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EPIGRAPH

There are problems to whose solution I would attach an infinitely greater

importance than to those of mathematics, for example touching ethics, or our

relation to God, or concerning our destiny and our future; but their solution lies

wholly beyond us and completely outside the province of science.

—Karl Friedrich Gauss
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ABSTRACT OF THE DISSERTATION

Probabilistic Evolutionary Models of Cancer

by

Michael Kelly

Doctor of Philosophy in Mathematics

University of California, San Diego, 2012

Jason Schweinsberg, Chair

Cancer is currently viewed as an evolutionary process. In an organ there

is a population of cells that give birth, die and mutate according to population

dynamics that are determined by the types of cells under consideration. If certain

cell mutations are acquired then the cells can become cancerous. In this manuscript

we consider two evolutionary models that may each be viewed as a model of cancer.

The first model we consider is a Moran-type model. Individuals each have

an integer valued fitness. Individuals with a higher fitness value are more likely to

give birth and individuals with a lower fitness value are more likely to die. We fix

the mutation rate and consider the limiting rate of adaptation as the population

size tends to infinity. Similar models have been used to model cancers in liquids

such as leukemia.
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The second model we consider is a hierarchical model which differentiates

between stem cells and progenitor cells. It has been proposed as a model of col-

orectal cancer. We find the limiting distribution for the time it takes for a cell to

acquire two mutations as the population size tends to infinity and the mutation

rates tend to 0. There are several different results depending how the mutation

rates tend to 0 as a function of the population size. The two mutations represent

the loss of two tumor suppressor genes. We also determine whether or not the

mutations occur on stem cells or progenitor cells.
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Chapter 1

Introduction

We discuss cancer as an evolutionary process. There is a population of cells

that give birth, die and mutate according to population dynamics that depend on

the types of cells under consideration. Cancer is only able to form after a certain

set of cell mutations are acquired. For this reason, we may consider an evolutionary

model of a population of asexually reproducing individuals that acquire mutations

as a model of cancer.

There are many different types of cancer and many different conjectures for

the number of mutations required for the formation of cancer. In 1951, Muller [28]

first conjectured that cancer is the result of more than one cell mutation. In 1954

Armitage and Doll [1] proposed that cancer is the result of 6 or 7 cell mutations. In

two papers in the 1970’s, Knudson [21], [22] conjectured that retinoblastoma was

the result of only two mutations. In [4], Calabrese et. al. estimate cancer to be

the result of 4 to 9 mutations. As recently as 2008, Parsons [31] and The Cancer

Genome Atlas Research Network [5] found an average of 47 mutations present in

glioblastomas and Jones [19] found an average of 63 mutations present in pancreatic

cancer. This gives reason to study models which view cancer as the result of many

or few cell mutations. In the first model addressed in this manuscript we view

cancer as a result of many mutations while in the second model we view cancer as

the result of only two mutations.

The first model we study is a general evolutionary model. It is a Moran

type model with mutations and selection. This model is similar to previously

1
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studied models of cancer in liquids such as leukemia. We prove a theorem related

to the mean rate of adaptation of the individuals. No assumptions are made on

the number of mutations required to develop cancer. The purpose of this work is

to determine how quickly a population acquires mutations.

The second model we study is a model of colorectal cancer. The model

represents a colorectal crypt in which stem cells live near the base and progenitor

cells migrate upwards until they reach the top and are removed. In particular,

stem cells are differentiated from progenitor cells in this model. It is assumed that

cancer is the result of two mutations. The two mutations represent the loss of two

tumor suppressor genes. We determine the limiting distribution for the time it

takes for cancer to form as well as whether or not the mutations leading to cancer

occur on the stem cells.



Chapter 2

Upper Bound on the Rate of

Adaptation in an Asexual

Population

In a finite, asexually reproducing population with mutations it is well-known

that competition among multiple individuals that get beneficial mutations can

slow the rate of adaptation. This phenomenon is known as the Hill-Robertson

effect, named for the authors of [17]. One may wish to consider the effect on

the rate of adaptation of a population when there are many beneficial mutations

present simultaneously. It is easily observed that when such a population is finite

and all mutations are either neutral or deleterious the fitness of the population

will decrease over time. This scenario is known as Muller’s ratchet. The first

rigorous results regarding Muller’s ratchet were due to Haigh [15]. In an asexually

reproducing population beneficial mutations are necessary to overcome Muller’s

ratchet. In this chapter we study a model that gives insight into both the Hill-

Robertson effect and Muller’s ratchet in large populations with fast mutation rates.

We study a Moran type model with mutations and selection that was first

introduced by Yu, Etheridge and Cuthberson [36]. It may be considered as a

general evolutionary model and is not necessarily a model of cancer. We define it

as a continuous time stochastic process, X = {Xt : t ≥ 0}, which has state space

ZN . We let X = (X1, . . . , XN). In this model, N is the size of the population

3
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and X i
t represents the fitness of individual i at time t. The subscript t is usually

suppressed. We fix constants µ > 0, 0 < q ≤ 1 and γ > 0. The system has the

following dynamics:

1. Mutation: Each individual acquires mutations at rate µ. When individual

i gets a mutation it is beneficial with probability q and X i increases by 1.

With probability 1− q the mutation is deleterious and X i decreases by 1.

2. Selection: For each pair of individuals (i, j), at rate γ
N

(X i−Xj)+ we set Xj

equal to X i.

3. Resampling: For each pair of individuals (i, j), at rate 1/N we set Xj equal

to X i.

Under the selection mechanism the event that Xj is set to equal X i represents the

more fit individual i giving birth and the less fit individual j dying. Likewise, the

resampling event that causes Xj to equal X i represents individual i giving birth

and individual j dying.

We give an equivalent description of the model involving Poisson processes

that may make the coupling arguments below more clear. The Poisson processes

that determine the dynamics of X are as follows:

• There are N Poisson processes P i↑, 1 ≤ i ≤ N , on [0,∞) of rate qµ. If P i↑

gets a mark at t then the ith coordinate of X increases by 1 at time t.

• There are N Poisson processes P i↓, 1 ≤ i ≤ N , on [0,∞) of rate (1− q)µ. If

P i↓ gets a mark at t then the ith coordinate of X decreases by 1 at time t.

• For each ordered pair of coordinates (i, j) with i 6= j there is a Poisson

process on [0,∞), P i,j, of rate 1/N . If P i,j gets a mark at t then the jth

coordinate changes its value to agree with the ith coordinate at time t.

• For each ordered pair of coordinates (i, j) with i 6= j there is a Poisson

processes on [0,∞)×[0,∞), P i,j↑, which has intensity γ
N
λ where λ is Lebesgue

measure on R2. If P i,j↑ gets a mark in {t} × [0, X i
t− − Xj

t−] then the jth

coordinate changes its value to agree with the ith coordinate at time t.
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A population of homogeneously mixing cells may be represented by this

model, as in Schweinsberg [33] and Durrett, Schmidt and Schweinsberg [11]. The

main difference between this model and the ones found in [33] and [11] is that the

rate at which cells acquire mutations does not tend to 0 in our model as it does in

the others. Generally the rate of mutations is very small compared to the size of

the population so it is reasonable to let the mutation rate tend to 0 in the limit.

Because the mutation rate in our model is independent of the population size, we

say that this population has fast mutations.

A heuristic argument in [36] shows that as N tends to infinity the mean rate

of increase of the average fitness of the individuals in X is O(logN/(log logN)2).

Due to a typo on page 989 they state that the rate is O(logN/ log logN). By

equation (10) in [36],

K log(γK) = 2 logN.

This implies that

K ≈ 2 logN

log logN
.

Plugging 2 logN/ log logN into each side of the consistency condition that they

derive gives a rate of adaption of O(logN/(log logN)2).

The heuristic argument is difficult to extend to a rigorous argument. Let

X =
1

N

N∑
i=1

X i

be the continuous-time process which represents the average fitness of the individ-

uals in the population. The rigorous results established in [36] are as follows:

• The centered process XC , in which individual i has fitness XC,i = X i −X,

is ergodic and has a stationary distribution π.

• If

c2 =
1

N

N∑
i=1

(XC,i)2

is the variance of the centered process then

Eπ[X t] = (µ(2q − 1) + γEπ[c2])t
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where Eπ means that the initial configuration of X is chosen according to

the stationary distribution π.

• For any δ > 0 there exists N0 large enough so that for all N ≥ N0 we have

Eπ[X1] ≥ log1−δN .

It is difficult to say anything rigorous about Eπ[c2] so other methods are needed

to compute E[X t]. The third result of [36] shows that if there is a positive ratio

of beneficial mutations then a large enough population will increase in fitness over

time. A paper by Etheridge and Yu [12] provides further results pertaining to this

model.

Our result is the following theorem.

Theorem 1. Let X i
0 = 0 for 1 ≤ i ≤ N . There exists a positive constant C which

may depend on µ, q and γ such that for N large enough

E[X t]

t
≤ C logN

(log logN)2

for all t ≥ log logN .

A difference between the result in [36] and Theorem 1 is that in [36] the

initial state of the process is randomly chosen according to the stationary distri-

bution π while we make the assumption that all of the individuals initially have

fitness 0.

Other similar models can be found in the biological literature. In these

models the density of the particles is assumed to act as a traveling wave in time.

The bulk of the wave behaves approximately deterministically and the random

noise comes from the most fit classes of individuals. One tries to determine

how quickly the fittest classes advance and pull the wave forward. This travel-

ing wave approach is used in [35] and [36] to approximate the rate of evolution

as O(logN/(log logN)2). For other work in this direction see Rouzine, Brunet

and Wilke [32], Brunet, Rouzine and Wilke [2], Desai and Fisher [6] and Park,

Simon and Krug [30]. Using non-rigorous arguments, these authors get estimates

of O(logN), O(logN/ log logN), and O(logN/(log logN)2), where the differences
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depend on the details of the models that they analyze. For more motivation and

details concerning this model, please see the introduction in [36].

Motivated by applications to cancer development, Durrett and Mayberry

have established rigorous results for a similar model in [9]. They consider two

models in which all mutations are beneficial and the mutation rate tends to 0 as

the population size tends to infinity. In one of their models the population size is

fixed and in the other it is exponentially increasing. For the model with the fixed

population size they show that the rate at which the average fitness is expected

to increase is O(logN). By considering the expected number of individuals that

have fitness k at time t, they establish rigorously that the density of the particles

in their model will act as a traveling wave in time.

2.1 Proof of Theorem 1

We first establish some notation. Let X+
t = max{X i

t : 1 ≤ i ≤ N} be the

maximum fitness of any individual at time t and X−t = min{X i
t : 1 ≤ i ≤ N} be

the minimum fitness of any individual at time t. Define the width of the process

to be Wt = X+
t −X−t and define Dt = X+

t −X+
0 be the distance the front of the

process has traveled by time t. Theorem 1 states that all individuals initially have

fitness 0. Therefore, a bound on E[Dt] immediate yields a bound on E[X t]. The

bounds we establish on Dt will depend on the width, Wt.

Let w = w(N) be any positive, increasing function that satisfies

lim
N→∞

w(N) =∞ and lim
N→∞

w(N)

log logN
= 0.

LetW = bw logN/ log logNc and T = w−1/2 log logN . Due to heuristic reasoning

we conjecture that Wt is typically of size O(logN/ log logN) so W is larger than

the typical width of X. With probability tending to 1 selection should cause

any width larger than W to shrink within T time units. Because the width is a
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stochastic process we are motivated to make the following definitions.

t1 = 0

sn = inf{t ≥ tn : Wt ≥ 2W} for n ≥ 1

tn = inf{t ≥ sn−1 : Wt <W} for n ≥ 2

Yi = sup
si≤t≤ti+1

Dt −Dsi for i ≥ 1

Nt = max{i : si ≤ t} for t ≥ 0

Note that sn and tn exists for all n ≥ 1 with probability 1.

Let µ > 0 and γ > 0. We define branching processes Zk,↑ for k ≥ 0 which

have the following dynamics:

• Initially there are N particles of type k in Zk,↑
0 .

• Each particle changes from type i to i+ 1 at rate µ.

• A particle of type i branches at rate γi + 1 and upon branching the new

particle is also type i.

Let M
k,↑
t be the maximum type of any particle in Zk,↑

t and let Mk,↑
t = M

k,↑
t − k,

so that Mk,↑
0 = 0.

We define a stochastic process X ′ that will be coupled with X as described

in the proof of Proposition 2 for reasons that will become clear shortly. Let {Zn}∞n=0

be an i.i.d. sequence of continuous-time stochastic processes which each have the

same distribution as ZW,↑. Let Mn

t be the maximum type of any particle in Znt
and let Mn

t =Mn

t −W so that Mn
0 = 0 for all n. Define

X ′t =

{
X+

0 +M0
t if t ∈ [0, T ]

X ′iT +Mi
t−iT if t ∈ (iT , (i+ 1)T ] for any integer i ≥ 1

and D′t = X ′t −X+
0 . The idea is that D′t is the maximum type of any particle in a

branching process X ′ that has the same distribution as ZW,↑ except that at each

time iT we restart the branching process so that there are once again N particles
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of type W . For each integer i ≥ 0 at time iT the N particles initially have type

D′t which is the maximum type achieved by any particle in X ′t up to time t.

Now we are able to state the four propositions used to prove Theorem 1.

Proposition 2 is a result of the coupling of X and X ′.

Proposition 2. Let X i
0 = 0 for 1 ≤ i ≤ N . Then

Dt ≤ D′t +
Nt∑
i=1

Yi

for all times t ≥ 0.

Proposition 3. Let X i
0 = 0 for 1 ≤ i ≤ N . For N large enough we have

sup
t∈[T ,∞)

E[D′t]

t
≤ 6W
T

.

With the initial condition X i
0 = 0 for 1 ≤ i ≤ N , we let F = {Ft}t≥0 be

the natural filtration associated with X.

Proposition 4. Let X i
0 = 0 for 1 ≤ i ≤ N . For N large enough we have

E[Yi|Fsi ] ≤ 5W for all i ≥ 1.

Proposition 5. Let X i
0 = 0 for 1 ≤ i ≤ N . For N large enough,

sup
s∈[0,∞)

1

s
E[Ns] ≤

1

T

Proof of Theorem 1. Choose N large enough so that Propositions 3, 4 and 5 hold.
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Fix t ≥ log logN . It follows by definition of T that t > T . Therefore,

E

[
Dt

t

]
≤ E

[
D′t +

∑Nt
i=1 Yi

t

]
by Proposition 2

= E

[
D′t
t

]
+ E

[∑Nt
i=1 Yi
t

]

≤ 6W
T

+
1

t
E

[
Nt∑
i=1

Yi

]
by Proposition 3

=
6W
T

+
1

t

∞∑
i=1

E[Yi1{Nt≥i}]

=
6W
T

+
1

t

∞∑
i=1

E[E[Yi1{Nt≥i}|Fsi ]]

=
6W
T

+
1

t

∞∑
i=1

E[1{Nt≥i}E[Yi|Fsi ]]

≤ 6W
T

+
5W
t

∞∑
i=1

E[1{Nt≥i}] by Proposition 4

=
6W
T

+
5W
t
E[Nt]

≤ 6W
T

+
5W
T

by Proposition 5

=
11w1/2 logN

(log logN)2
.

Since w may go to infinity arbitrarily slowly with N there must exist a constant

C such that
E[Dt]

t
≤ C logN

(log logN)2

for all t ≥ log logN . This immediately gives a bound on E[X t]/t.

2.2 Bounding the rate when the width is small

Through the use of branching processes we establish a bound on Dt that

depends on the width. We will make use of the strong Markov property of X at the

times sn and tn for n ≥ 1. For this reason, many of the statements we prove below

will include conditions for which W0 > 0 even though according to the conditions
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of Theorem 1 we have W0 = 0. In this section we establish a small upper bound

for Dt on the time intervals [tn, sn).

The following proofs will involve coupling X with various branching pro-

cesses. For clarity we refer to individuals in branching processes as particles to

distinguish them from the individuals in X. Also, while the individuals in X each

have an integer valued fitness, the particles in a branching process will each be

given an integer value that we refer to as the type of the particle.

Let ZC = {ZC
t }t≥0 be a multi-type Yule process in which there are initially

N particles of type 0. Particles increase from type i to type i + 1 at rate µ > 0

and branch at rate C > 0. When a particle of type i branches the new particle is

also type i. Let MC
t be the maximum type of any particle at time t.

The following lemma is a basic result about Yule processes.

Lemma 6. For any N ≥ 0, time t ≥ 0, and natural number l,

P (MC
t ≥ l) ≤ N(tµ)leCt

l!
.

Proof. Consider a Yule process Z which is the same as ZC except there is only

one particle at time 0. It is well known that the number of particles in Zt has

mean eCt. Let M ′
t be the maximum type of any particle at time t. When there are

k particles in the population, we let B1, . . . , Bk denote the types of the particles,

where the numbering is independent of the mutations. For any l ≥ 0,

P (M ′
t ≥ l) =

∞∑
k=1

P (M ′
t ≥ l|Zt = k)P (Zt = k)

=
∞∑
k=1

P ({B1 ≥ l} ∪ · · · ∪ {Bk ≥ l}|Zt = k)P (Zt = k)

≤
∞∑
k=1

kP (B1 ≥ l)P (Zt = k)

= E[Zt]P (B1 ≥ l)

= eCt
∞∑
i=l

(tµ)i

i!
e−µt.

By Lemma 12 it follows that

P (M ′
t ≥ l) ≤ (tµ)leCt

l!
.
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Now consider ZC . At time 0 label the particles 1, 2, . . . , N and let M ′
i,t be

the maximum type of any particle among the progeny of particle i at time t. Then

P (MC
t ≥ l) = P ({M ′

1,t ≥ l} ∪ · · · ∪ {M ′
N,t ≥ l})

≤ NP (M ′
1,t ≥ l)

≤ N(tµ)leCt

l!
.

The next proposition will give a lower bound on the fitness of any individual

up to time t given that we know the least fitness at time 0 is X−0 . We do this by

establishing an upper bound on the amount that any individual will decrease in

fitness. Let

St = sup
0≤s≤t

(X−0 −X−s ).

Proposition 7. For any population size N , initial configuration X0, time t ≥ 0,

and natural number l,

P (St ≥ l) ≤ N(tµ)let

l!
.

Proof. By Lemma 6 we have

P (M1
t ≥ l) ≤ N(tµ)let

l!

for any population size N , time t ≥ 0 and natural number l. Note that from our

notation above Z1 is a Yule process with branching rate 1. To complete the proof

we establish a coupling between X and Z1 such that for any population size N

and time t ≥ 0 we have M1
t ≥ St.

At all times every individual in X will be paired with one particle in Z1.

The coupling is as follows:

• We initially have a one-to-one pairing of each individual i in X0 with each

particle i in Z1
0 .

• The particle in Z1 that is paired with individual i will increase in type by 1

only when individual i gets a mutation.
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• For each individual i in X, at rate (N − 1)/N individuals j 6= i are replaced

by individual i due to resampling events. If individual i replaces individual j

due to resampling, then the particle labeled i in Z1 branches. If particle i has

a higher type than particle j then the new particle is paired with individual j.

The particle that was paired with individual j before the branching event is

no longer paired with any individual in X. If particle i has a lower type than

particle j then the particle that was paired with individual j remains paired

with individual j and the new particle is not paired with any individual in

X.

• The particle paired with individual i in Z1 branches at rate 1/N and these

branching events are independent of any of the events in X. When the

particle paired with individual i branches due to these events the new particle

is not paired with any individual in X.

• Any particles in Z1 that are not paired with a individual in X branch and

acquire mutations independently of X. The selection events in X are inde-

pendent of any events in Z1.

See Figure 2.1 for an illustration of the coupling.

Let Ri be the type of the particle in Z1 that is paired with individual i and

let

Sis = sup
0≤r≤s

(X−0 −X i
r).

To show M1
t ≥ St it is enough to show Ri

t ≥ Sit for all i. Initially Si0 ≤ Ri
0 = 0

for all i. Note that both s 7→ Sis and s 7→ Ri
s are increasing functions and that

increases in these functions correspond to decreases in X i.
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Picture of X:

Picture of Z1:

Time goes from left to right.t denotes mutations in each model.c are used to indicate which
individual in X is coupled with which
particle in the branching processes.

In the picture of X an arrow with an
’r’ denotes a resampling event and an

arrow with an ’s’ denotes a selection
event.

A selection event in X does not
correspond to a branching event in Z1.

The times at which the particles

are not marked indicate that the
particles are not coupled with any

individual in X and therefore the
branching and mutation events on the
unmarked particles are independent of
any of the events in X.
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Figure 2.1: Picture of the coupling of X with Z1 when N = 3
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When individual i gets a mutation, Ri increases by 1. However, if individual

i gets a mutation at time s then Si will only increase by 1 if Sis− = X−0 −X i
s− and

the mutation is deleterious. Therefore, if individual i gets a mutation at time s

and Sis− ≤ Ri
s− then

Sis ≤ Sis− + 1 ≤ Ri
s− + 1 = Ri

s.

Suppose individual j is replaced by individual i due to a resampling event

at time s and that both Sjs− ≤ Rj
s− and Sis− ≤ Ri

s− hold. With probability 1 we

have Sis = Sis− and Ri
s = Ri

s−. If X−0 − X i
s ≤ Sjs− then Sjs− = Sjs . From this it

follows that Sjs ≤ Rj
s. If X−0 − X i

s > Sjs− then Sjs = X−0 − X i
s ≤ Sis ≤ Ri

s. If

Ri
s ≥ Rj

s−, then by the definition of the coupling, Rj
s = Ri

s. If Ri
s < Rj

s−, then by

definition of the coupling, Rj
s = Rj

s−. Therefore, Rj
s ≥ Ri

s which gives us Sjs ≤ Rj
s.

Selection events will never increase Si and since Si and Ri are increasing in

time a selection event at time s will preserve the inequality Sis ≤ Ri
s. This shows

that any event that occurs at time s which may change the fitness of a individual i

in X will preserve the inequality Sis ≤ Ri
s. Since the result holds for each individual

i we have St ≤M1
t .

The next lemma is a basic result about the maximum type of any particle

in Zk,↑
t .

Lemma 8. For any time t ≥ 0 and any integers k ≥ 0 and l ≥ 0 we have

P (Mk,↑
t > l) ≤ N(tµ)le(γ(k+l)+1)t

l!
.

Proof. While all of the particles in Zk,↑
t have type less than k+ l they branch at a

rate which is less than or equal to γ(k + l) + 1. Using the notation related to ZC
t

above, it follows that P (Mk,↑
t > l) ≤ P (M

γ(k+l)+1
t > l). By Lemma 6 we have

P (M
γ(k+l)+1
t > l) ≤ N(tµ)le(γ(k+l)+1)t

l!
.

We now wish to bound the distance the front of the wave moves as a function

of the initial width. Recall that W0 is the width of X at time 0.
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Proposition 9. For any initial configuration X0, fixed time t ≥ 0 and any integer

l ≥ 0 we have

P ( sup
0≤s≤t

Ds > l) ≤ 2N(tµ)le(γ(W0+2l)+µ+1)t

(l − 1)!
.

Proof. We first establish a coupling between X and ZW0+k,↑ for each integer k ≥ 0.

Let T k = inf{t : St > k} for k ≥ 1. Every individual in X will be paired

with one particle in ZW0+k,↑ until time T k. We couple ZW0+k,↑ with X for all times

t ∈ [0, T k) as follows:

• We initially have a one-to-one pairing of each individual i in X0 with each

particle i in ZW0+k,↑
0 . When a particle in ZW0+k,↑

t is coupled with individual

i, we refer to the particle as particle i.

• Particle i increase in type by 1 only when individual i gets a mutation.

• For each individual i in X, at rate (N − 1)/N individuals j 6= i are replaced

by individual i due to resampling events. If individual i replaces individual

j due to resampling, then particle i branches. If particle i has a higher

type than particle j then the new particle is paired with individual j. The

particle that was paired with individual j before the branching event is no

longer paired with any individual in X. If particle i has a lower type than

particle j then the particle that was paired with individual j remains paired

with individual j and the new particle is not paired with any individual in

X.

• Additionally, particle i branches at rate 1/N and these branching events are

independent of any of the events in X. When particle i branches due to these

events the new particle is not paired with any individual in X.

• In X there is a time dependent rate γU i
s at which individuals j 6= i are

replaced by individual i due to selection events. Namely,

U i
s =

1

N

N∑
j=1

(X i
s −Xj

s )
+.



17

If individual j is replaced by individual i in X due to a selection event then

particle i branches. If particle i has a higher type than particle j then the

new particle is paired with individual j. The particle that was paired with

individual j before the branching event is no longer paired with any individual

in X. If particle i has a lower type than particle j then the particle that was

paired with individual j remains paired with individual j. The new particle

is not paired with any individual in X.

• Additionally, particle i branches at a time dependent rate γ(Ri,k
t −U i

t ) where

Ri,k
t is the type of particle i. These branching events are independent of any

of the events in X. When such a branching event occurs, the new particle is

not paired with any individual in X.

• Any particles in ZW0+k,↑ that are not paired with a individual in X branch

and change type independently of X.

See Figure 2.2 for an illustration of the coupling.

Fix k ≥ 1. For the above coupling between X and ZW0+k,↑ to be well

defined until time T k, we need Ri,k
t − U i

t ≥ 0 for all i ∈ {1, . . . , N} and for all

times t ∈ [0, T k). Let T
k,i

= inf{t : Ri,k
t − U i

t < 0}. The coupling between X and

ZW0+k,↑ is well-defined until time T
k

= min{T k,i : 1 ≤ i ≤ N}. We will show that

T k ≤ T
k
.

Let

S
i

t = sup
0≤s≤t

(X i
s −X+

0 ) and R
i,k

t = Ri,k
0 −W0 − k.

Initially S
i

0 ≤ R
i,k

0 = 0 for all i. Note that both t 7→ S
i

t and t 7→ Ri,k
t are increasing

functions, from which it follows that t 7→ R
i,k

t is also an increasing function.

When individual i gets a mutation, R
i,k

increases by 1. However, if individ-

ual i gets a mutation at time s then S
i

will only increase by 1 if S
i

s− = X i
s− −X+

0

and the mutation is beneficial. Therefore, if individual i gets a mutation at time

s and S
i

s− ≤ R
i,k

s− then

S
i

s ≤ S
i

s− + 1 ≤ R
i,k

s− + 1 = R
i,k

s .
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Picture of X:

Picture of Zk,↑:

Time goes from left to right.tdenotes mutations in each model.care used to indicate which
individual in X is coupled with which
particle in the branching processes.

In the picture of X an arrow with an
’r’ denotes a resampling event and an

arrow with an ’s’ denotes a selection
event.

A selection event in X corresponds

to a branching event in Zk,↑.

The times at which the particles

are not marked indicate that the
particles are not coupled with any

individual in X and therefore the
branching and mutation events on the
unmarked particles are independent of
any of the events in X.
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Figure 2.2: Picture of the coupling of X with Zk,↑ when N = 3
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Suppose individual j is replaced by individual i due to a resampling or

selection event at time s and that both S
j

s− ≤ R
j,k

s− and S
i

s = S
i

s− ≤ R
i,k

s− = R
i,k

s

hold. If X i
s−X+

0 ≤ S
j

s− then S
j

s− = S
j

s. It follows that S
j

s ≤ R
j,k

s . If X i
s−X+

0 > S
j

s−

then S
j

s = X−0 − X i
s ≤ S

i

s ≤ R
i,k

s . If R
i,k

s ≥ R
j,k

s−, then by the definition of the

coupling, R
j,k

s = R
i,k

s . If R
i,k

s < R
j,k

s−, then by definition of the coupling, R
j,k

s = R
j,k

s−.

Therefore, R
j,k

s ≥ R
i,k

s which gives us S
j

s ≤ R
j,k

s .

For any time s < T k we have

Ri,k
s ≥ S

i

s +W0 + k ≥ X i
s −X+

0 +W0 + k = X i
s −X−0 + k.

If there were N individuals with fitness X−0 −k at time s ∈ [0, T
k,i

) then the rate at

which individual i replaces these N individuals due to selection is γ(X i
s−X−0 +k).

However, for any time s < T k there are fewer than N individuals being replaced

by individual i due to selection and they will all have fitnesses at least as large as

X−0 − k. This gives us a bound on the rate at which resampling events occur on

individual i before time T k, namely U i
s ≤ X i

s −X−0 + k ≤ Ri,k
s for all s ∈ [0, T k).

This shows that T k ≤ T
k,i

for all i. Hence, T k ≤ T
k

and the coupling is well-defined

until time T k.

We have shown that any event that occurs at time s ∈ [0, T k) which may

change the fitness of a individual i in X will preserve the inequality S
i

s ≤ R
i,k

s .

Since the result holds for each individual i, for any s ∈ [0, T k) we have

sup
0≤r≤s

Dr = sup
1≤i≤N

S
i

s ≤ sup
1≤i≤N

R
i,k

s ≤MW0+k,↑
s .

Note that if sup0≤s≤t(X
−
0 −X−s ) ≤ k then t < T k. If sup0≤s≤t(X

−
0 −X−s ) ≤ k

we have MW0+k,↑
t ≥ sup0≤s≤tDs. This allows us to do the following computation:
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P ( sup
0≤s≤t

Ds > l) =
∞∑
i=0

P ({ sup
0≤s≤t

Ds > l} ∩ { sup
0≤s≤t

(X−0 −X−s ) = i})

≤
∞∑
i=0

P ({MW0+i,↑
t > l} ∩ { sup

0≤s≤t
(X−0 −X−s ) = i})

≤
∞∑
i=0

P ({MW0+i,↑
t > l} ∩ { sup

0≤s≤t
(X−0 −X−s ) ≥ i})

≤
∞∑
i=0

P (MW0+i,↑
t > l) ∧ P ( sup

0≤s≤t
(X−0 −X−s ) ≥ i)

≤
∞∑
i=0

P (MW0+i,↑
t > l) ∧

(
N(tµ)iet

i!

)
by Proposition 7

≤
∞∑
i=0

(
N(tµ)le(γ(W0+i+l)+1)t

l!

)
∧
(
N(tµ)iet

i!

)
by Lemma 8

≤ N(tµ)le(γ(W0+l)+1)t

l!

l−1∑
i=0

eiγt +Net
∞∑
i=l

(tµ)i

i!

≤ N(tµ)le(γ(W0+l)+1)t

l!
· lelγt +Net

∞∑
i=l

(tµ)i

i!

≤ N(tµ)le(γ(W0+2l)+1)t

(l − 1)!
+
N(tµ)le(µ+1)t

l!
by Lemma 12

≤ 2N(tµ)le(γ(W0+2l)+µ+1)t

(l − 1)!
. (2.1)

We now extend the bound we got on the least fit individuals in Proposition

7 to a slightly stronger result.

Definition 10. Let x ∈ Z and let Sxt ⊂ {1, 2, . . . , N} correspond to a collection of

individuals at time t which is determined by the following dynamics:

• Initially Sx0 consists of all individuals whose fitness lies in the interval (x,∞).

• If a resampling or selection event occurs at time t and a individual not in

Sxt− is replaced by a individual in Sxt− then it is added to Sxt .

• If a beneficial mutation occurs at time t on a individual not in Sxt− that causes

its fitness to increase from x to x+ 1 it is added to Sxt .
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• If a resampling event occurs at time t to a individual in Sxt− and it is replaced

by a individual not in Sxt− then it is removed from Sxt .

Mutation and selection events do not cause individuals to be lost from Sx.
We now prove the following corollary to Proposition 9.

Corollary 11. Let Ax,lt be the event that a individual in Sxs has fitness in (−∞, x−l]
for some time s ∈ [0, t]. For any initial configuration X0, time t ≥ 0 and any

integer l,

P (Ax,lt ) ≤ 2N(tµ)le(γ(W0+2l)+µ+1)t

(l − 1)!
.

Note that we cannot use the bound found in Proposition 7 because individ-

uals not in Sxt may move to Sxt due to selection events. In the proof of Proposition

7 the number of individuals with the least fitness cannot increase due to selec-

tion events. However, the number of individuals with the least fitness in Sxt may

increase due to selection events involving individuals not in Sxt .

Proof of Corollary 11. For k ≥ 1 let X be coupled with ZW0+k,↑ as in the proof

of Proposition 9. Let T k, Ri,k
t and R

i,k

t be defined as they were in the proof of

Proposition 9. Define T
i

s = {r ∈ [0, s] : i ∈ Sxr } and let

Sis =

 sup
r∈T is

(x−X i
r) if T

i

s 6= ∅

−∞ if T
i

s = ∅
.

The goal is to show that for all s ∈ [0, T k) we have

sup
1≤i≤N

Sis ≤ sup
1≤i≤N

R
i,k

s ≤MW0+k,↑
s .

Note that we can only consider the coupling of X with ZW0+k,↑ until time T k

because after this time the coupling is not well-defined.

Initially all of the individuals in Sx0 have fitness in (x,∞). Therefore, if

i ∈ Sx0 then Si0 ≤ 0 = R
i,k

0 . If i /∈ Sx0 then Si0 = −∞ < R
i,k

0 .

Suppose individual i gets a mutation at time s and for any time s′ ∈ [0, s−)

we have Sis′ ≤ R
i,k

s′ . Then R
i,k

increases by 1. If i ∈ Sxs− then Sis will only increase

by 1 if Sis− = x−X i
s and the mutation is deleterious. If i /∈ Sxs− and the mutation
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does not cause the fitness of individual i to change from x to x+ 1 then Sis = Sis−.

If i /∈ Sxs− and the mutation does cause the fitness of individual i to change from

x to x+ 1 then Sis = Sis− ∨ 0. In any of these three cases, Sis ≤ R
i,k

s .

Suppose individual j is replaced by individual i due to a resampling or

selection event at time s and that Sjs− ≤ R
j,k

s− and Sis− ≤ R
i,k

s−. If i /∈ S
x

s− then

Sjs− = Sjs ≤ R
j,k

s−. Suppose i ∈ Sxs−. If x −X i
s ≤ Sjs− then Sjs− = Sjs . From this it

follows that Sjs ≤ R
j

s. If x−X i
s > Sjs− then Sjs = x−X i

s ≤ Sis ≤ R
i

s. If R
i

s ≥ R
j

s−,

then by the definition of the coupling, R
j

s = R
i

s. If R
i

s < R
j

s−, then by definition

of the coupling, R
j

s = R
j

s−. Therefore, R
j

s ≥ R
i

s which gives us Sjs ≤ R
j

s.

Note that if sup0≤s≤t(X
−
0 −X−s ) ≤ k then t < T k. Therefore, on the event

{sup0≤s≤t(X
−
0 −X−s ) ≤ k} we have MW0+k,↑

t ≥ sup1≤i≤N S
i
s. This allows us to do

the following computation:

P ( sup
0≤s≤t

sup
1≤i≤N

Sis > l) =
∞∑
i=0

P ({ sup
0≤s≤t

sup
1≤i≤N

Sis > l} ∩ { sup
0≤s≤t

(X−0 −X−s ) = i})

≤
∞∑
i=0

P ({MW0+i,↑
t > l} ∩ { sup

0≤s≤t
(X−0 −X−s ) = i}).

This is the same bound as equation (2.1) in the proof of Proposition 9. Therefore,

we have established the same bound.

Lemma 12. Let x ≥ 0. The tail of the exponential series satisfies

∞∑
i=k

xi

i!
≤ xkex

k!
.

Proof. By Taylor’s Remainder Theorem we know that there exists a ξ ∈ [0, x] such

that

ex =
k−1∑
i=1

xi

i!
+
xkeξ

k!
.

Using the series expansion of ex we have

∞∑
i=k

xi

i!
=
xkeξ

k!
≤ xkex

k!
.
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Proof of Proposition 3. By definition D′T has the same distribution as MW,↑
T so by

Lemma 8 we have

P (D′T > l) ≤ N(T µ)le(γ(W+l)+1)T

l!
.

Then

E[D′T ]

2W
=

1

2W

∞∑
l=0

P (D′T > l)

≤ 1

2W

[
2W +

∞∑
l=2W

N(T µ)le(γ(W+l)+1)T

l!

]
. (2.2)

By Lemma 12 we have

∞∑
l=2W

N(T µ)le(γ(W+l)+1)T

l!
≤ Ne(γW+1)T (T µeγT )2WeT µe

γT

(2W)!
. (2.3)

Note that for any k ≥ 2 both D′kT −D′(k−1)T and D′T have the same distri-

bution, namely that of MW
T . Choose t ∈ [kT , (k + 1)T ) for some k ≥ 1. Because

D′t is increasing in t we have

D′t
t
≤ 1

kT
(
D′(k+1)T −D′kT +D′kT − · · ·+D′2T −D′T +D′T

)
.

Therefore,
E[D′t]

t
≤ (k + 1)E[D′T ]

kT
≤ 2E[D′T ]

T
.

Let t > T . Dividing both sides by 2W/T and using the bounds found in

equations (2.2) and (2.3) gives us

T E[D′t]

2tW
≤ 2E[D′T ]

2W
≤ 2 +

Ne(γW+1)T (T µeγT )2WeT µe
γT

2W(2W)!
.

By Stirling’s formula we have

Ne(γW+1)T (T µeγT )2WeT µe
γT

2W(2W)!
∼ Ne(γW+1)T (T µeγT )2WeT µe

γT +2W

(2W)2W+1
√

4πW
= ex

where x is equal to

logN+T (γW+1+µeγT )+2W(log(T µeγT )+1)−(2W+1) log(2W)−log(4πW)/2.

As N →∞ we have x ∼ −(2W + 1) log(2W) ∼ −2w logN . Therefore,

T E[D′t]

2tW
≤ 3

for N large enough.
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Proof of Proposition 2. We now coupleX withX ′ by couplingX with the sequence

of processes {Zm}∞m=0. Let

Im = (mT , (m+ 1)T ] ∩
∞⋃
n=1

[tn, sn) and Jm = (0, T ] ∩
∞⋃
n=1

[tn −mT , sn −mT ).

For any m ≥ 0 we couple X and Zm as follows:

• The particles in Zm0 are labeled 1, 2, . . . , N .

• For any time in ICm the process X behaves independently of Zm. For any time

in JCm the process Zm behaves independently of the process X. During the

time JCm, if a particle labeled i in Zm branches, the particle remains labeled

i and the new particle is unlabeled.

• The particle in Zm that is paired with individual i will increase in type by 1

at time t ∈ Jm only when individual i gets a mutation at time t+mT ∈ Im.

• For each individual i in X, at rate (N − 1)/N individuals j 6= i are replaced

by individual i due to resampling events. If individual i replaces individual j

due to resampling at time t ∈ Im then the particle labeled i in Zm branches

at time t − mT ∈ Jm. If particle i has a higher type than particle j then

the new particle is paired with individual j. The particle that was paired

with individual j before the branching event is no longer paired with any

individual in X. If particle i has a lower type than particle j then the

particle that was paired with individual j remains paired with individual j

and the new particle is not paired with any individual in X.

• The particle paired with individual i in Zm branches at rate 1/N for all times

t ∈ Jm and these branching events are independent of any of the events in

X. When the particle paired with individual i branches due to these events

the new particle is not paired with any individual in X.

• In X there is a time dependent rate γU i
s at which individuals j 6= i are

replaced by individual i due to selection events. If individual j is replaced

by individual i in X due to a selection event at time t ∈ Im then the particle
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labeled i in Zm splits at time t − mT ∈ Jm. If particle i has a higher

type than particle j then the new particle is paired with individual j. The

particle that was paired with individual j before the branching event is no

longer paired with any individual in X. If particle i has a lower type than

particle j then the particle that was paired with individual j remains paired

with individual j. The new particle is not paired with any individual in X.

• A particle labeled i in Zm splits at a time dependent rate γ(Ri,k
t −U i

t ) for all

times t ∈ Jm where Ri,k
t is the type of particle i. These branching events are

independent of any of the events in X. When such a branching event occurs,

the new particle is not paired with any individual in X.

• Any particles in Zm that are not paired with a individual in X branch and

acquire mutations independently of X.

Observe the following bound for Dt:

Dt ≤
Nt−1∑
i=1

(Dti+1
−Dsi)

+
Nt∑
i=1

(Dsi −Dti) + sup
sNt≤s≤tNt+1

(Ds −DsNt
) + sup

tNt+1≤s≤t
(Ds −DtNt+1

),

where we consider the supremum over the empty set to be 0. By definition we

have
Nt−1∑
i=1

(Dti+1
−Dsi) + sup

sNt≤s≤tNt+1

(Ds −DsNt
) ≤

Nt∑
i=1

Yi.

To finish the proof we will show

Nt∑
i=1

sup
ti≤s≤si

(Ds −Dti) + sup
tNt+1≤s≤t

(Ds −DtNt+1
) ≤ D′t.

To do this we define

Mt =
Nt∑
i=1

sup
ti≤s≤si

(Ds −Dti) + sup
tNt+1≤s≤t

(Ds −DtNt+1
)

for all times t ≥ 0. Suppose Ms ≤ D′s for all s ∈ [0, t) and a mutation, resampling

or selection event occurs in X at time t. If t ∈ (si, ti+1) for some i ≥ 0 then
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Mt− = Mt because the process M does not change on these time intervals. It

is possible that D′t changes, but D′t can only increase. Therefore, D′t ≥ Mt. If

t ∈ [ti, si]∩ (mT , (m+ 1)T ] for some i ≥ 0 and m ≥ 0 then at time t the processes

X and X ′ are coupled. More precisely, X and Zm are coupled and the coupling

has the same dynamics as the coupling in Proposition 9 except the time shift. The

same argument used in Proposition 9 shows that D′t ≥Mt whether the individual

changed fitness due to mutation, resampling or selection. Since this inequality is

preserved on any event that may change Mt, it is true for all times t.

2.3 Bounding the rate when the width is large

We consider what happens when the width is large in this section. By

large width we mean Wt ≥ W . The statements in this section are easier to make

when we consider an initial configuration of X such that W0 ≥ W . Although the

conditions of Theorem 1 state that W0 = 0 we can wait for a random time τ so

that Wτ ≥ W and apply the Strong Markov Property.

We begin this section by showing that when the width is large enough the

selection mechanism will cause the width to decrease quickly. We give a labeling

to the individuals that will help us in this regard. Define the following subsets of

R:

I1 = (−∞, X+
0 −

3

16
W0]

I2 = (X+
0 −

3

16
W0, X

+
0 −

2

16
W0]

I3 = (X+
0 −

2

16
W0, X

+
0 −

1

16
W0]

I4 = (X+
0 −

1

16
W0,∞)

We will label each individual in X0 with two labels. For the first labeling,

we use a to label the individuals in I1 ∪ I2, we use b to label the individuals in I3

and we use c to label the individuals in I4. For the second labeling we use a′ to

label the individuals in I1, we use b′ to label the individuals in I2 and we use c′ to

label the individuals in I3 ∪ I4.
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Let At, Bt and Ct denote the number of individuals labeled a, b and c at

time t, respectively. Let A′t, B
′
t and C′t denote the number of individuals labeled

a′, b′ and c′ at time t, respectively.

The individuals change labels over time according to the following dynam-

ics:

• Mutations: If the fitness of a individual labeled a increases so that it is in

I3 then the individual is relabeled b. If the fitness of a individual labeled

a′ increases so that it is in I2 then the individual is relabeled b′. Likewise,

if the fitness of a individual labeled b increases so that it is in I4 then it is

relabeled c and if the fitness of a individual labeled b′ increases so that it is

in I3 then it is relabeled c′. Deleterious mutations do not cause individuals

to be relabeled.

• Resampling: Any resampling event in which individual i is replaced by indi-

vidual j causes individual i to inherit the labels of individual j.

• Selection: If a individual labeled a is replaced due to a selection event it inher-

its the corresponding label of the individual that replaced it. If a individual

labeled a′ is replaced due to a selection event it inherits the corresponding

label of the individual that replaced it. If a individual labeled b is replaced

by a individual labeled c due to a selection event then the individual that

was labeled b is relabeled c. If a individual labeled b′ is replaced by a indi-

vidual labeled c′ due to a selection event then the individual that was labeled

b′ is relabeled c′. Any other selection events do not cause the labels of the

individuals to be changed.

Let A1 be the event that there is a individual labeled b with fitness in

(−∞, X+
0 − 5

32
W0) for some time t ∈ [0, T ]. Let A2 be the event that there is a

individual labeled c with fitness in (−∞, X+
0 − 3

32
W0) for some time t ∈ [0, T ]. Let

A′1 be the event that there is a individual labeled b′ with fitness in (−∞, X+
0 − 7

32
W0)

for some time t ∈ [0, T ]. Let A′2 be the event that there is a individual labeled c′

with fitness in (−∞, X+
0 − 5

32
W0) for some time t ∈ [0, T ].
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Lemma 13. Suppose W0 ≥ W for all N . Then

P (A1 ∪ A2 ∪ A′1 ∪ A′2)→ 0 as N →∞.

Proof. First we show the result for A1. We apply Corollary 11 by setting

x = X+
0 − 2W0/16, t = t0 and l = W0/32.

Recall that we had defined Sxt in Definition 10. Because x = X+
0 − 2W0/16 we

have that Sx0 consists of all the individuals labeled b or c. Setting t = T and

l = W0/32 will make Ax,lt the event that a individual labeled b or c has fitness

less than X+
0 − 5

32
W0 by time T . Note that according to the relabeling dynamics,

individual i being labeled b or c is equivalent to i ∈ Sx. Therefore, A1 ⊂ Ax,lt and

we get

P (A1) ≤ P (Alt) ≤
2N(tµ)le(γ(W0+2l)+µ+1)t

bl − 1c!
.

Applying Stirling’s formula we have

2N(tµ)le(γ(W0+2l)+µ+1)t

bl − 1c!
∼ 2N(tµ)le(γ(W0+2l)+µ+1)t+bl−1c

bl − 1cbl−1c
√

2πbl − 1c
= ex

where x is equal to

log(2N)+l log(tµ)+(γ(W0+2l)+µ+1)t+bl−1c−bl−1c log(bl−1c)−log(2πbl−1c)/2.

As N →∞ we have x ∼ −bl − 1c log(bl − 1c) ∼ −w logN/32. Therefore,

P (A1)→ 0 as N →∞.

We can apply Corollary 11 with x = X+
0 −W0/16, t = T and l = W0/32 to

get the same bound for P (A2). By choosing x, t and l in this way the event Ax,lt

is the event that a individual labeled c has fitness less than X+(0)− 3
32
W0 by time

T . This shows that P (A2) also tends to 0 as N tends to infinity.

Likewise, to show P (A′1) tends to 0 as N goes to infinity we can apply

Corollary 11 with x = X+
0 − 3

16
W0, t = T and l = W0/32, and to show P (A′2)

tends to 0 as N goes to infinity we can apply Corollary 11 with x = X+
0 − 2

16
W0,

t = T and l = W0/32.
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Lemma 14. Suppose W0 ≥ W for all N . Let T be a stopping time whose definition

may depend on N such that C′T ≥ N/4 for all N . Let

BT = inf{t ≥ T : X−t > X+
0 −W0/4}.

Then

P (BT1{T< 1
2
T } >

1

2
T )→ 0 as N →∞.

Proof. Let A′3 be the event that C′t ≥ N/5 for all times t ∈ [T, T + 1
2
T ). The

only way for a individual labeled c′ to change its label is for it to be replaced by

a individual labeled a′ or b′ via a resampling event. The rate at which individuals

marked c′ undergo resampling events with individuals marked a′ or b′ at time t is

C′t(N − C′t)

N
≤ N

4
.

Let {Un}∞n=0 be a simple random walk with U0 = N/4 ≤ C′T . Denote

by T ≤ t1 < t2 < . . . the sequence of times at which individuals labeled c′ are

involved in resampling events with individuals that are not labeled c′ after time

T . We couple {Un}∞n=0 with X so that if at time tn a individual is labeled c′

due to a resampling event then Un = Un−1 + 1. If at time tn a individual loses

the label c′ due to a resampling event then Un = Un−1 − 1. To have Um < N/5

for some m satisfying 0 ≤ m ≤ n we will need max0≤m≤n |Um − U0| ≥ N/20.

It follows from the reflection principle that there exists a constant C such that

E[max0≤m≤n |Um − U0|] ≤ C
√
n for all n ≥ 0. By Markov’s inequality,

P

(
max

0≤m≤n
|Um − U0| ≥ N/20

)
≤ C
√
n/N

for some constant C.

Let R be the number of resampling events that occur in the time interval

[T, T + 1
2
T ) that involve pairs of individuals such that one is labeled c′ and the

other is not. Using Lemma 12 and the fact that the rate at which resampling

events occur is bounded above by N/4 we have

P (R > k) ≤
∞∑

i=k+1

(NT )ie−NT /8

8ii!
≤ (NT )k

8kk!
.
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Then

P ((A′3)C) ≤ P ({ max
0≤m≤R

|Um − U0| ≥ N/20} ∩ {R ≤ N3/2})

+ P ({ max
0≤m≤R

|Um − U0| ≥ N/20} ∩ {R > N3/2})

≤ P ({ max
0≤m≤N3/2

|Um − U0| ≥ N/20}) + P (R > N3/2)

≤ C

N1/4
+

(NT )N
3/2

8N3/2dN3/2e!

→ 0 as N →∞.

Let A′4 be the event that A′t = 0 for some time t ∈ [T, T + 1
2
T ). Notice

that if A′t = 0 then A′s = 0 for s ≥ t. Therefore, A′4 is the event that the label a′

is eliminated by time T + 1
2
T . By the given dynamics A′t can only increase when

individuals marked a′ replace individuals marked b′ or c′ via resampling events. At

time t the rate at which this happens is

1

2
· A
′
t(N − A′t)

N
≤ A′t. (2.4)

We define the event E as

E = (A′1)C ∩ (A′2)C ∩ A′3 ∩ {T <
1

2
T }.

Selection will cause A′ to decrease. On the event (A′2)C all of the individuals

marked c′ will have fitness at least 1
32
W0 greater than any individual marked a

until time t0. Thus, on the event (A′2)C ∩ {T < 1
2
t0} all of the individuals marked

c′ will have fitness at least 1
32
W0 greater than any individual marked a for all times

t ∈ [T, T + 1
2
T ). On the event A′3 there are at least N/5 individuals marked c for

all times t ∈ [T, T + 1
2
T ). Hence, on the event E individuals marked a′ will become

individuals marked c′ by a rate of at least

γA′tC
′
tW0

32N
≥ γ

160
W0A

′
t (2.5)

for all times t ∈ [T, T + 1
2
T ).

Let {U ′n} be a biased random walk which goes up with probability

p′ =
160

160 + γW0
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and down with probability 1−p′. Let N be large enough so that p′ < 1/2. Because

the random walk is biased downward, the probability that the random walk visits a

state j < U ′0 is 1. Once the random walk is in state j, it goes up 1 with probability

p′ and will eventually return to j with probability 1. The random walk will go down

1 with probability 1 − p′ and, from basic martingale arguments, the probability

that it never returns to j again is (1− 2p′)/(1− p′). Therefore, once U ′ is in state

j, the probability it never returns to state j is

(1− 2p′)

1− p′
· (1− p′) = 1− 2p′.

Hence the number of times U ′ visits a state j < U ′0 has the geometric distribution

with mean 1/(1− 2p′). For more details see pages 194-196 of [8].

By equations (2.4) and (2.5) we see that on the event E , if A′ changes

during the time interval [T, T + 1
2
T ) it decreases with probability higher than p′.

The expected number of times that A′ will visit state j is therefore less than or

equal to 1/(1−2p′) for any j ∈ {1, 2 . . . , N−1}. Also, the rate at which A′t changes

state is at least
γ

160
W0A

′
t

for all times t ∈ [T, T + 1
2
T ) by equation (2.5). Let A = {t ≥ T : A′t > 0} and let

λ be Lebesgue measure. Then

E[λ(A)1E ] ≤
160

(1− 2p′)γW0

N∑
j=1

1

j
∼ 160 logN

γW0

as N →∞.

Observe that

P (E ∩ (A′4)C) = P

(
E ∩

{
λ(A) ≥ 1

2
T
})

= P

(
λ(A)1E ≥

1

2
T
)

≤ 2E[λ(A)1E ]

T
by Markov’s Inequality

→ 0 as N →∞.

Therefore,

P (E ∩ A′4)− P
(
T <

1

2
T
)
→ 0 as N →∞.
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This allows us to do the following computation:

1 = lim
N→∞

(
P

(
T <

1

2
T
)

+ P

(
T ≥ 1

2
T
))

= lim
N→∞

(
P (E ∩ A′4) + P

(
T ≥ 1

2
T
))

= lim
N→∞

(
P

(
(A′1)C ∩ (A′2)C ∩ A′3 ∩ A′4 ∩

{
T <

1

2
T
})

+ P

(
T ≥ 1

2
T
))

≤ lim
N→∞

(
P

({
BT ≤

1

2
T
}
∩
{
T <

1

2
T
})

+ P

(
T ≥ 1

2
T
))

= lim
N→∞

P

(
BT1{T< 1

2
T } ≤

1

2
T
)
.

Let B = inf{t : X−t > X+
0 −W0/4}.

Proposition 15. Suppose W0 ≥ W for all N . As N tends to infinity,

P (B > T )→ 0.

Proof. First note that if B0 +C0 ≥ N/4 then, because all of the individuals labeled

b or c at time 0 are also labeled c′, we have that C′0 ≥ N/4. The result then follows

by Lemma 14 with T = 0. On the other hand, if B0 +C0 < N/4 then A0 ≥ 3N/4.

Let T = (inf{t : At < N/4}) ∧ (inf{t : Ct ≥ N/4}). Let A5 be the event

that At ≥ N/4 for all times t ∈ [0, 1
2
T ). Let A6 be the event that Ct < N/4 for all

times t ∈ [0, 1
2
T ). Define ζ to be the infimum over all times such that a individual

labeled b has fitness in (−∞, X+
0 − 5

32
W0), a individual labeled c has fitness in

(−∞, X+
0 − 3

32
W0), or At < N/4. Note that AC1 ∩ AC2 ∩ A5 ⊂ {ζ ≥ 1

2
T }.

On the event {ζ ≥ 1
2
T } the rate of increase of Ct due to selection is at least

γAtCtW0

32N
≥ 1

128
γCtW0 (2.6)

for all t ∈ [0, 1
2
T ). On the other hand, because Ct can only decrease due to

resampling, Ct will decrease no faster than

1

2
· Ct(N − Ct)

N
≤ Ct. (2.7)
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Let {Un}∞n=0 be a biased random walk with U0 = 1 which goes up with

probability

p =
γW0

128 + γW0

and down with probability 1 − p. Let N be large enough so that p > 1/2. By

similar reasoning as used in the proof of Lemma 14, the number of times Un visits

a state j ≥ 1 has the geometric distribution with mean 1/(2p− 1). Also, by basic

martingale arguments, the probability that Un ever reaches state 0 is

1− p
p

=
128

γW0

.

Note that C0 ≥ U0 since the individual with the highest fitness is initially

labeled c. On the event {ζ ≥ 1
2
T }, we see from equations (2.6) and (2.7) that if

C changes during time [0, 1
2
T ) then it increases with a probability of at least p.

Therefore, the expected number of times that C visits state j is less than or equal

to 1/(2p− 1) and the probability the Ct reaches state 0 for some time t ∈ [0, 1
2
T )

is less than 128/(γW0). Let A7 be the event that Ct reaches state 0 for some time

t ∈ [0, 1
2
T ).

By equation (2.6), the rate at which C changes is at least

1

128
γCtW0

for all times t ∈ [0, 1
2
T ) on the event {ζ > 1

2
T }. Let C = {t ∈ [0, 1

2
T ) : C < 1

4
N}

and let λ be Lebesgue measure. Then

E[λ(C)1{ζ≥T /2}] = E[λ(C)1{ζ≥T /2}1A7 ] + E[λ(C)1{ζ≥T /2}1AC7 ]

≤ 1

2
T P (A7) +

128

(2p− 1)γW0

bN/4c∑
j=1

1

j

∼ 128 log(N/4)

γW0

.
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By Markov’s inequality

P (AC1 ∩ AC2 ∩ A5 ∩ A6) ≤ P (AC1 ∩ AC2 ∩ A5 ∩ {λ(C) ≥ 1

2
T })

≤ P ({ζ ≥ 1

2
T } ∩ {λ(C) ≥ 1

2
T })

= P (λ(C)1{ζ≥T /2} ≥
1

2
T )

≤
2E[λ(C)1{ζ≥T /2}]

T

≤ 256w1/4 log(N/4)

T γW0

for N large enough

→ 0 as N →∞.

Because P (AC1 ∩ AC2 )→ 1 we have P (AC5 ∪ AC6 )→ 1 as N →∞.
Note that AC5 ∪ AC6 ⊂ {T < 1

2
T }. Therefore, P (T < 1

2
T )→ 1 as N →∞.

Let E2 = (A′1)C ∩ (A′2)C ∩ {T < 1
2
T }. Then P (E2) → 1 as N → ∞. To show

P (B ≤ T ) → 1 we can show P ({B ≤ T } ∩ E2) → 1. At time T , at least 1
4
N

individuals will be labeled either b or c. According to the labeling all of these

individuals are labeled c′ so that at time T we have CT ≥ 1
4
N . By Lemma 14 we

have

P

(
BT1{T< 1

2
T } ≤

1

2
T
)
→ 1 as N →∞.

Note that {
BT1{T< 1

2
T } ≤

1

2
T
}

=

{
BT ≤

1

2
T
}
∪
{
T ≥ 1

2
T
}
.

Because E2 ⊂ {T < 1
2
T } we have{

BT1{T< 1
2
T } ≤

1

2
T
}
∩ E2 =

{
BT ≤

1

2
T
}
∩ E2.

It then follows that

P

({
BT ≤

1

2
T
}
∩ E2

)
→ 1 as N →∞.

However, {
BT ≤

1

2
T
}
∩ E2 ⊂

{
BT ≤

1

2
T
}
∩
{
T <

1

2
T
}
⊂ {B ≤ T }

which gives the conclusion.
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Let V 1
t = {i : X i

t > X+
0 + W0/4} and V 2

t = {i : X i
t < X−0 −W0/4}. Let

F = inf{t : V 1
t ∪ V 2

t 6= ∅}. We now want to bound the time it takes for the width

to increase.

Proposition 16. Suppose W0 ≥ W for all N . Then

lim
N→∞

P (F > T ) = 1.

Proof. By Proposition 9 with l = W0/4 and t = T we have

P (inf{s : V 1
s 6= ∅} < t) = P

(
sup

0≤s≤t
Ds ≥ l

)
≤ 2N(tµ)le(γ(W0+2l)+µ+1)t

(l − 1)!

→ 0 as N →∞.

By Proposition 7 with l = W0/4 and t = T we have

P (inf{s : V 2
s 6= ∅} < t) = P

(
sup

0≤s≤t
(X−0 −X−s ) ≥ l

)
≤ N(tµ)let

l!

→ 0 as N →∞.

Recall that Yi = supsi≤s≤ti+1
Ds − Dsi and that {Ft}t≥0 is the natural fil-

tration associated with X. Note that if W0 < 2W then for all n ≥ 1 the width

satisfies Wsn = d2We.

Proof of Proposition 4. We consider a sequence of initial configurations X0 de-

pending on N such that W0 = d2We for all N . Because W0 ≥ 2W we have s1 = 0

and Y1 = sup0≤s≤t2 Ds −D0. We will show that for N large enough, E[Y1] < 5W .

The result then follows because X is a strong Markov process.
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We make the following definitions:

V 1
t (s) = {i : X i

t > X+
s +Ws/4} for t ≥ s ≥ 0

V 2
t (s) = {i : X i

t < X−s −Ws/4} for t ≥ s ≥ 0

F0 = B0 = r0 = 0

Fn = inf{t ≥ rn−1 : V 1
t (rn−1) ∪ V 2

t (rn−1) 6= ∅} for n ≥ 1

Bn = inf{t ≥ rn−1 : X−t > X+
rn−1
−Wrn−1/4} for n ≥ 1

rn = Fn ∧Bn for n ≥ 1

n∗ = inf{n ≥ 1 : Wrn <W}.

Note that r1 is the first time that the event F ∪ B occurs and that, conceptually,

rn acts like the first time that F ∪ B occurs when the process is started at time

rn−1 for n ≥ 2. The random variables Fn and Bn play the roles of the events F

and B when the processes are started at time rn−1.

On the event n−1 < n∗, by Proposition 15 and the strong Markov property

of X we have P (Bn ≤ rn−1 + T |Frn−1) → 1 uniformly on a set of probability 1

as N → ∞. Likewise, on the event n − 1 < n∗, by Proposition 16 and the

strong Markov property we have P (Fn > rn−1 + T |Frn−1) → 1 uniformly on a

set of probability 1 as N → ∞. Therefore, on the event n − 1 < n∗ we have

P (Bn < Fn|Frn−1)→ 1 uniformly on a set of probability 1.

Because the bounds in Propositions 15 and 16 do not depend on n we can

choose a sequence p = pN such that p→ 1 as N →∞ and almost surely

p1{n−1<n∗} ≤ P (Bn < Fn|Frn−1)1{n−1<n∗}

for all n ≥ 0. Let {Sn}∞n=0 be a random walk starting at 1 which goes down 1 with

probability p and up 1 with probability 1− p until it reaches 0. Once S reaches 0

it is fixed. For n < n∗ we couple S with X so that 2Sn−1W0 ≥ Wrn . The coupling

is defined as follows:

• Each step of the process S corresponds to a time rn.

• On the event {Fn < Bn} we have Sn − Sn−1 = 1.
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• On the event {Bn ≤ Fn} with probability p/P (Bn ≤ Fn) we have Sn−Sn−1 =

−1 and with probability 1− p/P (Bn ≤ Fn).

We will show that this coupling is well-defined and gives the necessary

bound. Initially, S0 = 1 and 2S0−1W0 = W0. On the event that Bn ≤ Fn, we

have Wrn <
1
2
Wrn−1 and suprn−1≤t≤rn Dt − Drn−1 ≤ 1

4
Wrn−1 . On the event that

Fn < Bn, we have Wrn < 2Wrn−1 and suprn−1≤t≤rn Dt − Drn−1 ≤ 1
4
Wrn−1 + 1.

Therefore, if 2Sn−1−1W0 ≥ Wrn−1 then 2Sn−1W0 ≥ Wrn by the coupling. It follows

that 2Sn−1W0 ≥ suprn−1≤t≤rn Dt−Drn−1 as well. By induction, 2Sn−1W0 ≥ Wrn for

all n < n∗ ∧ inf{m : Sm = 0}. If n = inf{m : Sm = 0} then Wrn ≤ W . Therefore

n∗ ≤ inf{m : Sm = 0} and the induction holds for all n < n∗.

We define a function d on ({0} ∪ N)∞ such that if x = (x0, x1, . . . ) then

d(x) =
∞∑
i=0

1{xi>0}2
xi−1W0.

Consider S = (S0, S1, . . . ) as a random element in ({0} ∪ N)∞. Then

d((S0, S1, . . . , Sn, 0, 0, . . . )) ≥
n∑
i=1

(
sup

ri−1≤t≤ri
Dt −Dri−1

)
≥ sup

0≤t≤rn
Dt

for all n such that n− 1 < n∗. By definition, n∗ is the first n such that Wrn <W .

Hence d(S) ≥ Y1.

For any n ≥ 0 we have

P (S2n+1 = 0) =

(
2n+ 1

n

)
(1− p)npn+1 ≤ 4n(1− p)npn+1.

If S2n+1 = 0 then

d(S) ≤

(
2 + 2

n∑
i=1

2i−1

)
W0 = 2n+1W0

which is obtained by taking n steps up followed by n+ 1 steps down.

Therefore,

E[Y1] ≤ E[d(S)] ≤
∞∑
n=0

[4(1− p)]npn+12n+1W0 =
2pW0

1− 8(1− p)p
∼ 4W

because W0 = d2We and p → 1 as N → ∞. This shows that for N large enough

we have E[Y1] < 5W , which gives the conclusion.
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Let l = bW/2c. We make the following definitions for the rest of the section:

K1 =
2N(T µ)le(γ(W0+2l)+µ+1)T

(l − 1)!

K2 =
N(T µ)leT

l!

p = 1−K1 −K2.

Lemma 17. Suppose W0 ≤ W for all N . Then

P

(
sup

0≤s≤T
Ws ≤ 2W

)
≥ 1−K1 −K2.

Proof. By Proposition 9 we have

P

(
sup

0≤s≤T
Ds ≥ l

)
≤ K1.

By Proposition 7 we have

P

(
sup

0≤s≤T
(X−0 −X−s ) ≥ l

)
≤ K2.

On the event that sup0≤s≤tDs ≤ W/2 and sup0≤s≤tX
−
0 − X−s ≤ W/2 we have

sup0≤s≤tWt ≤ 2W . This gives the result.

Proof of Proposition 5. Notice that

{Ns ≥ i} = {si ≤ s} ⊂

{
i∑

j=1

(sj − tj) ≤ s

}
.

Therefore,

P (Ns ≥ i) ≤ P

(
i∑

j=1

(sj − tj) ≤ s

)
.

Applying Lemma 17 and the strong Markov property of X we have

1−K1 −K2 ≤ P
(
sj − tj ≥ T |Ftj

)
for all j. Taking expectations of both sides yields

1−K1 −K2 ≤ P (sj − tj ≥ T )
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for all j, so

1−K1 −K2 ≤ inf
j
P (sj − tj ≥ T ).

Note that p → 1 as N → ∞. Define an i.i.d. sequence {Vi}∞i=1 of random

variables with distribution P (Vi = 0) = 1− p and P (Vi = T ) = p. Then

P

(
i∑

j=1

(sj − tj) ≤ s

)
≤ P

(
i∑

j=1

Vi ≤ s

)
.

This will allow us to define a new process N ′s such that N ′s = i if

i∑
j=1

Vi ≤ s <

i+1∑
j=1

Vi.

Note that P (N ′s = 0) = p for s ∈ [0, T ) and that P (N ′s ≥ k) ≥ P (Ns ≥ k) for all

k. Therefore, it is enough to bound E[N ′s]/s.

Let V0 = 0. Jumps of the process N ′s only occur at points kT where k is

a positive integer. On the time interval [0, T ) the process N ′s is constant and has

value max{i ≥ 0 : Vi = 0}. Therefore N ′s has the shifted geometric distribution for

s ∈ [0, T ) with mean (1−p)/p. We can now make use of the fact that N ′s is a Markov

process. If we consider values at kT for k ≥ 0 we have for s ∈ [(k− 1)T , kT ) that

E[N ′s] = k(1− p)/p. For k ≥ 2 we then have

1

s
E[N ′s] =

k(1− p)
sp

≤ k(1− p)
(k − 1)pT

.

This gives us
T
s
E[N ′s] ≤

k(1− p)
(k − 1)p

→ 0 as N →∞.

On the time interval [0, T ) we have

T
s
E[N ′s] ≤

(1− p)
p

→ 0 as N →∞.

Chapter 2, in full, has been accepted for publication in the Annals of Ap-

plied Probability. The dissertation author was the sole author of this paper.



Chapter 3

A Hierarchical Probability Model

of Colon Cancer

Cairns [3] first raised the question of how stem cells affect the development

of cancer in 2006. We are interested in a particular model in which stem cells play

a central role. Komarova [23] discusses three mathematical models which may be

used to model the mutations that lead to cancer. The first is the Moran model,

which may be used to model cancers in liquids such as Leukemia. This model is

the same as the stochastic process {Xt : t ≥ 0} from chapter 2 except that there is

no selection mechanism and a mutation on individual i only causes X i to increase

by 1. The second is a spatial model which may be used to model cancers in solid

tissues. This model is similar to the Moran model except that the cells are given

spatial locations and when they die they are only replaced by nearby cells. The

third model, which is referred to as the hierarchical model, differentiates between

stem cells and daughter cells. The hierarchical model is the focus of this chapter.

The hierarchical model was originally proposed in [23] as a model of col-

orectal cancer. As discussed in [23], many cells in the human body, including those

in the colon, go through a three step process. It begins with a stem cell which

will stay in the population for a long time and have many descendants. Some of

these descendants will also be stem cells, but others will be differentiated progen-

itor cells. The progenitor cells, or what we shall refer to as daughter cells, will

split into more daughter cells. The number of times these cells split is dependent

40
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upon what organ of the body they are in. We will refer to the number of splits

that a daughter cell has undergone as the generation of the cell. Once the cells

split enough times they reach maturity and are swept out of the population in a

biological process called apoptosis. The colon is lined with crypts that contain

pockets of cells. The cells in the colon, as described by Komarova [26], are such

that stem cells reside at the bottom of the crypt and the daughters migrate up the

crypt so that the higher generation daughter cells are near the top.

In the original model proposed in [23], cancer is the result of two mutations.

The reason for two mutations is that it represents the inactivation of two alleles in

a tumor suppressor gene. Knudson claims that retinoblastoma is the result of two

mutations in [21, 22]. For other sources on two mutation models of cancer one can

refer to [18], [25] and [29]. We also model cancer as a result of two mutations.

The hierarchical model shall be referred to as H1. This model has a fixed

population of size N = 2l where l is the number of generations of daughter cells

in the crypt. At all times t ≥ 0 there is one stem cell and for k ∈ {1, 2, . . . , l}
there are 2k−1 daughter cells of generation k. We start with a full crypt and no

mutations. At each integral time unit all of the cells split in the following way:

• The stem cell splits into a stem cell and a generation 1 daughter cell.

• For each generation k with 1 ≤ k ≤ l−1, a daughter cell of generation k will

split into two cells of generation k + 1.

• The daughter cells of generation l undergo apoptosis and are swept from the

population.

Notice that the generations are constant size throughout time. The cells will

accumulate mutations via Poisson processes. A cell with 0, 1 or 2 mutations is

called a type-0, type-1 or type-2 cell respectively. A mutation which occurs on

a type-0 or type-1 cell is called a type-1 or type-2 mutation respectively. This

terminology is used so that a mutation that makes a cell type-2 is called a type-2

mutation. Once a type-2 mutation occurs the colon is assumed to have cancer.

The cells will each have two Poisson processes marking them, one which will cause

type-1 mutations and one which will cause type-2 mutations. The first Poisson
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process that marks a cell will only cause a type-1 mutation if the cell is a type-0.

If a mark of the Poisson process occurs while the cell is not a type-0 then nothing

happens. Likewise, the second Poisson process only causes mutations on type-1

cells. If a mark from this Poisson process occurs on a cell while it is type-1 then the

cell becomes type-2, but if the cell is not a type-1 then nothing happens. All of the

Poisson processes are independent. The mutations are passed to the descendants

when a cell splits. It is sometimes convenient to think of the cells as fixed in a

binary tree and the mutations as traveling through the tree in a direction which

takes them from the root to the leaves. Because of this we will often refer to the

sequence of stem cells as the stem cell line and we fix the Poisson processes that

are marking the cells on particular locations in the tree.

For our model, the rates at which stem cells acquire type-1 and type-2 mu-

tations are u1 and u2 respectively. The rates at which the daughter cells acquire

type-1 and type-2 mutations are v1 and v2 respectively. All of the rates are func-

tions of N and will approach 0 as N approaches infinity. We will always consider

what happens as N goes to infinity. All limits will be assumed as taking N to

infinity unless otherwise stated.

We should mention that several other very similar models have been used

to study how stem cells affect the development of cancer. In [24], Komarova and

Cheng consider the effects of the development of cancer based on the quantity of

stem cells in the population. In [13], Frank, Iwasa and Nowak consider a model in

which the stem cells only split finitely many times.

In the hierarchical model there are three ways in which the mutations may

occur. Stem cells may acquire both mutations so that cancer is a result of mutations

of stem cells only. It is possible that a stem cell receives the first mutation and

a daughter cell gets the second, or a daughter cell and one of its descendants will

each receive mutations before they are swept from the crypt. In [23] these cases

are abbreviated ss, sd and dd respectively.

A type-1 mutation to a cell is called successful if that cell or one of its

descendants receives a type-2 mutation. A type-1 mutation to a stem cell is always

successful and a type-1 mutation to a daughter cell is successful if the daughter cell
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has a type-2 descendent before its progeny is eliminated from the population. We

will call the successful type-1 mutation whose type-2 descendant is the first type-2

to occur the cancer causing type-1 mutation. Note that being the cancer causing

type-1 mutation is not equivalent to being the first successful type-1 mutation.

We prove the theorem by coupling various models. This motivates us to

define the following functions.

• τ ′(A) is the time at which the cancer causing type-1 mutation occurs in model

A.

• τ(A) is the first time that any cell gets a type-2 mutations in model A.

• σ(A) := j/l when the cancer causing type-1 mutation occurs in generation j

in model A. If the cancer causing type-1 mutation occurs on a stem cell in

model A then σ(A) = 0.

• ρ(A) := j/l when the first type-2 mutation occurs in generation j in model A.

If the first type-2 mutation occurs on a stem cell in model A then ρ(A) = 0.

One of the two goals of this chapter is to find the asymptotic distribution of

τ(H1) as N approaches infinity. Similar work has been done for the Moran model

by Schweinsberg [33] and Durrett, Schmidt and Schweinsberg [11], in which more

general results have already been found, and for the spatial model by Durrett and

Moseley [10]. In [23], Komarova makes a connection between the Moran model

and the hierarchical one as follows: In the Moran model a mutation may undergo

fixation, meaning it spreads throughout the entire population through the birth-

death process and all of the cells are the same type. Because the last generation is

always removed in the hierarchical model, the only way to get fixation is if a stem

cell gets a mutation. These are the cases ss and sd. In these cases the mutation

will spread throughout the population in l time units. In the Moran model it is

also possible that the progeny of mutated cells undergo what is called stochastic

tunneling. This is when multiple mutations are acquired before they fixate. This

is analogous to daughter cells acquiring two mutations before a stem cell gets one

mutation in the hierarchical model. This is the dd case and can also happen in
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the sd case if the second mutation occurs before the first has time to fixate (in

particular the second mutation occurs in less than l time units).

The rate at which daughter cells get successful type-1 mutations is given in

[23] to be approximately

l∑
i=1

v12i−1(1− e−v2(2l−i+1−2)). (3.1)

To see this, suppose all the cells are type-0. When all of the cells in generation i

are type-0 then type-1 mutations occur on generation i at rate v12i−1. Each of the

cells will have 2l−i+1−2 descendants. Every descendant lives for one time unit and

gets type-2 mutations at rate v2. This gives the probability of success of a type-1

mutation in generation i to be approximately 1− e−v2(2l−i+1−2). Then we sum over

all generations.

Our second goal is to determine the limiting distributions of σ(H1) and

ρ(H1). The location of the mutations can be essential to the treatment of cancer.

As an example, studies of the effects of the drug imatinib on chronic myeloid

leukemia have shown that leukemic stem cells will most likely not cause tumors

but rather that a tumor is a result of a mutation on one of the daughter cells,

see Dingli and Michor [7] and Michor [27]. Imatinib treats leukemic daughter cells

but not leukemic stem cells. While using imatinib problems arising from cancer

are prevented but patients cannot stop treatment because the leukemic stem cells

will continue producing new leukemic daughter cells. Therefore, the location of

where the mutations occur may play a pivotal role in determining how to treat the

cancer.

We do not find the limiting distribution of τ ′(H1) as there seems to be no

motivation to do so. We only make the definition τ ′(A) because it will occasionally

be useful for achieving the two goals described above.

We have established most of the notation for chapter 2 above but some

more will be included here. For any real number a we define a+ = a∨ 0. For func-

tions f(x) and g(x) we will denote the limits f(x)/g(x)→ 0, f(x)/g(x)→ 1, and

f(x)/g(x) → ∞ as x → ∞ by f � g, f ∼ g and f � g respectively. To reduce

the number of subscripts, we will use log x for log2 x. Note that with this notation
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l = logN . We will use→d to denote convergence in distribution and→p to denote

convergence in probability. We make the following assumptions throughout most

of chapter 3.

Assumption 1: There exist constants α, β > 0 such that v2 ∼ βN−α.

Assumption 2: The mutation rates satisfy u1 ≤ u2 and v1 ≤ cv2 for some c > 0.

We do not allow α = 0 so as to reduce the number of cases to be considered. As

a result of Assumption 1, the probability that the cancer causing type-1 mutation

occurs on a daughter cell in generation i < l(1 − α)+ tends to 0. According to

Komarova in [24], Assumption 2 agrees with almost all of the biologically relevant

cases. We let X be an exponentially distributed random variable with mean 1 and

we let Y be a random variable with the Rayleigh distribution so that P (Y ≤ t) =

1− e−t2/2 for any t > 0.

The following theorem is proved in chapter 2.

Theorem 18. Suppose Assumptions 1 and 2 hold. Recall that all limits are taken

as N goes to infinity.

1. If v1v2 � 1/(N(logN)2) and v1v2N logN � u1 then

(α ∧ 1)v1v2N(logN)τ(H1)→d X.

The distribution of σ(H1) converges to the uniform distribution on the inter-

val ((1− α)+, 1] and ρ(H1) converges in probability to 1.

2. If 1/(N(logN)2)� v1v2 � 1/N and v1v2 � u2
1/N then√

v1v2Nτ(H1)→d Y.

Both σ(H1) and ρ(H1) converge in probability to 1.

3. If v1v2 � 1/N then √
v1v2Nτ(H1)→d Y.

Both σ(H1) and ρ(H1) converge in probability to 1.
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4. If we have the following two conditions:

• Either

v1v2 � 1/(N(logN)2) and u1 � v1v2N logN

or

1/(N(logN)2)� v1v2 � 1/N and u1 �
√
v1v2N

• Both u2 � 1/ logN and u2 � v2N

then

u1τ(H1)→d X.

The probability that the first mutation occurs on the stem cell line converges

to 1 and ρ(H1) converges in probability to α ∧ 1.

5. If we have the following two conditions:

• Either

v1v2 � 1/(N(logN)2) and u1 � v1v2N logN

or

1/(N(logN)2)� v1v2 � 1/N and u1 �
√
v1v2N

• Either u2 � 1/ logN or u2 � v2N

then the probability that both mutations occur on the stem cell line converges

to 1. If u1 � u2 then

u1τ(H1)→d X

and if u1 ∼ Au2 for some A > 0 then

u1τ(H1)→d X + Z

where Z is an exponentially distributed random variable with mean A which

is independent of X.
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There are many boundary cases and most of them are not included, where

we use the term boundary case to refer to the boundary between two of the condi-

tions. That is, if v1 � 1/N gives one result and v1 � 1/N gives another, we would

consider v1 ∼ A/N for some constant A to be a boundary case. If included, the

boundary cases would make up the bulk of this thesis. One reason for this is that

our variables {v1, v2, u1, u2} span a four dimensional space so that the regions will

have many boundaries. Moreover, sometimes three regions intersect in the same

place. It does not seem that there would be any special difficulties in computing

most of these boundary cases and that they could be done with methods similar

to those used in chapter 3.

The first three cases of Theorem 18 are the dd regime. Case 4 is the sd

regime and case 5 is the ss regime. In case 1 the condition v1v2 � 1/(N(logN)2)

indicates that with probability tending to 1 the first successful type-1 mutation

on a daughter cell will occur after logN time. The condition v1v2N logN � u1

indicates that a type-2 mutation will occur on a daughter cell before a type-1

mutation occurs on a stem cell with probability tending to 1. Because the amount

of time that can pass between a successful type-1 mutation and a type-2 mutation

is bounded by logN the time it takes for the type-2 mutation to occur is negligible

in the limit. This is why the distribution of τ(H1) converges to an exponential

distribution.

There is a useful picture to keep in mind. We will graph time scaled by

1/ logN on the horizontal axis and generation scaled by 1/ logN on the vertical

axis. A mutation on a cell in generation i at time t will be represented by a

circle at (t/l, i/l). We only represent the successful type-1 and type-2 mutations.

When a successful type-1 mutation is marked, the following type-2 mutation will

be connected to it by a line. Figure 3.1 is an illustration of case 1 of Theorem 18.

The distribution of σ(H1) arises from a balance between the large number

of cells in the later generations versus the large number of descendants of cells in

the earlier generations as discussed above. The reasoning used to derive equation

(3.1) shows that generation i gets mutations at a rate of approximately

v12i−1(1− e−v2(2l−i+1)) ≈ v1v2N.
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Figure 3.1: Case 1 of Theorem 18

Note that the approximate rate is independent of i. This balance causes the dis-

tribution of the marks of the successful type-1 mutations to converge to a uniform

Poisson process on [0,∞)× ((1−α)+, 1).The probability that the second mutation

occurs in the later generations is just a result of the bulk of the population being

concentrated in the later generations.

In case 2 the condition 1/(N(logN)2)� v1v2 indicates that a daughter cell

will get a successful type-1 mutation before time logN with probability tending to

1. The condition v1v2 � 1/N indicates that the time it takes for a successful type-1

mutation to occur on a daughter cell tends to infinity. The condition v1v2 � u2
1/N

indicates that the cancer causing type-1 mutation will occur on a daughter cell

with probability tending to 1. As in case 1, ρ(H1)→p 1 because most of the cells

are in the later generations. Because cells split at rate 1 it takes O(logN) time

units before a significant number of an individuals progeny is realized. In this

case the type-2 mutation will occur much faster than logN time with probability

tending to 1. Therefore, an individuals progeny does not play such an important

role. For this reason the cancer causing type-1 mutation is approximately equally

likely to occur on any cell. Most of the cells are in the later generations so σ(H1)

tends to 1. We illustrate this case in Figure 3.2.

In Figure 3.2, a type-2 mutation will occur by time t if a successful type-

1 mutation has occurred in the triangle beneath time t. Note that Figure 3.2

illustrates an example in which the first successful type-1 mutation is not the
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Figure 3.2: Case 2 of Theorem 18 - A magnified image of the top left corner

cancer causing type-1 mutation. Because the marks of the type-1 mutations are

converging to a uniform Poisson process in the triangle, the distribution of τ(H1)

will converge to the Rayleigh distribution.

In case 3 the condition v1v2 � 1/N indicates that some cell will receive

two mutations before time 1 with probability tending to 1. Any daughter cell is

equally likely to get the two mutations and because u1 → 0 the probability that

the stem cell gets the two mutations tends to 0. This causes σ(H1) and ρ(H1) to

tend to 1 in probability since the bulk of the population is concentrated in the

later generations. The waiting time for the first individual to get two mutations

has a Rayleigh distribution, which gives the result for τ(H1). The results hold for

this case when α = 0.

We now explain the assumptions of case 4 which ensure that the sd regime

occurs with probability tending to 1. If stem cells could not mutate and v1v2 �
1/(N(logN)2) then according to case 1 (α ∧ 1)v1v2N logNτ(H1) →d X. The

condition u1 � v1v2N logN indicates that a type-1 mutation occurs on the stem

cell line before a type-2 mutation occurs on a daughter cell when the mutation

rates of the daughter cells satisfy v1v2 � 1/N(logN)2. Likewise, if the stem cell

could not mutate and 1/(N(logN)2) � v1v2 � 1/N then according to case 2
√
v1v2Nτ(H1) →d Y . The condition u1 �

√
v1v2N indicates that the stem cell

line gets a type-1 mutation before the daughter cells get a type-2 mutation when

the mutation rates of the daughter cells satisfy 1/(N(logN)2) � v1v2 � 1/N .
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The condition u2 � 1/ logN or u2 � v2N indicates that the first type-2 mutation

occurs on a daughter cell rather than the stem cell line.

In case 4 the time at which the type-1 mutation occurs on the stem cell line

is much larger than logN with probability tending to 1. Therefore, the time it

takes for the first type-2 mutation to occur is negligible. This implies that the type-

1 mutation that occurs on the stem cell line is the cancer causing type-1 mutation

with probability tending to 1 and illustrates why u1τ(H1) is converging to an

exponential distribution. Once a stem cell gets a type-1 mutation the daughter cells

inherit the type-1 mutation at an exponential rate. For any ε > 0 the probability

that the first type-2 mutation will occur when the type-1 mutation has spread to

generation i for some i ∈ ((α∧ 1− ε) logN, (α∧ 1 + ε) logN) is tending to 1. This

is why ρ(H1)→p (α ∧ 1). Figure 3.3 gives an illustration of this case.

0

1

(1− α)

0
�
�
�
�
�
c

c

Figure 3.3: Case 4 of Theorem 18 - Stem cell mutations occur on [0,∞)× {0}

The first condition in case 5 is the same as the first condition in case 4.

Under this condition the probability that the first successful type-1 mutation occurs

on the stem cell line tends to 1. The second condition in case 5 implies that the

first type-2 mutation occurs on the stem cell line with probability tending to 1.

The results for τ(H1) are similar to the results when waiting for two mu-

tations in the Moran model. In particular, when the mutation rates are slow in

the Moran model the time until two mutations converges to the exponential dis-

tribution and when the rates are faster the waiting time converges to the Rayleigh

distribution. The original results can be found in [18] and [34] and they are also a
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special case of the results in [33].

When all of the mutation rates are the same we refer to H1 as the null

model. The following proposition gives the results for the null-model, including

results for the boundary cases.

Proposition 19. Let µ = u1 = u2 = v1 = v2. Suppose Assumption 1 holds so that

there exist constants β, α > 0 such that µ ∼ βN−α.

1. If µ� 1/(N logN) then

µτ(H1)→d X.

The probability that the first successful type-1 mutation occurs on the stem

cell line converges to 1 and ρ(H1) converges in probability to 1.

2. If µ ∼ A/(N logN) then

(1 + A)µτ(H1)→d X.

Let ξ be a Bernoulli random variable such that P (ξ = 1) = A/(1 + A) and

P (ξ = 0) = 1/(1 + A). Let U be a random variable, independent of ξ, with

the uniform distribution on [0, 1]. Then

σ(H1)→d Uξ

and

ρ(H1)→p 1.

3. If 1/(N logN)� µ� 1/(
√
N logN) then

(α ∧ 1)µ2N(logN)τ(H1)→d X.

The distribution of σ(H1) converges to a uniform distribution on ((1−α)+, 1]

and ρ(H1) converges in probability to 1.

4. If µ ∼ A/(
√
N logN) then

limP (τ(H1)/ logN ≤ t) = (1−e−A2t2/2)1[0,1/2](t)+(1−e−A2t/2+A2/8)1(1/2,∞)(t).
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Let Z be a random variable with density

f(x) =

(∫ 1/2

1−x
A2e−A

2t2/2dt+ 2e−A
2/8

)
1[1/2,1](x).

As N goes to infinity σ(H1) converges in distribution to Z and ρ(H1) con-

verges in probability to 1.

5. If 1/(
√
N logN)� µ� 1/

√
N then

µ
√
Nτ(H1)→d Y.

Both σ(H1) and ρ(H1) converge in probability to 1.

6. If µ ∼ A/
√
N then for each fixed time t > 0 there exist constants c and C

such that

lim inf P (τ(H1) ≤ t) ≥ c > 0 and lim supP (τ(H1) ≤ t) ≤ C < 1.

Both σ(H1) and ρ(H1) converge in probability to 1.

7. If 1/
√
N � µ then

µ
√
Nτ(H1)→d Y.

Both σ(H1) and ρ(H1) converge in probability to 1.

Cases 1, 3, 5 and 7 of Proposition 19 follow directly from Theorem 18.

Cases 2, 4 and 6, the boundary cases, will be done in the last section.

In case 2 of Proposition 19 the cancer causing type-1 mutation may occur

on a stem cell or a daughter cell. The event ξ = 1 corresponds to the cancer causing

type-1 mutation occurring on a daughter cell and the event ξ = 0 corresponds to

the cancer causing type-1 mutation occurring on the stem cell line.

In case 4 the mutations occur in O(logN) time units. Figure 3.4 is an

illustration for this case.

Notice that the exponents in the limiting distribution for τ(H1) in part 4

correspond to the area of a triangle or quadrilateral. This is because the cancer

causing type-1 mutation will occur in O(logN) time units. Let t1 and t2 be the
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Figure 3.4: Case 4 of Proposition 19

times marked in Figure 3.4. The probability that a type-2 mutation has occurred

by time t1/ logN is the probability that a mark indicating a successful type-1

mutation has occurred in the triangle associated with t1 in Figure 3.4. Likewise,

the probability that a type-2 mutation has occurred by time t2/ logN is the prob-

ability that a mark indicating a successful type-1 mutation has occurred in the

quadrilateral associated with t2 in Figure 3.4.

The main result of case 6 is that when µ ∼ A/
√
N the time until two

mutations is O(1). The results are therefore affected by the discreteness of the

model.

In the next section we introduce a new model which will be coupled with

H1. Theorem 18 will be proved with this new model in place of H1 and the coupling

will give the results for H1. The second section of chapter 3 is devoted to getting

results about the dd regime. The third section is on results about the sd and ss

regimes. In section 3.4 we prove Theorem 18. The last section is a discussion of

the boundary cases in the null model and a proof of Proposition 19.

3.1 A Useful Model

In this section we define a new model, H2, which will be useful to compare

with H1. In model H2 there is one stem cell and for each integer i there are 2i−1

generation i daughter cells for all times t ≥ 0. The cells in model H2 split at each
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integral time unit in the same way that the cells in model H1 split. Just as in

model H1, the stem cells in model H2 receive type-1 and type-2 mutations at rates

u1 and u2 respectively and the daughter cells receive type-1 and type-2 mutations

at rates v1 and v2 respectively. The difference between the models is how the cells

accumulate type-1 mutations. In model H1 all type-1 mutations have the same

behavior. A type-1 mutation proposed to occur on a type-1 cell in H1 is rejected

because the cell is already a type-1. In model H2 the behavior of type-1 mutations

differ depending on whether or not the mutation occurred on a stem cell. If a

type-1 mutation occurs on a stem cell it has the same behavior as in model H1.

The mutation will eventually be passed to all other cells in the population and any

type-1 mutation proposed to occur on a type-1 stem cell or a daughter cell that

is the progeny of a type-1 stem cell is rejected. However, all type-1 daughter cells

which are type-1 cells as a result of a type-1 mutation occurring on a daughter

cell are able to accumulate type-1 mutations. If a type-1 mutation is proposed

to occur on such a daughter cell with one type-1 mutation, then the mutation

is accepted and the cell now carries two type-1 mutations. Type-1 mutations to

type-0 daughter cells result in cells that are allowed to carry any number of type-1

mutations, and when a cell has k type-1 mutations it receives type-2 mutations at

rate kv2. Because the type-1 mutations on daughter cells do not change the rate

at which type-1 mutations occur, equation (3.1) is more accurate for model H2.

We now give an alternate description of model H2 which will allow us to

make a coupling between models H1 and H2. Consider the daughter cells as fixed in

a tree and consider the mutations as moving to the higher generation daughter cells

at each integral time unit in model H1. Label the daughter cells D1, D2, . . . DN−1.

In model H2 each daughter cell Di has a counter Ci starting at 0 and is

acted on by a sequence of Poisson processes {P i
n}∞n=1, each having rate v2, which

determine the type-2 mutations. All of the Poisson processes are independent of

one another. When a type-1 mutation occurs on a daughter cell Di it increases

the counter Ci by 1. This is considered as a type-1 mutation. If a type-1 muta-

tion increases the counter to n, it is the nth type-1 mutation on the cell. When

the counter Ci has reached n, any type-2 mutations that would occur according
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to the Poisson processes P i
1, P

i
2, . . . P

i
n are accepted as type-2 mutations on cell

Di. Any type-2 mutations that would occur according to the Poisson processes

P i
n+1, P

i
n+2, . . . are rejected. If a type-2 mutation occurs on cell Di as a result of

the Poisson process P i
n, then the nth type-1 mutation according to Ci is considered

to be successful. If the first type-2 mutation on a cell is a result of the Poisson

process P i
n, then the nth type-1 mutation according to Ci is the cancer causing

type-1 mutation. Rather than the mutations moving up the tree, at each integral

time unit the daughter cells in generations i ≥ 2 will inherit the counter number

from their ancestor in the previous generation. The daughter cell in generation 1

will reset its counter to 0 at each integral time unit. However, a type-1 mutation

on a stem cell does not have a counter. Once a type-1 mutation has spread from

a stem cell to a daughter cell the daughter cell can no longer accumulate type-1

mutations and the model is the same as model H1.

We couple H1 and H2 as follows:

• The Poisson processes that mark the stem cells are the same.

• If a daughter cell has inherited a type-1 mutation from a stem cell then the

Poisson processes marking type-2 mutations on the cell are the same in each

model.

• The Poisson processes marking type-1 mutations on daughter cells are the

same.

• The Poisson processes marking type-2 mutations on daughter cells in model

H1 are the same as the Poisson processes P i
1 in model H2 so long as the

daughter cells did not inherit their type-1 mutations from a stem cell.

There are no analogous Poisson processes in model H1 for the N − 1 sequences of

Poisson processes P i
2, P

i
3, . . . in model H2.

Lemma 20. Let the Poisson processes in models H1 and H2 be coupled as described

above. Then P (τ(H1) = τ(H2)), P (ρ(H1) = ρ(H2)) and P (σ(H1) = σ(H2)) all

converge to 1.
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Proof. A type-2 mutation which occurs in model H2 but not in H1 is a result of the

rejection of the type-1 mutation in model H1 that has led to the type-2 mutation

in H2. This type-1 mutation could only be rejected in model H1 because the cell

on which it was supposed to occur was already a type-1 cell. Type-1 mutations

on the stem cell line will occur at the same time in both models. If we consider a

type-1 mutation that occurs on a daughter cell in model H2, the probability that

it also occurs in model H1 is the probability that the cell is a type-0. Because

the differentiated cells will be removed from the population after logN time, if we

propose a type-1 mutation at a time t on any cell that has not inherited a type-1

mutation from a stem cell, then the probability that the cell has a type-1 mutation

is at most 1 − e−v1 logN . Therefore, if a type-1 mutation occurs in model H2 at

time t, with probability at least e−v1 logN it will also occur in model H1. We show

that the same will be true of the cancer causing type-1 mutation.

We number the positions of the cells 1, 2, . . . , N and let 1 be the position of

the stem cell line. Let N̄ = {1, 2, . . . , N} and L = [0, l] ∪ {∞}. First we note that

the Poisson processes marking the daughter cells in model H2 induce a Poisson

process on the space [0,∞)× N̄ × L. A point (t, i, s) is marked to indicate that a

type-1 mutation occurred at time t on the cell at location i and at time s + t the

type-1 mutation became successful. If the type-1 mutation is not successful then

s = ∞. One may note that this is a Poisson process by two applications of the

Marking Theorem (see Kingman [20] page 55). Type-1 mutations occur according

to a Poisson process on [0,∞) at rate v1(N − 1) + u1. Each daughter cell has

probability v1/(v1(N − 1) + u1) of being the cell that receives the type-1 mutation

and the stem cell has probability u1/(v1(N−1)+u1) of being the cell that receives

the type-1 mutation. By a first application of the Marking Theorem this gives

us a Poisson process on [0,∞) × N̄ . The probability that a type-1 mutation is

successful can be determined from the associated point (t, i) which tells at what

time and on what cell the type-1 mutation occurred. Each one of these points has

an associated value s that indicates when, and if, the type-1 mutation becomes

successful. This gives the Poisson process on [0,∞)× N̄ × L.

Let Z be the random variable which indicates the value in [0,∞)× N̄ × L
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that corresponds to the time of the cancer causing type-1 mutation, the cell on

which it occurred, and the time of the first type-2 mutation. If we condition on

the event Z = (t0, i0, s0) for some i0 in generation j which is not the stem cell line,

then there can be no marks in subset

{(t, i, s) : s < t0 + s0 − t} ∪ {(t, i, s) : (dte − i, {1}, s+ t− dte)}

of [0,∞)×N̄×L. The marks that occur outside of this subset occur independently

of the marks that occur within. Conditioning does not change the probability that

a mark outside of this set has occurred by time t0. This only reduces the rate at

which type-1 mutations occur before time t0. Therefore,

P (τ(H1) 6= τ(H2)|Z = (t0, i0, s0)) ≤ 1− e−v1 logN .

Let PZ be the probability measure on [0,∞)× N̄ × L induced by Z. Then

P (τ(H1) 6= τ(H2)) =

∫
[0,∞)×N̄×L

P (τ(H1) 6= τ(H2)|Z = x)PZ(dx)

≤
∫

[0,∞)×N̄×L
(1− e−v1 logN)PZ(dx)

= 1− e−v1 logN .

This shows that P (τ(H1) 6= τ(H2)) → 0 if v1 � 1/ logN . It follows from As-

sumption 1 that v2 � 1/ logN and combining this with Assumption 2 we see that

v1 � 1/ logN as well.

On the event τ(H1) = τ(H2) we have ρ(H1) = ρ(H2) and σ(H1) = σ(H2)

with probability 1. The only way these equalities can fail is if two type-2 mutations

occur simultaneously in model H2, an event whose probability is 0. Therefore,

P (ρ(H1) = ρ(H2)) and P (σ(H1) = σ(H2)) both converge to 1 as well.

The rest of the work in proving Theorem 18 is in proving Theorem 18 with

H2 in place of H1. Once this is done Theorem 18 follows from Lemma 20.

3.2 The dd regime

To understand the behavior in the dd regime, we consider a new model

which is the same as H2 except that mutations only occur on daughter cells. That
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is, there are no Poisson processes that mark mutations on the stem cells. This new

model will be called model M1. The purpose of this section is to prove Proposition

21.

Proposition 21. 1. If v1v2 � 1/(N(logN)2) then

(α ∧ 1)v1v2N(logN)τ(M1)→d X.

The distribution of σ(M1) converges to a uniform distribution on ((1−α)+, 1]

and ρ(M1) converges in probability to 1.

2. If 1/(N(logN)2)� v1v2 � 1/N then√
v1v2Nτ(M1)→d Y.

Both σ(M1) and ρ(M1) converge in probability to 1.

Lemma 22. For any positive integer k < l we have

P (ρ(M1) ≥ (l − k)/l) > 1− 1/2k.

Proof. Let Z be the number of generations between the cancer causing type-1

mutation and the first type-2 mutation. Then Z ∈ {0, 1, 2, . . . , l}. Because there

are only l generations, if the second mutation occurs l − k generations or more

after the first then it must be in the last k generations. So

P (ρ(M1) ≥ (l − k)/l|Z ∈ {l − k, l − k + 1, . . . , l}) = 1.

If we condition on the event that Z = j for some j ≤ l − k − 1, then the

probability that the cancer causing type-1 mutation occurs on any cell in gen-

erations 1, 2, . . . , l − j is equally likely. This is because the Poisson processes

marking the mutations on the descendants of the cells j generations after any gen-

eration i are independent and identically distributed. The last k of the l − j

generations always make up at least a fraction of 1 − 1/2k cells, so we have

P (ρ(M1) ≥ (l − k)/l|Z ∈ {0, 1, 2, . . . , l − k − 1}) > 1 − 1/2k where we get a

strict inequality because we do not count the stem cell line. The result follows.
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It is important to notice that Lemma 22 holds for any N and we do not

require N →∞. Also, the rates at which v1 and v2 tend to 0 are irrelevant.

Corollary 23. As N goes to infinity, ρ(M1) will converge to 1 in probability.

Lemma 24. Let (β1, β2] ⊂ (0, 1]. Let C be a positive constant and let C ′ ∈ {1, 2}.
Then ∑

i∈N∩(lβ1,lβ2]

v12i−1(1− e−Cv2(2l−i+1−C′)) ∼ C(β2 − β1 ∨ (1− α))+v1v2N logN.

Proof. We will first define some notation for this proof for the sake of readability.

Let I ⊂ R. We define

I∗ := I ∩ (lβ1, lβ2] ∩ N.

First we can do the case when α ≥ 1. Using the upper bound

1− e−Cv2(2l−i+1−C′) ≤ Cv22l−i+1

we have ∑
i∈(lβ1,lβ2]∗ v12i−1(1− e−Cv2(2l−i+1−C′))

v1v22ll
≤ C(β2 − β1).

From the second order Taylor expansion we get a lower bound of

1− e−C(2l−i+1−C′) ≥ Cv2(2l−i+1 − C ′)− 1

2
C2v2

2(2l−i+1 − C ′)2.

We will break this sum into 5 parts,

2i−1(1−e−Cv2(2l−i+1−C′))

≥ Cv22l − CC ′v22i − C2v2
222l−i + C2C ′v2

22l − C2(C ′)2v2
22i−2.
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We get the following computations for each of the five individual sums:∑
i∈(lβ1,lβ2]∗

Cv22l/(v22ll)→ C(β2 − β1).

∑
i∈(lβ1,lβ2]∗

CC ′v22i/(v22ll) ≤ CC ′2l+1/(2ll)→ 0.

∑
i∈(lβ1,lβ2]∗

C2(C ′)2v2
22i−2/(v22ll) ≤ C2C ′2v2/l→ 0.

∑
i∈(lβ1,lβ2]∗

C2C ′v2
22l/(v22ll) ≤ C2C ′v2 → 0.

∑
i∈(lβ1,lβ2]∗

C2v2
222l−i/(v22ll) = C2v22l(

β2∑
i=dlβ1e

2−i)/l ≤ C2v22l(β2−β1) → 0

so long as v2 � 1/2l(β2−β1) = N−(β2−β1) which will hold since this is the case α ≥ 1.

So we have

lim
N→∞

(∑
i∈(lβ1,lβ2]∗ v12i−1(1− e−Cv2(2l−i+1−C′))

v1v22ll

)
= C(β2 − β1)

which finishes the case for α ≥ 1.

Now let 0 < α < 1 and let ε > 0 be small enough so that 0 < 1− α − ε <
1− α + ε < 1. We now break the sum into three pieces,∑

i∈[1,l(1−α−ε))∗∪[l(1−α−ε),l(1−α+ε)]∗∪(l(1−α+ε),l]∗ 2i−1(1− e−Cv2(2l−i+1−C′))

v22ll
.

We can consider each of these three sums individually.

As for the middle sum, we only need the bound

0 ≤
∑

i∈[l(1−α−ε),l(1−α+ε)]∗ 2i−1(1− e−Cv2(2l−i+1−C′))

v22ll
≤ 2Cε

which follows by the upper bound 1− e−Cv2(2l−i+1−C′) ≤ Cv22l−i+1.

One can apply similar computations as in the case when α = 1 to obtain

the following:∑
i∈(l(1−α+ε),l]∗ 2i−1(1− e−Cv2(2l−i+1−C′))

v22ll
→ C(β2 − β1 ∨ (1− α + ε))+.
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For the first sum, note that 1− e−Cv2(2l−i+1−C′) ≤ 1. This gives the bound

0 ≤
∑

i∈[1,l(1−α−ε))∗

2i−1(1− e−Cv2(2l−i+1−C′))

v22ll

≤
∑

i∈[1,l(1−α−ε))∗

2i−1

v22ll

≤ 2l(1−α−ε)

v22ll
→ 0.

The convergence is a result of the definition of α. In particular, v2 � N−α−ε(logN)−1.

Combining the three sums yields

C(β2 − β1 ∨ (1− α + ε))+ ≤ lim inf

∑
i∈(lβ1,lβ2]∗ v12i−1(1− e−Cv2(2l−i+1−C′))

lv1v22l

and

lim sup

∑
i∈(lβ1,lβ2]∗ v12i−1(1− e−Cv2(2l−i+1−C′))

lv1v22l
≤ C(β2 − β1 ∨ (1− α+ ε))+ + 2Cε.

Letting ε approach 0 gives the result.

Corollary 25. Let T be the time at which the first successful type-1 mutation

occurs. Then (α ∧ 1)v1v2N(logN)T →d X.

Proof. For 1 ≤ i ≤ l there are 2i−1 cells in generation i. Each of these cells is

getting type-1 mutations at rate v1. The cells in generation i have 2l−i+1 − 2

descendants. If the cell splits as soon as it becomes a type-1, the probability that

none of its descendants get a type-2 mutation is e−v2(2l−i+1−2). On the other hand,

after a cell gets a type-1 mutation it could live for at most 1 time unit until it splits.

If this is the case, then the probability that neither the cell that receives the type-1

mutation nor any of its descendants get a type-2 mutation is e−v2(2l−i+1−1). If we

let R(t) be the rate at which the successful type-1 mutations occur at time t, then

for any time t we have

1 = lim

∑l
i=1 v12i−1(1− e−v2(2l−i+1−2))

(α ∧ 1)v1v2N logN
≤ lim inf

R(t)

(α ∧ 1)v1v2N logN

≤ lim sup
R(t)

(α ∧ 1)v1v2N logN
≤ lim

∑l
i=1 v12i−1(1− e−v2(2l−i+1−1))

(α ∧ 1)v1v2N logN
= 1,
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where the limits are results of Lemma 24.

The successful type-1 mutations occur according to a time inhomogeneous

Poisson process with an intensity measure ν where ν([0, t]) =
∫ t

0
R(s)ds. We have

shown that ν satisfies

t
l∑

i=1

v12i−1(1− e−v2(2l−i+1−2)) ≤ ν([0, t]) ≤ t

l∑
i=1

v12i−1(1− e−v2(2l−i+1−1))

for all t ≥ 0 and all N . For any t ≥ 0 we have

P

(
T ≤ t

(α ∧ 1)v1v2N(logN)

)
= 1− e−ν([0,t])/((α∧1)v1v2N logN) → 1− e−t

where the limiting results follow by Lemma 24. Therefore, (α ∧ 1)v1v2N(logN)T

is converging in distribution to an exponentially distributed random variable with

parameter 1.

The next lemma states that when v1v2 � 1/(N(logN)2) the probability

that the first successful type-1 mutation is the cancer causing type-1 mutation

tends to 1.

Lemma 26. Let T be the time at which the first successful type-1 mutation occurs

in model M1. If v1v2 � 1/(N(logN)2) then P (T = τ ′(M1))→ 1.

Proof. Let Z = τ(M1) − T be the time it takes to get the first type-2 mutation

after the first successful type-1 mutation has appeared and let T̂ be the time it

takes to get the second successful type-1 mutation after the first.

By Corollary 25,

(α ∧ 1)v1v2N(logN)T →d X and (α ∧ 1)v1v2N(logN)T̂ →d X.

Then because a type-2 mutation must occur within logN time after a successful

type-1 mutation on a daughter cell we have

P (T̂ < Z) ≤ P (T̂ < logN) = P ((α∧1)v1v2N(logN)T̂ < (α∧1)v1v2N(logN)2)→ 0.

Moreover, P (T̂ ≥ Z) ≤ P (T = τ ′(M1)) so P (T = τ ′(M1))→ 1.

Lemma 27. If v1v2 � 1/(N(logN)2) then (α ∧ 1)v1v2N(logN)τ(M1)→d X.
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Proof. From Lemma 26 we know that the probability that the first successful type-

1 mutation is the cancer causing mutation is converging to 1. Combining this with

Corollary 25, (α ∧ 1)v1v2N(logN)τ ′(M1)→d X.

Due to apoptosis τ(M1) − τ ′(M1) is bounded above by logN so it follows

that (α ∧ 1)v1v2N(logN)(τ(M1)− τ ′(M1))→p 0. Then

(α ∧ 1)v1v2N(logN)τ(M1) = (α ∧ 1)v1v2N(logN)(τ ′(M1) + (τ(M1)− τ ′(M1)))

→d X.

Lemma 28. If v1v2 � 1/(N(logN)2) then the distribution of σ(M1) converges to

the uniform distribution on ((1− α)+, 1].

Proof. By Lemma 26 the first successful type-1 mutation will be the cancer causing

type-1 mutation with probability tending to 1. Therefore, to find the limiting

results on σ(M1) it is enough to find the depth at which the first successful type-1

mutation occurs as N tends to infinity.

Each generation i with 1 ≤ i ≤ l is getting successful type-1 mutations

independently at a rate bounded between v12i−1(1− e−v2(2l−i+1−2)) and v12i−1(1−
e−v2(2l−i+1−1)) for any time t. Therefore, for a fixed N and i, the probability that

the first successful type-1 mutation occurs on generation i is between

v12i−1(1− e−v2(2l−i+1−2))∑l
j=1 v12j−1(1− e−v2(2l−j+1−1))

and
v12i−1(1− e−v2(2l−i+1−1))∑l
j=1 v12j−1(1− e−v2(2l−j+1−2))

.

Let β ∈ [0, 1]. Using the notation and result from Lemma 24,

lim supP (σ(M1) ≤ β) ≤ lim sup

∑
i∈(0,lβ]∗ v12i−1(1− e−v2(2l−i+1−1))∑
j∈(0,l]∗ v12j−1(1− e−v2(2l−j+1−2))

=
(β − (1− α)+)+

α ∧ 1
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and

lim inf P (σ(M1) ≤ β) ≥ lim inf

∑
i∈(0,lβ]∗ v12i−1(1− e−v2(2l−i+1−2))∑
j∈(0,l]∗ v12j−1(1− e−v2(2l−j+1−1))

=
(β − (1− α)+)+

α ∧ 1
.

Combining the results of Corollary 23 and Lemmas 27 and 28 we have part

1 of Proposition 21. For the next two proofs we note that Corollary 23 already

gives us that ρ(M1) converges to 1 in probability.

Proof of part 2 of Proposition 21. For the slower mutation rates it was enough to

notice that a cell in generation i has 2l−i+1−2 descendants. Under these conditions

the mutation rates are fast enough that we will need to consider how many descen-

dants a cell in generation i has at a time before its progeny undergoes apoptosis.

For each k ∈ N∪ {0}, let Ci,k be the collection of cells in generation i during time

[k, k + 1). If t ≥ l − i + k the number of descendants of each one of the cells in

Ci,k will be 2i−1(2l−i+1 − 2) and their progeny will no longer be in the population.

For k < t < l − i + k the number of descendants of each cell in Ci,k will be be-

tween 2t−1−k and 2t+1−k. This will allow us to give upper and lower bounds on

the number of cells in or descended from cells in generation i by time t. If we

consider a time t < l− i then the descendants of the cells in Ci,0 will not yet have

undergone apoptosis. Therefore, at time t < l − i the number of cells that have

been in generation i and their descendants is between

btc∑
j=0

2t−1−j ≥ 2t − 1

and
btc∑
j=0

2t+1−j ≤ 2t+2 − 1.

If t ≥ l − i then some of the cells that have descended from generation i

cells will have undergone apoptosis. The total number of cells that have been in or
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descended from generation i cells at time t, including those that have undergone

apoptosis, will be between

l−i∑
j=0

2l−i−j−1 + (t− l + i)(2l−i+1 − 2) = 2l−i − 1 + (t− l + i)(2l−i+1 − 2)

and

l−i∑
j=0

2l−i−j+1 + (t− l + i)(2l−i+1 − 2) = 2l−i+2 − 1 + (t− l + i)(2l−i+1 − 2).

Recall that there are always 2i−1 cells in generation i which are acquiring

type-1 mutations at rate v1. We can once again multiply the rate of type-1 mu-

tations on generation i by the bounds on the probability that such a mutation is

successful to find bounds on the rate of successful type-1 mutations in generation

i. We find that successful type-1 mutations occur on generation i according to a

Poisson process that has intensity measure between

2i−1v1(1− e−v2(2t−1)) and 2i−1v1(1− e−v2(2t+2−1))

if t < l − i and

2i−1v1(1− e−v2(2l−i−1+(t−l+i)(2l−i+1−2))) and 2i−1v1(1− e−v2(2l−i+2−1+(t−l+i)(2l−i+1−2)))

if t ≥ l − i.
We now use the bounds on the rates of successful type-1 mutations in

each generation i to find the limiting distribution of τ(M1). By the hypothesis

1/(N(logN)2)� v1v2, for N large enough we will have t <
√
v1v2N logN for any

real number t . Let θ = t/
√
v1v2N and let N be large enough that θ < l. Then

P (τ(M1) ≤ θ) = 1− e−f(N,t)

where by summing over the generations and using the fact that 1 − e−x ≤ x we
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obtain

f(N, t) ≤
∑

0≤i<l−θ

2i−1v1(1− e−v2(2θ+2−1))

+
∑

l−θ≤i≤l

2i−1v1(1− e−v2(2l−i+2−1+(θ−l+i)(2l−i+1−2)))

≤
∑

0≤i<l−θ

2i−1(2θ+2 − 1)v1v2

+
∑

l−θ≤i≤l

2i−1
(
2l−i+2 − 1 + (θ − l + i) (2l−i+1 − 2)

)
v1v2.

As for the first sum,∑
0≤i<l−θ

2i−1(2θ+2 − 1)v1v2 ≤
1

2
(2θ+2 − 1)(2l−θ+1 − 1)v1v2

≤ 2l+2v1v2 → 0.

As for the second sum, we first compute∑
l−θ≤i≤l

2i−1(2l−i+2 − 1)v1v2 ≤ 2l+2v1v2θ → 0.

Lastly, ∑
l−θ≤i≤l

2i−1 (θ − l + i) (2l−i+1 − 2)v1v2 ≤ 2lv1v2

∑
l−θ≤i≤l

(θ − l + i)

≤ 2lv1v2

2
(θ + 1)2

→ t2

2
.

Therefore, lim supP (
√
v1v2Nτ(M1) ≤ t) ≤ 1− e−t2/2.

As for the lower bound, we have

f(N, t) ≥
∑

0≤i<l−θ

2i−1v1(1− e−v2(2θ−1))

+
∑

l−θ≤i≤l

2i−1v1(1− e−v2(2l−i−1+(θ−l+i)(2l−i+1−2)))

≥
∑

l−θ≤i≤l

2i−1v1(1− e−v2(θ−l+i)(2l−i+1−2)).
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Using the bound 1− e−x ≥ x− x2/2 we have∑
l−θ≤i≤l

2i−1v1(1− e−v2(θ−l+i)(2l−i+1−2))

≥
∑

l−θ≤i≤l

2i−1v1(v2(θ − l + i)(2l−i+1 − 2)− v2
2(θ − l + i)2(2l−i+1 − 2)2/2).

First consider ∑
l−θ≤i≤l

2i−1v1v
2
2 (θ − l + i)2 (2l−i+1 − 2)2

2
.

This sum is bounded between 0 and
∑

l−θ≤i≤l v2t
22l−i. Let 0 < ε < α. For N large

enough we have t <
√
v1v2Nl(α− ε) which is equivalent to l(1−α− ε) < l− θ. So

for N large enough we have∑
l−θ≤i≤l

v2t
22l−i ≤

∑
l(1−α+ε)≤i≤l

v2t
22l−i ≤ lv2N

α−ε → 0.

This leaves us to show

lim inf
∑

l−θ≤i≤l

2i−1v1v2(θ − l + i)(2l−i+1 − 2) ≥ t2

2
.

Let j ∈ N and t > 0. For large enough values of N we will have j < θ < logN .

Notice that if i ≤ l − j then 2l−i+1 − 2 ≥ (1− 2−j)2l−i+1, so∑
l−θ≤i≤l

2i−1v1v2 (θ − l + i) (2l−i+1 − 2)

≥
∑

l−θ≤i≤l−j

2i−1v1v2 (θ − l + i) (1− 2−j)2l−i+1.

Because j is fixed we have∑
l−j≤i≤l

2i−1v1v2 (θ − l + i) (1− 2−j)2l−i+1 → 0

since each of the summands converges to 0. Therefore, we can add this sum without

changing the limit. This gets us a lower bound of

lim inf
∑

l−θ≤i≤l

2lv1v2 (θ − l + i) (1− 2−j) ≥ t2

2
(1− 2−j).

We chose j to be any natural number, so lim inf P (
√
v1v2Nτ(M1) ≤ t) ≥ 1−e−t2/2.
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The above two bounds establish that P (
√
v1v2Nτ(M1) ≤ t) → 1 − e−t2/2

for any t ≥ 0. This leaves us to show that σ(M1) converges in probability to 1.

First note that for any ε > 0 we have

P (τ(M1) ≤ ε logN) = P (
√
Nv1v2τ(M1) ≤

√
Nv1v2ε logN)→ 1

which follows because the distribution of
√
Nv1v2τ(M1) is converging to the Rayleigh

distribution and
√
Nv1v2ε logN is converging to infinity. Let δ > 0. By Corollary

23 we know that ρ(M1) converges in probability to 1 so that as N goes to infinity,

P (ρ(M1) > 1−δ)→ 1. If σ(M1) < 1−2δ and ρ(M1) > 1−δ then τ(M1) > δ logN .

Because P (τ(M1) > δ logN) → 0 we must also have P (σ(M1) < 1 − 2δ) → 0

where δ > 0 was arbitrary. Then P (1 − σ(M1) > 2δ) → 0 for any δ > 0 so

σ(M1)→p 1.

3.3 The sd and ss regimes

In this section we need two different models. The first one is the same as

model H2 except that only stem cells receive type-1 mutations and only daughter

cells receive type-2 mutations. The second is the same as H2 except that only

stem cells receive mutations. These will be referred to as models M2 and M3

respectively.

Proposition 29. 1. If u1 � 1/ logN and u1 � Nv2 then u1τ(M2)→d X and

ρ(M2)→p (α ∧ 1).

2. If u1 � u2 then u1τ(M3)→d X.

3. Let A > 0 and Z be an exponentially distributed random variable mean A

which is independent of X. If u1 ∼ Au2 then u1τ(M3)→d X + Z.

The goal of this section is to prove Proposition 29. It will be shown later

that the conditions used in Proposition 29 for the sd regime are the only relevant

conditions.
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Lemma 30. For time t ≤ logN after a stem cell receives a type-1 mutation we

have

e−2t+2v2 ≤ P (τ(M2)− τ ′(M2) > t) ≤ e−(2t−2−2)v2 .

Proof. Let Z = τ(M2) − τ ′(M2). First we establish the upper bound. After the

stem cell line gets the first mutation it takes at most one time unit until the

mutation is passed along to the first generation daughter cell. Assuming it does

take one time unit until the first generation daughter cell inherits the mutation

we can get an upper bound on P (Z > t). Let time t = 0 denote the time at

which the stem cell line receives the type-1 mutation. There are no mutations

being acquired by the daughter cells for time t ∈ [0, 1). For time t ∈ [1, 2) the

generation 1 daughter cell is the only type-1 daughter cell. So for t ∈ [1, 2) we have

P (Z > t) = e−(t−1)v2 . For time t ∈ [2, 3) the first two generations have the mutation

which is a total of 3 cells. Therefore, for t ∈ [2, 3) we have P (Z > t) = e−(3(t−2)v2+v2)

where the v2 is added because of the probability of having a mutation before time

2. Extending this inductively gives us

P (Z > t) ≤ e−[(2btc−1)(t−btc)+
∑btc
i=2(2i−1−1)]v2 ≤ e(−2t−2−1)v2

for any t ≤ logN .

For the lower bound we use the same reasoning as above except that we

assume it takes 0 time for the generation 1 daughter cell to become a type-1 after

the stem cell line is type-1. This gets us

P (Z > t) ≥ e−[(2dte−1)(t−btc)+
∑btc
i=1(2i−1)]v2 ≥ e−2t+2v2 .

Lemma 31. The location of the second mutation satisfies ρ(M2)→p α ∧ 1.

Proof. Let Z = τ(M2)−τ ′(M2). By Lemma 30 we have P (Z > logN) ≥ e−4Nv2 . If

α > 1 then P (Z > logN)→ 1 and the mutation will spread throughout the entire

crypt. If this is the case then any cell is equally likely to have the second mutation.

Therefore P (ρ(M2) ≤ β) ≤ (2βl − 1)/(2l − 1) for any β ∈ [0, 1) so ρ(M2)→p 1.
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Now suppose α ≤ 1. Let ε > 0 so that α− ε > 0. Then by Lemma 30

P (Z > l(α− ε)) ≥ e−2l(α−ε)+2v2 .

Because 4Nα−εv2 → 0 we get the convergence P (Z > l(α − ε)) → 1. By time

l(α− ε) the mutation will have spread to the first bl(α− ε)c generations so that for

times after l(α− ε) we know that at least 2bl(α−ε)c cells have the type-1 mutation.

Therefore,

P ({ρ(M2) ≤ β} ∩ {Z > l(α− ε)}) ≤ (2βl − 1)/(2(α−ε)l−1 − 1).

Thus, for any β < α− ε,

P (ρ(M2) ≤ β) <
2βl − 1

2(α−ε)l−1 − 1
+ P (X2 ≤ l(α− ε))→ 0

Hence P (ρ(M2) ≥ α− ε)→ 1. Because ε may be arbitrarily small we have finished

the case when α = 1.

Suppose α < 1 and let ε > 0 so that α + ε ≤ 1. Then by Lemma 30

P (Z > l(α + ε)) ≤ e−(2l(α+ε)−2−1)v2 .

Because Nα+εv2/4 → ∞, we have P (Z > l(α + ε)) → 0. By time l(α + ε) the

mutation has only spread to the first l(α+ε) generations, so P (ρ(M2) > α+ε)→ 0

where ε is arbitrarily small.

Lemma 32. If u1 � 1/ logN and u1 � Nv2 then u1τ(M2)→d X.

Proof. Since the stem cell line is getting mutations according to a Poisson process

at rate u1 we have that u1τ
′(M2) is an exponentially distributed random variable

with mean 1. This leaves us to show u1(τ(M2)− τ ′(M2))→p 0.

Suppose we consider a new model M ′
2 which is the same as model M2 except

that the type-2 mutations can only occur on daughter cells logN time after the

stem cell line has a type-1 mutation. We can couple models M2 and M ′
2 so that

the same Poisson processes are marking the mutations on the cells in each model

but that any proposed type-2 mutation is rejected in model M ′
2 until logN time

after the stem cell line is type-1. Under the coupling τ ′(M2) = τ ′(M ′
2). Also, if we
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let Z = τ(M ′
2)− τ ′(M ′

2) then Z ≥ τ(M2)− τ ′(M2). Therefore it is enough to show

that u1Z →p 0.

If we wait logN time after the stem cell line receives a type-1 mutation

then all of the daughter cells will be type-1. Thus for any fixed N we have

P (Z > t) = 1[0,logN ](t) + e−v2(N−1)(t−logN)1(logN,∞](t).

Let ε > 0. Then

P (u1Z > ε) = 1[0,logN ]

(
ε

u1

)
+ e−v2(N−1)(ε/u1−logN)1(logN,∞]

(
ε

u1

)
.

By our assumptions, u1 logN → 0 so for N large enough this becomes

P (u1Z > ε) = e−v2(N−1)(ε/u1−logN).

Also by our assumptions, −v2(N − 1)(ε/u1 − logN) ∼ −v2Nε/u1 → −∞, so

P (u1Z > ε)→ 0.

Proof of Proposition 29. Combining Lemmas 31 and 32 we get part 1 of Proposi-

tion 29.

Notice that u1τ(M3) has the exponential distribution with mean 1. To

prove part 2 of Proposition 29 we need to show that u1(τ(M3) − τ ′(M3)) →p 0.

Let ε > 0. Then

P (u1(τ(M3)− τ ′(M3)) > ε) = P ((τ(M3)− τ ′(M3)) > ε/u1) = e−εu2/u1 .

Since u2/u1 →∞ we have P (u1(τ(M3)− τ ′(M3)) > ε)→ 0.

Lastly we prove part 3 of Proposition 29. In model M3 both mutations

occur on the stem cell line. In this case u1τ
′(M3) and u2(τ(M3) − τ ′(M3)) are

both exponentially distributed with mean 1. We have that u1(τ(M3) − τ ′(M3))

is exponentially distributed with mean u1/u2 which can be observed by rewriting

u1(τ(M3)− τ ′(M3)) as (u1/u2)u2(τ(M3)− τ ′(M3)). By assumption, u2/u1 → 1/A

so u1(τ(M3)−τ ′(M3)) converges in distribution to Z. The random variables τ ′(M3)

and τ(M3)− τ ′(M3) are independent for each N so

u1τ(M3) = u1τ
′(M3) + u1(τ(M3)− τ ′(M3))→d X + Z.
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3.4 Proof of the Theorem

Proof of part 3 of Theorem 18. We shall make use of the following well known fact:

If {an}∞n=1 is a sequence of real numbers such that an → a, then

lim
n→∞

(
1− an

n

)n−1

= e−a.

Before time 1 the cells never split and there is no apoptosis. Let H ′1 be

the same as model H1 except that stem cells never receive mutations. Note that

H ′1 differs from M1 because daughter cells cannot accumulate type-1 mutations in

model H ′1. If we ignore the splitting and apoptosis and consider how long it takes

for a cell to acquire two mutations under the mutation mechanism alone then we

have N − 1 daughter cells acquiring mutations independently. For any individual

cell, the time it takes to acquire two mutations will have the same distribution

as the sum of two independent exponentially distributed random variables with

means 1/v1 and 1/v2. If we denote the time until cell i has a type-2 mutation by

Ti and assume v1 6= v2 then

P (Ti ≤ t) = 1− v2e
−v1t − v1e

−v2t

v2 − v1

.

There are N − 1 cells independently getting mutations, so for t ≤ 1 we have

P (τ(H ′1) ≤ t) = 1−
(
v2e
−v1t − v1e

−v2t

v2 − v1

)N−1

,

or equivalently,

P (
√
v1v2Nτ(H ′1) ≤ t) = 1−

(
v2e
−
√
v1/(v2N)t − v1e

−
√
v2/(v1N)t

v2 − v1

)N−1

.

Notice that

N
√
v3

1/v2N3 = v2
1/
√
v1v2N → 0 and N

√
v3

2/v1N3 = v2
2/
√
v1v2N → 0.

For N large enough we can apply the third degree Taylor expansion of the expo-

nential function to get the bounds

1− t2

2N
−

√
v3

1

v2N3

t3

6
≤ v2e

−
√
v1/(v2N)t − v1e

−
√
v2/(v1N)t

v2 − v1

≤ 1− t2

2N
+

√
v3

2

v1N3

t3

6
.
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For any fixed t we have1− t2

2N
−

√
v3

1

v2N3

t3

6

N−1

→ e−t
2/2

and 1− t2

2N
+

√
v3

2

v1N3

t3

6

N−1

→ e−t
2/2.

If v1 = v2 and we ignore splitting and apoptosis then the probability that

one cell has two mutations by time t is 1 − e−v1t − v1te
−v1t. The probability that

one of the N cells has two mutations by time t is 1 − (e−v1t − v1te
−v1t)N . By

applying the same techniques as above we get P (
√
v1v2Nτ(H ′1) ≤ t)→ 1− e−t2/2

when v1 = v2.

Combining the two results above we have P (
√
v1v2Nτ(H ′1) ≤ t)→ 1−e−t2/2

when ignoring splitting and apoptosis. Then

P (τ(H ′1) < 1) = P (
√
v1v2Nτ(H ′1) <

√
v1v2N)→ 1.

Therefore, the probability that two mutations occur before time 1 is converging

to 1 so we may ignore splitting and apoptosis in this case. This gives the desired

result for τ(H ′1).

Stem cells get type-1 mutations at rate u1 → 0 in model H1. Let T be the

first time the stem cell line gets a mutation in model H1. Then P (T < 1) → 0.

We can couple models H1 and H ′1 so that the same Poisson processes are marking

the mutations on the daughter cells. Then

P (τ(H1) = τ(H ′1)) ≥ P ({T ≥ 1} ∩ {τ(H ′1) < 1})→ 1

which gives the results for model H1.

Because any cell is equally likely to get the two mutations, it is clear that

σ(H1) and ρ(H1) both converge in probability to 1.

This gives the result for part 3 of Theorem 18 even if α = 0.

In this section we will apply the following lemma several times.
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Lemma 33. Let {αn}∞n=1 and {βn}∞n=1 be sequences of positive numbers which

converge to 0. Let {Xn}∞n=1 and {Yn}∞n=1 be sequences of random variables and let

X and Y be positive random variables such that αnXn converges in distribution to

X and βnYn converges in distribution to Y as n → ∞. If αn/βn → 0 as n → ∞
then P (Xn ≥ Yn)→ 1 as n→∞.

Proof. Note that αnYn = (αn/βn)βnYn and αn/βn → 0 so αnYn converges in

probability to 0. Let F (t) = P (X ≤ t). Let δ > 0 and choose ε > 0 such

that F (t) is continuous at ε and F (ε) < δ/2. Choose N1 such that if n ≥ N1 then

P (αnXn > ε) > 1− δ. Choose N2 such that if n ≥ N2 then P (αnYn ≥ ε) < δ. By

independence, for n ≥ N1 ∨N2 we have

P (Xn > Yn) = P (αnXn > αnYn)

≥ P ({αnXn > ε} ∩ {ε > αnYn})

= 1− P ({αnXn ≤ ε} ∪ {αnYn ≥ ε})

≥ 1− 2δ.

We will couple the models H2, M1, M2 and M3 so that the Poisson processes

used in models M1, M2 and M3 are the appropriate subcollections of Poisson

processes which are used in model H2. Let T be the time that a type-1 mutation

occurs on the stem cell line in model H2. Note that because stem cells cannot

inherit type-1 mutations the coupling implies that T = τ ′(M2) = τ ′(M3).

Lemma 34. Assume that v1v2 � 1/(N(logN)2). If u1 � v1v2N logN then

P (τ(M1) < T )→ 1. If u1 � v1v2N logN then P (τ(M3) < τ(M1))→ 1.

Proof. By part 1 of Proposition 21 (α∧1)v1v2N(logN)τ(M1)→d X. Mutations to

the stem cell line occur at rate u1 so u1T →d X. Because the Poisson processes that

mark the mutations in model M1 are independent of the Poisson process that marks

the mutations on the stem cell line, if u1 � v1v2N logN then P (τ(M1) < T )→ 1

by Lemma 33.
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On the other hand, suppose u1 � v1v2N logN . We are assuming u1 ≤ u2

so we could decrease P (τ(M3) < τ(M1)) by decreasing u2 to u1. Then the distri-

bution of u1τ(M3) is the distribution of the sum of two independent exponentially

distributed random variables. By Lemma 33, P (τ(M3) < τ(M1))→ 1.

Lemma 35. Assume that 1/(N(logN)2) � v1v2 � 1/N . If u1 �
√
v1v2N then

P (τ(M1) < T )→ 1. If u1 �
√
v1v2N then P (τ(M3) < τ(M1))→ 1.

Proof. First suppose u1 �
√
v1v2N . It follows by part 2 of Proposition 21 that

√
v1v2Nτ(M1) →d Y . The stem cell line is getting mutations at rate u1 so

u1T → X. The Poisson processes that are marking the mutations in model M1 are

independent of the Poisson process that marks mutations on the stem cell line, so

the result follows by Lemma 33.

If u1 � v1v2N logN then the proof follows by the same reasoning as used

in Lemma 34 when considering u1 � v1v2N logN .

Lemma 36. If u2 � 1/ logN and u2 � Nv2 then P (τ(M2) < τ(M3))→ 1.

Proof. By the coupling τ ′(M2) = τ ′(M3). After time τ ′(M2) the Poisson processes

marking the mutations in models M2 and M3 are independent. Let

T2 = τ(M2)− τ ′(M2) and T3 = τ(M3)− τ ′(M3).

Then P (τ(M2) < τ(M3)) = P (T2 < T3).

Consider again the model M ′
2 that was introduced in the proof of Lemma

32 which is the same as model M2 except that the type-2 mutations can only occur

on daughter cells logN time units after the stem cell line has a type-1 mutation.

We can couple models M2 and M ′
2 as we did before so that the time at which the

stem cell line gets a mutation is the same in models M2 and M ′
2. In particular,

τ ′(M ′
2) = τ ′(M2) = τ ′(M3). Let T ′2 = τ(M ′

2) − τ ′(M ′
2). Then T ′2 ≥ T2 so it is

enough to show that P (T ′2 < T3)→ 1.

If we wait logN time after the stem cell line receives a type-1 mutation

then all of the daughter cells will be type-1 and the (N − 1) daughter cells are

getting type-2 mutations at rate v2. Thus for any fixed N we have

P (T ′2 > t) = 1[0,logN ](t) + e−v2(N−1)(t−logN)1(logN,∞](t).
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Let ε > 0. Then

P (T ′2 < T3) = P (T ′2 < T3|T3 < logN)P (T3 < logN)

+ P (T ′2 < T3|T3 ≥ logN)P (T3 ≥ logN).

Because u2 � 1/ logN and u2T3 has the exponential distribution with mean 1, we

have P (T3 ≥ logN)→ 1. The memoryless property of the exponential distribution

gives us

P (T ′2 < T3|T3 ≥ logN) =
v2(N − 1)

v2(N − 1) + u2

→ 1

which completes the proof.

Lemma 37. If u2 � 1/ logN or u2 � Nv2 then P (τ(M3) < τ(M2))→ 1.

Proof. By the coupling τ ′(M2) = τ ′(M3). After time τ ′(M2) the Poisson processes

marking the mutations in models M2 and M3 are independent. Let

T2 = τ(M2)− τ ′(M2) and T3 = τ(M3)− τ ′(M3).

Then P (τ(M3) < τ(M2)) = P (T3 < T2).

Suppose u2 � 1/ logN . By Lemma 31 we know that ρ(M2) →p α ∧ 1. If

0 < δ < (α ∧ 1) then P (ρ(M2) > (α ∧ 1) − δ) → 1. If ρ(M2) > (α ∧ 1) − δ then

the second mutation occurs on a generation higher than ((α ∧ 1)− δ)l. Since only

stem cells get type-1 mutations in model M2 we have that T2 ≥ b((α ∧ 1) − δ)lc
because it takes at least that much time for the type-1 mutation to spread to the

generation d((α ∧ 1) − δ)le daughter cells. On the other hand, in model M3 the

second mutation is occurring at rate u2 so that u2T3 is exponentially distributed

with mean 1. Then P (T3 < K logN) = P (u2T3 < u2K logN)→ 1 for any positive

number K since u2 logN →∞. Therefore P (T3 < T2)→ 1.

Suppose u2 � Nv2. The rate at which type-2 mutations occur in model

M2 is always bounded by (N − 1)v2. Suppose we consider a new model M ′′
2 which

is the same as M2 except that once the stem cell line has a type-1 mutation, all

of the daughter cells also have a type-1 mutation instantaneously. Models M2 and

M ′′
2 can be coupled so that after the stem cell line gets a type-1 mutation then

any type-2 mutation proposed by a Poisson process on a daughter cell is accepted
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in model M ′′
2 . Let T ′′2 = τ(M ′′

2 ) − τ ′(M ′′
2 ).Then (N − 1)v2T

′′
2 has the exponential

distribution with mean 1. By Lemma 33, P (T3 < T ′′2 ) → 1. Because T2 ≥ T ′′2 we

have the desired result.

Proof of Theorem 18. From the coupling we have τ(H2) = τ(M1)∧ τ(M2)∧ τ(M3)

because any type-2 mutation which occurs in model H2 must occur in at least one

of the models Mi for some i, and if a mutation occurs in model Mi then it will also

occur in model H2.

Suppose P (τ(M1) < T ) → 1. Before time T only stem cells are acquiring

type-1 mutations in models M2 and M3. Therefore, models M2 and M3 only have

type-0 cells before time T and P (τ(M1) < τ(M2) ∧ τ(M3))→ 1.

• Suppose v1v2 � 1/(N(logN)2) and u1 � v1v2N logN . By Lemma 34 it

follows that P (τ(M1) < T ) → 1 so by part 1 of Proposition 21 and the

coupling of H2 with M1 we have (α ∧ 1)v1v2N(logN)τ(H2) →d X. Also by

Lemma 34, the distribution of σ(H2) converges to a uniform distribution on

((1− α)+, 1] and ρ(H2) converges in distribution to 1.

• By Lemma 35 if 1/(N(logN)2) � v1v2 � 1/N and u1 �
√
v1v2N then

P (τ(M1) < T ) → 1 so by part 2 of Proposition 21 and the coupling of H2

with M2 we have
√
v1v2Nτ(H2)→d Y . Also by Lemma 35, both σ(H2) and

ρ(H2) converge in distribution to 1.

If either

v1v2 � 1/(N(logN)2) and u1 � v1v2N logN

or

1/(N(logN)2)� v1v2 � 1/N and u1 �
√
v1v2N

then P (τ(M3) < τ(M1)) → 1 by Lemmas 34 and 35 respectively. Therefore,

P (τ(M2) ∧ τ(M3) < τ(M1)) → 1 which implies that the cancer causing type-1

mutation occurs on the stem cell line in model H2 with probability converging to

1. Given these four conditions, we are left only to compare τ(M2) and τ(M3).
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• By Lemma 36 if u2 � 1/ logN and u2 � Nv2 then P (τ(M2) < τ(M3))→ 1.

Because u1 ≤ u2 the hypotheses are true for u1 as well. Therefore, by the

coupling of H2 with M2 and part 1 of Proposition 29 we have u1τ(H2)→d X

and ρ(H2) converges in probability to α ∧ 1.

• By Lemma 37 if u2 � 1/ logN or u2 � Nv2 then P (τ(M3) < τ(M2)) → 1.

If u1 � u2 then by the coupling of H2 with M3 and part 2 of Proposition

29 we have u1τ(H2) →d X. If u1 ∼ Au2 then by the coupling of H2 with

M3 and part 3 of Proposition 29 we have u1τ(H2)→d X + Z where Z is an

exponentially distributed random variable with mean A that is independent

of X.

By Lemma 20 the results hold for model H1 as well.

3.5 The Null Model

For this section we always have u1 = u2 = v1 = v2 = µ and we prove

Proposition 19 for model H2. Then Proposition 19 will hold for model H1 as

well by Lemma 20. We begin this section by pointing out that the conditions of

part 5 of Theorem 18 always fail in the null model. The two conditions in the

first conjunction become µ � 1/(N logN). Of the two conditions in the second

conjunction, one becomes
√
N � 1 which always fails. This reduces all of the

conditions in the first bullet point to µ � 1/(N logN). The conditions in the

second bullet point become µ � 1/ logN or 1 � N , so the conditions in part 5

are reduced to
√
N � 1, 1� N or 1/ logN � µ� 1/(N logN) which all fail.

This shows that the probability that the first type-2 mutation occurs on

the stem cell line converges to 0. For this reason, we will never consider model M3

in this section.

Proof of part 2 of Proposition 19. We can couple model H2 with models M1 and

M2 such that the Poisson processes marking model M1 are independent of the

Poisson processes marking model M2. Before time τ ′(M2) the Poisson processes

marking model M1 are also marking the daughter cells in model H2 and the Poisson
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process that marks the stem cell in model M2 is also marking the stem cell line in

model H2. After time τ ′(M2), the Poisson processes marking the cells in model M1

are only marking the daughter cells in model H2 that have not yet inherited the

type-1 mutation from the stem cell. All of the Poisson processes marking type-2

mutations on cells in model M2, meaning that those cells have inherited the type-1

mutation from the stem cell, also mark the corresponding cells in model H2. After

time τ ′(M2) + logN , only the Poisson processes marking model M2 are marking

model H2.

Let T be the time at which the first successful type-1 mutation occurs in

model M1 and let Z be the time at which the first successful type-1 mutation

occurs in model H2. By Corollary 25 we have AµT →d X. Because the stem cell

is getting type-1 mutations at rate µ and every type-1 mutation on the stem cell is

successful, we have (A+1)µZ →d X. If the first successful type-1 mutation occurs

on a daughter cell, then the type-2 mutation must occur within logN time of Z

since after this time the progeny of the cell will no longer be in the population. Let

Y2 be the time it takes to get the second successful type-1 mutation after the first

has occurred. If the first successful type-1 mutation occurs on the stem cell then

all of the cells will be type-1 within logN time. Therefore, if the first successful

type-1 mutation occurs on the stem cell and there is not another successful type-1

mutation within logN time, Y2 =∞ since there can be no more type-1 mutations.

We have lim supP ((1 + A)µY2 ≤ t) ≤ 1− e−t. Therefore,

lim supP (Y2 < (τ(H2)− Z)) ≤ lim supP (Y2 < logN)

= lim supP ((1 + A)µY2 < (A+ 1)µ logN)

≤ 1− e−(1+A)µ logN → 0.

As a similar result to the one in Lemma 26, we have P (Z = τ ′(H2))→ 1. Hence, it

is enough to find the distribution of the time of the first successful type-1 mutation.

We have established (A + 1)µZ →d X and P (Z = τ ′(H2)) → 1 which

imply (1 + A)µτ ′(H2) →d X. Let A1 be the event that the first successful type-1

mutation occurs on a daughter cell and A2 be the event that the first successful

type-1 mutation occurs on the stem cell. If the first successful type-1 mutation
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occurs on a daughter cell, then due to apoptosis τ(H2) − Z is bounded above by

logN . Therefore

P ({Aµ(τ(H2)− Z) > ε} ∩ A1)→ 0.

If the first successful type-1 mutation occurs on a stem cell, then in logN time all

of the cells will be type-1 and type-2 mutations will occur at rate µN . Let Ẑ be

an exponentially distributed random variable with mean 1/µN . Then we have

P ({Aµ(τ(H2)− Z) > ε} ∩ A2) ≤ P (Aµ(logN + Ẑ) > ε)→ 0.

Since either A1 or A2 must occur, we have Aµ(τ(H2)− Z)→p 0. Then

(1 + A)µτ(H2) = Aµ(Z + (τ(M1)− Z))→d X.

By the coupling, before time τ ′(M2) the daughter cells in model H2 get

successful type-1 mutations at the same rate as the daughter cells in model M1.

We know from the proof of Lemma 28 that each generation i with 1 ≤ i ≤ l

is getting successful type-1 mutations independently at a rate bounded between

µ2i−1(1 − e−µ(2l−i+1−2)) and µ2i−1(1 − e−µ(2l−i+1−1)) for any time t in model M1.

Therefore, these bounds also hold for the rate at which daughter cells get successful

type-1 mutations in model H2 before time τ ′(M2). Let β ∈ [0, 1]. Using the

notation and result from Lemma 28 and the fact that the stem cell line is getting

type-1 mutations at rate µ,

lim supP (σ(H2) ≤ β) ≤ lim sup
µ+

∑
i∈(0,lβ]∗ µ2i−1(1− e−µ(2l−i+1−1))

µ+
∑

i∈(0,l]∗ µ2j−1(1− e−µ(2l−j+1−2))

=
1

1 + A
+

A

1 + A
β

and

lim inf P (σ(H2) ≤ β) ≥ lim inf
µ+

∑
i∈(0,lβ]∗ µ2i−1(1− e−µ(2l−i+1−2))

µ+
∑

i∈(0,l]∗ µ2j−1(1− e−µ(2l−j+1−1))

=
1

1 + A
+

A

1 + A
β.

Lemma 20 gives the result for σ(H1).

Because ρ(M1) and ρ(M2) both converge in probability to 1, we will have

ρ(H2)→p 1 as well. Lemma 20 then implies ρ(H1)→p 1.
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Let N be the set of Radon measures ν on a Polish space (Ψ,B) where B is

the Borel σ-field such that ν({x}) ∈ N ∪ {0,∞} for all x ∈ Ψ. For the next proof

we will consider a point process to be a random variable taking on elements of N .

We consider ν({x}) to be the number of times the point x has been marked. For

a Poisson point process whose intensity measure has no atoms ν({x}) is 0 or 1 for

all x and {x ∈ Ψ : ν({x}) > 0} is discrete with probability 1.

Let Ψ = [0,∞) × [0, 1]. The Poisson point process of successful type-1

mutations in model M1 induces a point process on Ψ where if a successful type-1

mutation occurs at time t on a cell in generation i in model M1 then there is a

point of Ψ at (t/l, i/l). We will call this point process PM .

Lemma 38. If µ ∼ A/(
√
N logN) then the limiting distribution of PM is a Poisson

point process P∞ which has intensity measure ν ′ = A2(λ × λ[1/2,1]) where λ is the

Lebesgue measure and λ[1/2,1] is the measure defined by λ[1/2,1](B) = λ(B∩ [1/2, 1])

for any Lebesgue measurable set B.

Proof. We let CC(Ψ, [−1, 0]) be the set of continuous functions h : Ψ → [−1, 0]

such that the set {ψ ∈ Ψ : h(ψ) 6= 0} is precompact. Recall that a point process

X has an associated generating functional F : CC(Ψ, [−1, 0])→ R defined by

F(h) = E[
∏
ψ∈Ψ

(h(ψ) + 1)ν(ψ)]

where ν is a Radon measure on Ψ as described above. Probability generating func-

tionals uniquely determine the distribution of point processes (see Theorem 14 of

section 29.5 in [14]). Moreover, a sequence of point processes converges in distri-

bution to a point process if and only if the corresponding sequence of generating

functionals converges pointwise to a functional F that satisfies the following: If hm

is in the domain of F for each m,
⋃∞
m=1{ψ : hm(ψ) 6= 0} is relatively compact, and

hm(ψ) → 0 as m → ∞ for each ψ, then F(hm) → 1 as m → ∞. In this case F

is the probability generating functional of the limiting point process (see Theorem

20 of Section 29.7 in [14]).

Notice that for any N the points marked in Ψ will all have coordinates

(x, y) where y takes values in {1/ logN, 2/ logN, . . . , 1}. We know from the proof
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of Lemma 28 that the rate at which mutations occur along generation i is bounded

between 2i−1µ(1− e−µ(2l−i+1−2)) and 2i−1µ(1− e−µ(2l−i+1−1)). Therefore, if we look

at the points that are marked in Ψ whose second coordinate is fixed at i/ logN , the

rate at which the marking will occur will be between (logN)2i−1µ(1−e−µ(2l−i+1−2))

and (logN)2i−1µ(1− e−µ(2l−i+1−1)) where the logN appears because time is scaled

by 1/ logN . This observation will allow us to work with time homogeneous Poisson

point processes.

Let F denote the generating functional associated with PM . Let F1 be

the generating functional associated with the Poisson process on Ψ which marks

points at rate (logN)2i−1µ(1−e−µ(2l−i+1−2)) on y = i/l and let F2 be the generating

functional associated with the Poisson process on Ψ which marks points at rate

(logN)2i−1µ(1−e−µ(2l−i+1−1)) on y = i/l. Call the time homogeneous Poisson point

processes P1 and P2 respectively. Because the intensity measure of PM is always

between the intensity measures of P1 and P2 we have the bounds F1 ≤ F ≤ F2.

Let X be a Poisson process with intensity measure ν. It is known that the

probability generating functional associated with X is

P(h) = e−
∫
Ψ hdν .

To show a sequence of Poisson processes {Xn}∞n=0 with intensity measures {νn}∞n=0

converges in distribution to a Poisson process X with intensity measure ν it is

enough to show that {νn}∞n=0 converges weakly to ν. That is, for each function

h ∈ CC(Ψ, [−1, 0]) we need
∫

Ψ
hdνn →

∫
Ψ
hdν as n→∞. Let ν1

N be the intensity

measure of P1 when there are N cells in the population and let ν2
N be the intensity

measure of P2 when there are N cells in the population. The goal is to show ν1
N

and ν2
N both converge weakly to ν ′. Then the limiting distribution of PM will be

P∞.

Let R = (a, b]× (c, d] ⊂ Ψ. Then

ν1
N(R) = (b− a)(logN)

∑
i∈(lc,ld]

2iµ(1− e−µ(2l−i+1−2))

→ A2(d− c ∨ 1

2
)+(b− a) = ν ′(R)
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by Lemma 24 and the fact that µ2N logN ∼ A2/ logN which follows from the

assumption that µ ∼ A/(
√
N logN). Now let O be any open subset of Ψ. We can

write O =
⋃∞
n=1Rn where each Rn is a half open rectangle in the same form as R

above and the sets {Rn}∞n=1 are pairwise disjoint. Then

lim inf
N→∞

ν1
N(O) = lim inf

N→∞

∞∑
j=1

ν1
N(Rj) ≥

∞∑
j=1

ν ′(Rj) = ν ′(O)

where the inequality follows by Fatou’s lemma. The same reasoning applied to ν2
N

implies that lim inf ν2
N(O) ≥ ν ′(O) for any open subset O of Ψ also. It follows by

the Portmanteau Theorem that both ν1
N and ν2

N converge weakly to ν ′ as N goes

to infinity. Hence the limiting distribution of PM is P∞.

The notation used in Lemma 38 will also be used in this proof.

Proof of part 4 of Proposition 19. Notice that this is the boundary between two

cases that are determined by model M1. By Corollary 23 we know ρ(M1)→p 1 for

all conditions that we are considering. Therefore, ρ(H1)→p 1 in this case.

The strategy is to define functions g and h on the set of Radon measures

that are continuous everywhere except a set of measure 0. Then we will apply the

Continuous Mapping Theorem to get the desired convergence in distribution. Let

D be the subset of N such that ν ∈ D if there exists (x, y) ∈ Ψ and t ∈ R such

that ν(x, y) > 0 and ν(x+ t, y + t) > 0. For all t ≥ 0 define sets

Tt = {(x, y) : 1/2 ≤ y ≤ 1 and 0 ≤ x ≤ y + t− 1} ⊂ Ψ.

These sets correspond the the triangles and quadrilaterals that were shown in

Figure 3.4. Let V = {(x, y) ∈ Ψ : ν(x, y) > 0} and define t0 = inf{t : V ∩Tt 6= ∅}.
Define

g(ν) = lim
ε→0

sup{y : (x, y) ∈ V ∩ Tt0+ε for some x}

and h(ν) = t0.

Given a Poisson point process P on Ψ whose intensity has no atoms, we can

project the points of P onto the line y = −x in R2 along perpendicular angles of

π/4. With probability 1 no two points of P will be mapped to the same point under

the projection. That is, under the law of P , D has probability 0. Moreover, with
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probability 1 there will be no limit points under the projection. Therefore, under

the intensity measure A2(λ[1/2,1]×λ), there exists a unique point (x0, y0) ∈ V ∩Tt0
and an ε > 0 such that V ∩ Tt0+ε = {(x0, y0)} with probability 1. By definition

g(P ) = y0. We claim that g and h are continuous at any Radon measure ν ∈ N\D.

Let ν ∈ N\D and let {νn}∞n=1 be a sequence of Radon measures that

converges weakly to ν. Let ε > 0 and let (x0, y0) be the unique point of Tt0+ε

such that ν(x0, y0) > 0. For each point (x′, y′) ∈ Ψ and every natural number m

define a function

f(x′,y′),m(x, y) =


−1 if |(x, y)− (x′, y′)| < ε

m

−(2− m|(x,y)−(x′,y′)|
ε

) if ε
m
≤ |(x, y)− (x′, y′)| ≤ 2ε

m

0 otherwise

For m large enough we have
∫

Ψ
f(x0,y0),m(x, y)dν = −1. It follows that for m large

enough
∫

Ψ
f(x0,y0),m(x, y)dνn → −1 as n→∞. Because we can make m arbitrarily

large, there must be a sequence of points {(xn, yn)}∞n=1 such that νn(xn, yn) = 1

for all n and (xn, yn)→ (x0, y0) as n→∞. Likewise, for any point (x′, y′) ∈ Tt0+ε

there exists a large enough m such that
∫

Ψ
f(x′,y′),m(x, y)dν = 0 so it follows that∫

Ψ
f(x′,y′),m(x, y)dνn → 0 as n → ∞. This shows that for n large enough the

Radon measures νn will assign measure 0 to all points in a ball of radius ε/m

about (x′, y′). From this it is easy to conclude g(νn) → g(ν) and h(νn) → h(ν).

Therefore, g and h are both continuous onN\D. By Lemma 38 and the Continuous

Mapping Theorem g(PM) converges in distribution to g(P∞) and h(PM) converges

in distribution to h(P∞).

The next goal is to show that

g(PM)− σ(M1)→p 0 and h(PM)− τ(M1)

logN
→p 0.

Then we will have that σ(M1)→d g(P∞) and τ(M1)/ logN →d h(P∞). To achieve

this we will first show that the probability that (x0, y0) corresponds to the cancer

causing type-1 mutation converges in probability to 1. Suppose (x0, y0) does not

correspond to the cancer causing type-1 mutation and let (x1, y1) denote the point

in Ψ corresponding to the cancer causing type-1 mutation in M1. Let ε > 0 and

suppose that (x1, y1) /∈ Tt0+ε. The point (x0, y0) ∈ Tt0 corresponds to a successful
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type-1 mutation in model M1, and by the way that model M1 marks points in Ψ

there will be a type-2 mutation in model M1 that corresponds to a point in Tt0 . The

ray starting at (x1, y1) with an angle of π/4 will represent all of the descendants of

the cancer causing type-1 mutation. The point on this line whose first coordinate

is t0 will be (t0, y
′′) where y′′ ≤ 1− ε. In this case ρ(M1) = y′′ ≤ 1− ε.

Let E1 be the event that (x0, y0) is the point in Ψ that corresponds to the

cancer causing type-1 mutation and E2 be the event that two or more points occur

in Tt0+ε. On EC
1 let (x1, y1) be the point in Ψ corresponding to the cancer causing

type-1 mutation. We know that PM converges in distribution to P∞ by Lemma 38

so

lim supP (EC
1 ) = lim sup(P (EC

1 ∩ {(x1, y1) ∈ Tt0+ε})

+ P (EC
1 ∩ {(x1, y1) /∈ Tt0+ε}))

≤ lim supP (E2) + lim supP (ρ(M1) < 1− ε)

≤ A2

2
ε

where the last line follows because P (E2) ≤ P (V ∩ (Tt0+ε\Tt0) 6= ∅) and because

ρ(M1)→p 1. We chose ε > 0 arbitrarily so we have limP (EC
1 ) = 0.

The above has established that limP (E1) = 1. By definition of σ(M1) and

g(PM) it is clear that

P (σ(M1)− g(PM) = 0|E1) = 1

because σ(M1) = g(PM) = y0. Conditional on the event E1 we also know that

τ ′(M1) = (logN)x0. Let (x′0, y
′
0) be the point in Ψ that corresponds to the type-2

mutation in M1, so that ρ(M1) = y′0. Let ν be the Radon measure of points in Ψ

induced by M1 and consider the fact that the descendants of the cancer causing

type-1 mutation will lie on a line starting at (x0, y0) with angle π/4. It is clear

that h(ν) = t0 = x0 + 1 − y0 and ρ(M1) = y0 + τ(M1)/ log(N) − x0. Thus, if

h(ν) − τ(M1)/ logN > ε then 1 − ρ(M1) > ε, or equivalently ρ(M1) < 1 − ε.

Therefore, because P (E1)→ 1,

P (h(PM)− τ(M1)/ logN > ε|E1) = P (ρ(M1) < 1− ε|E1)→ 0.
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Again using the fact that P (E1)→ 1 we get the desired result.

Now we are left to show that g(P∞) and h(P∞) have the distributions that

are stated in part 4 of Proposition 19. We have P (h(P∞) ≤ t) is the probability

that a point of the Poisson process with intensity A2(λ[1/2,1]× λ) has been marked

in Tt. For t ≤ 1/2 this is 1 − e−A
2t2/2 and for t > 1/2 this is 1 − e−A

2t/2+A2/8.

Therefore,

P (τ(M1)/ logN ≤ t)→ (1− e−A2t2/2)1[0,1/2](t) + (1− e−A2t/2+A2/8)1(1/2,∞)(t).

To find the distribution of g(P∞) we will use the joint density function of

g(P∞) and h(P∞). From the above computation it is clear that the density of

h(P∞) is

fh(t) = A2te−A
2t2/21[0,1/2](t) +

A2

2
e−A

2t/2+A2/81(1/2,∞)(t).

Conditioned on the event that h(P∞) = t we know that g(P∞) will have uniform

distribution. If t ≤ 1/2 then g(P∞) is uniformly distributed on the interval [1−t, 1].

If t > 1/2 then g(P∞) is uniformly distributed on [1/2, 1]. This gives us the

conditional density function

fg|h(s|t) =

{
1
t

if 1− t ≤ s ≤ 1 and 0 ≤ t ≤ 1
2

2 if 1
2
≤ s ≤ 1 and t > 1

2

.

Therefore, the joint density function of g(P∞) and h(P∞) is

f(s, t) = A2e−A
2t2/21[0,1/2](t)1[1−t,1/2](s) + A2e−A

2t/2+A2/81(1/2,∞)(t)1[1/2,1](s).

Integrating over t we find that the density of g(P∞) is

fg(s) =

(∫ 1/2

1−s
A2e−A

2t2/2dt+ 2e−A
2/8

)
1[1/2,1](s).

This gives the desired limiting distribution for model M1. By the usual

coupling arguments the results will hold for model H1 as well.

Proof of part 6 of Proposition 19. Note that under these conditions both muta-

tions occur on daughter cells with probability tending to 1. First we consider
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a model M ′
1 so that only generation l − 1 will get type-1 mutations and gener-

ation l will get type-2 mutations. Also, assume that only one of the daughters

will keep a mutation when the cells split so that if a type-1 cell splits it has

a type-0 daughter and a type-1 daughter. The rate at which the type-1 muta-

tions occur will be µN/4 since there are N/4 cells in generation l − 1. Note

that µN/4 ∼ A
√
N/4. The probability that a type-1 mutation will have a

type-2 descendant is 1 − eµt ∼ µt ∼ At/
√
N . Therefore, the type-2 muta-

tions occur according to a Poisson process whose intensity measure ν satisfies

ν([0, t]) ≥ (A
√
N/4)(At/

√
N) = A2t/4. We have may have to wait up to two time

units for the type-2 mutation to occur after the successful type-1 appears. For the

sake of a lower bound we will always assume it takes 2 time units after a successful

type-1 mutation until the type-2 mutation. By coupling model M ′
1 with model M1

in the obvious way we have lim inf P (τ(M1) ≤ t) ≥ 1− e−2−A2t/4.

For the upper bound we consider a model M ′′
1 in which type-1 cells never

undergo apoptosis. There are N − 1 cells getting type-1 mutations so the type-1

mutations occur at rate µ(N − 1) ∼ A
√
N. If we wait t time units after a type-1

mutation has occurred on a cell then the cell will have at most 2t descendants. If

the type-1 mutation had occurred at time 0 and all of the descendants had existed

since the type-1 mutation occurred then the probability that one of the cells had

acquired a type-2 mutation would be t2btcµ ≤ t2tµ ∼ t2tA/
√
N . Because the type-

1 mutation may occur after time 0 and there have not been 2t descendants with

the type-1 mutation since the mutation occurred this is an upper bound on the

probability that a type-2 mutation has occurred by time t. Therefore, the type-2

mutations occur according to a Poisson process with intensity measure defined by

ν([0, t]) ≤ (A
√
N)(t2tA/

√
N) = t2tA2. By coupling model M ′′

1 with model M1 in

the obvious way we have lim supP (τ(M1) ≤ t) ≤ 1− e−A22tt. This shows part 6 of

Proposition 19 with c = 1− e−2−A2t/4 and C = 1− e−A22tt.

By Corollary 23 we know ρ(M1) → 1. By the definitions of σ(M1) and

ρ(M1) for any ε > 0 if ρ(M1)− σ(M1) > ε then τ(M1) > ε logN . Therefore,

P (ρ(M1)− σ(M1) > ε) ≤ P (τ(M1) > ε logN) ≤ e−A
22δ logN (δ logN) → 0.

Let ε > 0 and δ > 0 and choose N large enough so that P (1− ρ(M1) > ε/2) < δ/2
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and P (ρ(M1)− σ(M2) > ε/2) < δ/2. Then

P (1− σ(M1) > ε) = P (1− ρ(M1) + ρ(M1)− σ(M1) > ε)

≤ P (1− ρ(M1) > ε/2) + P (ρ(M1)− σ(M1) > ε/2)

< δ.

Therefore, σ(M1)→p 1.

By the usual coupling arguments we get the same results for H1.

Chapter 3, in full, has been accepted for publication in the Journal of

Applied Probability. The dissertation author was the sole author of this paper.
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