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Abstract

Objective.—Electrical recordings of neural activity from brain surface have been widely 

employed in basic neuroscience research and clinical practice for investigations of neural circuit 

functions, brain-computer interfaces, and treatments for neurological disorders. Traditionally, 

these surface potentials have been believed to mainly reflect local neural activity. It is not known 

how informative the locally recorded surface potentials are for the neural activities across multiple 

cortical regions.

Approach.—To investigate that, we perform simultaneous local electrical recording and wide-

field calcium imaging in awake head-fixed mice. Using a recurrent neural network model, we 

try to decode the calcium fluorescence activity of multiple cortical regions from local electrical 

recordings.

Main results.—The mean activity of different cortical regions could be decoded from locally 

recorded surface potentials. Also, each frequency band of surface potentials differentially encodes 

activities from multiple cortical regions so that including all the frequency bands in the decoding 

model gives the highest decoding performance. Despite the close spacing between recording 

channels, surface potentials from different channels provide complementary information about the 
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large-scale cortical activity and the decoding performance continues to improve as more channels 

are included. Finally, we demonstrate the successful decoding of whole dorsal cortex activity at 

pixel-level using locally recorded surface potentials.

Significance.—These results show that the locally recorded surface potentials indeed contain 

rich information of the large-scale neural activities, which could be further demixed to recover 

the neural activity across individual cortical regions. In the future, our cross-modality inference 

approach could be adapted to virtually reconstruct cortex-wide brain activity, greatly expanding 

the spatial reach of surface electrical recordings without increasing invasiveness. Furthermore, 

it could be used to facilitate imaging neural activity across the whole cortex in freely moving 

animals, without requirement of head-fixed microscopy configurations.

Introduction

As an important tool for electrophysiological recordings, neural electrodes implanted on the 

brain surface have been instrumental in basic neuroscience research to study large-scale 

neural dynamics(1) in various cognitive processes, such as sensorimotor processing(2) 

as well as learning and memory(3). In clinical settings, neural recordings have been 

adopted as a standard tool to monitor the brain activity in epilepsy patients before 

surgery for detection and localization of epileptogenic zones initiating seizures(4) and 

functional cortical mapping(5). Neural activity recorded from the brain surface exhibits rich 

information content about the collective neural activities reflecting the cognitive states and 

brain functions, which was leveraged for various types of brain-computer interfaces during 

the past decade. For example, surface potential recordings have been used for studying 

motor control, such as controlling a screen cursor(6) or a prosthetic hand(7). They have 

also been used to decode the mood of epilepsy patients, paving the way for the future 

treatment of neuropsychiatric disorders(8). Recent advances have shown that electrical 

recordings from cortical surface combined with the recurrent neural networks can even 

enable speech synthesis(9), demonstrating superior performance compared to those achieved 

through traditional noninvasive methods.

For the interpretation of surface potentials in terms of their neural correlates, most research 

has focused on local neural activities. The high-gamma band has been found to correlate 

with the ionic currents induced by synchronous synaptic input to the underlying neuron 

population(10). Besides that, the dendritic calcium spikes in the superficial cortical layers 

also contribute to surface potentials(11). Recently, it has been reported that even the 

action potentials of superficial cortical neurons could be detected in surface recordings(12). 

Despite the predominant focus of relating the surface potentials to local neural activity, 

they may also correlate with the large-scale activity of multiple cortical regions. This 

could be achieved through the intrinsic correlations of the spontaneous activities among 

large-scale cortical networks(13, 14) due to the anatomical connectivity(15) and the global 

modulation of neuromodulatory projections(16). However, this rich information content of 

surface potentials encoded for the large-scale cortical activity remains unexploited and little 

is known about how local surface potentials are correlated with the spontaneous neural 

activities of distributed large-scale cortical networks.
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In this work, we investigate whether the rich information content of the local neural 

potentials recorded from brain surface can be harnessed to infer the cortex-wide brain 

activity. We employed optically transparent graphene microelectrodes implanted over the 

mouse somatosensory cortex and posterior parietal cortex to perform simultaneous wide-

field calcium imaging of the entire dorsal cortex during local neural recordings in awake 

mice. Multimodal datasets generated by these experiments were used to train a recurrent 

neural network model to learn the hidden spatiotemporal mapping between the local surface 

potentials and the cortex-wide brain activity detected by wide-field calcium imaging. We 

demonstrated that both the average spontaneous activity from multiple cortical regions and 

the pixel-level cortex-wide brain activity can be inferred from locally recorded surface 

potentials. Our results show that in addition to the changes of local neural activity, the 

spontaneous fluctuations of locally recorded surface potentials also reflect the collective 

variations of large-scale neural activities across the entire cortex.

Methods

Fabrication of graphene array

Electrode arrays were fabricated on 4” Silicon wafers spin coated with 20 μm-thick PDMS. 

50 μm-thick PET (Mylar 48–02F-OC) was placed on the adhesive PDMS layer and used 

as the array substrate. 10 nm of chromium and 100 nm of gold were deposited onto 

the PET using a Denton 18 Sputtering System. The metal wires were patterned using 

photolithography and wet etching methods. Single-layer graphene was placed on the array 

area using a previously developed transfer process(17, 18). The wafer was then soft baked 

for 5 minutes at 125°C to better adhere graphene to the substrate. PMMA was removed via 

a 20-minute acetone bath at room temperature then rinsed with isopropyl alcohol and DI 

water for ten 1-minute cycles. The graphene channels were patterned using AZ1512/PMGI 

bilayer photolithography then oxygen plasma etched (Plasma Etch PE100). A four-step 

cleaning method was performed on the array consisting of an AZ NMP soak, remover 

PG soak, acetone soak, and 10-cycle isopropyl alcohol/DI water rinse. 8 μm-thick SU-8 

2005 was spun onto the wafer as an encapsulation layer and openings were created at the 

active electrical regions using photolithography. The array was then given a final 10-cycle 

isopropyl alcohol/DI water rinse to clean SU-8 residue and baked for twenty minutes at 

temperature progressing from 125°C to 135°C.

Animals

All procedures were performed in accordance with protocols approved by the UCSD 

Institutional Animal Care and Use Committee and guidelines of the National Institute 

of Health. Mice (cross between CaMKIIa-tTA:B6;CBA-Tg(Camk2a-tTA)1Mmay/J [JAX 

003010] and tetO-GCaMP6s: B6;DBA-Tg(tetO-GCaMP6s)2Niell/J [JAX 024742], Jackson 

laboratories) were group-housed in disposable plastic cages with standard bedding in a 

room with a reversed light cycle (12 h-12 h). Experiments were performed during the dark 

period. Both male and female healthy adult mice were used. Mice had no prior history of 

experimental procedures that could affect the results.
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Surgery and multimodal experiments

Adult mice (6 weeks or older) were anesthetized with 1–2% isoflurane and injected with 

baytril (10 mg/kg) and buprenorphine (0.1 mg/kg) subcutaneously. A circular piece of scalp 

was removed to expose the skull. After cleaning the underlying bone using a surgical 

blade, a custom-built head-bar was implanted onto the exposed skull over the cerebellum 

(~1 mm posterior to lambda) with cyanoacrylate glue and cemented with dental acrylic 

(Lang Dental). Two stainless-steel wires (791900, A-M Systems) were implanted into the 

cerebellum as ground/reference. A craniotomy (~7 mm × 8 mm) was made to remove most 

of the dorsal skull and the graphene array was placed on the surface of one hemisphere, 

covering somatosensory cortex (S1) and posterior parietal cortex (PPC). The exposed cortex 

and the array were covered with a custom-made curved glass window, which was further 

secured with Vetbond (3M), cyanoacrylate glue and dental acrylic. Animals were fully 

awake before recordings. During recording, animals were head-fixed under the microscope, 

free to run or move their body, and not engaged in task.

The wide-field calcium imaging was performed using a commercial fluorescence 

microscope (Axio Zoom.V16, Zeiss, objective lens (1x, 0.25 NA)) and a CMOS camera 

(ORCA-Flash4.0 V2, Hamamatsu) through the curved glass window as previously 

described(19). The light source for wide-field calcium imaging is HXP 200 C (Zeiss). The 

filter set for imaging GCaMP signals is commercially installed in the microscope. It consists 

of a bandpass filter for the excitation light (485 ± 17 nm), a beamsplitter (500 nm), and 

a tunable bandpass filter centered at 520 nm for the emission light. Images were acquired 

using HCImage Live (Hamamatsu) at 29.98 Hz, 512 × 512 pixels (field of view: 8.5 mm × 

8.5 mm, binning: 4, 16 bit).

The microelectrode array was connected to a custom-made connector board through a 

ZIF connector. The surface potential data was sampled with Intan RHD2132 amplifier 

and recorded using Intan RHD2000 system. The sampling frequency was 10 kHz. To 

synchronize the electrical recording with the calcium imaging, we used a trigger signal 

(TTL), a 2 V pulse of 1 s, to trigger the start of the calcium imaging. Meanwhile, this trigger 

signal was also sent to the ADC of Intan recording system. During the data processing stage, 

we detected the onset of the pulse and aligned the imaging data and electrical data to that 

time point. Three mice were recorded, each having 2–3 recording sessions. The length for 

each recording session was 1 hour.

ΔF/F processing

To obtain the ΔF/F time series from the wide-field calcium imaging data, we first down-

sampled the 512 × 512 pixel images to smaller images of 128 × 128 pixels. For each 

pixel, we defined a dynamic fluorescence (F) baseline for a given time point as the 10th 

percentile value over 180 s around it. For the beginning and ending of each imaging block, 

the following and preceding 90-s window was used to determine the baseline, respectively. 

An 8th order 6 Hz Butterworth low-pass filter was applied to the ΔF/F activity of each pixel 

to remove the high frequency noise and hemodynamic contamination from heartbeat. The 

activity of each cortical region was obtained by averaging over the ΔF/F signals from all the 

pixels within the same cortical regions defined by the Allen Brain Atlas.
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Surface recording data processing

The raw surface recording data was first passed through notch filters to eliminate the 60 Hz 

powerline contaminations and their higher harmonics at 120 Hz and 180 Hz. The signals 

were further filtered with multiple 6th order Butterworth band-pass filters designed for 

different frequency bands (δ: 1 – 4 Hz, θ: 4 – 7 Hz, α: 8 – 15 Hz, β: 15 – 30 Hz, γ: 

31–59 Hz, H-γ: 61 – 200 Hz). The resulting signals were squared and smoothed by a 

Gaussian function with 100 ms time window to obtain an estimate of the instantaneous 

power. To prepare the input data for the decoding neural network, the power traces at 

different frequency bands were down-sampled to 29.98 Hz by interpolation to match the 

sampling rate of calcium imaging data. To suppress the potential artifacts in the recording 

signal, at each frequency band we clip the power traces with a threshold of 95 percentile.

Neural network models

The neural network model consists of a sequential stacking of a linear hidden layer, one 

bidirectional LSTM layer and a linear readout layer. The first linear layer was followed by 

batch normalization, ReLU activation, and dropout with a probability of 0.3. The LSTM 

layer was followed by batch normalization. The multichannel power at different frequency 

bands were used as inputs to the network. To decode the neural activity at each time step 

t, the power segments between [t−1.5s, t+1.5s] was used (90 time steps in total). The first 

linear layer had 16 neurons and the bidirectional LSTM had 8 hidden neurons. The same 

neural network model was used for the two decoding tasks except that the number of 

neurons in the final output layer differs based on the targeting output. To decode the ΔF/F 

activity of 12 cortical regions simultaneously, the output neuron number was set to 12. To 

decode the cortex-wide brain activity, the output neuron number was set to 10 to generate 

the scores for the 10 ICs. Assuming using 6 frequency bands from 16 recording channels, 

setting sequence length of LSTM layer to 90, and setting batch size to 128, the input and 

output size for each layer of the model is shown in Table 1. Note that we flattened the last 

two dimensions of the LSTM output to make it 128 × 1440 before feeding it to the last linear 

layer.

The neural network model was implemented in Pytorch(20). The model parameters were 

trained through Adam optimizer with learning rate = 1e-4, beta1 = 0.9, beta2 = 0.999, 

epsilon = 1e-8. The batch size was 128 and the training usually converged within ~30 

epochs. For both tasks, the mean squared error was chosen as the loss function. We 

performed 10-fold cross-validation where each 1 h recording session was chunked into ten 

segments, each lasting for 6 min. The neural network model was trained on 9/10 of the data 

segments and tested on a different held-out segment that was unseen during the training. 

To evaluate the model performance, correlation between the decoded and ground truth data 

for each held-out set was averaged. For each 1 h recording session, a new network model 

is trained and tested. Then, for each mouse, the correlation was further averaged across the 

recording sessions to give the performance for that mouse.
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Statistical tests

All statistical analyses were performed in MATLAB. Statistical tests were two-tailed and 

significance was defined by alpha pre-set to 0.05. All the statistical tests are described in the 

figure legends. Multiple comparisons were corrected for by Benjamini-Hochber corrections.

Results

Multimodal recordings of cortical activity

Cortical recordings in both clinical applications and neuroscience studies use conventional 

metal-based neural electrode arrays. However, these opaque neural electrodes are not 

suitable for multimodal recordings combined with optical imaging since they will block 

the field of view and generate light-induced artifacts under optical imaging(21, 22). 

Compared to conventional neural electrode arrays, graphene-based surface arrays are 

optically transparent and free from light-induced artifacts, both of which are key to the 

simultaneous electrical recordings and optical imaging of cortical activity(18, 23). Wide-

field calcium imaging is an optical imaging technique that can provide simultaneous 

monitoring of large-scale cortical activity and has been used to study the dynamics of 

multiple cortical regions and their coordination during behavior(19, 24–26). Compared to 

fMRI that also offers large spatial coverage, the wide-field calcium imaging provides better 

spatiotemporal resolution and higher signal-to-noise ratio(25). It has been shown that wide-

field calcium signals mainly reflect local neural activity(19). Therefore, the multimodal 

experiments combining electrical recordings based on graphene arrays and the wide-field 

calcium imaging generate unique datasets that are ideal for investigating the mapping from 

local neural signals to large-scale cortical activity.

We fabricated transparent graphene arrays on 50 μm thick flexible polyethylene 

terephthalate (PET) substrates(18, 23) (see methods for details). 10 nm of chromium 

and 100 nm of gold were deposited onto the PET and the metal wires were patterned 

using photolithography and wet etching methods. The graphene layer was transferred and 

patterned with photolithography and oxygen plasma etching to form electrode contacts. 

Finally, 8 μm-thick SU-8 was used as an encapsulation layer and openings were created at 

the active electrical regions using photolithography. The graphene array has 16 recording 

channels, each of size 100 × 100 μm. The spacing between adjacent channels is 500 μm. 

The graphene array was implanted unilaterally over the somatosensory cortex (S1) and 

posterior parietal cortex (PPC) of the mice to perform the simultaneous electrical recordings 

and wide-field calcium imaging (Figure 1a). We performed multimodal recordings of 

spontaneous neural activity in awake mice during either quiet resting state or actively 

running or moving. An example wide-field image obtained during the experiment is shown 

in Figure 1b. Note that the cortical activity under the array could still be observed due to 

the transparency of the graphene electrode. Based on Allen brain atlas, we parcellated the 

brain into 12 different ipsilateral (the hemisphere with array implanted) and contralateral 

cortical regions (Figure 1c), including the primary and secondary motor cortices (M1, M2), 

the somatosensory cortex (S1), the posterior parietal cortex (PPC), the retrosplenial cortex 

(RSC), and the visual cortex (Vis). Representative spontaneous cortical activity recorded 

during the experiment is shown in Figure 1d. We observed dynamical changes of large-scale 
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cortical activity, involving co-activations of multiple cortical regions. In the simultaneous 

multi-channel neural recordings, we also observed differences in power traces from different 

channels at multiple frequency bands during the spontaneous cortical activity (Figure 1e). 

Compared with the fluorescence activity, the neural potential signal has a much higher 

temporal resolution and richer frequency components.

Cortical activity decoder design

To investigate whether the locally recorded surface potentials could be used to infer the 

cortex-wide brain activity, we investigated two decoding tasks, namely the decoding of the 

average activity from individual cortical regions and the decoding of pixel-level cortex-wide 

brain activity. To achieve these goals, we developed a compact neural network model 

consisting of a linear hidden layer, a one-layer LSTM network, and a linear readout layer 

(Figure 2, See methods for details). In both tasks, the signal power traces of multiple 

frequency bands recorded from different recording channels were used as inputs to the 

neural network. In the first task, the neurons in the output layer of the neural network 

directly generate the activity of all the cortical regions simultaneously. In the second task, 

we first performed principal component analysis (PCA) on the cortical activity to remove the 

noise and reduce the dimensionality of the data. Across all the mice, the top 10 principal 

components (PCs) explain > 92% variance in the data (Supplementary Figure 1). Then based 

on the PCA results, we further performed spatial independent component analysis (ICA) to 

obtain the independent components (ICs) and their weighting scores for the data at each 

time frame. In all the three mice, the identified ICs reflect different functional modules 

and hemodynamic signals on blood vessels (Supplementary Figure 2) and provide a set 

of functionally meaningful basis for the decomposition of the large-scale cortical activity. 

The output layer of the neural network directly generates the estimated weighting scores of 

individual ICs, which were further used to reconstruct the cortex-wide brain activity at each 

time frame with pixel-level spatial resolution (Figure 2).

Decoding of activity for individual cortical regions

Based on the multimodal data we collected during the animal experiment and the above 

designed decoder network model, we decoded the mean activity of both the ipsilateral and 

contralateral cortical regions using the power of six frequency bands from all recording 

channels. An example of decoded and ground truth (ΔF/F from wide-field calcium imaging) 

cortical activity from one held-out set is shown in Figure 3a. The decoding performances 

for S1, PPC, and RSC regions closely resemble the ground truth cortical activity, while 

the decoding performances for M1, M2, and Vis are lower, possibly due to their increasing 

distances to the recording electrode array. We performed the same decoding analysis using 

shuffled data. The results show decoding performance close to zero (Supplementary Figure 

3a). We evaluated the stability of the decoding performance across time using a 30 s 

sliding window. The results show that the decoding performance fluctuates from time 

to time but remains stable in the longer time intervals (Supplementary Figure 4A). We 

also compared the decoding performance of individual cortical regions during rest and 

movement intervals and found similar decoding performance between rest and movement 

phases (Supplementary Figure 4B). Therefore, the fluctuations of the decoding performance 

across time are not due to animal movements.
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To further evaluate how informative different frequency bands are for the decoding of the 

activity from different cortical regions, we used the signal power from different frequency 

bands of all channels as inputs and performed 10-fold cross-validation to evaluate the 

decoding performance of the neural network model. We find that even though all the 

frequency bands are informative of the activities in different cortical regions, the high 

gamma power band gives the highest decoding performance for all the cortical regions 

compared to other frequency bands (Supplementary Figure 5 and 6). However, across all 

the cortical regions, using all the frequency bands yields the best decoding performance 

compared to using any single frequency band (Figure 3b), implying that different frequency 

bands provide complementary information about the activity in multiple cortical regions. 

Decoding with the shuffled data gives performance close to zero for all the frequency bands 

(Supplementary Figure 3b). For the ipsilateral cortical regions, we also find a negative 

correlation between their decoding performance and their distance ranks to the recording 

array. However, for the contralateral cortical regions, no significant correlation is observed 

(Figure 3c). When comparing the decoding results of the activity from ipsilateral cortical 

regions using different frequency bands, we find that higher frequency bands tend to 

have a steeper slope for the decoding performance vs. distance to the recording array 

(Supplementary Figure 7).

Besides the frequency bands, we also examined whether different recording channels 

encode nonredundant information for decoding the activity of different cortical regions. 

Therefore, we evaluated the decoding performance of the neural network model using all 

six frequency bands from different numbers of channels. Specifically, we performed 10-fold 

cross-validation on the neural network multiple times and each time we sequentially added 

the signal power of all frequency bands from one random channel until all the channels 

were included. As shown in Figure 3d, for all the cortical regions, increasing the number 

of channels significantly improves the decoding performance, suggesting that recording 

channels of local neural potentials provide nonredundant information about the activity 

from multiple cortical regions. On the other hand, decoding with the shuffled data gives 

performance close to zero for different number of included channels (Supplementary Figure 

3c).

Decoding of pixel-wise activity across cortex

Given that the local neural signals encode average activity from individual cortical regions, 

which could be recovered by the neural network model using multi-channel signal power of 

different frequency bands, we further investigated whether the pixel-level activity across the 

whole dorsal cortex could also be decoded using locally recorded neural signals. The same 

neural network model for decoding the average activity in different cortical regions was then 

employed to simultaneously decode the ten IC scores at each time frame. The power traces 

of all the six frequency bands from all the recording channels were used as inputs to the 

neural network. An example of the decoded and ground truth scores for the ten ICs from 

one held-out set is shown in Figure 4b. The decoding result using shuffled data is shown 

in Supplementary Figure 3d. Based on the decoded IC scores and the IC modules (Figure 

4a), the pixel-level cortex-wide activity at each time frame could be reconstructed. Examples 

of the reconstructed pixel-level cortex-wide activity during 4 representative time intervals 
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are shown in Figure 4c. The reconstructed cortex-wide activity captured various patterns 

of cortical activations in ground truth, including both the synchronous and asynchronous 

activations among different cortical regions. These diverse activation patterns cannot be 

explained solely by PC1 (see Figure 4c and the supplementary videos). To further quantify 

this observation, we computed the correlation between the ground truth activity of each 

ICs and the PC1. The median correlations between IC1, IC2 and IC8 to PC1 are close 

to zero, showing that their activities are not strongly correlated to PC1 (Supplementary 

Figure 8). These results suggest that the model does not merely predict dominant activity 

patterns showing activation around S1 and RSC. We found that all the ten IC scores could 

be decoded using the locally recorded neural signals (Figure 4d, Supplementary Figure 9). 

We demonstrated that the pixel-level cortex-wide activity could be reconstructed for all the 

recording sessions (Supplementary Videos 1–7). This reveals that the cortical activations 

of distinct functional modules indeed induce different responses in local cortical electrical 

signals, which could be in turn used to recover the diverse cortex-wide activity patterns. 

In addition to cortical activity, in all the mice, we observed one or two ICs showing the 

hemodynamic activity (Supplementary Figure 2). Our decoding results also show that these 

hemodynamic activities could be decoded from the neural recordings, which is mainly 

due to the fact that hemodynamic activity and the neural activity are often correlated(27). 

Next, we examined the pixel-level correlations between the decoded and ground truth 

activities imaged using wide-field imaging in individual cortical regions. We observed 

high correlations between the decoded and the ground truth data for all cortical regions 

(Figure 4e) and close-to-zero correlations using shuffled data (Supplementary Figure 3e). 

The activities of cortical regions closer to the array are better decoded than those of the 

cortical regions far away from the array. Consistent with the decoding of mean activity in 

each cortical region, the pixel-wise correlation decreases as the distance rank to the surface 

array increases for the ipsilateral cortical regions, whereas for the contralateral cortical 

regions no such correlation exists (Figure 4f).

Discussion

In this work, we performed multimodal recordings of local neural potentials and wide-

field calcium imaging in awake mice and developed a recurrent neural network model to 

decode the large-scale spontaneous cortical activity from the locally recorded multi-channel 

electrical signals. Both the averaged and the pixel-level activity across the entire dorsal 

cortex could be decoded, and the best decoding performance was achieved using all 

frequency bands of recorded neural potentials. These results suggest that even though 

the cortical electrical recording is a complex signal contributed by various mechanisms 

at multiple spatial scales, the responses in individual frequency bands across multiple 

recording channels still provide important discriminative information about the activity of 

different cortical regions. By developing a decoder model, the mixed information in the 

electrical signal responses could be used to recover the simultaneously recorded cortex-wide 

brain activity.

The cortical potentials have long been believed to mainly detect local neural activities that 

are within a sensing distance between 500 μm to 1–3mm(28–30), depending on the size of 

the electrode(28) as well as the spatial correlation pattern of neural activity(29). Consistent 
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with this claim, for the decoding of mean activity from individual cortical regions, we find a 

decreasing decoding performance for the ipsilateral cortical regions located ~1.5–3mm from 

the array. Interestingly, for the contralateral cortical regions, the decoding is still possible 

even though their activities are unlikely to be directly detected by the neural electrodes. We 

suspect that the successful decoding of contralateral cortical regions is mainly due to the 

fact that the spontaneous activities of same functional cortical regions in both hemispheres 

are often correlated (Supplementary Figure 10). Such correlated activity could arise from the 

anatomical connectivity(15) and further orchestrated by neuromodulatory projections(16).

Our decoding results for the activity of individual cortical regions show that even with single 

recording channel, the decoding is possible (mean correlation performance between 0.35–

0.65 for different cortical regions). By including more channels, initially we observed an 

increase in decoding performance, but the performance starts to saturate after the inclusion 

of ~10 recording channels (mean correlation performance between 0.6–0.75 for different 

cortical regions). We suspect that this is mainly because of the fact that the neural potentials 

in adjacent channels are partially correlated due to the volume conduction in the brain 

tissue(31, 32). It has been shown that the correlation between neural potentials from adjacent 

channels at different frequency bands decreases as the distance increases(33, 34). Even 

though the cross-channel correlation at high frequency bands is lower than that at low 

frequency bands, it does not go below chance level even with a distance of ~1.5mm. 

However, our results empirically confirm that even though the neural potentials from 

adjacent channels are partially correlated, they still differentially encode information about 

the cortical activities to some extent so that sequentially including more recording channels 

tends to increase the decoding performance. However, beyond a certain threshold adding 

more channels does not further increase the decoding performance.

For the decoding of cortex-wide brain activity, instead of attempting to directly reconstruct 

the activity of individual pixels, we chose to perform PCA followed by spatial ICA on 

the cortical activity and later to decode IC scores to recover the cortex-wide activity at 

pixel level. The adoption of this approach was based on both scientific and computational 

considerations. First, the PCA effectively reduced the spatial dimensions, while preserving 

a large proportion of variance in cortical activity. Since the activity of each single pixel was 

noisy, performing PCA reduced the noise, leading to a more reliable estimate of the true 

activity. Second, choosing the IC scores as network outputs greatly reduced the parameters 

in the output layer of the neural network model, prevented overfitting, and speeded up 

model training. Finally, the spontaneous cortex-wide brain activity was decomposed into 

a set of local and spatially organized cortical activation patterns based on neural activity, 

generating a biologically meaningful decomposition that matches the brain dynamics. This 

decomposition provides a good demixing of cortex-wide brain activity and enables a 

tractable mapping from cortical neural responses, which can be learned by the decoding 

network model. Taken together, these results reveal that the activation of different cortical 

functional modules are associated with distinct components in local neural activity. By 

exploiting the mapping between the two modalities, the decoding of cortex-wide brain 

activity is possible from locally recorded neural signals.
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Conclusion

In this paper, we designed a neural network model to show that both the mean activity of 

different cortical regions and the pixel-level cortex-wide neural activity can be decoded 

using locally recorded surface potentials. These findings demonstrated that the locally 

recorded neural potentials indeed contain rich information for large-scale neural activity and 

the surface potential responses in different frequency bands and different recording channels 

provide distinct information about the large-scale neural activity.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Simultaneous multimodal wide-field calcium imaging and surface potential 
recordings.
a, Schematic of the multimodal experimental setup combining neural recordings using 

transparent graphene electrodes and wide-field calcium imaging.

b, Example field of view of wide-field calcium imaging during experiment (left). Clear 

area at the center of the transparent array includes 16 graphene electrodes, whose scanning 

electron microscope image is shown on the right.

c, Imaged cortical regions based on Allen Brain Atlas. M2: secondary motor cortex; M1: 

primary motor cortex; S1: primary somatosensory cortex; PPC: posterior parietal cortex; 

RSC: retrosplenial cortex; Vis: visual cortex.

d, Wide-field fluorescence activity during 10-s long recordings, showing the diverse 

spontaneous activity across the mouse cortex.

e, Fluorescence activity for different cortical regions (left), the simultaneously recorded 

neural signals (middle) for a 3-s time interval (marked by the yellow bar on the left), and 

their power at three frequency bands (δ: 1 – 4 Hz, β: 15 – 30 Hz, H-γ: 61 – 200 Hz, right 

three columns).
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Figure 2 |. Schematic of the decoding model.
Signal power from different channels during time interval [t−1.5 s, t+1.5 s] (90 time 

steps) is used to decode the cortical activity at time point t. The decoding neural network 

model consists of a sequential stacking of a linear hidden layer, one bidirectional LSTM 

(Bi-LSTM) layer and a linear readout layer. For the task of decoding the mean ΔF/F activity 

from multiple cortical regions, the final linear readout layer directly outputs the activities 

of 12 cortical regions at time t. For the task of decoding the pixel-level cortex-wide brain 

activity, the final linear readout layer outputs the weighting scores for all the independent 

components at time t, from which the cortex-wide brain activity at time t is reconstructed.
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Figure 3 |. Decoding the activities of multiple cortical regions
a, Decoded (colorful) v.s. ground truth (black) ΔF/F activity of different cortical regions in 

the contralateral (left) and ipsilateral (right) hemispheres for one mouse.

b, Decoding performance evaluated for different cortical regions in the contralateral (top) 

and ipsilateral (bottom) hemispheres using different frequency bands (δ: 1 – 4 Hz, θ: 4 – 

7 Hz, α: 8 – 15 Hz, β: 15 – 30 Hz, γ: 31–59 Hz, H-γ: 61 – 200 Hz, and all 6 frequency 

bands). Each dot marks the mean correlation evaluated by 10-fold cross-validation using the 

data recorded from one mouse.

c, Decoding performance for different cortical regions in the contralateral (left) and 

ipsilateral hemispheres evaluated as a function of distance (rank orders). Each dot is 

the mean correlation for one mouse given by 10-fold cross-validation. For ipsilateral 

hemisphere, the decoding performance decreases as the distance rank to the electrode array 

increases (ρ = −0.676, P = 0.002, n = 18). For contralateral hemisphere, no such correlation 

is observed (ρ = −0.163, P = 0.519, n = 18). Distances from the center of the array to the 
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center of each cortical region: i-M2 3.63 mm, i-M1 2.65 mm, i-S1 0.98 mm, i-PPC 0.7 mm, 

i-RSC 2.36 mm, i-Vis 2.49 mm, c-M2 5.01 mm, c-M1 5.53 mm, c-S1 5.96 mm, c-PPC 5.37 

mm, c-RSC 3.83 mm, c-Vis 6.32 mm.

d, Decoding performance for different cortical regions in the contralateral (top) and 

ipsilateral (bottom) hemispheres using all the frequency bands, but different numbers of 

recording channels. Each dot marks the mean 10-fold cross-validated correlation over all the 

recording sessions for one mouse. Each line is the mean correlation averaged across 3 mice. 

For all the cortical regions, the decoding performance increases as more recording channels 

are included (P<0.05, n = 48, FDR correction).
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Figure 4 |. Decoding of the pixel-level cortex-wide brain activity
a, Identified independent components for the cortical activities recorded in one mouse, 

showing different functional modules of the cortical activity (IC 1–9) and the blood vessel 

activity (IC 10).

b, Decoded (red) and ground truth (black) weighting scores of the observed cortex-wide 

activity onto the 10 ICs shown in a.

c, Reconstructed (top rows) and ground truth (bottom rows) cortex-wide ΔF/F activity for 

4 different time intervals, each lasting for 5 s, as indicated with different colors in b. For 

visualization, the reconstructed and true cortex-wide brain activity are shown for every 0.5 s.

d, Decoding performance evaluated for different ICs for one recording session. Each dot 

marks the decoding performance evaluated on one fold during the 10-fold cross-validation. 

The weighting scores for all the 10 ICs could be successfully decoded.
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e, Decoding performance evaluated at pixel-level for all the cortical regions in the ipsilateral 

and contralateral hemispheres. Each dot marks the mean 10-fold cross-validated correlation 

for individual pixels of one specific cortical region from one mouse.

f, Pixel-wise decoding performance evaluated at individual cortical regions and displayed as 

a function of distance to the array (rank orders). For ipsilateral hemisphere, the decoding 

performance decreases as the distance to the electrode array increases (ρ = −0.649, P = 

0.003, n = 18). For contralateral hemisphere, no correlation is observed (ρ = −0.074, P = 

0.770, n = 18).
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Table 1.

The size for input and output tensors of each layer

Input size Output size

First linear layer 128 x 90 x 96 128 x 90 x 16

Bi-LSTM layer 128 x 90 x 16 128 x 90 x 16

Last linear layer 128 x 1440 128 x 12 or 128 x 10
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