuning the

regularization parameter η, yields an estimation with lower mean squared error (MSE)

compared to standard NLM solution. We can use SURE-based MSE estimation ap-

proach for adjusting the regularization parameter η [91].

3.2.2 Case 2: Normalized Laplacian

The second approach is to apply Sinkhorn-Knopp matrix scaling algorithm

[56,100] to the symmetric non-negative matrix K to construct the filtering matrix W =

C−1/2KC−1/2, as shown in the previous chapter. The resulting matrix W is a symmetric

non-negative doubly stochastic matrix. Hence, based on Perron-Frobenius theory, W

has unity spectral radius with largest eigenvalue λ1 = 1 whose corresponding eigenvector
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is v1 = ( 1√
n

)1n. Moreover, it can be decomposed as W = V SV T , in which V is an

orthonormal matrix whose ith column vi is the ith eigenvector of W . The corresponding

ith eigenvalue λi is the ith diagonal element of S. Then, the normalized Laplacian

matrix is defined as I −W . In this case, our objective function becomes

E(z) = (y− z)TW (y− z) + η zT (I −W ) z, (3.6)

in which, F = W and G = I −W . Note that, for positive semi-definite matrix W , the

above cost function can be rewritten as

E(z) = ‖W 1/2(y− z)‖2 + η zT (I −W ) z, (3.7)

The corresponding data fidelity term is essentially derived by measuring the squared

norm of the filtered version of the residual y− z in the space spanned by data-adaptive

orthonormal eigenvectors of the filtering matrix W . Also, note that the data-fidelity

term in (3.7) can be thought of as the data-adaptive variant of the data term in the TV-

Hilbert model in [4,12]. Also, the second term is a difference term that data-adaptively

penalizes high frequency components in the solution using our specific definition of the

normalized Laplacian operator. By computing the gradient of (3.6) with respect to z,

one obtains an iterative GD update equation as

ẑk = ẑk−1 + µW (y− ẑk−1)− µη(I −W )ẑk−1. (3.8)

By appropriate selection of the step size parameter1 µ, (3.8) converges to

ẑ = (W + η(I −W ))−1Wy. (3.9)

1It can be shown that µ = 1 is a sufficient condition for the convergence of the iterative algorithm
in (3.8).
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Again, for the case η = 1, optimization of (3.6) leads to ẑ = Wy which has been shown

to outperform its non-symmetric counterpart ẑNLM = D−1Ky [70]. Also, note that for

the case η = 2, the equation (3.9) reduces to the same steady state solution as the SOS

boosting algorithm in [92].

3.2.3 Spectral Analysis Based on Eigenvectors of Laplacian

Since the filtering matrix W and the normalized Laplacian matrix I−W have

the same eigenvectors, (3.9) can be interpreted as filtering the observed image in a space

spanned by the eigenvectors of the Laplacian. Note that (3.9) can be expressed as

ẑ = W ′y = V S′V Ty, (3.10)

where S′ is a diagonal matrix whose ith diagonal element λ′i is a function of the corre-

sponding eigenvalue λi of W as

λ′i = p(λi) =
λi

(1− η)λi + η
, (3.11)

Optimizing the value of η in (3.11) or (3.8) with respect to an appropriate

measure (e.g., using SURE [91]) gives the final estimate. As an illustration, an edge

patch of size 31× 31 is considered in Fig. 3.1(a) and white Gaussian noise of standard

deviation 25 is added to it (Fig. 3.1(b)). The resulting output of iterative algorithm

(3.8) is shown in Fig. 3.1(c). Figure 3.1(d) shows the spectrum of W (λi) and the corre-

sponding spectrum of W ′ (λ′i). As will be shown in experiments, normalized Laplacian

formulation results in denoising outputs with slightly better visual quality. Moreover,
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Figure 3.1: Denoising experiment on 31×31 piece-wise constant synthetic patch (a)clean

patch, (b)noisy patch by adding white Gaussian noise with σ = 25 (PSNR = 20.31dB)

, (c)output of iterative algorithm (3.8) (PSNR= 35.96dB, η = 19), and (d)spectrum of

filter matrices W (λi’s) and W ′ (λ′i’s).

filtering analysis of the normalized case is straightforward in the space spanned by V .

3.3 Diffusion and Boosting As Special Cases of the Pro-

posed Algorithm

Two widely used iterative methods, namely diffusion and boosting, have been

effectively used for improving the performance of kernel-based denoising algorithms [69].

Two extreme cases of our more general iterative approach (Eq. 3.8) lead to diffusion
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Figure 3.2: Block diagram of the proposed graph-based approach for multi-layer image

decomposition.

and boosting iterations, as we illustrate below.

By setting η = ∞ in (3.6), the corresponding GD update equation becomes

diffusion iterations as

ẑk = W ẑk−1. (3.12)

Initializing (3.12) with ẑ0 = y leads to ẑ∞ = 1
n1ny

T1n, which corresponds to a final

constant estimate (an estimation without variance) [69].

On the other hand, by choosing η to be equal to 0, the effect of the smoothness

term in (3.6) is omitted, for which, boosting iterations is derived as

ẑk = ẑk−1 +W (y− ẑk−1). (3.13)

In this case, initializing the boosting algorithm in (3.13) with ẑ0 = 0, results in ẑ∞ = y.

This corresponds to an un-biased estimate of the original image with variance equal to
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(a) Lena (b) Barbara (c) Cameraman (d) House

Figure 3.3: Set of images used for evaluating the performance of our denoising algorithm

with respect to standard NLM.

(a) (b) (c) (d) (e)

Figure 3.4: Denoising experiment on 256 × 256 House image, (a)clean image, (b)noisy

image (σ = 20), (c)standard NLM output image (PSNR = 30.80dB), (d)output of iter-

ative algorithm (3.3) (PSNR= 32.16dB, η = 0.67), and (e)output of iterative algorithm

(3.8) (PSNR= 32.37dB, η = 0.82).

the noise variance [69].
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Table 3.1: Denoising PSNR and SSIM performance of the iterative algorithms (3.3) and

(3.8).

Images

NLM Un-normalized Normalized
PSNR PSNR

η
PSNR

η(SSIM) (SSIM) (SSIM)

Lena
28.68 29.66

0.53
29.73

0.58(0.761) (0.807) ( 0.814)

Barbara
28.02 29.36

0.53
29.35

0.58(0.794) (0.855) ( 0.860)

Cameraman
29.18 29.69

0.53
29.48

0.82(0.781) (0.833) ( 0.843)

House
30.80 32.16

0.67
32.37

0.82(0.768) (0.845) ( 0.849)

3.4 Graph-based multi-layer image decomposition and its

interpretation based on diffusion and boosting itera-

tions

Our proposed graph-based framework provides a general formulation for dif-

ferent kernel similarity criteria and the corresponding edge preserving filters. These

edge-aware filters are widely used for multi-layer image decomposition, smoothing, and

detail manipulation [32,50,103,108]. In this section, we provide a unified framework for

such multi-layer decomposition methods. We will also show that the base and detail

layers in different steps of the decomposition process can be derived and described via

diffusion and boosting iterations. More specifically, in the first step, the base layer is

derived by applying the smoothing filter W to the input image y as Wy and the detail

layer is computed by subtracting the base layer from the input image as (I − W )y.
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Similarly, in the second step, smoothing filter W is again applied to the detail layer

from the previous step to get W (I −W )y = (W −W 2)y, which in turn is added to the

base layer in the first step to get the base layer in the second step as

(W −W 2)y +Wy = (2W −W 2)y. (3.14)

Also, the detail layer in the second step of the decomposition would be simply

(I −W )y− (W −W 2)y = (I − 2W +W 2)y = (I −W )2y. (3.15)

Following a similar approach, the base layer at the k-th stage of the decomposition can

be expressed as boosting with the smoothing filter W , when initialized with z
(base)
0 = 0

as

z
(base)
k = z

(base)
k−1 +W (y− z

(base)
k−1 ). (3.16)

On the other hand, if we start from z
(detail)
0 = y, the detail layer at the k-th stage

of the decomposition can be derived as diffusion iterations with the normalized graph

Laplacian I −W after k steps

z
(detail)
k = (I −W )z

(detail)
k−1 = (I −W )ky. (3.17)

This interpretation is intuitive in the sense that the properties of base and detail layers

can be described via the low-pass and high-pass characteristics of the smoothing and

Laplacian matrices, respectively. Figure 3.2 illustrates the underlying idea.

64



(a) (b) (c) (d)

Figure 3.5: Denoising experiment on 256 × 256 color parrot image, (a)original image,

(b)noisy image (σ = 20, PSNR= 17.06dB), (c)standard NLM output image (PSNR=

27.68dB), and (d)output of iterative algorithm (3.8) (PSNR= 28.54dB).

3.5 Experimental Results

In this section, we compare the performance of the proposed denoising algo-

rithm with that of the standard NLM [11] and global image denoising [107].

3.5.1 Comparisons With NLM Denoising Algorithm

In order to evaluate the effectiveness of the proposed kernel-based denoising

approach, we apply this algorithm for restoration of 256× 256 benchmark images. For

denoising experiments, Gaussian noise with standard deviation 20 is added to images

shown in Fig. 3.3 and performance of iterative algorithms (3.3) and (3.8) are compared

against the output of standard NLM. Peak signal to noise ratio (PSNR) in dB, and SSIM

[116] are used as quantitative measures for comparison. As can be seen in Table 3.1,

in all cases we get better results in terms of PSNR and SSIM with respect to standard

65



(a) House (b) Cameraman (c) Peppers (d) Aerial

Figure 3.6: Set of images used for evaluating the performance of our denoising algorithm

with respect to global denoising algorithm.

Table 3.2: Denoising performance and run-time in seconds of the iterative algorithm

(3.8) and global denoising [107].

Images

G-NLM [107] Proposed
PSNR

run-time
PSNR

run-time(SSIM) (SSIM)

House
32.67

92
32.37

60(0.856) (0.849)

Cameraman
29.53

98
29.48

61(0.855) (0.843)

Peppers
30.26

93
30.41

56(0.865) (0.867)

Aerial
26.67

93
26.89

60(0.836) (0.853)

NLM. Also, note that SSIM values in Table 3.1 reflect slightly better visual quality of

the results of normalized iterative algorithm (3.8) compared to un-normalized algorithm

(3.3). Figure 3.4 illustrates House image denoised using the general iterative kernel-

based approaches (3.3) and (3.8) compared to standard NLM denoising. Additionally,

the result of applying normalized iterative algorithm (3.8) to a noisy color image with

the same experimental settings as for the previous examples is shown in Fig. 3.5.
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(a) (b) (c) (d)

Figure 3.7: Denoising experiment on 256×256 Aerial image, (a)original image, (b)noisy

image (σ = 20, PSNR= 22.08dB), (c)output of global denoising algorithm in [107]

(PSNR= 26.67dB), and (d)output of iterative algorithm (3.8) (PSNR= 26.89dB).

Experimental results show that our algorithm produces superior results to those of

standard NLM denoising algorithm.

3.5.2 Comparison With Global Denoising Algorithm

The idea of global image denoising using similarity information among all

pixels in the image has been recently introduced in [107]. In this part, we compare the

results of the denoising algorithm in (3.8) with that of the global image denoising [107].

In this case, Gaussian noise with standard deviation 20 is added to images shown in

Fig. 3.6 and performance of iterative algorithm (3.8) is compared against the output of

the denoising algorithm in [107]. Simulation results indicate that our proposed method

is able to produce comparable outputs with less running time when run on the same

system. Figure 3.7 shows an example comparing the results from these two algorithms.

Also, in Table 3.2, the performance and run-time of the proposed denoising algorithm

67



is compared with those of [107].

Summary - We have developed a new graph-based framework for image de-

noising and smoothing in this chapter. This general approach encompasses some well-

known existing denoising methods, and provides a path for further improvements. Also,

we have presented a general kernel similarity-based analysis formulation for multi-layer

image decomposition and provided its interpretation based on diffusion and boosting

iterations with data-adaptive operators.
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Chapter 4

Data-adaptive Image Sharpening Based

on The Difference of Smoothing

Operators

Abstract - In this chapter, we propose an effective data-adaptive filtering

mechanism for sharpening of noisy and moderately blurred images. We establish the

connection of our proposed data-adaptive filtering procedure with the classic difference

of Gaussians (DoG) operator widely used in image processing and computer graphics.

Our proposed filter renders a data-adaptive and noise robust version of the classical

DoG filter. We also discuss interesting special cases of our general sharpening method.

Experimental results verify the effectiveness of the proposed technique for sharpening

real images.
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4.1 Introduction

Any effective image enhancement algorithm should be equipped with appro-

priate mechanisms for dealing with visual degradations resulting from noise and blur.

Specifically, image sharpening is a challenging task when the input image is noisy, even

when the image is not severely blurred. The reason is that image sharpening is essen-

tially a high pass filtering operation aiming at amplifying high frequency details in the

input image. On the other hand, noise components in the input image exhibit high fre-

quency attributes and any attempt to magnify fine details in the input image will natu-

rally result in amplifying noise as well. For instance, widely used classical linear unsharp

mask filters are very sensitive to the noise in the input image [87]. Another source of

visual degradation is the effect of over-sharpening or the so-called overshoot/undershoot

effects [5]. It occurs when the sharpening algorithm tries to sharpen parts of the image

which are already in focus, especially edges, which causes unpleasant artifacts in such

high contrast areas of the image.

In this chapter, we propose a new sharpening filter based on the data-adaptive

smoothing and Laplacian matrices for noisy and mildly blurred images. This approach

is general enough to include any valid construction of smoothing and Laplacian matrices

with appropriate definition of the similarity measure [69]. We establish the connection

between our proposed sharpness enhancement filter and the classical DoG filters widely

used in different image manipulation tasks in the literature, which provides a better

understanding of the mechanism and the functionality of the underlying parameters in
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our proposed data-adaptive filter. Ours can be considered as a data derived and noise

robust variant of the DoG filter. As such, it can be used in various tasks in which DoG

operators are exploited [66,121,122]. We also discuss interesting simpler special cases of

our proposed filter. Experimental results demonstrate the effectiveness of our approach

in dealing with real examples. Namely, the underlying structure-aware mechanism of

our proposed filter enables it to enhance the sharpness in the input image while reducing

noise amplification and other artifacts like halo and false color artifacts.

4.2 Problem Formulation and Proposed Sharpening Filter

In this section, we describe the underlying model and review the idea of clas-

sical sharpening filters based on the notion of difference of Gaussians operators. Then,

we elaborate on our structure-aware sharpening filter based on data-adaptive smoothing

and Laplacian matrices.

4.2.1 Underlying model

As shown before, the degradation process in image formation is usually math-

ematically modeled as

y = Az + n. (4.1)

In this chapter, we deal with input images which are noisy but not severely blurred.

Without deblurring, the goal is to find an appropriate operator F such that ẑ = Fy is

a sharpness enhanced version of the input y without amplifying noise and other edge
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related artifacts; and without explicitly inverting the blur operator. In fact, we do not

assume knowledge of A.

4.2.2 Classical DoG Operator

The idea of classical DoG filter is that the difference of two Gaussian kernels

is able to produce a range of different kernels with various desired frequency responses.

In [66], the standard DoG operator is introduced as an approximation to Laplacian of

Gaussian operator for edge detection1

DoGε,k(x, y) = Gε(x, y)−Gkε(x, y), (4.2)

where ε is the standard deviation of the Gaussian function defined as Gε(x, y) =

1
2πε2

exp{−x2+y2

2ε2
}. k > 1 is a positive factor. Also, x and y are spatial coordinates. An

extension of the standard DoG filter in [66] is defined in [122] as

DoGε,k,τ (x, y) = Gε(x, y)− τGkε(x, y), (4.3)

in which the parameter τ ∈ (0, 1) determines the sensitivity of the edge detector [122].

For instance, for small values of τ , the DoG operator in (4.3) is less sensitive to noise

at the expense of losing some edges in the input image. Eq. (4.3) can be rewritten in

terms of the standard DoG operator in (4.2) as

DoGε,k,τ (x, y) = (1− τ)Gε(x, y) + τDoGε,k(x, y). (4.4)

Note that the Gaussian operator preserves the average intensity of the input image while

the average response of the standard DoG operator DoGε,k(x, y) is zero. Therefore,

1The relationship between DoG operator and the Laplacian of Gaussian has been discussed in the
Appendix 4.A.
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changing the parameter τ in (4.4) for achieving the desired effects, inadvertently alters

the average brightness of the input image2. Using a simple reparameterization , the

authors in [121] describe the following family of sharpening filters

Sε,k(x, y) =
DoGε,k,τ (x, y)

1− τ
= (1 + β)Gε(x, y)− βGkε(x, y), (4.5)

in which β = τ
1−τ . Compared to the formulation in (4.3), while the average brightness

in the input image is retained, the level of sharpening can also be controlled by the

parameter β in (4.5). This average intensity-preserving sharpening operator has been

derived mostly through a heuristic approach. It is intrinsically linear and not data-

dependent. In the following subsections, we start from a filter design framework based

on the spectral properties of the data-driven Laplacian operators. Then, in Section 4.3,

we elaborate on its relationship with classical DoG-based sharpening operators described

here in this section. This helps explain the properties of the DoG-based operators from

a filtering point of view. It also provides a powerful structure-aware mechanism for

dealing with more complicated real-world images where there is a need to incorporate

nonlinear filters for better performance.

4.2.3 Structure-aware Sharpening Filter

Since any sharpening operator is inherently a highpass filter, it inadvertently

leads to amplifying high frequency noise components in the input image and causes

artifacts related to over-sharpening high contrast regions in the input image. Therefore,

2Preserving the average values of the input image is a desired property for filtering tasks in image
processing [69].
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there is a need to incorporate an effective smoothing mechanism in the sharpening op-

erator to alleviate these shortcomings while preserving image structures. Exploiting the

existing self-similarity in natural images tends to be an effective way to take into ac-

count the underlying structure of images when constructing such operators [11,69], and

thereby reducing the related artifacts. In the following, we use data-adaptive smoothing

and Laplacian matrices introduced in previous chapters as the main building blocks for

creating the final sharpening filter.

As discussed previously, the smoothing filter W is a symmetric and doubly

stochastic matrix. Since W is stochastic, its largest eigenvalue would be λ1 = 1 cor-

responding to the constant eigenvector which highlights its lowpass filtering proper-

ties [51]. It also preserves the average brightness when applied to an image [69]. On

the other hand, the Laplacian matrix is defined as I −W with zero eigenvalue corre-

sponding to the constant eigenvector. As such, it returns zero vector when applied to a

constant signal. Therefore, it can be considered as a data-adaptive high pass operator.

Note that these matrices are evaluated based on the similarity information among dif-

ferent parts of an image and encode the underlying structures of images in an effective

manner. Note that we are able to define the data-adaptive unsharp mask filter using

this definition of Laplacian as I + β(I −W ) which essentially adds a weighted highpass

filtered version of the input image to itself to highlight the high frequency details. The

problem with direct application of this filter is that it suffers from noise amplification

and edge artifacts. We discuss how to improve its performance next.
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4.2.3.1 Proposed Data-adaptive Sharpening Filter

For any effective sharpness enhancement operator, two requirements need to

be satisfied: first, noise amplification should be avoided. Second, the level of contrast

in the image should be increased without introducing overshoot and gradient reversal

(halo) artifacts along edges. To this end, and inspired by DoG filtering idea, we propose

a three stage filtering approach as shown in Fig. 4.1. We first apply a nonlinear

smoothing operator to the input noisy image. This filter is aimed to data adaptively

reduce the effect of the noise in the input image while avoiding over-smoothing. The

smoothing operation is followed by a data derived unsharp masking operation controlled

by the parameter β > 0. Finally, the smoothing filter is applied again in order to further

control the effect of amplified noise and overshoot artifacts due to the unsharp mask

filter. More formally, having the lowpass smoothing and highpass Laplacian operators

at our disposal, we propose the following data-adaptive sharpening filter

F = W1{I + β(I −W2)}W1, (4.6)

where W1 and W2 are constructed from similarity matrices K1 and K2 with smoothing

parameters h1 and h2, respectively. This provides us with the flexibility to better

control the smoothing and sharpening operations. The parameters of the filter need to

be tuned for the desired effects. Selection of these parameters will be discussed later.

Furthermore, as will be shown in subsequent sections, our proposed filter based on the

spectral properties of smoothing and Laplacian matrices exhibits nice connections to

the classical DoG operator. Algorithm 2 summarizes different steps of the proposed
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Smoothing filter Unsharp mask filter Smoothing filter 

Figure 4.1: Block diagram of the proposed enhancement algorithm. y is the input

image and ẑ is the enhanced output image.

sharpening algorithm.

4.3 Interpretation of The Proposed Filter As Data-adaptive

Difference of Smoothing Operator

In this section, we demonstrate the relationship between our proposed noise

and edge aware sharpening filter and classical difference of Gaussians filter. This analysis

sheds light on the properties of the proposed filter and gives a better understanding of

the underlying parameters. Specifically, we provide a data-adaptive noise and edge

aware version of the classical DoG-based operators for use in different applications.

Note that the proposed filtering matrix F in (4.6) can be rewritten as

F = (1 + β)W 2
1 − βW1W2W1. (4.7)

If we define G(W1) = W 2
1 and H(W1,W2) = W1W2W1, then G can be considered as

double application (diffusion operator) of the filter generated from data-adaptive Gaus-

sian kernel in (2.10). On the other hand, H can be thought of as a cascade of data

dependent Gaussian filters with a larger bandwidth compared to that of G. The dif-

ference in bandwidth of the filters G and H is determined by the scaling parameters
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Algorithm 2 sharpness enhancement algorithm

Input: noisy blurry image y

Output: sharpness enhanced image ẑ

- Convert the RGB color image y to YCbCr color space.

- Compute similarity matrices K1 and K2 from the Y channel.

- Apply matrix scaling algorithm in [56] to K1 and K2 to get the diagonal matrices

C
−1/2
1 and C

−1/2
2 , and compute the filtering matrices W1 = C

−1/2
1 K1C

−1/2
1 and

W2 = C
−1/2
2 K2C

−1/2
2 .

- Construct the sharpening filter F = (1 + β)W 2
1 − βW1W2W1.

- Compute luminance channel estimate Ŷ by applying F to Y .

- Compute chroma channel estimates Ĉb and Ĉr by applying F to Cb and Cr with

smaller value of β.

- Convert the resulting estimated luminance and chroma channels back into the

RGB color space to obtain the final sharpened image ẑ.
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h1 and h2 in the NLM kernel used for defining the smoothing filters W1 and W2, re-

spectively. In fact, our proposed sharpening filter in (4.7) can be viewed as the data

derived version of the DoG-based filter in (4.5). Here, we use the NLM kernel definition

for producing matrices W1 and W2. However, any other edge aware kernel definition in

the literature [11, 43, 105, 112, 125] can also be exploited within the proposed filtering

scheme.

4.3.1 Special Cases of The Proposed Sharpening Framework

There is a nice connection with other image filter design paradigms when we

consider the simple case where W1 = W2 = W . In this case, the filter F in (4.7) takes

the following form

F = (1 + β)W 2 − βW 3. (4.8)

Specifically, with β = 2, (4.8) boils down to F = 3W 2 − 2W 3. This filter is the data-

adaptive version of the classical sharpened (linear) smoothing filer of Kaiser and Ham-

ming in [49]. This polynomial function of the symmetric smoothing filter W = V SV T

provides a way for improving the spectral properties of the initial filter (W ) by manip-

ulating its spectrum λ with a polynomial3 function f(λ) = 3λ2 − 2λ3. This polynomial

function is also well-known as the smoothstep function broadly used in computer graph-

ics [7]. Also, note that for different values of the parameter β in (4.8) different band

pass filters are generated. As an illustration, if we start from the spectrum of the low-

3λ’s are the eigenvalues of W as the diagonal elements of the diagonal matrix S. Also, the columns
of the orthonormal matrix V are the eigenvectors of W which serve as a data-adaptive basis for filtering
purposes [108].
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Figure 4.2: (a)top left: original 91 × 91 image, (a)top right: output with f(λ) =

3λ2 − 2λ3, (a)bottom left: output with f(λ) = 6λ2 − 5λ3, (a)bottom left: output with

f(λ) = 11λ2 − 10λ3, and (b)the eigenvalues of the smoothing matrix W constructed

from (a)top left along with the eigenvalues corresponding to sharpened smoothing filter

3W 2 − 2W 3 and band pass filters 6W 2 − 5W 3 and 11W 2 − 10W 3.

pass symmetric filter W = V SV T constructed from a 91× 91 image in Fig. 4.2(a), the

spectral modifications due to the polynomial function f(λ) = (1+β)λ2−βλ3 are shown

in Fig. 4.2(b) for different values of the parameter β.

4.4 Reducing Color Artifacts

Any sharpness enhancement operator tends to increase the contrast and en-

hance the details in the input image. Besides high frequency noise components present

in the input image, there are other high contrast artifacts in color images usually called
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: First row: (a)input JPEG image and its different channels: (b)luminance

Y channel, (c)chrominance Cb channel, and (d)chrominance Cr channel. Second row:

(e)output of our sharpening filter and its different enhanced channels: (f)enhanced lumi-

nance Y channel, (g)enhanced chrominance Cb channel, and (h)enhanced chrominance

Cr channel.

false color artifacts [13, 79]. These sorts of color artifacts are created during the image

formation process and are amplified when using a compression scheme like JPEG. Due

to their high frequency, and structured nature, they might get amplified by the sharp-

ening operation. This phenomenon causes unpleasant color artifacts in the final image

which degrades the visual quality. There exist some recent works trying to alleviate such

distortions mostly as post processing algorithms [13, 18, 88]. We do not delve into the

details of these methods. Instead, we opt for a simple mechanism within our filtering
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framework to avoid amplification of color artifacts. It is well understood that human

visual system is less sensitive to fine changes in chroma channels than those details in

luminance channel [13]. In order to reduce these artifacts in the final output, we use

a similar strategy to the one in [128]. Strictly speaking, we convert the input RGB

color image to a suitable luminance-chrominance color space; i.e., YCbCr. Then, the

kernel similarity coefficients computed for the luminance channel Y can also be used for

filtering the chroma channels. This prevents the false color artifacts in color channels

from contributing to the filtering coefficients and is effective in reducing such distortions

in the final output. However, a less aggressive sharpening is applied to color channels

by choosing a smaller value of the sharpening parameter β for chroma channels. This

will further avoid amplification of false color artifacts in the sharpened image. Figure

4.3 illustrates the input JPEG image along with its different channels in YCbCr color

space and their enhanced versions using our proposed algorithm4. As can be seen,

our proposed sharpening filter is able to reduce the color artifacts while avoiding noise

amplification in the final output.

4.5 Experimental Results

In this section, we demonstrate the performance of the proposed sharpening

filter via a number of examples. Also, using synthetic examples the effects of different

parameters are investigated. The performance of the proposed method is compared

with those of [5, 43,128] for real images.

4The input image is from the test examples in http://www.neatimage.com/examples.html.
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(a) (b) (c)

Figure 4.4: Set of color images used in synthetic experiments.

(a) (b)

(c) (d)

Figure 4.5: Effect of the parameter h1 via synthetic examples with β = 1.5, k = 3:

(a)input noisy and blurry image, (b)output of our sharpening algorithm with h1 = 0.8,

(c)output image with h1 = 1.2, and (d)output image with h1 = 2.
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(a) (b) (c) (d)

Figure 4.6: Effect of the parameter β via synthetic examples with h1 = 1.4, k = 3:

(a)input noisy and blurry image, (b)output of our sharpening algorithm with β = 1.5,

(c)output image with β = 2.5, and (d)output image with β = 3.5.

4.5.1 Investigating The Effect of Different Parameters via Synthetic

Examples

In this subsection, we use the test images in Fig. 4.4 to show the effect of

different parameters. Slight out-of-focus blur and additive white Gaussian noise are

added to test images in Fig. 4.4. For this purpose, each image is convolved with a 3× 3

disk function. Then, additive white Gaussian noise with standard deviation equal to 5

is added to generate synthetic noisy and blurry examples.

The smoothing parameters h1 and h2 in the NLM kernel play an important role

in the lowpass characteristics of the corresponding filtersW1 andW2, respectively. These

parameters control the level of sharpening and smoothing achieved by the proposed

DoG-based filter in (4.7). We adopt h2 = kh1 with a positive factor k > 1 which
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(a) (b) (c) (d)

Figure 4.7: Effect of the parameter k via synthetic examples with h1 = 1.4, β = 1.5:

(a)input noisy and blurry image, (b)output of our sharpening algorithm with k = 2,

(c)output image with k = 3.5, and (d)output image with k = 6.

controls the level of contrast enhancement in the output image. Also, note that the

larger the parameter h1 the smoother is the resultant image. In fact, we control the

level of noise reduction by the parameter h1. It also helps avoid the unpleasing halo

artifacts in the output image. On the other hand, the parameter β controls the amount

of sharpening in the image as it appears in the unsharp mask part of the filter F in

(4.6). In Fig. 4.5, we fix the parameters k and β to be equal to 3 and 1.5, respectively.

Then, we change the value of the scaling parameter h1. As can be seen, by increasing

this parameter the level of smoothing is increased resulting in more noise reduction. On

the other hand, increasing the parameter β increases the detail enhancement level of

the filter, as depicted in Fig. 4.6. The parameter k provides the algorithm with finer

control over the degree of contrast enhancement, as illustrated in Fig. 4.7 with fixed
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(a) (b)

(c) (d) (e)

Figure 4.8: (a)input image, (b)output of [5], (c)output of [43], (d)output of [128], and

(e)output of our sharpening algorithm with h1 = 0.7, k = 4, β = 1.6.
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(a) (b)

(c) (d) (e)

Figure 4.9: (a)input image, (b)output of [5], (c)output of [43], (d)output of [128], and

(e)output of our sharpening algorithm with h1 = 2.7, k = 4, β = 1.7.

parameters β and h1.

Here, we rely on subjective evaluation to tune these parameters according to

the level of noise and blur in the input image. However, any appropriate metric can be

exploited to come up with automatic parameter tuning for the proposed framework. For

instance, sharpness metrics in [33,129] could be used for automatic parameter selection.
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(a) (b)

(c) (d) (e)

Figure 4.10: (a)input image, (b)output of [5], (c)output of [43], (d)output of [128], and

(e)output of our sharpening algorithm with h1 = 1.4, k = 4.5, β = 1.2.
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4.5.2 Real Sharpening Examples

Next, we verify the performance of our algorithm for dealing with different

real scenarios. we compare the quality of images produced by our method with those of

other existing algorithms for sharpness and contrast enhancement in [5,43,128]. The pa-

rameters of all algorithms are set for best subjective performance. Figure 4.8(a) depicts

the input image with moderate noise and blur. Figure 4.8(e) shows the output of our

sharpening algorithm compared to those of algorithms [5, 43, 128] in Figure 4.8(b)-(d).

In all experiments the sharpening parameter β is selected to be equal to 0.2 for chroma

channels in our proposed algorithm. As can be seen, our algorithm is better able to

restore the fine details while controlling the effect of noise compared to the enhance-

ment algorithms in [5, 43]. Compared to the result of [128], our method avoids noise

amplification artifacts while reducing the unpleasant halo effects along edges. Figure

4.9 illustrates another real example with stronger noise and color artifacts. As is evident

from the results, the sharpening algorithm in [5] produces noise amplification artifacts

when the amount of noise is high in the input image. Also, the enhancement method

in [43] does not effectively perform noise reduction and sharpening operations simulta-

neously in this case. The sharpening method in [128] produces edge artifacts as can be

seen in Fig. 4.9(d). However, our proposed algorithm is able to effectively sharpen the

edges while avoiding noise and edge artifacts and reducing the color distortions, as can

be seen in Fig. 4.9(e). The example in Fig. 4.10 is even more challenging as it contains

more severe noise and moderate blur along with color artifacts, especially across edges.
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The algorithm in [5] does not carefully control the effect of noise in the input image

and produces noise related unpleasant artifacts. Similarly, the enhancement code in [43]

does not effectively deal with artifacts due to the the noise in the input image. The

algorithm in [128], however, is able to provide a good level of noise reduction and con-

trast enhancement (Fig. 4.10(d)). As regards visual quality, our result in Fig. 4.10(e)

is more effective in reducing the color artifacts.

Summary - We have proposed a new sharpening filter based on the spectral

properties of data-adaptive smoothing and Laplacian matrices. We have established

an analysis framework that explains the relationship between our proposed sharpening

procedure and classical DoG filter. This analysis further sheds light on the underlying

parameters in our proposed formulation and introduces a data dependent and noise ro-

bust version of the DoG operator for use in relevant applications. We have also shown

special cases of our more general approach. We verified the effectiveness of the proposed

method for sharpening real noisy and blurry images.

4.A Relationship Between Laplacian of Gaussian and Difference of Gaus-

sians Operators

DoG operator in (4.2) can be viewed as an approximation of the Laplacian of

Gaussian operator [63,64]. More formally, we start from the diffusion equation

1

2
∇2(Gε ∗ Z) = ∂ε2(Gε ∗ Z), (4.9)

in which Z is the input image, ε2 is the scale parameter (variance of the Gaussian kernel
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Gε), and ∇2(Gε ∗ Z) = ∂2(Gε∗Z)
∂x2

+ ∂2(Gε∗Z)
∂y2

. Also, we have [64]

∂ε2(Gε ∗ Z) ≈ (Gkε ∗ Z)− (Gε ∗ Z)

(k2 − 1)ε2
. (4.10)

One can combine equations (4.9) and (4.10) as

−1

2
∇2(Gε ∗ Z) ≈ (DoGε,k ∗ Z)

(k2 − 1)ε2
, (4.11)

or equivalently,

−1

2
(k2 − 1)ε2∇2(Gε ∗ Z) ≈ (DoGε,k ∗ Z), (4.12)

where ε2∇2(Gε∗Z) is the output of the scale normalized Laplacian of Gaussian operator

[64]. Equation (4.12) implies that the output of the DoG operator is an approximation

of the corresponding response of the scale normalized Laplacian up to a constant factor.

90



Chapter 5

A Discussion on The Range of The

Eigenvalues of Different Normalized

Graph Laplacians

Abstract - In this chapter, we try to find the range of the eigenvalues for

different normalized graph Laplacians; random walk Laplacian (I −D−1K), traditional

normalized graph Laplacian1 (I−D−1/2KD−1/2), and the newly introduced normalized

Laplacian (I − C−1/2KC−1/2).

5.1 Definitions and Theorems Used in Analyses

As discussed earlier, a graph G = (V,E,K) is defined as a finite set of vertices

V which are connected via a finite set E ⊂ V ×V of edges (i, j) with the corresponding

1The diagonal element di in D is usually referred to as the degree of the vertex i in the graph.
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i
j

Figure 5.1: 41× 41 image used in the experiments and patches around pixels i and j of

the image.

weights K(i, j) which measure the similarity between vertices i and j in the graph.

The similarity weights K(i, j) are derived using an appropriate non-negative kernel

function k(fi, fj) where fi and fj are the feature vectors associated with vertices i and

j, respectively. Putting all these weights together, the similarity (affinity) matrix K

of the graph G is derived. The graph Laplacian matrix is then defined whose spectral

properties characterize the underlying structure of the graph with data points as its

vertices. There are at least two different definitions of the normalized graph Laplacian

in the literature [20,114]. Also, a new definition of normalized graph Laplacian has been

presented in this dissertation with some desired spectral properties [51–54,70].

The eigenvalues of graphs (eigenvalues of graph Laplacians) are intimately

related to almost all parameters of a graph and play an important part in understanding

graph structures [20]. In this chapter, we focus on normalized graph Laplacians, and

we present a discussion on the range of the eigenvalues of these matrices for different

choices of kernel similarity function k and different types of graph construction. Note

that we illustrate our results in the context of graph representation of images. However,
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the conclusions are valid for a general graph in other applications as well. In the context

of graph representation for image processing, the vertices of the graph are image pixels.

As depicted in Fig. 5.1, the feature vectors associated with each vertex (pixel) are

usually considered to be the column stacked version of the intensity values in a small

patch around each pixel in the image [11,69]. A popular choice for the kernel definition

is [11,36]

K(i, j) = exp(−‖fi − fj‖2

h2
). (5.1)

A path in a graph is a sequence of edges connecting a sequence of distinct

vertices in the graph. A graph G is connected if any two vertices in G can be joined

by a path [6]. A subset of vertices B ⊂ V of G (a subgraph of G) is called a (con-

nected) component if any two vertices in B are connected by a path and if there are

no connections between vertices in B and the rest of the graph. A graph in which each

vertex is connected to all other vertices, or equivalently the kernel similarity matrix is

full, is called a complete graph. Next, we clarify some definitions used in this chapter

and explain the theorems and facts that support our conclusions and derivations.

5.1.1 Spectral Radius of Stochastic Matrices

The spectral radius ρ(A) of a matrix A is defined as the largest absolute value

of its eigenvalues. If we define the sum of the elements of the ith row of A as ri and the

sum of the elements of its jth column as cj , the spectral radius satisfies the following

inequalities [84]

min
i
ri ≤ ρ(A) ≤ max

i
ri (5.2)
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min
j
cj ≤ ρ(A) ≤ max

j
cj . (5.3)

Note that for row-stochastic matrices, min
i
ri = max

i
ri = 1. Also, for doubly-stochastic

matrices, we have both min
i
ri = max

i
ri = 1 and min

j
cj = max

i
cj = 1, such that for

these matrices the spectral radius is unity.

5.1.2 Irreducible matrices and connected graphs

A matrix A is irreducible if there does not exist a permutation matrix P such

that [65,84]

PAP T =

 B 0

C D


in which B and D are square matrices. It implies that for an irreducible matrix A and

for any i and j, there exists some s such that As(i, j) > 0 [65, 84]. There is a nice

connection between irreducible matrices defined on a graph and the connectedness of

the corresponding graph. In fact, D−1K can be interpreted as a transition probability

of a Markov chain defined on the vertices of a graph [20, 67]. It turns out that the

following three statements are equivalent [20]:

1. Graph G is connected2.

2. D−1K is irreducible.

3. The second smallest eigenvalue of the normalized graph Laplacian I − D−1K is

strictly positive.

2Note that in most applications of graph theory for image enhancement, the corresponding graph is
connected as the four local nearest neighbors of each pixel in the image are taken into account when
building the similarity matrix K [35].
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5.1.3 Perron-Frobenius theorem

For any irreducible matrix A with nonnegative elements, we have [45,84,95]

1. ρ(A) > 0 and ρ(A) is a simple (unrepeated) eigenvalue of A.

2. The left and right eigenvectors of A corresponding to the largest eigenvalue ρ(A)

are both positive vectors (with positive elements).

Moreover, based on the discussion on the spectral radius of stochastic matrices in sub-

section 5.1.1, for any nonnegative, irreducible, and row-stochastic matrix A, the unique

largest eigenvalue is unity with the corresponding constant eigenvector3 1n, as by defi-

nition, we have A1n = 1n for stochastic matrices [69].

5.1.4 Gershgorin’s theorem

Gershgorin’s theorem says that the eigenvalues of a matrix lie in the union of

some certain disks. Specifically, every eigenvalue λ of an n × n matrix A = (aij) is at

least in one of the disks [45,84]

|λ− aii| ≤ Ri =
n∑
j 6=i
| aij |, i = 1, 2, ..., n, (5.4)

in which Ri is the ith deleted row sum of A. In case of the row-stochastic matrix

A = D−1K and for the Gaussian kernel in (5.1), we have aii = 1
di

where di is the ith

diagonal element of the matrix D. Also, we have Ri = 1− 1
di

. Therefore, in such cases,

the Gershgorin’s disks take the following form

|λ− 1

di
| ≤ 1− 1

di
, i = 1, 2, ..., n, (5.5)

3or (1/
√
n)1n in its normalized form for an n× n symmetric matrix A.
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or equivalently

2

di
− 1 ≤ λ ≤ 1, i = 1, 2, ..., n. (5.6)

Note that since generally di > 1 for image processing applications, we would have

−1 < 2
di
− 1 < 1. It is evident that according to Gershgorin’s theorem, the diagonal

elements of D play an important role in determining the spectral range of D−1K.

5.1.5 A Theorem on Characterizing The Graphs Preserving Positive

Definiteness Upon Thresholding

Any graph (or to say, any graph structure) induces a hard thresholding oper-

ation on the elements of every symmetric n× n matrix A = (aij), mapping it to a new

matrix AG defined by [39]

(AG)ij =


aij if (i, j) ∈ E or i = j,

0 otherwise.

(5.7)

Then, the matrix AG is said to be derived from A by thresholding A with regard to

the graph G [39]. The following theorem from [38, 39] fully describes the condition for

preserving positive definiteness when a graph-based thresholding is applied to a positive

definite matrix A.

Theorem 3.1 in [39] : Let A be an arbitrary n × n symmetric positive definite matrix.

Threshold A with respect to a graph G = (V,E) with the resulting thresholded matrix

AG. Then

AG is positive definite for all positive definite A ⇐⇒ G = ∪τi=1Gi for some τ ∈ N,

(5.8)
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where Gi, i = 1, ..., τ , denote disjoint, complete components of G. It essentially certifies

that the only thresholding operation that guarantees positive definiteness of the new

thresholded matrix AG is the trivial one which results in a block diagonal matrix AG

where inside each block there is no thresholding [38]. The above theorem holds true for

positive semi-definite matrices as well [39].

Now that we have the required mathematical tool at our disposal, in the next

section, we shall discuss on the range of the spectrum of different normalized graph

Laplacians one by one. We will also investigate the effect of different graph constructions

in Section 5.2.4.

5.2 Investigation of The Spectral Range of Normalized

Graph Laplacian Matrices

As described in [114], there are various ways one can construct a graph using

the input data points (feature vectors) associated with different vertices of the graph.

Different approaches for constructing the graph result in different structures for the

kernel similarity and Laplacian matrices of the graph. These graph structures can be

split into two general categories: the methods resulting in full and the ones producing

sparse kernel similarity matrices. When the similarity weights are computed for all

pairs of vertices in the weighted graph, the resulting kernel similarity and Laplacian

matrices of the graph would be full matrices. While for instance, for ε-neighborhood

and k-nearest neighbor graph constructions, the resulting kernel similarity matrices of
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the corresponding weighted graphs are sparse [114]. We investigate the spectrum of

different normalized Laplacian matrices when the structure of the matrix transitions

from a full matrix to a sparse one.

5.2.1 Random Walk Laplacian I −D−1K

In general (without any assumption on the kernel function other than non-

negativity of its elements), since D−1K is non-negative, irreducible, and row-stochastic,

based on Perron-Frobenius theorem, it has spectral radius equal to 1. Therefore, in

general the eigenvalues of D−1K are in the range [−1, 1], leading to the conclusion that

generally the graph Laplacian I−D−1K has eigenvalues in the range [0, 2] as presented

in e.g., [67,109]. Also, its unique smallest eigenvalue is 0 with the corresponding constant

positive eigenvector. However, if K is computed from a positive definite kernel like the

Gaussian kernel in (5.1), K and D−1K would be positive semi-definite matrices4 [44,69].

Consequently, in such cases, the eigenvalues of D−1K and I −D−1K lie in the interval

[0, 1], as can be seen in [44,69,119].

5.2.2 Traditional Normalized Laplacian I −D−1/2KD−1/2

The spectral properties of I−D−1K and those of I−D−1/2KD−1/2 are closely

related. Specifically, I −D−1/2KD−1/2 and I −D−1K have the same set of eigenvalues

with different set of eigenvectors, such that if v is an eigenvector of I −D−1K with the

eigenvalue λ, then D1/2v is an eigenvector of I−D−1/2KD−1/2 with the same eigenvalue

4D−1 is a diagonal positive definite matrix and since K is positive semi-definite, D−1K would be a
positive semi-definite matrix.
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λ [20, 69] 5. Consequently, the eigenvalues of I − D−1/2KD−1/2 are in general in the

range [0, 2] as presented in e.g., [99, 101]. On the other hand, when we have a positive

definite kernel as in (5.1), the spectrum of I − D−1/2KD−1/2 would be in the range

[0, 1], as can be found in [44,69,119].

5.2.3 Sinkhorn Normalized Laplacian

We have introduced a new type of normalized Laplacian in [51] based on the

symmetrizing ideas in [70]. In [51], a fast symmetry preserving Sinkhorn-based matrix

scaling algorithm is used to define the normalized graph Laplacian I − C−1/2KC−1/2.

The positive normalizing coefficients in the diagonal matrix C−1/2 are derived using the

matrix balancing algorithm in [56] which yield a doubly stochastic matrix C−1/2KC−1/2.

Since C−1/2KC−1/2 is nonnegative, irreducible, and doubly stochastic, the same analysis

as for the random walk Laplacian applies here as well6.

5.2.4 Spectrum of Different Graph Structures: Full Versus Sparse

Similarity Matrices

In this subsection, we present an observation concerning the dependency of

the graph spectrum on the sparsity of its affinity matrix. Specifically, as will be shown,

some of the results with positive definite kernel functions differ when one chooses to

just compute the similarity weights between each vertex (feature vector) and a subset of

5Note that the eigenvector of I − D−1/2KD−1/2 corresponding to the 0 eigenvalue is D1/21n, and
the traditional normalized Laplacian lacks the desired property of having the constant eigenvector as
one of its basis vectors which is not desirable from a filtering point of view [51,69,99].

6Note that in contrast to D−1K, C−1/2KC−1/2 is symmetric which makes the corresponding spectral
analyses easier. Also, for filtering purposes, in general C−1/2KC−1/2 outperforms D−1K [51, 70].
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Figure 5.2: Spectrum of different full normalized Laplacians: (a)spectrum of I−D−1K,

(b)spectrum of I −D−1/2KD−1/2, and (c)spectrum of I − C−1/2KC−1/2.

vertices rather than all other vertices in the graph. This decision is based on practical

considerations for each specific application at hand. It essentially results in setting to

zero most of the similarity coefficients in the kernel similarity matrix K and equivalently

making it sparse. This changes the positive definiteness of K, even though the kernel

similarity function is positive definite. For illustration purposes, we consider a part of

Barbara image of size 41 × 41 in Fig. 5.1, from which we compute the full similarity

matrix K based on the kernel definition in (5.1) to construct different Laplacians. In

this case, Fig. 5.2 shows the spectrum of different Laplacians in increasing order. As

can be seen, in this case where we use an admissible positive definite kernel and all the

similarities between different pixels (vertices) are taken into account (i.e., the similarity

matrix is full), the eigenvalues of all Laplacians reside in the range [0, 1].

In the next experiment, we consider the same setting but with the similarity

coefficients computed from a small neighborhood (11 × 11) around each pixel. This

results in a sparse matrix K, or to say roughly an approximation of the full matrix by
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Figure 5.3: Spectrum of different sparse normalized Laplacians: (a)spectrum of I −

D−1K, (b)spectrum of I −D−1/2KD−1/2, and (c)spectrum of I − C−1/2KC−1/2.
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Figure 5.4: Spectrum of different sparse normalized Laplacians in terms of scaling pa-

rameter h in (5.1): (a)spectrum of I −D−1K for different values of h, and (b)spectrum

of I − C−1/2KC−1/2 for different values of h.

essentially zeroing some of its elements. The resulting spectrum of all the Laplacians in

this case are plotted in Fig. 5.3. As can be seen, in this case, even though we are using

the same valid positive definite kernel, the eigenvalues are not exactly in the range [0, 1].
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This phenomenon can be described using the theorem in Section 5.1.5. In particular,

if we start from the full positive definite kernel similarity matrix K, then the sparse

kernel similarity matrix derived by taking into account a small neighborhood around

each pixel can be thought of as a graph-induced thresholded matrix obtained from full

K. Therefore, based on the theorem in Section 5.1.5, in general there is no guarantee

that the sparse kernel similarity matrix remains positive definite, even though it has

been constructed using the same positive definite kernel in (5.1). As a result, in general,

the normalized matrices D−1K and C−1/2KC−1/2 won’t remain positive definite any

longer. Furthermore, note that a bound on the range of the eigenvalues of I −D−1K

can be suggested in this case. Specifically, based on the discussion in Section 5.1.4, the

eigenvalues of D−1K lie in at least one of the intervals

2

di
− 1 ≤ λ ≤ 1, i = 1, 2, ..., n. (5.9)

or equivalently, eigenvalues of the normalized Laplacian I −D−1K live in the union of

the intervals

0 ≤ λ′ ≤ 2− 2

di
, i = 1, 2, ..., n, (5.10)

in which λ′ denotes a generic eigenvalue of I − D−1K. It can be seen that changing

the degree of the vertices in the graph leads to a change in the upper bound for the

eigenvalues of the corresponding Laplacian matrix. Specifically, we are able to describe

the effect of the scaling parameter h in (5.1) on the spectrum of the resulting Laplacian

matrix. In particular, increasing h boosts the values di of the diagonal elements of D.

It increases the upper bounds in (5.10). On the other hand, if we decrease the value of
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h in (5.1), then at some point we would have a diagonally dominant matrix A = D−1K,

i.e.,

aii > Ri, i = 1, 2, ..., n, (5.11)

or equivalently,

2

di
> 1, i = 1, 2, ..., n, (5.12)

which enforces the lower bounds in (5.9) to be positive. In such cases, based on Gersh-

gorin’s theorem, the sparse matrix D−1K would be necessarily a positive definite matrix.

A similar analysis can be applied to the doubly stochastic matrix C−1/2KC−1/2 using

the diagonal elements ci of the matrix C. Figure 5.4 depicts the spectrum of I −D−1K

and that of I − C−1/2KC−1/2 for different values of the scaling parameter h. As can

be seen in Fig. 5.4, for small values of h, the corresponding spectrum of the normalized

graph Laplacian would be in the range [0, 1]. It means that D−1K and C−1/2KC−1/2

are positive definite for small values of the scaling parameter h.

Another point we would like to emphasize here is that regardless of the choice

of the graph structure (sparse vs. full), the resulting graph Laplacian always remains

positive semi-definite, but with different range of eigenvalues for different graph con-

structions. For image enhancement applications, there is no clear answer yet as to which

definition is most appropriate and should yield the best results in general. While such

an investigation is beyond the scope of this dissertation, it can be considered as a future

research work.

Summary - The proposed analysis in this chapter alleviates the ambiguity
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on the reported range of the eigenvalues of different normalized graph Laplacians in the

literature, as some of the existing papers report this range to be in its most general form

[0, 2], while others consider this range to be [0, 1]. Also, the proposed analysis unifies

the mathematical background behind each case.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we introduced a general framework for image restoration

using self-similarity information in images. We proposed a new definition of normalized

graph Laplacian for image processing applications using a specific matrix scaling pro-

cedure applied to the similarity matrix. We used the resulting filtering and Laplacian

operators to develop algorithms for different restoration tasks including image deblur-

ring, image denoising, and sharpening.

Taking advantage of the graph Laplacian operator, a new similarity-based

prior was constructed for regularizing the ill-posed deblurring problem in Chapter 2.

We introduced a novel objective function for deblurring with a new data fidelity term

and the corresponding regularization term derived from our definition of the Laplacian

matrix. We showed that minimizing the corresponding objective function yields state-
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of-the-art results for different types of blurs including out-of-focus and motion blurs.

Also, our graph-based formulation provides a framework for spectral analysis of the

underlying restoration method. It is also general in the sense that any other definition

of the graph Laplacian can be incorporated within the same framework. Moreover, we

showed that our specific definition of the normalized graph Laplacian gives performance

and analysis advantages over the previous definitions.

We developed a new graph-based regularization framework for image denoising

in Chapter 3 with appropriate selection of the data fidelity term. We showed that

our denoising algorithm is able to describe the underlying mechanism for some well-

known similarity-based denoising methods like NLM [11] and outperform such methods.

Also, we compared the performance of our proposed denoising algorithm with that of

global similarity-based denoising method in [107], and demonstrated its capability for

producing comparable results with analysis and run-time advantages. Furthermore, we

explored the connection between our denoising method and two widely used iterations

for improving the performance of denoising methods, namely, boosting and diffusion

iterations.

In Chapter 4, we developed an efficient yet effective sharpening algorithm based

on the notion of difference of smoothing operators. We took advantage of the smoothing

and sharpening operators introduced in previous chapters to develop a new algorithm

for image sharpening. We showed via synthetic and real examples that our sharpening

algorithm generates very good results even in difficult situations where the input image

is both noisy and moderately blurred. We established the connection between our
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proposed detail enhancement algorithm and the widely used difference of Gaussians

(DoG) operators. Specifically, we showed that our algorithm provides a data-dependent

variant of the DoG operators. Therefore, it can be used in different image processing,

and computer vision applications where there is a need for better performance.

In Chapter 5, we provided a discussion on the range of the eigenvalues of

different normalized graph Laplacians. The eigenvalues of graph Laplacians are good

indicators of graph structures. Chapter 5 alleviates the existing ambiguity in reported

range of the spectrum of normalized graph Laplacians in the literature.

6.2 Future Work and Extensions

As discussed, our graph-based framework provides a general path that can

be applied to different restoration problems. In this section, we briefly discuss future

research directions within our proposed framework.

6.2.1 Optimal Eigenbasis for Representing Any Given Image

There is an interesting question that is worthwhile answering within our graph-

based formulation. Given any clean (distortion-free) image vector z = [z1, ..., zn]T , what

is the best (optimal) (m+1)-dimensional subspace Vm = [v0,v1, ...,vm] for representing

the signal z? Finding an appropriate answer to this question will be useful for construct-

ing the corresponding orthogonal filtering bases for different image analysis problems.

For this purpose, algorithms similar to Orthogonal Matching Pursuit (OMP) can be

used [28]. The following algorithm provides an example for this purpose.
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Algorithm 3 Algorithm for finding optimal subspace for representing any given signal

Initializations:

v0 = 1√
n
1n, r0 = z− v0v

T
0 z, and V0 = [v0].

for k = 1 : m do

- Minimize ‖rk−1−vkv
T
k rk−1‖2 over vk, and subject to vTk Vk−1 = 0 and vTk vk = 1

(Orthogonality to the existing eigenvectors and orthonormality condition).

- Update: rk = rk−1 − vkv
T
k rk−1 and

- Vk = [v0,v1, ...,vk].

end for

return Vm

In the above algorithm, one starts with the constant eigenvector v0 = 1√
n
1n.

Then, the element corresponding to this eigenvector will be peeled off from the signal

to get r0 = z − v0v
T
0 z. Next, the best eigen basis v1 that optimally represents r0 and

is orthogonal to v0 is found. This process is repeated to derive the set of optimal m+ 1

orthonormal eigenvectors.

6.2.2 A Unified Framework for Estimating The Filtering Matrix and

The Latent Image

In our current formulation, we first construct the filtering matrix W and the

corresponding graph Laplacian I −W using predefined kernel definitions. These filters

are built from a pre-filtered version of the input degraded image. Then, we use these

matrices in a regularization framework to address different restoration problems. What
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if we use a unified framework to alternately estimate the matrix W (or equivalently, its

eigenvalues and eigenvectors) and the latent image z? For instance, if we start from the

following cost function for image denoising

E(z,W ) = ‖W (y− z)‖2 + η‖(I −W )z‖2, (6.1)

and noting that W = V SV T , (6.1) can be rewritten as

E(z, S, V ) = ‖SV T (y− z)‖2 + η‖(I − S)V T z‖2. (6.2)

In this case, we can start from an appropriate initialization for the latent image z as

well as the orthonormal matrix V and the diagonal matrix S and alternate between

minimizing the above cost function for z on one hand, and for S and V on the other

hand. The quadratic nature of the above cost function guarantees the convexity of the

cost function in each case when the other two variables are kept fixed and the objective

function is solved for the third one. Note that this procedure can also be extended to

the more general deblurring problem.

6.2.3 Patch Ordering Idea As Sorting Nodes In A Graph

Recently, the idea of image processing using reordering of image patches has

been presented in [89]. This idea comprises of two steps: first finding an appropriate

ordering of all patches in an image, and second processing the reordered patches. The

effectiveness of this approach for different image restoration tasks has been shown in

[89,90,113]. However, there is still a need for a unified framework to explain and further

improve this approach. As discussed in previous chapters, patches in an image can be
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Figure 6.1: Original image used for computing the similarity matrix K.

(a) (b)

Figure 6.2: (a)Pixel intensity values (pixels in raster-scan order), and (b)pixel intensity

values when pixels are ordered using the permutation from sorting the second eigenvector

of the graph Laplacian matrix.

considered as nodes in the corresponding graph. It is feasible to put the patch ordering

idea in a graph-based framework using our proposed formulation. This will give a better

understanding for the above mentioned steps in related algorithms and provides a path

for their further improvement. In what follows, we briefly discuss the underlying ideas.
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6.2.3.1 Patch Ordering Using a Graph-based Formulation

It can be shown that the required permutation for sorting the nodes of a graph

can be acquired through sorting the elements of the eigenvector corresponding to the

second smallest eigenvalue of the corresponding graph Laplacian matrix [102]. This idea

can be traced back to as spectral embedding.

For illustration purposes, we consider an image of size 91 × 91 in Fig. 6.1.

We use NLM kernel similarity definition to build the similarity matrix K and the cor-

responding un-normalized graph Laplacian D − K. Then, we use the Nyström al-

gorithm [107, 120] to efficiently compute the second eigenvector of the corresponding

graph Laplacian. Figure 6.2(a) shows the pixel values after sorting the pixels as a col-

umn stacked vector (i.e., image vector z). Also, Fig. 6.2(b) depicts the pixel values in

the permuted vector Pz. Note that the permutation matrix P is derived by sorting the

elements of the second eigenvector of the associated un-normalized graph Laplacian. As

can be seen, this graph-based technique provides a reasonable sorting of image pixels in

terms of their intensities. Figures 6.3(a) and 6.3(b) depict the kernel similarity matrices

before and after sorting, respectively. As can be seen in Fig. 6.3(b), pixel index sorting

provides a rough clustering of pixels in the resulting kernel similarity matrix, with simi-

lar pixels concentrated on specific parts of this matrix. In fact, using patch sorting idea

in a graph-based framework is advantageous as it brings similar pixels together. This

actually facilitates processing similar pixels in a local manner after sorting.
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(a) (b)

Figure 6.3: (a)Kernel similarity matrix from pixels indexed by raster-scan ordered ver-

sion of the input image z, and (b)kernel similarity matrix indexed by the permutation

matrix P .

6.2.3.2 Regularized Restoration Framework Using Filtering And Laplacian

Matrices After Sorting The Graph Nodes (Image Pixels)

After sorting the pixels via a graph-based formulation, one is able to bring sim-

ilar pixels together and compute the kernel similarity for each pixel with its neighboring

similar pixels rather than just using the pixels in a spatial neighborhood around it.

Thereby, a new kernel similarity matrix is constructed which is better able to describe

the similarity relationship among different pixels. Consequently, the resulting regular-

ization term (Pz)T (I − WP )(Pz) leads to a better smoothness prior for regularizing

restoration problems1.

1Note that, in this respect, WP is a sparse matrix computed locally after rearranging the pixels in z
in an ordered manner Pz. Therefore, the sparse matrices W and WP are not simply a permuted version
of each other; i.e., in general, WP 6= PTWP .

112



Bibliography

[1] Luis Alvarez and Luis Mazorra. Signal and image restoration using shock filters

and anisotropic diffusion. SIAM Journal on Numerical Analysis, 31(2):590–605,

1994.

[2] T. Arici, S. Dikbas, and Y. Altunbasak. A histogram modification framework and

its application for image contrast enhancement. IEEE Transactions on Image

Processing, 18(9):1921–1935, Sept 2009.

[3] Mathieu Aubry, Sylvain Paris, Samuel W Hasinoff, Jan Kautz, and Frédo Du-
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[60] Anat Levin, Rob Fergus, Frédo Durand, and William T Freeman. Image and

depth from a conventional camera with a coded aperture. ACM Transactions on

Graphics (SIGGRAPH), 26(3):70, 2007.

[61] Xin Li. Fine-granularity and spatially-adaptive regularization for projection-based

image deblurring. IEEE Transactions on Image Processing, 20(4):971 –983, April

2011.

[62] Zhengguo Li, Jinghong Zheng, Zijian Zhu, Wei Yao, and Shiqian Wu. Weighted

guided image filtering. IEEE Transactions on Image Processing, 24(1):120–129,

Jan 2015.

[63] Tony Lindeberg. Scale-Space Theory in Computer Vision. Springer Science &

Business Media, 1993.

[64] Tony Lindeberg. Image matching using generalized scale-space interest points. In

Journal of Mathematical Imaging and Vision, volume 52, pages 3–36. Springer

Berlin/Heidelberg, 2015.

[65] Marvin Marcus and Henryk Minc. A survey of matrix theory and matrix inequal-

ities, volume 14. Courier Dover Publications, 1992.

[66] David Marr and Ellen Hildreth. Theory of edge detection. Proceedings of the

Royal Society of London. Series B. Biological Sciences, 207(1167):187–217, 1980.

121



[67] Marina Meila and Jianbo Shi. A random walks view of spectral segmentation. In

8th International Workshop on Artificial Intelligence and Statistics (AISTATS),

2001.

[68] François G Meyer and Xilin Shen. Perturbation of the eigenvectors of the graph

Laplacian: Application to image denoising. Applied and Computational Harmonic

Analysis, 36(2):326–334, 2014.

[69] P. Milanfar. A tour of modern image filtering: New insights and methods, both

practical and theoretical. Signal Processing Magazine, IEEE, 30(1):106–128, 2013.

[70] Peyman Milanfar. Symmetrizing smoothing filters. SIAM Journal on Imaging

Sciences, 6(1):263–284, 2013.

[71] Dongbo Min, Sunghwan Choi, Jiangbo Lu, Bumsub Ham, Kwanghoon Sohn, and

M.N. Do. Fast global image smoothing based on weighted least squares. IEEE

Transactions on Image Processing, 23(12):5638–5653, Dec 2014.

[72] James G Nagy, Katrina Palmer, and Lisa Perrone. Iterative methods for im-

age deblurring: a MATLAB object-oriented approach. Numerical Algorithms,

36(1):73–93, 2004.

[73] R. Neelamani, Hyeokho Choi, and R. Baraniuk. Forward: Fourier-wavelet reg-

ularized deconvolution for ill-conditioned systems. IEEE Transactions on Signal

Processing, 52(2):418 – 433, Feb. 2004.

[74] Jie Ni, Pavan Turaga, Vishal M. Patel, and Rama Chellappa. Example-driven

122



manifold priors for image deconvolution. IEEE Transactions on Image Processing,

20(11):3086–3096, Nov. 2011.
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