
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Neural efficiency in working memory tasks: The impact of task demand and training

Permalink
https://escholarship.org/uc/item/2dz697nb

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 36(36)

ISSN
1069-7977

Authors
Nussbaumer, Daniela
Grabner, Roland H.
Stern, Elsbeth

Publication Date
2014
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2dz697nb
https://escholarship.org
http://www.cdlib.org/


Neural efficiency in working memory tasks: The impact of task demand and 
training 

 
Daniela Nussbaumer (nussbaumer@ifv.gess.ethz.ch)  

Institute for Behavioral Sciences, ETH Zurich, Universitätsstrasse 41 
8092 Zurich, Switzerland 

 
Roland H. Grabner (roland.grabner@psych.uni-goettingen.de) 

Department of Psychology, Georg-August-University of Göttingen, Waldweg 26 
37073 Göttingen, Germany 

 
Elsbeth Stern (stern@ifv.gess.ethz.ch)  

Institute for Behavioral Sciences, ETH Zurich, Universitätsstrasse 41 
8092 Zurich, Switzerland 

 
Abstract 

Studies of human intelligence provide strong evidence for the 
neural efficiency hypothesis: More efficient brain functioning 
in more intelligent individuals, that is, less cortical activation 
in brighter individuals. 

The main goal of this study was to explore the relationship 
between intelligence and cortical activation in combination 
with a cognitive training. In 83 participants, cortical 
activation was assessed by means of event-related 
desynchronization (ERD) before and after working memory 
(WM) training. In a pre-test training post-test design, ERD 
during performance of trained as well as untrained transfer 
tasks was correlated with scores in a psychometric 
intelligence test (Raven’s Advanced Progressive Matrices 
test). 

We found a negative correlation between ERD and 
intelligence for moderately difficult tasks. A decrease in 
cortical investment from pre- to post-test was found for 
simple tasks but likewise for individuals with lower and 
higher intelligence. We could not find a stronger activation 
decrease from pre- to post-test for individuals with higher 
intelligence. These findings suggest partial confirmation of 
the neural efficiency hypothesis for moderately difficult tasks 
and they provide an indication that training can help in 
reducing cortical activation while solving simple tasks. 

Keywords: working memory; intelligence; neural efficiency; 
training; event-related desynchronisation (ERD) 

Theoretical Background 
According to the neural efficiency hypothesis, more 

intelligent individuals can be characterized by less brain 
activation than less intelligent individuals (Haier et al., 
1988). This original hypothesis of neural efficiency was 
introduced by a PET study showing less brain glucose 
metabolism in more intelligent individuals while solving 
cognitive tasks. Haier and colleagues stated: ”Intelligence is 
not a function of how hard the brain works but rather how 
efficiently it works. … This efficiency may derive from the 
disuse of many brain areas irrelevant for good task 
performance as well as the more focused use of specific 
task-relevant areas“ (Haier, Siegel, Tang, Abel, & 
Buchsbaum, 1992b, pp. 415–416). By using EEG 

measurements during cognitive task performance, the 
hypothesis has been repeatedly confirmed. In particular, it 
has been shown that event- related desynchronization (ERD) 
in the upper alpha band, reflecting a measure of general 
cortical activation, is negatively related to intelligence 
(Pfurtscheller & Aranibar, 1977, Klimesch, Doppelmayr, & 
Hanslmayr, 2006; Klimesch, Doppelmayr, Pachinger, & 
Ripper, 1997) However, the body of evidence is not entirely 
consistent. Recent findings suggest a more differentiated 
picture of the validity of the neural efficiency hypothesis. 
They point out the modulating role of task complexity, 
practice, learning and expertise as well as gender, and the 
importance of an adequate intelligence measure (Neubauer, 
Grabner, Fink, & Neuper, 2005; Neubauer & Fink, 2003). 
The relation between neurophysiological activity and 
intelligence – predominantly for fluid intelligence– arises 
for a variety of tasks of subjective low to moderate task 
difficulty. 

Most studies referring to the neural efficiency hypothesis 
apply intelligence tests while measuring cognitive activation 
(see Neubauer & Fink, 2009). Other studies that tried to 
broaden the validity of the hypothesis found similar 
relations between intelligence and cortical activation in WM 
tasks (Grabner, Fink, Stipacek, Neuper, & Neubauer, 2004; 
Rypma & D’Esposito, 1999). 

Only few studies so far investigated the influence of task 
training on the relation between neural activation and 
intelligence. The neural efficiency hypothesis was supported 
in two studies that found stronger activation decrease after 
training for individuals with higher intelligence (Haier et al., 
1992b; Neubauer, Grabner, Freudenthaler, Beckmann, & 
Guthke, 2004). In the study by Neubauer et al. (2004), this 
result was found for tasks of high difficulty. 

Summing up, for moderate untrained and difficult trained 
tasks support for the neural efficiency hypothesis could be 
found. However, it is still unclear in which way the relation 
between neural activation and intelligence is influenced by 
training and if possible training effects on neural efficiency 
can be found on tasks of different difficulty. 

The present study tries to answer the question if intensive 
cognitive training can alter the relation between cortical 
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activation and intelligence in different tasks. The applied 
training had the aim to enhance WM capacity. Besides 
investigating changes concerning trained tasks, we also look 
at transfer effects to related but untrained tasks. Results on 
the trainability of WM are still heterogeneous (for a review 
see Shipstead, Redick, & Engle, 2012; Chein, & Morrison, 
2010). Although there are various newer studies with 
positive behavioral results concerning trainability of WM, 
there are also many studies with negative results (for a 
meta-analysis see Melby-Lervåg & Hulme, C., 2013). It 
remains unknown which characteristics of a WM training 
influence its effectiveness (Shipstead, Redick, & Engle, 
2010). In order to add evidence to this open question, in the 
present study we administer three different training 
paradigms varying in the amount of WM load during 
training and differing in demands for interference 
resolution. 

The principal aim of the present study is to analyze neural 
correlates of cognitive performance by means of ERD 
before and after WM training. It is expected that (a) 
concerning the neural efficiency hypotheses, more 
intelligent individuals should show less cortical activation 
while solving WM tasks than less intelligent individuals, (b) 
training will alter this relationship, and (c) training-induced 
changes of cortical activation are related to individuals’ 
intelligence level. 

 

Method 

Participants 
A total of 83 healthy students of science- and humanities-

related fields from three Swiss universities completed the 
study (Mage = 23.7, SD = 3.3, 36 males, 47 females). Eight 
participants dropped out due to installation problems of the 
training software on their home computer (5 participants) or 
due to non-adherence to the training paradigms or sessions 
at the institute (3 participants). All participants were right-
handed and without any medical or psychological diseases 
(both determined by self-). The participants were paid for 
their participation in the study. 

Procedure 
In an independent group design, participants were 

randomly assigned to one of three groups differing in WM-
load during training: (a) A low-WM-load-group trained 
three different tasks with low WM load, (b) a medium-WM-
load-group trained three different non-adaptive tasks with 
moderate WM load and a large amount of interference trials 
(c) a high-WM-load-group trained an adaptive dual n-back 
task with high WM load and a large amount of interference 
trials (similar to Jaeggi et al., 2008). All groups trained 5 
days a week during a 3-week period for half an hour daily 
on their home computer. To check the plausibility of 
training gains, the first and last training sessions took place 
at the first author’s institution and were performed together 
with transfer tasks. 

Before and after training, an assessment session took place 
at the first author’s institution. Participants were asked to 
solve WM tasks (training and transfer) and a mental 
arithmetic task while EEG was recorded. Furthermore, they 
completed an intelligence test (Advanced Progressive 
Matrices Test, APM; Raven 1990). The session before 
training served to assess baseline performance and the 
session after training aimed to assess possible transfer from 
WM training. The three groups did not differ in their initial 
intelligence level and their initial performance in the 
training and transfer tasks. 

EEG 
EEG measures were conducted by an ActiveTwo-System 

of BioSemi (BioSemi, Amsterdam, The Netherlands). 
Event-related desynchronization/synchronization (ERD/ 
ERS) was calculated for the upper alpha band (10–13 Hz) 
(Klimesch, 1999; Neubauer, Fink & Grabner, 2006). For a 
detailed description of data analyses see Grabner and De 
Smedt (2011) and De Smedt, Grabner und Studer (2009). 
Negative values (ERD) indicate desynchronisation and a 
decrease in power. Positive values (ERS) indicate 
synchronisation and an increase in the power. For statistical 
analyses, a global measure of cognitive activation was 
formed by averaging all 64.  

Material 
Training  

The high-WM-load-group trained one task for the entire 
30 minutes. It was an adaptive and dual version of the n-
back task that placed high WM load due to a large amount 
of interference trials (Dual-N-back; similar to Jaeggi et al., 
2008). In this group the average n-back level was assessed. 
The medium-WM-load-group trained three non-adaptive 
WM tasks: A three-back task with letters (3back), a face 
recognition task (4Faces, see figure 1), and a letter 
recognition task (4Letters). These tasks were characterized 
by moderate WM load with a focus on resolution of 
proactive interference in WM. Solution time and solution 
rate was measured. The low-WM-load-group trained similar 
tasks as the medium-WM-load group, but tasks had lower 
WM load (i.e. only 1 item for all 3 tasks: 1back, 1Letter and 
1Face). Solution time and solution rate was measured. 
Tasks to assess transfer 

As a fluid intelligence test, the well-established Advanced 
Progressive Matrices Test (APM, Set II) by Raven (1990) 
was administered. As all participants solved the APM twice, 
once at pre-testing before and once after training, an even-
odd split version was presented (participants were randomly 
assigned to the specific order). As only half the items were 
presented at each time point, no IQ-value could be 
calculated, (raw values pre-testing M = 12.47, SD = 2.52). 
Two groups were formed by a median split of the raw 
values at pre-testing (lower intelligence-group: n = 40, M = 
10.32, SD = 1.44; higher intelligence-group: n = 43, M = 
14.47 SD = 1.40). The two groups differed significantly in 
their achieved values (t(81) = 13.265, p < .001; d = 0.49). 
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Three transfer tasks were administered: Two WM tasks 
representing two different subcomponents of WM and a 
mathematical task. In a task-switching task (Task-Switch) 
participants had to either decide whether the value of a three 
digit number was below or above 500, or whether the 
number was even or odd. In a monitoring task (Monitoring) 
participants had to detect changes in a grid of nine three-
digit-numbers and react on constellations of same final 
digits. The transfer task of the mathematical domain was a 
mental arithmetic task with subtractions of two digit 
numbers with carries (Mental Arithmetics, see figure 2).  

Furthermore, the subjective cognitive demand of a task 
was measured by the mental effort rating scale (Paas, 1992; 
Paas, Tuovinen, Tabbers, & Van Gerven, 2003). This 
allowed us to measure cognitive task demands in more 
subjective (mental effort) and objective (ERD) manner and 
compare them. 

 
Fig.1. Schematic display of an example item of the 4Faces 
training task 

. 

 
Fig.2. Schematic display of an example item of the transfer 
task Mental Arithmetics 

Results 
For all analyses only data of correctly answered test items 

were considered.  

Overall gains from pre- to post-testing were similar for all 
tasks and no group differences occurred (see table 1). 
Therefore, the total of 83 participants was grouped into two 
groups according to their performance in the APM, 
irrespective of the training group. 

To compare the two intelligence-groups on their 
behavioral performance a repeated measure ANOVA 
(within-subject factor time and between-subject factor 
intelligence-group)1 was performed for each transfer task 
separately. All tasks showed main effects of time whereas 
neither a main effect of intelligence-group nor an interaction 
between intelligence-group and time were found. So 
behaviorally, no intelligence differences were found – all 
participants increased performance (solution time and 
except of ceiling effects in very easy tasks: 1letter, 1face, 
1back and 4letters also for solution rates) from pre- to post-
testing irrespective of their intelligence level.  

To investigate differences in cortical activation – 
quantified by the ERD in the upper alpha band – for all 
tasks we computed separate repeated measures ANOVAs 
with intelligence-group (lower vs. higher intelligence) as a 
between-subject variable and time (pre- vs. post-testing) as a 
within-subject variable. Differences in cortical activation 
between the intelligence-groups (reflected in a main effect 
intelligence-group) occurred in two tasks: the transfer task 
Mental Arithmetics and the training task 4Faces (see table 2 
& 3). For both tasks individuals with higher intelligence 
showed less cognitive activation. This supports the neural 
efficiency hypothesis. However, these activation differences 
between the intelligence-groups did not change by training 
and remained from pre- to post-testing. 

Differences in cortical activation between pre- and post-
testing (reflected in in main effects of time) were found for 
the two training tasks 1Face and 1Letter (see table 3). The 
main effect intelligence-group as well as interactions 
between time and intelligence-group did not reach statistical 
significance. Participants – disregarding of their intelligence 
– showed less cortical activation after training than they did 
before training. For cortical activation we did not find 
interaction effects between the intelligence-group and time 
for any of the tasks. In addition, there were no performance 
differences between intelligence levels in solution time and 
solution rate. This indicates that no performance-neural 
activation trade-off can be made responsible for the result.  

According to the mental effort rating scale (possible 
values between 1 and 10) both tasks with activation 
differences between the intelligence-groups were of 
moderate difficulty (values between 5 and 6). Both tasks 
showing differences between pre- and post-testing in the 
amount of cognitive activation measured by ERD are rated 
as simple (values between 3 and 4). A decrease in subjective 
cognitive effort was found for the 3-back task and the Dual-

1 All general linear model (GLM) analyses for repeated 
measures were performed and if required corrected by a 
Greenhouse–Geisser correction for the violation of the sphericity 
assumption. 
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N-back task. For all other tasks no differences were found 
between subjective mental effort before and after training. 

 
Fig.3. Graph of the main effect group in the Mental  
Arithmetics task. Error bars represent the standard error of 
the mean. * = significant main effect group. 
 

Discussion 
The main goals of this study were to measure cortical 

activation while solving WM tasks, to determine whether a 
negative relationship between intelligence and cortical 
activation can be found while solving these tasks, to 
determine effects of practice on cortical activation, and to 
relate possible effects of practice to participants’ 
intelligence level. For this purpose we conducted a three-
week-training of WM tasks with three different WM load 
levels during training. Behavioral training gains in solution 
time and solution rate were found for all tasks, which were 
not affected by the amount of WM load during training. 

It was assumed that (a) according to the neural efficiency 
hypothesis a negative relationships between intelligence and 
the amount of cortical activation, namely ERD during 
performance of cognitive tasks can be found, (b) training 
would alter this relationship, and (c) a possible training-
induced change of cortical activation would be related to the 
individuals’ intelligence level. Supportive evidence for (a) 
was found in two tasks: Mental Arithmetics and 4Faces. 
Less intelligent individuals had to invest more cortical 
resources to solve the tasks. This result is in line with 
studies promoting a differentiated picture of the validity of 
the neural efficiency hypothesis. Both our tasks were 
classified as moderately demanding by the mental effort 
rating scale which is in line with literature emphasizing task 
complexity as an important modulating factor (see 
Neubauer & Fink, 2009). For these two tasks the negative 
relation did not change from pre- to post-testing. 

As for part (b) of the hypothesis we also have a partial 
confirmation: Two tasks showed a development in cortical 
activation between pre- and post-testing. In the two tasks 
1Letter and 1Face, individuals irrespective of their 
intelligence level showed less cortical activation after the 
training sessions. Both tasks were judged as simple by the 
mental effort rating scale. This result is in line with both 
Haier et al. (1992a) and Neubauer et al. (2004) who reported 
less cortical activation after training. 

Furthermore, contrary to our expectation (c), no training-
related development in the cortical activation occurred that 
was different for the intelligence-groups. We could 
therefore not replicate the finding of a stronger activation 
decrease from pre- to post-testing for individuals with 
higher intelligence. (Haier et al. 1992b, Neubauer et al., 
2004) 

In sum, a partial confirmation of the neural efficiency 
hypothesis could be found: Moderately difficulty tasks show 
intelligence-related differences in cortical activation and 
that training can – for simple tasks – help to reduce cortical 
activation. 
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Appendix 
 
Table 1: The type of training has no influence on the 
amount of gain from pre- to post testing. 
Transfer data on solution time for each task: Reporting 
main effects and interactions for an ANOVA with the 
between-subject factor training group (low, medium and 
high load during training) and the within-subject factor 
time (pre- and post-test) 

Task  Main effect time Main 
effect 
training-
group 

Interaction 
time * 
training-
group 

Solution time 

Task-
Switch 

F(1, 79) = 
136.01 
p < .001 
η2

p = .63  

n.s. 
 
η2

p = .02 

n.s. 
 
η2

p = .02 

Moni-
toring 

F(1, 80) = 28 
p < .001 
η2

p = .26 

n.s. 
 
η2

p = .03 

n.s. 
 
η2

p = .01 

Mental 
Arith-
metics 

F(1, 79) = 8.78 
p < .01 
η2

p = .10 

n.s. 
 
η2

p = .02 

n.s. 
 
η2

p = .02 
. 

Table 2. Data is collapsed over the three training groups. 
Transfer data on solution time and ERD for each task: 
Reporting main effects and interactions for an ANOVA 
with the between-subject factor intelligence-group (lower 
vs. higher intelligence) and the within-subject factor time 
(pre- and post-test) 

Task  Main effect time Main 
effect IQ-
group 

Interaction 
time * IQ-
group 

Solution time 

Task-
Switch 

F(1, 80) = 
125.66 

p < .001 
η2

p = .61 

n.s. 
 
η2

p = .01 

n.s. 
 
η2

p = .01 

Moni-
toring 

F(1, 80) = 
28.01 

p < .001 
η2

p = .26 

n.s. 
 
η2

p = .01 

n.s. 
 
η2

p = .01 

Mental 
Arith-
metics 

F(1, 80) = 
8.75 

p < .01 
η2

p = .1 

n.s. 
 
η2

p = .01 

n.s. 
 
η2

p = .04 
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ERD-total 

Task-
Switch 

n.s. 
 
η2

p = .01 

n.s. 
 
η2

p = .01 

n.s. 
 
η2

p = .01 

Moni-
toring 

n.s. 
 
η2

p = .01 

n.s. 
 
η2

p = .02 

n.s. 
 
η2

p = .01 

Mental 
Arith-
metics 
 

n.s. 
 
η2

p = .01 

F(1, 76) 
= 3.97 

p < .05 
η2

p = .05 

n.s. 
 
η2

p = .01 

. 
Table 3. Training results on solution time and ERD for 
each task: Reporting main effects and interactions for an 
ANOVA with the between-subject factor intelligence-
group (lower vs. higher intelligence) and the within-
subject factor time (pre- and post-test) 

Task Main effect time Main 
effect IQ-
group 

Interaction 
time * IQ-
group 

Solution time 

1back F(1, 23) = 34.38 
p < .001 
η2

p = .60 

n.s. 
 
η2

p = .03 

n.s. 
 
η2

p = .01 

1Face F(1, 21) = 14.60 
p < .01 
η2

p = .41 

n.s. 
 
η2

p = .06 

n.s. 
 
η2

p = .01 

1Letter F(1, 23) = 26.65 
p < .001 
η2

p = .54 

n.s. 
 
η2

p = .04 

n.s. 
 
η2

p = .01 

3back F(1, 23) = 36.81 
p < .001 
η2

p = .62 

n.s. 
 
η2

p = .01 

n.s. 
 
η2

p = .01 

4Faces F(1, 23) = 52.60 
p < .001 
η2

p = .70 

n.s. 
 
η2

p = .11 

n.s. 
 
η2

p = .04 

4Letters 
 

F(1, 23) = 29.67 
p < .001 
η2

p = .56 

n.s. 
 
η2

p = .02 

n.s. 
 
η2

p = .02 

N-back Level 

Dual-N-
back 
 

F(1, 27) = 48.61 
p < .001 
η2

p = .64 

n.s. 
 
η2

p = .06 

n.s. 
 
η2

p = .01 

ERD-total 

1back n.s. 
 
η2

p = .02 

n.s. 
 
η2

p = .05 

n.s. 
 
η2

p = .09 

1Face 
 

F(1, 25) = 4.80 
p < .05 
η2

p = .16 

n.s. 
 
η2

p = .08 

n.s. 
 
η2

p = .03 

1Letter 
 

F(1, 25) = 4.31 
p < .05 
η2

p = .15 
d = .16 

n.s. 
 
η2

p = .06 

n.s. 
 
η2

p = .01 

3back n.s. 
 
η2

p = .12 

n.s. 
 
η2

p = .01 

n.s. 
 
η2

p = .02 

4Faces 
 

n.s. 
 
η2

p = .01 

F(1, 24) = 
5.33 
p < .05 
η2

p = .18 

n.s. 
 
η2

p = .02 

4Letters n.s. 
 
η2

p = .01 

n.s. 
 
η2

p = .05 

n.s. 
 
η2

p = .10 

Dual-N-
back 

n.s. 
 
η2

p = .1 

n.s. 
 
η2

p = .06 

n.s. 
 
η2

p = .01 
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