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Capturing the power of seizures: 
an empirical mode decomposition 
analysis of epileptic activity in the 
mouse hippocampus
László Molnár 1, Isabella Ferando 2,3, Benjamin Liu 2, 
Parsa Mokhtar 2, József Domokos 1 and Istvan Mody 2*
1 Department of Electrical Engineering, Sapientia Hungarian University of Transylvania, Târgu-Mures, 
Romania, 2 Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 
United States, 3 Department of Neurology, School of Medicine at University of Florida, Miami, FL, United 
States

Introduction: Various methods have been used to determine the frequency 
components of seizures in scalp electroencephalography (EEG) and in intracortical 
recordings. Most of these methods rely on subjective or trial-and-error criteria for 
choosing the appropriate bandwidth for filtering the EEG or local field potential 
(LFP) signals to establish the frequency components that contribute most to the 
initiation and maintenance of seizure activity. The empirical mode decomposition 
(EMD) with the Hilbert-Huang transform is an unbiased method to decompose a 
time and frequency variant signal into its component non-stationary frequencies. 
The resulting components, i.e., the intrinsic mode functions (IMFs) objectively 
reflect the various non-stationary frequencies making up the original signal.

Materials and methods: We employed the EMD method to analyze the frequency 
components and relative power of spontaneous electrographic seizures 
recorded in the dentate gyri of mice during the epileptogenic period. Epilepsy 
was induced in mice following status epilepticus induced by suprahippocampal 
injection of kainic acid. The seizures were recorded as local field potentials (LFP) 
with electrodes implanted in the dentate gyrus. We analyzed recording segments 
that included a seizure (mean duration 28 s) and an equivalent time period both 
before and after the seizure. Each segment was divided into non-overlapping 1 s 
long epochs which were then analyzed to obtain their IMFs (usually 8–10), the 
center frequencies of the respective IMF and their spectral root-mean-squared 
(RMS) power.

Results: Our analysis yielded unbiased identification of the spectral components 
of seizures, and the relative power of these components during this pathological 
brain activity. During seizures, the power of the mid frequency components 
increased while the center frequency of the first IMF (with the highest frequency) 
dramatically decreased, providing mechanistic insights into how local seizures 
are generated.

Discussion: We expect this type of analysis to provide further insights into the 
mechanisms of seizure generation and potentially better seizure detection.
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Introduction

Seizures are the hallmark of epilepsies that affect over 50 million 
people worldwide (Guekht et al., 2021). Temporal lobe epilepsy (TLE), 
is the most common form of pharmaco-resistant epilepsy and is 
associated with significant morbidity and mortality due to recurrent 
and unpredictable seizure onset (Nayak and Bandyopadhyay, 2022). 
There is significant correlation between the occurrence of a 
neurological insult earlier in life (head trauma, status epilepticus, 
stroke, inflammation, etc.) and the development of TLE after a “latent 
period” (Maguire, 2016). Little is known about the process that leads 
to the development of the chronic epileptic state. It has been 
hypothesized that a likely biomarker of this transitionary 
(epileptogenic) period is the occurrence of high frequency neuronal 
oscillations not generally encountered in the dentate gyrus, termed 
pathological high-frequency oscillations (pHFO) (Engel et al., 2009, 
2013). Neuronal networks in the normal hippocampus and 
parahippocampal structures of humans and animals generate high-
frequency oscillations (HFOs) in the 80–200 Hz range (Engel et al., 
2009; Jacobs et al., 2012; Jefferys et al., 2012). Such local field potential 
(LFP) oscillations are believed to facilitate information transfer by 
synchronizing neuronal activity over long distances. Higher frequency 
oscillations in the range of 200–600 Hz are generally pathological and 
are readily recorded from the hippocampus and parahippocampal 
structures of patients with TLE, as well as in rodent models of epilepsy 
even during epileptogenesis (Bragin et al., 1999, 2002; White et al., 
2006; Engel et  al., 2009; Jacobs et  al., 2012; Jefferys et  al., 2012). 
Hippocampal pHFO exhibit a dynamic evolution during the 
epileptogenic period following status epilepticus (SE), consistent with 
the hypothesis of their role in the transition from a healthy state to the 
chronic state of TLE (Jones et al., 2015). In addition to the pHFO, the 
epileptogenic hippocampus also exhibits short focal seizures that 
typically cannot be recorded with surface electrodes. There is little 
known about the frequency components of these early purely 
electrographic seizures which may serve as a powerful biomarker for 
early detection of seizure onset. In this study we  examine the 
individual frequency components of these early focal events during 
epileptogenesis using the empirical mode decomposition (EMD) 
method (Huang et al., 1998).

Materials and methods

These experiments were carried out in accordance to 
ARRIVE guidelines.

Mice

In this study we used adult (15–20 weeks-old) female (n = 4) and 
male (n = 8) C57BL/6 J mice. Mice were housed with ad libitum access 
to food and water and kept on a 12-h light/dark cycle (from 6 AM to 
6 PM), under the care of the UCLA Division of Laboratory Animal 
Medicine (DLAM) or in the recording cages during continuous 
recordings. All recordings were performed continuously for at least 
3 days according to a protocol approved by the UCLA Chancellor’s 
Animal Research Committee.

Surgeries

Surgeries were performed under aseptic conditions on mice 
weighing 25–30 g under isoflurane anesthesia (2–2.5% in 100% O2) as 
previously described (Barth et al., 2014; Vrontou et al., 2022). Body 
temperature was maintained at 37°C using a rectal probe and a water-
circulated heating pad. Electrodes were implanted bilaterally into the 
hilus of the dentate gyrus (−2.3 AP; 1.6 ML; 2 DV). Next, 70–75 nL of 
20 mM KA (Tocris, in 0.9% sterile saline) was stereotaxically injected 
just above (Bedner et al., 2015; Jones et al., 2015) either the right or 
left dorsal hippocampus using the following coordinates (from 
Bregma, in mm): −1.9 AP, −1.5 ML and 0.8 DV. Status epilepticus (SE) 
typically began 30 min to 1 h post-surgery, after recovery from 
anesthesia. Two hours following the onset of SE, mice were injected 
with lorazepam (6 mg/kg) to abort the seizures.

Chronic recordings

Four to 5 days after the animals had fully recovered from the 
surgery, chronic simultaneous video and local field potential 
recordings were carried out continuously (24 h a day) for 1–8 weeks as 
previously described (Molnár et al., 2018; Vrontou et al., 2022). LFPs 
were recorded with a custom-made miniature dual headstage amplifier 
connected to the electrode sockets mounted on the animal’s head and 
then wired to an electrical commutator (Dragonfly Inc.). The signals 
from the commutator were fed through a 16-channel amplifier (A-M 
Systems model 3,500) with a gain of 1,000. Signals were low-pass 
filtered at 600 Hz and sampled at 2048 s−1 per channel, using a 16 bit 
National Instruments A/D converter board. Continuous data 
acquisition was carried out using Igor NIDAQ tool (Wavemetrics, 
Lake Oswego, OR, United States). No electrographic seizures were 
recorded before day 7 after the KA administration. Our analysis 
included only electrographic seizures (from seizure numbers 1–5 
within a given animal) without generalization to the tonic–
clonic phase.

Data analysis

All data analyses were carried out using custom written 
procedures in IgorPro technical graphing and data analysis software, 
version 6.37–9 (Wavemetrics, Lake Oswego, OR, United States) using 
its built-in functions for RMS measurement, FIR filtering, FFT, Hilbert 
amplitude, continuous wavelet transform, etc. Further details about 
data analyses can be found in the following sections.

Seizure and post-ictal lull detection

To detect seizures, we  started with using the Autocorrelation 
method presented in White et al. (2006). The continuous 12 h epochs 
of our data records were sampled at 2048 s−1. For seizure detection 
we down-sampled the signal to 256 s−1. We defined basic time epochs 
of 125 ms (instead of 120 ms used by White et al., 2006), each one 
containing 32 points from the down-sampled signal. In each 125 ms 
interval, we calculated the maximum and the minimum of the signal, 
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obtaining the Max_wave and Min_wave functions. Using these values, 
we calculated HV and LV as follows:
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In this way, we considered the correlation of the successive time 
epochs, avoiding the processing of any spurious noise. Next, 
we  defined a 5 s long window sliding in steps of 1 s in which 
we  summarized the HV-LV difference (40 points in every 5 s). 
We calculated Metric3S as follows:

 Metric S sum HV LV3 = −( )

We used the Metric3S values to define epochs to be considered 
seizures (and post-ictal lulls) in the record. Previously we described 
an original approach to establish objective thresholds using only the 
intrinsic properties of the extracted signals (Molnár et  al., 2018). 
We enhanced the autocorrelation method using this thresholding 
technique. The all-point histograms of the Metric3S values were 
comprised of two normal distributions that were fitted separately. The 
bimodality of the overall distribution was tested using the formula 
below (Ashman et al., 1994) to verify that the value D > 2, where
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Once the bimodality of the two distributions was verified, we set 
the threshold for seizure detection as the Metric3S values larger than 
the mean of the leftmost Gaussian + 3*SD. Epochs where the value of 
Metric3S exceeded this objectively determined threshold were 
considered to be part of a seizure. Detec ted seizures with a duration 
of <5 s were discarded. Seizures are usually followed by periods with 
very low amplitude oscillations. We  named these segments post-
seizure lulls, and defined them by the Metric3S values lower than the 
mean of the leftmost Gaussian – 3*SD.

Inter-ictal spike detection

For IIS detection we  used the original recordings sampled at 
2048 s−1. We defined a 30 ms window sliding in steps of 25 ms. In each 
of these segments we calculated the difference between the maximum 
and minimum values, obtaining a difference signal. The all-point 
histogram of this difference signal also had a bimodal distribution 
with two Gaussian curves best fitting the distribution. After checking 
for the distributions satisfying bimodality, as above, values larger than 
the mean of the right-most Gaussian + SD were considered as the 

threshold for IIS detection. We ignored IIS that were detected during 
detected seizures.

Empirical mode decomposition

The application of decomposition methods to time series is an 
important analysis step allowing patterns and behaviors to be extracted 
as components providing insight into the oscillatory mechanisms 
underlying the time series. The most important is that the 
decomposition methods provide components which are physically 
meaningful. The Empirical Mode Decomposition (EMD) introduced 
by Huang et  al. (1998) is a powerful method highly suitable for 
analyzing nonlinear and non-stationary data, as intracortical LFP, in 
an adaptive manner. The key part of the EMD analysis is the extraction 
from any complicated time-series data of a finite set and often small 
number of intrinsic mode functions (IMFs) that can produce well-
behaved Hilbert transforms. This decomposition method is adaptive 
and since the decomposition is based on the local characteristic time 
scale of the data, it is applicable to nonlinear and 
non-stationary processes.

 • An intrinsic mode function (IMF) is a function that satisfies two 
conditions (Huang et al., 1998):

 • in the whole data set, the number of extrema and the number of 
zero crossings must either be equal or differ at most by 1;

 • at any point, the mean value of the envelope defined by the local 
maxima and the envelope defined by the local minima is 0.

 • The output of the EMD algorithm applied for a time series x(t) is 
a set of n IMFs (imf t i ni ( ) =, ,1 ) and a final residual, r(t), where 
the sum of the individual IMFs and the final residual gives the 
original time series (Kim and Oh, 2009; Paul, 2018):

 
x t imf t r t

i

n
i( ) = ( ) + ( )

=
∑

1

There are two different stopping criteria for the EMD algorithm: 
the first one is based on definition of an IMF, and the second based on 
the number of IMFs to be extracted. The extracted IMFs preserve the 
inherent properties of the original signal. As the decomposition level 
increases, the complexity of the IMFs decreases, and so does the scale 
of the signal. When there are abnormal activities in brain signals, the 
IMFs will show different behavior than during normal brain activities. 
Therefore, various features can be extracted from the IMFs and even 
the IMFs themselves can be used as features for seizure detection from 
EEG signals (Paul, 2018). However as presented in Bonizzi et  al. 
(2014) IMF components retrieved by EMD may be  affected by 
mode mixing.

The Hilbert spectral analysis is used to determine the 
instantaneous frequency (IF) as function of time for the extracted 
IMFs. The IF is the frequency of the signal determined at an instant of 
time t. In classical Fourier analysis, a complete oscillation of a sine or 
cosine function is needed to find out the local frequency, but it makes 
little sense for non-stationary signals like the EEG. The obtained 
frequency–time distribution of signal amplitude or energy allows the 
identification of highly localized features in the signal. We have not 
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used this analysis here, but for short segments of the raw signals 
we  resorted to using the Morlet wavelet analysis as previously 
described (Jones et al., 2015). The Morlet mother wavelet was used, 
and scales were chosen to reflect frequencies between 100 and 700 Hz 
in steps of 1 Hz using ω0 = 6. Z-scored wavelet transforms were 
calculated based on the entire time-frequency matrix to represent 
relative changes in magnitude. Warmer colors represent greater 
Z-scores on a scale of 0–10.

We performed the EMD analysis according to a published 
approaches (Huang et al., 1998; Wang et al., 2010). Initially, to extract 
the IMFs, 7 s long recording epochs were used. The number of 
iterations (sifting steps) to obtain the IMFs was stopped when a 
stopping criterion was reached. For stopping the sifting steps we used 
the S-number criterion. The S-number is defined as the number of 
consecutive sifting iterations in which the number of zero-crossings 
and extrema are the same and differ at most by one. We used S = 2.

We calculated the spectral properties (magnitude squared) of each 
IMF, using the Fast Fourier Transform (FFT) for each IMF obtained 
by the EMD analysis. We defined spectral boundaries for each IMF 
spectrum, defining a rectangle with the area equal to the area of the 
spectrum resulting from FFT analysis (see below). In this way, a 
maximal and a minimal value of the frequency spectrum could 
be identified. The center of the rectangle was used to define the central 
frequency of the IMF spectrum. The spectral power of the IMFs 
we calculated by obtaining RMS of the magnitude squared of the 
entire FFT spectrum for a given IMF.

To improve the temporal accuracy for the localization of the 
onset and termination of the seizures, we  reduced the length of 
analysis intervals, observing, that EMD analysis can be performed, 
and gives very accurate results even in 1 s long intervals. Longer 
intervals (e.g., 7 s) were used to analyze recordings during inter-ictal 
periods (e.g., Figure 1) to obtain the center and centroid frequencies 
of the IMFs, their spectral RMS and the power of the IMF waveforms. 
The rest of the EMD analysis was standardized by using 1 s long 
intervals, during equal duration pre-seizure, seizure, and post 
seizure epochs.

Results

Empirical mode decomposition analysis 
reveals exponentially decreasing frequency 
components of the IMFs derived from The 
LFP signals

A given recording segment usually yielded 8–10 separate IMFs 
and a residual component (Figure 1A). The IMFs obtained through 
EMD analysis have frequency spectra that overlap from one IMF to 
the next. As shown in the normalized spectra in Figure  1B, the 
frequency spectra of successive IMFs was obtained by performing a 
FFT on each IMF separately. It is clear from the figure that there are 
overlapping frequencies of the spectra that depend on the unbiased 
extraction of the IMFs. As comparing the parameters such as peaks or 
areas of the FFT spectra are somewhat less informative, we devised an 
objective method to find the center frequencies and high- and low-end 
values of the spectra. As illustrated in Figure 1C, the method consists 
of finding a rectangle with a similar area as the FFT spectrum of the 
given IMF. The sides of the rectangle are automatically adjusted by the 
algorithm until a maximum overlap in area is found between the FFT 

spectrum and the rectangle. Then, the frequency given by the x-value, 
i.e., the frequency at the center of the rectangle is the center frequency 
of the IMF, and the positions of the left and right edges of the rectangle 
constitute the minimum and maximum frequencies, respectively of 
the given IMF. We also calculated the centroid of the FFT distribution. 
The coordinates of the center of gravity were calculated using the 
integral method. The value of the abscissa constituted the centroid 
frequency while the value of the ordinate was considered the 
magnitude squared of the centroid. The spectral RMS was calculated 
as the RMS of the FFT of the spectrum. Once all these values for all 
the IMFs through EMD analysis were obtained, we could plot the 
average values obtained from n = 8 mice of the successive IMFs in 
recording segments of 7 s during inter-ictal periods. As shown in the 
Figure 1D, when plotted on a log-scale ordinate, the decrease in the 
center and centroid frequencies of the IMFs is nearly perfectly 
exponential, i.e., a straight line on the logarithmic scale. This resembles 
very much the logarithmic relationship between the frequencies of 
named brain rhythms (Buzsáki and Draguhn, 2004). On the same 
figure we also plotted the spectral RMS values and the magnitude 
squared of the FFT centroid for each of the IMFs. As expected, the 
largest spectral powers are found in IMFs with their center frequencies 
of 1–20 Hz.

Empirical mode decomposition analysis 
reveals diminished frequency components 
of and enhanced power of the IMFs during 
seizures

We next wanted to know how the center frequencies and the 
spectral power (RMS) of the IMFs are affected during electrographic 
seizures when compared to the pre-seizure (interictal) periods. 
We recorded 15 electrographic seizures in 4 mice starting with the first 
recorded seizure that met our seizure definition criterion (please see 
Materials and Methods). In all animals (n = 8), the first seizures were 
always recorded during the 12 h of the dark cycle (6 PM to 6 AM) 
6–8 days after the suprahippocampal injection of kainic acid. In one 
animal we also recorded 1 and 2 seizures, respectively, during the 
following 12 h of light cycle and the dark cycle after that. We wanted 
to concentrate on the earliest seizures during the period of 
epileptogenesis. The duration of the seizures (n = 20 in n = 8 animals) 
was variable (range: 10–72 s) with an average (± SD) duration of 
28.3 ± 18.1 s. For the EMD analysis we used a recording segment that 
contained the seizure, as detected from beginning to end, and a 
pre-seizure period of equal duration, and a post seizure period of 
equal duration. Thus, the entire recording used for the EMD analysis 
was three-times the duration of the detected seizure. The EMD 
analysis was then carried out on non-overlapping 1 s long segments. 
Therefore, the time resolution of the center frequencies and the 
spectral RMS values for each IMF was 1 s. This approach provided 
sufficient resolution to examine in detail the time course of the 
changes in these two parameters before, during and after the seizures.

The variability in the duration of seizures and consequently the 
recorded epochs used for analyses precluded us from simply time-
averaging across all recordings. We resorted to calculating the relative 
times based on the total duration of a given seizure. We opted to divide 
the total length of the seizure into 5 parts (quintiles). This division 
automatically generated quintiles also for the pre-seizure and the post-
seizure periods. The center frequencies and spectral RMS values during 
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the quintiles were averaged from the 1 s epochs that fell within the 
quintiles. In this manner, for each recording containing the seizure and 
an equal duration of pre- and post-seizure period we  obtained 15 
equidistant points (in relative seizure quintile time) covering all three 
phases of interest during the recordings. Once these calculations were 
done for all the recorded seizures, the quintiled data could be averaged 

across all recordings and the center frequencies and RMS values could 
be compared during the pre-seizure, seizure, and post-seizure periods.

We were particularly interested in the IMFs that showed the largest 
changes in center frequencies and RMS values during seizures compared 
to the pre-seizure periods. For each IMF, we first identified the quintiles 
with the largest values of the power (RMS) during the seizure segment. 

FIGURE 1

Properties of the intrinsic mode functions (IMFs). (A) A raw trace (top) of a 7 s long segment from an inter-ictal period. The IMFs (1–10) are shown under 
the raw trace. The last trace is of the residual (Res), left after all IMFs have been obtained. Vertical scale bars are not included in the figure as all traces 
are shown relative to their largest peak-to-peak deflections. (B) The frequency spectra of the IMFs (1–10) obtained through FFT of the individual IMFs. 
Note the overlap in the frequency spectra. The spectra were expressed as magnitude squared and were normalized for each IMF to the largest value of 
the spectrum. (C) The spectrum of IMF4 is used to illustrate the calculation of the center frequency. The red traces define a rectangle with an equal 
area to the spectrum and with a maximal overlap in area with it. The center frequency (the middle of the rectangle) is shown by a red arrow at 56.3 Hz. 
The left and right sides of the rectangle were used to define the minimum and the maximum frequencies of the IMF, respectively. The RMS value of the 
FFT spectrum, which we took as the spectral power of the IMF, is also indicated (102.8 mV2). (D) The center frequencies as calculated by the rectangle 
method (red •), the frequencies of the centroids (blue •), the spectral RMS (green •), and magnitude squared value of the centroid (black •) are plotted 
as averages from 7 s long epochs determined in separate recordings from 8 mice. There is a clear linear decrease on the log scale of the frequencies 
indicating an exponential decline in the center and centroid frequencies of the successive IMFs. Note that the largest powers are carried by frequencies 
between approximately 1–10 Hz.
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We  chose the center frequency of the same IMF during this same 
quintile to be compared to the average center frequencies of the same 
IMF during the pre-seizure period. Figure 2 shows the center frequencies 
(Figure 2A) and spectral RMS values (Figure 2B) for IMF1 (the IMF 
with the largest center frequency) plotted as the center frequency of the 
quintile with the largest spectral power during the seizure vs. the average 
center frequency during the pre-seizure period for all recorded seizures. 
A clustering analysis using farthest-point clustering algorithm set to 
identify two clusters classified the three values circled with red in the 
figure as an independent cluster. Interestingly, these values were all 
obtained from the first 3 seizures of animal I0001 and were excluded 
from the linear fitting of the data. A straight line through the origin fitted 
to the 12 remaining seizures indicates that the frequencies of IMF1s 
were reduced by average to 64% (the slope of the linear fit ± SD is: 
0.64 ± 0.04) of the values compared to the center frequencies of the 
pre-seizure periods. The 95% confidence intervals (black dotted lines) 
show that the slope of this line is significantly different from the line with 
a slope of 1 (blue dotted line). Considering all 20 seizures, the pre-seizure 
average (± SD) IMF1 frequency was 491.5 ± 92.7 Hz while the average 
frequency at maximum RMS during the seizure was 319.3 ± 123.3 Hz. 
This difference is significantly different (two tailed p = 0.00003) as 
measured by a nonparametric Wilcoxon paired rank test. Similarly, as 
shown on Figure 2B, the pre-seizure spectral RMS average of IMF1s was 
9.4 ± 11.6 mV2 vs. the average of the maximum spectral RMS values 
during the seizures of 774.5 ± 812.4 mV2, also significantly different (two 
tailed p = 0.0001) according to the nonparametric Wilcoxon paired 
rank test.

We have also identified the two IMFs that had the largest 
fractional increase in power during the seizures. These were IMF3 
and IMF4. The changes in their frequencies for the 20 seizure and 
pre-seizure periods are shown in Figure 2C (IMF3: black symbols, 
IMF4: red symbols). As done in Figure 2A, we fitted linear regression 
lines to the data points to obtain the slopes of the relationship 
between the frequencies of the IMFs during the pre-seizure period 
vs. those at the time quantiles during seizures with the highest 
spectral RMS values. These slopes (± SD) for the fitted lines were, for 
IMF3: 0.72 ± 0.09 and nearly identical for IMF4: 0.75 ± 0.08. The 
dotted 95% confidence interval lines indicate that the slopes are 
significantly less than the slope of unity (dotted blue line). For all 
seizures recorded, the pre-seizure average (± SD) IMF3 frequency 
was 66.9 ± 13.8 Hz while the average frequency at maximum spectral 
RMS during the seizure was 42.3 ± 12.7 Hz. The same values for IMF4 
were 34.2 ± 4.2 Hz and 25.9 ± 5.1 Hz, respectively. This decrease in 
frequency during the seizure is significantly different for both IMFs 
(two tailed p = 0.0031 for IMF3 and p = 0.0013 for IMF4) as derived 
from nonparametric Wilcoxon paired rank tests. The increase in the 
spectral RMS of the two IMFs during the seizures was remarkable. 
Figure 2D depicts the large increases in the power of IMF3 and IMF4 
during seizures compared to the pre-seizure periods. For some 
seizures these increases were 2–3 orders of magnitude. The 
pre-seizure spectral RMS average of the IMF3s was 31.1 ± 24.4 mV2 
vs. the average of the maximum spectral RMS values during the 
seizures of 1883.5 ± 2901.9 mV2, whereas for the IMF4s these values 
were 79.7 ± 58.9 mV2 and 2476.1 ± 2478.7 mV2, respectively. The large 
increases in the spectral power of IMF3 and IMF4 during seizures 
compared to the pre-seizure averages were both significantly different 
(two tailed p = 0.0001 for IMF3 and p = 0.00007 for IMF4) according 
to nonparametric Wilcoxon paired rank tests.

IMF1 frequency decrease during seizures 
and the presence of pathological 
high-frequency oscillations

The first IMF derived through EMD, IMF1 is the component of 
the signal that has, by definition, the highest frequency. As the built-in 
filter of our 16-channel amplifier had a broad roll-off, our signals 
low-pass filtered at 600 Hz still had considerable power at this 
frequency. As we have shown above (Figure 2A), in 17 of 20 detected 
seizures, the frequencies of the IMF1s were substantially reduced 
during seizures when compared to the pre-seizure periods. After the 
seizures, these frequencies quickly returned to the pre-seizure values 
even when the peak-to-peak amplitudes of the LFPs were reduced 
during the post-seizure lull periods. The average values for the changes 
of the IMF1 frequencies for the 17 remaining seizures during the time 
quintiles determined from the seizure durations are shown in Figure 3. 

FIGURE 2

Relationship between pre-seizure and during seizure center 
frequencies and spectral RMS of three key IMFs. (A) Plot of the IMF1 
center frequency during the maximum RMS found in a quintile of a 
seizure for 20 seizures vs. the corresponding pre-seizure average 
center frequency of IMF1. The three data points circled in red were 
identified as belonging to a separate cluster by the farthest point 
clustering algorithm (see text for details). A linear regression line 
through the origin (black solid line) was fitted to the remaining 17 
points resulting in a fitted slope (± SD) of 0.64 ± 0.04 indicating a 
decrease in the IMF1 frequencies during seizures. The 95% 
confidence intervals for the linear fit are shown with dotted lines and 
show that the slope of the fit is significantly different than a slope of 
1.0 (blued dashed line) that would indicate no change in the 
frequencies during seizures when compared to the pre-seizure 
period. (B) Plot of the largest spectral RMS of IMF1 during a seizure 
time quintile vs. the pre-seizure average spectral RMS values. Note 
that the three events circled in (A) have the smallest spectral RMS 
values both during the seizures and the pre-seizure periods. As the 
center frequencies of IMF1decreased during seizures, the spectral 
RMS increased significantly, sometimes by an order of magnitude or 
more. (C) Same plots as in (A) but for IMF3 (black symbols) and IMF4 
(red symbols). The slopes (± SD) of the fitted lines are given in the 
text. Both slopes were significantly different that a slope of 1.0 (blue 
dashed line) as indicated by the 95% confidence intervals (dotted 
lines). (D) Same plots as in (B) but for IMF3 (black symbols) and IMF4 
(red symbols). These two IMFs represent those with the largest 
spectral RMS increases during seizures, sometimes reaching over a 
100-fold changes.
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As shown in the figure, it is remarkable how rapidly the IMF1 
frequency declines at the beginning of the seizure, perhaps even before 
this time. Conversely, after the seizure ends, the IMF1 frequency 
returns to pre-seizure levels.

The 3 points in Figure  2A that were identified by the cluster 
analysis to belong to a different cluster of data were those seizures in 
which the pre-seizure central frequencies of IMF1s did not decrease. 
As we had a fourth seizure from the same animal in which the IMF1 
frequency readily decreased during the seizure period, we wanted to 
conduct a more detailed analysis of the 4 seizures recorded in this 
mouse (I0001). The center frequencies of the IMF1s during the time 
quantiles of the four seizures are plotted in Figure 4A. The numbering 
of the seizures reflects their order of occurrence in the animal. Seizure 
#1 was the first electrographic seizure recorded in this mouse during 
a dark cycle period, and the next 2 seizures (Seizures #2–3) were also 
recorded during the same 12 h. Seizure #4 was the next seizure, and it 
was recorded during the light cycle of the following 12 h. As show in 
the figure, there is a remarkable difference between Seizures #1–3 and 
Seizure #4 regarding the central frequency of IMF1 during the seizure. 
To investigate potential differences in the two types of seizure (with 
decreased central frequency during seizure and without) we analyzed 
the raw signals between 100–700 Hz using Morlet wavelets to obtain 
a high-resolution image of the time-dependent changes in signal 
frequency. As illustrated in the example of Seizure #1 in Figure 4B, 
we checked for high frequency components in the signals during inter-
ictal spikes (IIS) present during the pre-seizure period and during 
large spikes recorded during the seizures themselves. In all these 
events, the highest frequencies of the LFP recordings did not surpass 
~200 Hz. The occasional higher frequencies were also present between 
IIS and most likely correspond to muscle contraction artifacts. This 
limited frequency spectrum of the IIS and the ictal spiking was also 
there in the Seizure #2 and #3 recordings. In sharp contrast, when 
we examined the pre-seizure IIS and the ictal spikes of Seizure #4, the 

seizure with the substantial reduction in IMF1 center frequency 
during the seizure, we found very clear high frequency components of 
the LFP signals during these events (Figure  4C). The frequencies 
ranged between 350–450 Hz, much like those of the pathological high-
frequency oscillations (pHFO) characteristically recorded in epileptic 
foci both in human epileptic patients and in animal models of the 
disease (Bragin et al., 2002; Engel et al., 2009; Ogren et al., 2009; Jacobs 
et al., 2012; Jefferys et al., 2012).

FIGURE 3

Evolution of IMF1 center frequencies during the pre-seizure, seizure, 
and post seizure periods. To have a relative comparison of the time 
courses for the various seizures recorded in different animals, the 
recordings were divided into five quintiles of time for each of the 
three periods that were of similar duration (see text for details). The 
points are the absolute values of the average center frequencies of 
IMF1s that were chosen based on their average center frequencies 
≥400 Hz during the pre-seizure periods (n = 17 seizures, 8 animals). 
The error bars represent SD. Note the large decrease in center 
frequencies during the seizures, already starting at the end of the 
pre-seizure period, and the quick recovery of the center frequencies 
once the seizures are over.

FIGURE 4

Distinguishing four seizures in the same animal based on the 
changes of IMF1 center frequencies during the seizures. (A) A plot 
similar to that in Figure 3, except for four consecutive seizures in 
mouse #I0001. The first three of these seizures were identified as a 
cluster apart from the rest (red circle in Figure 2A) and show no 
decrease in center frequencies during the seizures. The fourth 
(Seizure #4) shows the typical decrease in center frequency during 
the seizure. (B) Inter-ictal spikes (Pre-Seiz1) and ictal spiking (Seiz1) 
preceding and during Seizure #1. Below the raw traces the Morlet 
wavelet time-frequency analyses performed between 100 and 
700 Hz (steps of 1 Hz) show the lack of pHFO in these recordings 
both before and during the seizures. The high-frequency oscillations 
present pre-ictally are also there in periods between the spikes and 
are most likely do to muscle contractions. The frequencies with the 
highest amplitudes found during ictal spiking have frequencies of 
<200 Hz. (C) The same as in (B), but for Seizure #4, which showed a 
significant decrease in center frequencies during the seizure. As 
shown by the Morlet wavelet analysis below the raw traces, both 
pre-ictal spikes, i.e., IIS (pre-Seiz4) and the ictal spiking (Seiz4) have 
very strong components in the 400 Hz range corresponding to 
pHFO. The color scale indicates the Z-score of the Morlet matrix and 
is the same scale for (B,C).
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Another example of the pHFOs being present when the IMF1 
frequency decreases during seizures is illustrated in Figure 5. The 
seizure in this animal started with no change in IMF1 frequency 
presumably because the seizure was volume-conducted to the site of 
the recording. However, about a third of the way into the seizure, the 
frequency of the IMF1 decrease and the pHFOs became visible, 
perhaps indicating that the seizure was no longer propagated to the 
recording site, but the local neuronal network has become involved in 
its generation. We found pHFOs in every one of the 17 seizures in 
which the IMF1 frequencies dropped during the seizures, indicating 
that the seizures originated at, or close to, the recording site.

The utility of the power and central 
frequency of IMF1 for seizure detection

Thus far we have shown the aggregate changes in the power and 
central frequencies during seizures recorded during the epileptogenic 
period. We next took a closer look at the values of these two parameters 
on a second-by-second scale, as it has been calculated by our EMD 
algorithm. Figure 6A shows the raw LFP signal of a seizure in a mouse 
(I0009), the first electrographic seizure during the epileptogenic period 
in this animal. In the pre-seizure period, the central frequency of IMF1 
shows sudden drops, sometimes for longer than 2 s. During these 
periods, marked by asterisks above the recordings in Figure 6A, while 

the frequency of the IMF1 drops, its spectral RMS rises by an order of 
magnitude. In the raw LFP signal, these periods are characterized by 
large IIS, but not full electrographic seizures. As shown in more detail 
in Figure 6B, when the full electrographic seizure begins, the lowered 
central frequency of the IMF1 does not quickly return to baseline, nor 
does the massively increased spectral RMS of IMF1. This point, marked 
by a red arrow in the left panel of Figure 6B, precedes by 6 s the point 
that marks the beginning of the seizure (black arrow) according to our 
seizure detection algorithm. Conversely, where our seizure detection 
algorithm indicated the end of the seizure (black arrow on right panel 
of Figure 6B), this was 1 s later than the time point where both the IMF1 
frequency and spectral RMS returned to pre-seizure values (red arrow 
on right panel of Figure 6B). In Figure 6C the first three spikes after the 
decrease in IMF1 frequency and increase in spectral power are shown 
where on the scale illustrated on the graph, the line of the IMF1 central 
frequency and of the spectral RMS cross each other (red arrow). The 
presence of the pHFO (350–450 Hz) characteristic of seizure focus are 
clearly visible in the Z-scored Morlet wavelet transform of the raw 
signal between 100–700 Hz (lower panel of Figure 6C).

Discussion

Our major findings in the present study can be summarized as 
follows. 1) The EMD analysis of intrahippocampal LFPs recorded at 

FIGURE 5

Example of a seizure recorded in animal #I0012 where the IMF1 frequency starts to decrease after seizure onset. Top panel: plot of the IMF1 spectral 
power (blue line, left y-axis) and center frequencies (green line, right y-axis) at 1 s resolution during the entire pre-seizure, seizure, and post-seizure 
periods (the raw record is indicated in pale red). The black bar below the trace shows the seizure duration as detected. The vertical dashed line shows 
the point where the center frequency of IMF1 starts to decrease during the seizure. Middle panel: the Morlet wavelet transform of the raw recording 
indicating frequencies between 100 and 700 Hz (left y-axis). Superimposed on the image is the trace of the center frequency of IMF1 (right y-axis). 
Bottom panel: expanded region as indicated by the marks, showing the time during the seizure when the frequency of the IMF1 begins to drop (dashed 
line). Please note that the pHFOs in the range of 200–500 Hz occur solely when the IMF1 frequency is diminished.
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high bandwidth in mice shows exponentially decreasing center 
frequencies of successive IMFs, much like the named oscillations in 
the brain (Buzsáki and Draguhn, 2004), 2) During the epileptogenic 
period induced by suprahippocampal kainic acid administration, 
electrographic seizures are characterized by decreases in the center 
frequencies and large increases in the spectral power of the individual 
IMF components, and 3) The IMF with the highest center frequency 
(IMF1) drops its frequency during, and even preceding, the seizure. 
When this drop in frequency happens, there are pHFOs characteristic 
of the seizure focus, detectable in the pre-ictal and ictal periods.

Compared to the numerous EMD analyses applied to nonstationary 
EEG recordings (Pachori and Bajaj, 2011; Zahra et al., 2017; Kaleem 
et al., 2021; Li et al., 2021), ours is the first attempt to derive a single 
center frequency of the IMFs derived through the analysis. 
We accomplished this with both a geometrical method that identified an 

equivalent rectangle to the FFT power spectra of the IMFs (Figure 1C) 
and by finding the centroid of the FFT. In this manner, we could derive 
the exponentially declining relationship between these unique center 
frequency values in successive IMFs (Figure 1D). The meaning of this 
exponential decline is unclear now, but it may reflect the logarithmic 
relationship between the frequencies of the various named oscillations 
found in the brain (Buzsáki and Draguhn, 2004; Buzsáki, 2006).

The EMD analysis has been extensively used in the study of 
epileptic phenomena in recordings from epileptic patients and from 
animal models of the disease (Pachori and Bajaj, 2011; Zahra et al., 
2017; Kaleem et al., 2021; Li et al., 2021). Usually, the method is used 
for off-line seizure detection in curated data sets, many of them 
recorded at a limited bandwidth (Pachori and Bajaj, 2011). Nevertheless, 
several advances have been made for seizure detection using this 
method (Cherian and Kanaga, 2022). In most cases of these approaches 

FIGURE 6

High temporal resolution analysis of the center frequencies and the spectral power (RMS) of IMF1 in the first seizure recorded in animal #I0009. 
(A) Plot of the IMF1 spectral power (blue line, left y-axis) and center frequencies (red line, right y-axis) at 1 s resolution during the entire pre-seizure, 
seizure, and post-seizure periods. Note that sudden decreases in center frequencies and commensurate increases in spectral power take place during 
the pre-ictal period (asterisks), but are not sufficiently long-lived to turn into seizures. These phenomena are also manifest at the beginning of the 
seizure, but last for the entire duration of the seizure, rapidly returning to pre seizure levels immediately after. (B) The regions of the recordings 
highlighted in yellow in (A) are shown at a faster time scale. The black arrows indicate the beginning and the end of the seizure as determined by the 
seizure detection algorithm. The red arrows show the inflection points of the center frequencies and of the spectral power. These precede the black 
arrows by 6 s at the beginning of the seizure and by 1 s at the end of the seizure, respectively (please see text for details). (C) The region of the recording 
highlighted in yellow in (B) are shown at a faster time scale. The three spikes immediately after the center frequency and spectral power inflection 
points show characteristics of pHFO with frequencies in the 300–500 Hz range. The color scale indicates the Z-score of the Morlet matrix.
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the first IMF (IMF1) derived by the EMD analysis is considered an 
artifact and is dismissed as such (Zahra et  al., 2017). Because our 
recordings were of high bandwidth and because of our previous interest 
in pHFO in this model (Jones et al., 2015), we decided to scrutinize the 
properties of IMF1. In this process, we  discovered that the center 
frequencies of the IMF1s which are between 400 and 600 Hz in the 
pre-ictal period decrease by about 35% during the seizures (Figure 2A). 
Only in one animal in its first three seizures during epileptogenesis did 
we find that the center frequencies of IMF1 did not decrease during the 
epectrographic seizures. Most notably, during these recordings whether 
inter-ictally or during seizures we found no pHFO. The fourth seizure 
when the center frequency of the IMF1 decreased during the seizure 
presented both interictal a during seizure pHFO. This finding may have 
profound consequences for the localization of the seizure focus. Ever 
since pHFO have been discovered (Bragin et al., 1999), more and more 
evidence had accumulated that their presence is indicative of a local 
seizure focus (Bragin et al., 2002; Engel et al., 2009; Ogren et al., 2009; 
Jefferys et al., 2012). This relationship between pHFO and the focus has 
been translated into clinical and surgical practice where areas 
generating pHFO are readily excised during epilepsy surgeries for a 
better post-surgical outcome for the patients (Weiss et al., 2019). In our 
study, the presence of pHFO in all recordings where the center 
frequency of the IMF1 considerably decreased during the seizure 
compared to the pre-ictal period, may indicate that this behavior of the 
IMF1 center frequency may also be indicative of a recording from the 
seizure focus. In this context, the first three seizures in mouse I0001 
may have been volume conducted to the recording site, while the fourth 
seizure may have been genuinely generated close to the recording site. 
If this can be confirmed in future studies, it may mean that the high 
frequencies of the IMF1 obtained though EMD analyses of intracranial 
recordings such as ours, could stem from the highly asynchronous 
activity of the local neuronal populations surrounding the recording 
electrode. We may call this a constant desynchronized neuronal “hum,” 
that gets reduced during the synchronous activity of the cells during 
seizures. This synchronization would be quite similar to the period 
doubling Kuramoto model that has been invoked in various brain 
oscillatory synchronization phenomena (Breakspear et al., 2010) and 
in numerous synchronization events in biology (Strogatz and Stewart, 
1993). The IMF1 frequency reduction may also help the localization of 
focal seizures and distinguish them from seizures generated elsewhere, 
but volume-conducted to the site of the recording. It is interesting to 
note that center frequency reductions coupled to simultaneous spectral 
RMS increases also occurred pre-ictally (e.g., asterisks in Figure 6A) but 
these events were somehow prevented from being sufficiently long-
lasting to emerge as a seizure. Further analysis will be  needed to 
understand how such events are potentially prevented from turning 
themselves into seizures.

The timing of the reduction in IMF1 center frequency and the 
concomitant increase in spectral RMS may also aid in devising novel 
means for off-line seizure onset and termination criteria. Our modified 
traditional seizure detector based on (White et al., 2006) performed 
quite well in detecting the electrographic seizures. However, the 
changes in center frequency and spectral power of IMF1 would have 
put the seizure start 6 s and the seizure end 1 s ahead of the respective 
times defined by the seizure detection algorithm (Figure 6B). It is clear 
that detection of these critical time points is still ambiguous, and new 
algorithms based on deep learning may help elucidating this problem 
(Antonoudiou and Maguire, 2020; Cho and Jang, 2020; Abou Jaoude 

et  al., 2022; Cherian and Kanaga, 2022). In the future, it will 
be interesting to compare the performance of the deep learning and AI 
seizure detection approaches to the EMD analyses presented here. If 
resolving the IMF1 center frequency and spectral RMS could be easily 
implemented on-line for intracranial recordings and perhaps even for 
scalp EEG, the findings of our study would be of great use for real time 
seizure onset detection and ascertaining seizure localization.
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