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ABSTRACT 

The general coupling coefficient for three electromagnetic linear modes 

of an inhomogeneous and relativistic plasma is derived from the oscillation-

center viewpoint. A concise and manifestly symmetric formula is obtained; 

it is cast in terms of Poisson brackets of the single-particle perturbation 

Hamiltonian and its convective time-integral along unperturbed orbits. The 

simplicity of the compact expression obtained is shown to lead to a new 

insfght into the essence of three-wave coupling and of the Manley-Rowe relations 

governing such interactions. Thus, the interaction Hamiltonian of the three 

waves is identified as simply the trilinear contribution to the single-particle 

(new) Hamiltoniap, summed over all non-resonant particles. The relation 

between this work and the Lie-transform approach to Hamiltonian perturbation 

theory is discussed. 

*Fresent address: Plasma Physics Laboratory, Columbia University, New York, 
New York 10027. 



1. Introduction 

In a recent paper (Johnston, Kaufman and Johnston 1978), we introduced 

a rather novel formulation of the theory of nonlinear mode coupling in 

magnetized Vlasov plasma. Our approach was based upon a canonical trans­

formation to "oscillation-center" coordinates, and might be termed the 

method of "generalized ponderomotive forces." The oscillation-center 

representation permits one to think in terms of entities which experience 

purely nonlinear (beat) forces, and leads to a useful and natural decomposition 

of the nonlinear currents central to problems of coherent mode coupling. 

The approach was used to extend the conventional ponderomotive-scalar-potential 

method (Drake et al. 1974) to the domain of strongly magnetized plasma. 

Although our above-mentioned paper treated the case of a hot magnetized 

plasma, it restricted consideration to the infinite uniform model and to 

non-relativistic particle velocities. The purpose of this paper is to extend 

the method of generalized ponderomotive forces to nonuniform and relativistic 

plasma. Our aim will be to derive a very general expression for .the three-wave 

coupling coefficient, an expression which is compact and which clearly manifests 

symmetry in the three modes. Such an expression would include all uniform-plasma 

results as limiting cases. We have succeeded in obtaining this master formula; 

our final expression for the coupling coefficient is remarkably concise and 

is cast in terms of Poisson brackets of the single-particle perturbation 

Hamiltonian and its convective time-integral along unperturbed orbits. A 

schematic outline of some of the present work was reported in a previous 

publication (Johnston and Kaufman 1977). The simplicity of the concise form 

derived here will be shown to lead to a new insight (Johnston and Kaufman 1976) 

into the essence of the wave coupling and of the Manley-Rowe relations governing 

such interactions. 
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Striving for generality, then, we consider a nonuniform and (possibly) 

relativistic Vlasov plasma which is confined in space by inhomogeneous 

electric and magnetic fields. The linear normal modes of the configuration 

are treated as fully electromagnetic, but under the assumption that their 

eigenfrequencies are nearly real. Confinement of the plasma is interpreted 

to stem from the invariants associated with single-particle orbits; accordingly, 

the existence of action-angle variables (l, ~ associated with the unperturbed 

particle Hamiltonian H
0

(l) is assumed. It follows that all the plasma particles 

can be separated into two categories: the vast majority which comprise the 

non-resonant particles, and the small subset of "resonant" particles which 

satisfy (Kaufman 1971, 1972) 

w ~ 2 • aH /ai = 2 • d_e/dt a -a o- -a 

In (1), w denotes the real part of the eigenfrequency for normal mode a, 
a 

and the vector 2 represents a set of three integers. 
-a 

(1) 

Since three-wave coupling in plasma arises from the motion of non-resonant 

particles, the behaviour of the resonant particles is suppressed in this 

work. The resonant particles are filtered from the problem by means of a 

smooth decomposition of the unperturbed distribution function, 

f (I)' = f (I) + fres (I), (2) 
o- o- o -

where f (I) represents the non-resonant distribution. The mathematical 
o-

foundation for this smooth separation is discussed in the Appendix. The 

proper treatment of resonant particles in the context of three-wave interaction 

is presently under study. 
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The paper is organized as follows. In §2, the formalism of the 

osciilation-center transformation is reviewed. In §3, the action-transfer 

and frequency-shift equations for each interacting wave are derived. Then 

in §4, the three-wave coupling coefficient is evaluated using the method of 

generalized ponderomotive forces. Our final formula is concise, quite 

general and manifestly symmetric in the three waves. In §5, our calculations 

are related to some earlier work (Al'tshul and.Karpman 1965, Lav~l and 

Pellat 1975). In §6, an alternate derivation of the coupling coefficient 

leads to a new insight into the nature of three-wave coupling. It is 

shown there that the interaction Hamiltonian of the three waves is simply 

the trilinear contribution to the single-particle (new) Hamiltonian K, 

summed over all the (non-resonant) particles. Finally, in §7, our results 

and methods are discussed further with reference to the Lie-transform approach 

to Hamiltonian perturbation theory (Kaufman 1978, Johnston and Kaufman 1978). 
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2. Oscillation-center Transformation: 

Consider a perturbed Hamiltonian system 

H(g_, .E_, t) = H
0 

(g_, .E_,. t) + ISH(g_, .E_, t) , 

where oH denotes a small perturbation of order £. A near-identity canonical 

transformation 

(..9._, .E.• H) ) (Q., R_, K)' K = H + oK, 
0 

can be characterized by a perturbative generating function S (..9.., f, t) which 

satisfies the equation (Johnston, Kaufman and Johnston 1978) 

(a/at) s (..9.., .E.• t) + H (g_, .E. + as/a.9.., t) :;:: K (.9.. + as/a.E., .E.• t). (3) 

Our approach to solving (3) will be to expand S , H and K in powers of the 

perturbation parameter £, and then to satisfy the equation in each order. 

Let us first define the operators 

aq/a.9.., _!Q = aqJa.E., 

aq/at + {Q, HJ}, 
0 

and the Poisson-bracket operation 

{A, B} : VA • aB - aA • VB 

(4) 

where Q, A and Bare arbitrary functions of (..9.., .E_, t). The Hamilton-Jacobi 

equation (3) can then be written, after expansion, in the form 

oK - oH - n s = v s • a oH - a s • v oK 
t 

+ l v s 
2 -

+ l v s 
6-

1 --as 6-

1 v .s : a a H - 2 a s a s : v v K 

v s v s: a a a H --- 0 

a s a s: V 'iJ V H + 0(£4) --- 0 

(5) 
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The "oscillation-center" transformation corresponds to a certain 

prescription for satisfying (5). The requirement is imposed that K(l) 

must vanish (superscripts index the order in£), and so the new entity 

(2) 
(the "oscillation center") sees only a second order perturbation K .. 

The requirement that K(l) = 0 does not determine K(Z) uniquely, i.e., 

there is flexibility in the choice of S(Z). The following transformation 

is the simplest which (correct to order £3) satisfies (5) with K(l) = 0: 

D S (l) 
t = -

Notice that this choice for 

s<2) = .!. v 
2-

s<1> • a s (l) 

S(Z) differs from the convection adopted in 

(6) 

(7) 

our earlier paper, namely S(Z) = 0. Note also that Dt, the conventive time 

derivative following the unperturbed phase-space orbit, must be inverted in 

order to obtain S (l) • This procedure breaks down for "resonant" perturb_ations 

H(l), a difficulty which motivates our extraction of resonant particles from 

the problem (see Appendix). 

The formulae presented so far in this section are valid for any perturbed 

Hamiltonian system with conjugate variables (g_, .E). The particular problem 

at hand is that of a plasma particle viewing three frequency-matched waves; 

thus, H corresponds to the equilibrium fields and oH to the perturbing 
0 

wave fields. We employ conjugate variables (£,~),where£ denotes the 

Cartesian position vector in physical space. The corresponding oscillation-

center coordinates are then 

!(£, ~· t) = r + a s 
(8) 

R. (£, ~· t) = ~ - v s + v s • a v s 
3 + 0 (£ ). 
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The phase-space distribution .(unctJ,•u .(,ll. o::~c.illath•u l'cntt~t·s, 

F(~, ~, t), satisfies the Vlasov equation 

aF/at + {F, K} = 0, (9) 

and is related to the origix1al distribution function f (£, .E_, t) by the 

condition 

F(~, ~,t) = f(£, .E_, t) • (10) 

As in our earlier work, we find it convenient to inroduce the "polarization 

density" Ll(!_, .E_, t) defined by 

Ll(.£, .E_, t) :: f(!_, .E_, t) - F(!_, .E_, t) ; 

substitution of the expansions (8) into relation (10) then leads to the 

simple result 

Ll = - { S , F} + ~ · { S , { S , F}} 
+ t {.Y_S • aS , F} + 3 O(e: ) • 

Accordingly, for the oscillation-center transfo~ation (6) - (7), we have 

= - { s (1) f } 
0 

Ll (2) = t { s (1) { s(l), fo}} ' 

-

(11) 

(12) 

where f signifies the non-resonant component of the unperturbed distribution 
0 

function f • The canonical-transformation tools needed for this paper are 
0 

now at our disposal . 
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3. Action-Transfer and frequency-Shift Relations; 

Having reviewed the apparatus of the oscillation-center transformation, 

we devote the remainder of the paper to a consideration of the three-wave 

process in nonuniform plasma. The purpose of this section is to present 

the equations which goven the slow evolution of the amplitudes and phases 

of the interacting normal modes. 

First, we must consider the normal modes themselves. The linearized 

Maxwell curl equations can be written 

c'i/ xoE(x, -x -~ w) - iw oB(~, w) 0 (13) 

c'i/ X oB(~, w) + iw oE (Ji.o w) 
X (14) 

= 41T Jd
3
x

1 q Ce.x I ; w) . oE(z.1 , w) + 41T oj (x,w), 
-s-

where ~(x, _! 1
; w) is the linear conductivity kernel of the plasma configuration 

(Kaufman 1971, 1972), and <Sis(~, w) represents any small current source at 

frequency w. Combining (13) and (14), one obtains 

~(w) • oE (~, w) = (41T/iw) <Sis (K, w) , 

where Q(w) denotes the integra-differential operator 

Q(w) • !(~) = 

- (41T/iw) J d\ 1 q (x, ~~; w) • !Cx1
) 

If it is assumed that Q(w) is nearly Hermitian (i.e., that damping of the 

(15) 

normal modes by resonant particles is slight) then it follows (Kaufman 1971) 

that the real ports w of the eigenfrequencies and the zero-order eigenfunctions 
a 

E (x) are the solutions of 
-a~ 

0 ' (16) 
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where l]H(w) denotes the Hermitian part of ~(w) (for w real). We assume 

(without loss of generality) that wa > O, and choose to normalize the 

eigenfunctions E (x) to unit magnitude of wave energy, i.e., -a-

wa I 3 * aQH(w) I 
41T d X ; (~) • aw W • ; (~) = CJ a - ± l' 

a 

where cr is the energy sign for normal mode a. 
a 

(17) 

Consider now a coupling of three of the plasma eigerunodes (16) which 

satisfy a frequency matching condition of the form 

wb + w = w + ~w , (18) c a 

where ~w << w denotes any small mismatch. The corresponding perturbed 
a 

electric field can be written 
3 

oE (!_, t) = ~ a (t)E (x) exp(...;.iw t.) L-. a -a- a 
a=l 

+ c.c. ' (19) 

where the complex quantity a (t) represents the slowly varying amplitude 
a 

and phase of mode a. According to (15), we must consider three coupled 

equations of the form 

exp(-iwat) QH(wa + iat) • [aa(t);(!_)] 

= (41T/iw) i(2)(x, t), 
a -a -

where J!2)(!_, t) denotes the nonlinear current source near frequency 

(20) 

w 
a 

due to the beating of the other two modes. The tilde on J!2) is just a 

reminder that only the contribution of non-resonant particles to the non-

linear current is to be included; thus, all resonant-particle terms have 

been omitted from (20). 
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Since each w is a linear eigenfrequency, (16) implies that 
a 

] 

daa(t) 
• E (x) d -a- t 

(21) 

Then insertion of (21) into (20), an inner product of the resultant equation 

* * with a (t)E (x) exp(iw t), integration over the plasma volume, and use of a -a - a 

the normalization condition (17) lead to the result 

* a a (t) 
a a ·. 

da (t)/dt 
a 

J d
3 : (2) (. 

- X 1 X -a _, * * t)• E (x)a (t) exp(iw t). 
-a - a a 

Now, by writing the complex number a (t) in polar form, 
a 

a (t)=la (t)l exp[-i oe (t)]' a a . a 

it is simple to show that 

(22) 

(23) 

where ow _ d(o8 )/dt represents the real frequency shift of mode a produced 
a a 

by the interaction (Sturrock 1960). Also, by virtue of the normalization 

condition (17), the total energy of wave a is 

W (t) =a Ia (t)l
2 

a a a 
(24) 

Using (23) and (24) in (22), and then taking real and imaginary parts, we 

obtain, respectively, an action-transfer equation, 

w -l d \-! /dt = 2 Im V 
a a a 

and an equation for the frequency shift, 

ow /w = a a 
W -l Re 

a 

(25) 

(26) 
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v - ( · )-l J d3 
: ( 2 ) ( t) • E *ex) a. *<t) exp(iw t). a = l.Wa x la ~' -a - a a (27)' 

I, 

Equations (25) and (26) are the desired equations governing the slow 

evolution of the interacting normal modes. Before proceeding; however, 

let us rewrite the gauge-invariant formula (27) for Va by expressing the 

electric field in terms of potentials, 

E (x) = - V ~ (x) + fiw /c)A (x) • -a- --,c a- ·a .-a...., (28) 

Partial integration of the term involving ~a(~) will yield a new term 

- (2) . 
involving the divergence of ig· (x, t). ·Now it is simple to use the Vlasov 

equation for species s, 

af /at + {f , H } = o, 
s s s 

to verify that the charge and current densities in .the plasma, 

P(!_, t) = 

(30) 

satisfy the continuity equation 

It follows that we can substitute the relation 

V • iC 2) (x, t) = iw p(2) (x, t) 
--,c--a- aa-

into (27) to obtain the equivalent formula 

(31) 

Although it is no longer manifest, (31) retains the gauge invariance of (27). 
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Finally, in order to deal with true coupling coefficients, we normalize 

the quantities V by dividing out the amplitude factors~ (t). More 
a a 

precisely, we define the normalized coefficients 

* u -· v /[~ ~b~ exp (it.wt)] • a a a c 

n~ ~b * * ub - vb. a exp(-i6wt)] • • c c a c 

where 6w is the frequency mismatch defined by (18). The next section 

is devoted to an explicit evaluation of these coupling coefficients U. 
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4 •. General Three~waye Coupling Coefficie~t 

The goal of this section is an evaluation of the three-wave coupling 

coefficient (31) and a verification of its synnnetry properties. Our 

method of evaluation involves an application of the oscillation-center 

formulae of §2 to the Hamiltonian of a single plasma particle. The 

unperturbed Hamiltonian of a relativistic plasma particle can be written 

Ho(£, ~) = e~o(£) + {[~c - e~(£)]2 + m2c4} 1/2 

where ~ (x) and A (x) denote the equilibrium scalar and vector potentials 
0- -o-

in the plasma. The perturbation (19) under study consists of three linear 

modes of the plasma configuration, coupled together by the frequency-matching 

condition (18). The perturbed Hamiltonian oH(£, ~' t) then has the form 

00 

oH = eoQ> + l (- ~) n (a . · ·a H ) ( oA · • • oA ) n! c yl yn o yl yn 
n=l 

where o~(~, t) and oA(~, t) are the perturbed potentials. Accordingly, 

representative frequency components of oH are 

2 2 * ( e I c ) A ( r) ~ (£) 
--a - '-

a a H (r, ~) , 
-- 0-

where the potentials~- (x) and A (x) are defined by (28). The superscripts a- -a-

index the order in the perturbation, and the subscripts identify the time 

dependence. 

According to (31), the evaluation of the coupling coefficient U a 

requires determination of the nonlinear charge and current densities produced 

by the beating of modes band c. From (29) and (30), we can write 
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(32) 

-:(2)(x) 
~a ~ e fd 3r .fd3p o(!_-!) [f aH(Z) + /:, (l) aH (l) 

o-a b -c 
(33) 

where we have invoked the decomposition f F + /:, , and suppressed the sum 

over species s. Insertion of (32} and (33) into (31), and use of the relation 

-(e/c) ,oA •lH 

then lead to the formula 

u = a 

oH/ae: - e ocp 

(34) 

Where dr =- d
3

r d
3
p. It · t 1 · · · t th t b d h rema1ns now o e 1m1na e e per ur e p ase-space 

d · · A(l) A( 2 ) dF(2 ) · f f h · f t· s(l) ens1t1es o , o an 1n avor o t e generat1ng unc 1ons 

for the oscillation-center transformation. 

(1) (2) . . 
The polarization terms in (34) involving t. and t. are eas1ly dealt 

with. From (11) and (12), the required polarization densities are given by 

the Poisson brackets 

/:,(1) {S(l) f } 
b b , 0 

= -where, from (6), s~l) 

terms in (34) then yields 

Partial integration of the corresponding 

(35) 
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where we have deliberately sought to remove all derivatives ~rom f . 
0 

To obtain the perturbed osc:;lllation-center distribution :F(
2
), it 

. a 

will be necessary to invert the convective time derivative Dt appearing in 

the Vlasov equation 

D F ( 2) = .{ K ( 2) f } · 
t a a ' o ' 

(37) 

K~2) is given by formula (7). Inversion of Dt can be achieved by exploitin~ 

the existence of action-angle variables (f, !) for the unperturbed particle 

trajectories. Since the variables'! are cyclic, any function of them oQ 

can be expanded in a Fourier series of the form 

oQ (r) = 

with the inversion 

It follows that we can write 

-1 
Dt [oQ(r) exp(-iwt)] 

(38) 

where we have defined the bounce-frequency vector 

w(!) = aH (I) /n 0 ..,.... -

Now, from (6) and (37), we have 

J df F~2 )H~l)* = I 

= J 

f } 
0 

dr s(l)* {K(2) i } 
a a ' o 

(39) 

where the last step is easily justified using (38). Insertion of formula 

(7) for K( 2) and partial integration to extract f then yield 
a o 
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(40) 

1 { ( 1) * { S ( 1) H ( 1) } } + !. { S ( 1) * 
+ 2 sa , b , c 2 a , {S~l), ~1) }}] • 

Inspection of our results (36) and (40) shows that there are four 

triple-Poisson-bracket contributions of the type { S (l), · {S (l), H(l)}} to 

formula (34) for U . It is simple to symmetrize these terms in the three 
a 

waves, i.e., to show that 

(1/2) (4 terms) = (1/3) (6 terms) . (41) 

Relation (41) is easily proved by appealing to equations (4) and (6), the 

frequency-matching condition (18), the fact that {H, f} = 0, and the 
0 0 

Jacobi identity 

{A, {B, C}} + {C,{A,B}} + {B,{C,A}}=O 

Substitution of our results (35), (36) and (40) into (34) thus leads to 

the following concise and general formula for the mode-coupling coefficient: 

+.!({s(l)* {S(l) H(l)}}+{s<l) 
3 a ' b ' c b ' 

{S(l)* H(l)}} 
a ' c 

+ { s (1) {S (1) H(l)*}} + {s(l) {S (1) H~l)*}} ' (42) 
b , c • a c ' b • 

+ { s (1) 
c • 

{S(l)* 
a ' 

H(l)}} + {s(l)* 
b a ' 

{s(l) 
c , ~1) }})] 

Note that formula (42) exhibts manifest symmetry in the three modes 

(a*, b, c). Note also its pleasing Poisson-bracket structure. 

It is straightforward to repeat the preceding calculation for modes 

* b and c, and to show explicitly that Ub = Uc = Ua = U. The action-transfer 

equation (25) therefore implies relations of the Manley-Rowe type (Sturrock 1960): 
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1 
dW 

~ 
_,...£. 

we dt 

(43) 

Our derivation of the relations (43) has been purely classical, and so is 

independent of any heuristic quantum picture of the three-wave interaction. 

The foundations of the trilinear symmetry of U will be explored further 

in §6. 
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5. Relation to Some Earlier Work 

The purpose of this section is to establish a relation between our 

oscillation-center approach and some earlier treatments based upon a direct 

perturbation expansion of the Vlasov-Maxwell equations (Al'tshul' and Karpman 

1965, Laval and Pellat 1975). Similar Poisson-bracket expressions for the 

coupling coefficients were obtained by these authors, although there was no 

recourse to canonical transformations. In effect, our use of the oscillation-

center representation has simply reorganized the perturbation expansions; 

our thesis is that this reorganization is helpful. Our formulation of the 

perturbation theory is compact and systematic, and analyzes the nonlinear 

currents in terms of the intuitive notion of oscillation centers responding 

to beat forces. The convective time-integral of the perturbed Hamiltonian 

which appears in the final formula for the coupling coefficient has an explicit 

and natural role in our formulation as the generator for the oscillation-center 

transformation. 

In order to relate notations, let us suppose that the perturbing waves 

were turned on adiabatically at t = ~ oo, and define D~1 causally so that 

there is no initial phase information. Thus, we write 
t 

n~1 [oQ(r, t)] J de oQ(T) , 

- 00 

where oQ is an arbitrary perturbed quantity, and oQ(T) means oQ[f (T), T], 
0 

where r (T) is the unperturbed trajectory in phase space which satisfies 
0 

r ( t) = r. From (6) and (37), it follows that 
0 

t 

s~l) (r, t) f dT H~l)(T), 
-00 

t 

F(Z)(r t) 
a ' I 

- 00 
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where K~2 )(r, t) is given by ·(7). Accot;"dingly, the contributions (36) and 

(40) to U can be rewri.tten as a 

I dr~!2)H!l)* = I dffo {r) [ t r d-r It d-r I { ~1) (-r I), {H~l) (-r). H!l)* (t)}}+ (b ~c)] 
~oo ~.09 

(44) 
t 

Idr F!
2
)H!l)* =- Jdr f

0
(r) I d-r{H!2)(-r), H~l)*(t)} 

_op (45) 

- i fdr f
0
(r)r dTrdT' [{a;l)*(t), {~l)(T'), H~l)(T)~} +(b ~c)] . 

-oo -oo 

The triple~Poisson-bracket terms in (44) arid (45) can be combined by changing 

variables of time integration and using the Jacobi identity. Collecting our 

results, we obtain from (34) the formula 

t 

ua Jdr f
0
(r) [H~3 ) + J d-r (lH!l)*(t), H!2)(-r)~ 

-00 

(46) 

Formula (46) has been derived independently of any gauge condition. 

If we specialize to purely electrostatic modes and choose the Coulomb gauge 

(2) . {3) oA = 0, then H and H vanish and (46) reduces to the result of Laval and 

Pellat (1975). These final terms in expression (46) have a deceptive "causal" 

structure, seeming to imply that the coupling to wave a at time t comes from 

particles which have encountered waves b and c at some earlier times in the 
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past. However, such a causal coupling clearly could not be symmetric in 

the three fields. The real requirement :!;or non-zero three-wave coupling 

is a region of spatial over:lap of the three waves; if the fields were 

spatially separated, a non~resonant particle would "forget" seeing them, 

emerging from each unaffected. For this reason, we prefer the overlap-

integral form (42) for the coupling coefficient U , where the convective 
a 

tiem integrals have been replaced by the generating functions s(l). 



- 21 -

6. Trilinear Interaction Hamiltonian 

In this section, we present an alternate derivation of the coupling 

coefficient U which leads to a new insight into the nature of three-wave a 

coupling and the associated Manley-Rowe relations. It has been shown by 

Sturrock (1970) that relations of the Manley-Rowe type follow immediately when 

the Hamiltonian of a physical system correspopds to a discrete set of coupled 

oscillators. It is simple to devise such a model Hamiltonian 

waves in the problem at 
3 

= L 
a=l 

hand; we write 

* 

for the 

(47) 

. where the canonically conjugate variables are 8 and iB . The identification a a 

•8 = a exp(-iw t) a a a 

then leads to the liamiltonian equations 

ia = Ua <x exp(-i Awt), a b c 

* iab ~ Ua a exp(i Awt) a c 

* iac = Uaaab exp(i Awt) , 

which are consistent with the Man~ey-Rowe relations (43). The bilinear terms 

in (47) represent the unperturbed energies of each oscillator (wave) and the 

trilinear term the interaction energy. We are thereby led to speculate that 

the mode-coupling coefficient U might represent simply the trilinear 

interaction energy of a single particle (new Hamiltonian K(3)), summed 

over all the non~resonant particles. This speculation is strongly supported 

by the work of Burshtein and Solov'ev (1962), who showed that Bogoliubov's 

"method of averaging" leads to an averaged Hamiltonian with the same 

Poisson-bracket structure as the coupling coefficient (42). We show now 

that the conjecture is true. 
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Returning to the expanded Hamilton-Jacobi equation (5), suppose we 

construct a canonical transformation which eliminates not only H(l) but 

(2) 
also H . Such a transformation is characterized by·the requirement that 

the new Hamiltonian K have the form 

where K( 2) represents the static component of (7) due to the beating of 

each wave with itself. K( 2) can not be transformed away since it is a 

(48) 

"resonant" perturbation, corresponding to a null resonance condition satisfied 

by all particles. It represents the particle.component of the wave energy 

(Dewar 1973); the forces derived from it are the single-wave ponderomotive 

forces (Cary and Kaufman 1977). 

A transformation satisfying requirement (48) can be constructed by 

matching the terms in (5) at each order in E. After some algebra, we find 

that the following generating function S effects such a transformation: 

s = s(l) + s<2> + s<3> + O(E4), 

where S(l) and s(2) are found by solving 

D S(l) = - H(i) 
t 

K(2) = H(2) + t {S(l)' H(l)} - K(2) 

and s(3 ) is arbitrary. The new Hamiltonian K(3) is then given by the formula 

+ ! ~ s (1) 
3 l ' 

{S(l) H(l)}l + D Q(3) 
' ~ t ' 

(49) 

(3) . (3) 
where the quantity Q depends on the choice of S • Indeed, we can arrange 

that Q(J) = 0 by choosing 
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s (3) = - o s<1> ' vs< 2> + .! 3 s<l) E.. s<l> v v s<l) 
3 ~. ~-

(50) 

+.!a 
3-

s<l) vs(l) a v s (1) -.! vs<l) 
6-

vs (l): a a s<l) 

The static component of formula (49) for K( 3), trilinear in the three 

waves, reproduces the coupling coefficient (42) when summed over all the 

non-resonant particles. The conjecture is thus proved. The fact that U 

is symmetric in the three waves can now be viewed as an innnediate consequence 

of the trilinearity of K(3) • 
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7. Concluding Remarks 

In summary, the method of general:j:zed ponderornoti:ve forces (oscillation­

center approach) has been extended to the general case of nonuniform and 

relativistic plasma. As an illustrat;ion, we have derived a "master formula" 

for three-wave coupling coefficients [formula (42)], cast in terms of Poisson 

brackets of the single-particle perturbation Hamiltonian and its convective 

time-integral along unperturbed trajectories. This master formula includes, 

as limiting cases, all uniform-plasma results; its direct use in determining 

growth rates for three-wave processes can circumvent a laborious calculation 

of the nonlinear currents in such problems. 

The simplicity of the general form (42) led us in §6 to investigate and 

prove the conjecture that the three-wave coupling coefficient represents simply 

the trilinear interaction energy (new Hamiltonian K(J)) of a single particle 

in the fields of three waves, summed over all the non-resonant particles in 

the plasma. The explicit demonstration of this fact, however, required some 

rather lengthy algebra [see equation (50)]. The source of the algebraic 

complexity is our conventional mixed-generating-function approach to performing 

the canonical transformations; in mixed variables, the desired Poisson-bracket 

form for K(3) does not arise naturally, since Poisson brackets are defined in 

terms of unmixed (conjugate) variables. It is clear that a more economical 

formulation, in which Poisson brackets play on essential role, should be 

possible. 

The tools for such a concise reformulation can be found in the Lie-

transform approach to Hamiltonian perturbation theory (Hori 1966, Deprit 

1969, Dewar 1976). The hallmark of the Lie method is the Poisson bracket, 

and its use of unitary operators to effect canonical transformations avoids 
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the usual mixing o:e old and new vat:"ia.bles. The Lie approach. indeed permits 

an elegant and remarkably · si.Inple det:";iva.tion of the relation between K (J) and 

the three~wave coupling coefficient (~ohnston and Kaufman 1978). This 

relation can, in fact, be viewed as a special case of a more general relation 

between the field-plasma interaction energy and the transformed single-particle 

Hamil toni an. 

This work was supported by the U. S. Department of Energy under contracts 

W-7405-ENG-48 and EY-76-5-02-2456. 



- 26 -

References 

1. Al' tshul', L. and Karpman, Y. 1965 Soviet ?hys. JETP, 20, 1043. 

2. Arnol'·d, V. I. 1963 Russi.an Math. Surveys, 18, 6. 

3. Burshtein, E. and Solov~ev, L. 1962 Soviet Phys. Doklady, ~. 731. 

4. Cary, J. R. and Kaufman, A. N. 1977 Phys. Rev. Lett. 39, 402. 

5. Deprit, A. 1969 Celestial Mech . .!_, 12. 

6. Dewar, R. L. 1973 Phys. Fluids, 16, 1102. 

7. Dewar, R. L. 1976 J. Phys. A . .2_, 2043. 

8. Drake, J. F., Kaw, P. K., Lee, Y. C., Schmidt, G., Liu, C. S. and 

Rosenbluth, M. N. 1974 Phys. Fluids, !I, 778. 

9. Hori, G. 1966 Publ. Astron. Soc. Japan 18, 287. 

10. Johnston, S. and Kaufman, A. N. 1976 Bull. Am. Phys. Soc. 21, 1094. 

11. Johnston, S. and Kaufman, A. N. 1977 Plasma Physics (ed. H. Wilhelmsson), 

p. 159, Plenum. 

12. Johnston, S. and Kaufman, A. N. 1978 Phys. Rev. Lett. 40, 1266. 

13. Johnston, S. , Kaufman, A. N. and Johnston, G. L. 1978 J. Plasma Phys. 

(in press). 

14. 

15. 

16. 

Kaufman, 

Kaufman, 

Kaufman, 

Am. Inst. 

A. N. 1971 

A. N. 1972 

A. N. 1978, 

Phys. 

Phys. Fluids, ~. 387. 

Phys. Fluids, 15, 1063. 

in _I~_ics in Nonlinear Dynamics (ed. s. Jorna), 

17. Laval, G. and Pellat, R. 1975 Plasma Physics (Les Houches) (ed. C. Dewitt 

and J. Peyraud), p. 261, Gordon and Breach. 

18. Sturrock, P. A. 1960 Am. Phys. (N.Y.) f, 422. 



- 21 -

Appendix: Resonant Particles and the Proble.tn of Small Divisors 

The mathematical foundation for a smooth filtration of all "resonant" 

actions I from the unperturbed distribution function f (I) can be found 
. 0- . 

in the work of Arnol'd (1963). To illustrate the essential ideas, we 

begin with an "integrable" Hamiltonian system with n degrees of freedom, 

i.e., a system which possesses n first integrals and hence (Arnol'd 1963) 

action-angle variables (!, !). Let us subject this system to a small 

perturbation of order £, 

where H' is periodic in 8 and so can be expanded in a Fourier series of 

the form 
<H'> + 

.8 

H•8 e--

If follows that the canonical transformation which eliminates the !-dependent 

terms of order £ in H' has for its generating function 

aH (I) 
o-
ar (A.l) 

The denominator (~·~) might vanish for certain "resonance" values of !• and 

for any ~ is arbitrarily small for suitable Jl.. These small denominators raise 

serious doubts concerning the validity of the formal perturbation theory. 

Nevertheless, since there are more irrational numbers than rational, 

it follows that the components of a randomly selected vector (w1 , w2 , 

are "incommensurable" (i.e., not in rational ratio). Therefore, for 

almost all vectors~ (except for a set of Lebesgue measure zero), one has 

, w ) 
n 

Jl.•w I 0 for all integers ! I 0. This idea is expressed more precisely in 

the following theorem (Arnol 1d 1963): AsK+ 0, the measure of the set of 

vectors {~} which violate the inequality 
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also tends to zero. Thus, for the majority of vectors~· the denominators 

(~·~ not only do not vanish, but can be bounded from.below by a power of 

1£1. Accordingly, one might hope that the perturbation series s
2 

in (A.l) 

is valid for the majority of vectors~ (i.e., for the majority of actions~). 

However, there remains a problem, namely that the resonances are "dense" 

in action space. In any small neighborhood of a point ~. there is always 

a point ~· where the frequencies~(~') are commensurable (excluding the 

case~= constant). If one attempted to remove from the unperturbed. 

distribution function f (I) all resonant actions, one would be left with a 
0-

wildly discontinuous function of ~· The corresponding generating function 

s2 (~) could not be differentiated or integrated by par'ts. 

Fortunately, there is a resolution to this dilemma. The need to deal 

with everywhere-discontinuous functions of ~ can be avoided by truncation 

of the Fourier expansion for H' after a finite number of terms: 

<H' > 8 + I__ E: H' £ {~) 
o<I£1<N 

H•8 
e--

In the framework of a first-order perturbation theory, this procedure is 

2 
acceptable provided that the omitted terms are of order E: • Since the 

Fourier coefficients of an analytic function decrease in geometric progression 

(Arnol'd 1963), it suffices to choose N to be of order. £n(E:-l). 

To understand how this truncation facilitates the extraction of resonant 

actions, it is helpful to consider an integer lattice in ~-space. For 

simplicity, we limit our discussion to the case n=2 which is shown in Fig. 1. 

The integer lattice is of finite extent, corresponding to some given value 

of N. Now, for each value of~. we can draw a line in the direction of the 
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two-vector ~(!). A second line drawn perpendicular to the first then 

represents the locus of points which satisfy 

If the components of ~(l) are incommensurable, then this locus does not 

pass through any points of the integer lattice; note, however, that as 

N + oo, lattice points can be found arbitrarily close to the locus. 

From (A.l), it can be seen that the smallness of the generating function 

is violated when 
(A. 2) 

For each l, condition (A.2) corresponds to a narrow cone about the orthogonal 

locus whose angular width is small withE (see Fig. 1). The points! lying 

within the cone are the ones which satisfy (A.2); if a lattice point lies 

within the cone, then the corresponding action l must be classified as 

"resonant". The key point is that non-resonant actions are allowed since the 

lattice is of finite extent. 

Now as I varies, ~(l) also varies and the corresponding orthogonal cone 

sweeps across the lattice. Suppose we agree to extract all the resonant 

actions I for which points of the integer lattice fall inside the orthogonal 

cone. Clearly, if E is sufficiently small, this procedure defines isolated 

zones in action space whose total area tends to zero with E. These zones 

can then be removed smoothly from the distribution function f (I) to form 
0-

the non-resonant distribution f (I) employed in this paper. o-
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w(I) --
• • • • • • 

• • • • 
• • • • 
• • • • • • 
• • • • • • • ,... D1 

• • • • • • 
• • • • • • 
• • • • • • 
• • • • • • • • 
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