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ABSTRACT OF THE DISSERTATION 
 

Delineating mechanisms of cutaneous wound healing and regeneration in adults 
 

By 
 

Christian Fernando Guerrero-Juarez  
 

Doctor of Philosophy in Biological Sciences  
 

University of California, Irvine, 2018 
 

Assistant Professor Maksim V. Plikus, Chair 
 
 Regeneration of hair follicles (HFs) and dermal adipocytes (DAs) occurs in mouse skin 

wounds upon large excisional wounding. Although HF regeneration is observed in African spiny 

mice of the genus Acomys and northern elephant seals after apex predator-inflicted wounding, 

laboratory rats do not display such regenerative phenotype. Such regeneration defect was 

observed in large excisional wound healing models in several rat strains, which undergo 

otherwise normal wound re-epithelialization. Inter-species transcriptome analyses between 

laboratory mouse and rat wound tissues attributed such lack of HF regeneration to differences in 

expression of inflammation markers, epigenetic remodelers and pleiotropic signaling molecules, 

including Satb1, Setd1b, Setdb1, and Whsc1l1. In mice, the origin of de novo HF regeneration 

has been partially elucidated, whereas the origin of DAs, a complex tissue that proceeds HF 

regeneration, remained elusive. Functional lineage tracing revealed the origin of DAs to be 

myofibroblastic. Bulk RNA-sequencing of genetically-labeled, FACS-purified myofibroblasts 

across a wound healing time course identified Zfp423 to be markedly up-regulated at a time-

point coincident with initiation of DA regeneration. Pharmacological and genetic ablation/down-

modulation of BMP signaling resulted in a significant DA regeneration defect. Because the 

origin of myofibroblasts appears to be tissue- and injury context-specific, the origin of 
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myofibroblasts that contribute to DA regeneration in skin wounds was interrogated. Droplet-

enabled single cell transcriptome analyses on unsorted, viable cells from wound dermal tissues 

collected prior the onset of HF regeneration was performed. Dimensionality reduction analyses 

revealed a large degree of cellular heterogeneity in the dermal compartment of early stage 

wounds. Furthermore, sub-clustering of wound fibroblasts further revealed a large degree of 

fibroblast heterogeneity. Pseudotime analyses revealed a putative fibroblast-myofibroblast 

differentiation trajectory and identified genes, including transcription factors, that may be 

important in myofibroblast differentiation in skin wounds in vivo. A subset of myofibroblasts 

expressed hematopoetic markers, most notably Lyz2, suggesting a common monocytic-origin. 

Full-length single cell RNA-sequencing and immunoblotting analyses of genetically labeled 

myofibroblasts confirmed these in silico observations. Bone marrow transplantation and 

functional lineage tracing using pan-hematopoetic Cre drivers demonstrated labeling of DA in 

regenerated skin wounds, suggesting that a population of hematopoetic-derived myofibroblasts 

contributes to regeneration of mouse skin wounds.
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CHAPTER 1 

 
Introduction 

 
 
 
 

Adapted and/or modified, in part, from: 

Guerrero-Juarez CF, and Plikus MV. Emerging non-metabolic functions of skin fat. Nat Rev 

Endocrinol. (2018). Mar;14(3):163-173. PMID: 29327704. 

Reprinted with permission from Nature Publishing Group.  

  

 
 
  
 

 

 

 

 

 

 

 

 

 

 

 

 



2	
	

INTRODUCTION 

1.1 THE SKIN 

THE ANATOMY OF SKIN 

The skin is considered to be the largest organ in an organism’s body. It covers 

approximately 25 m2 of surface area in humans (Gallo, 2017) and it consists of multiple, 

organized layers that are further compartmentalized, housing distinct cell types, appendages and 

a diverse multitude of microorganisms that together form the so-called skin microbiome (Lange-

Asschenfeldt et al., 2011). The first layer of the skin, the epidermis, forms the outermost layer 

and provides skin with its barrier function. It protects organisms against mechanical and physical 

insults, UV-exposure, and foreign pathogens and opportunistic microorganisms. The epidermis 

sub-divides into five distinct layers, each with its own characteristics and gene expression 

profile. The first layer is known as the stratum basale. This basal layer houses the interfollicular 

epidermal stem cells (Blanpain and Fuchs, 2009, Solanas and Benitah, 2013). Subsequently, 

these cells differentiate into supra-basal layers which ultimately form the Stratum corneum, a 

layer containing dead cells that eventually shed off the skin surface. The epidermis lies on top of 

the dermis, a heterogeneous structure composed mainly of fibroblasts, collagens and elastin 

fibers. The dermis sub-divides into upper papillary and lower reticular dermis (Harper and 

Grove, 1979, Woodley, 2017). Underlying the reticular dermis is the dermal white adipose tissue 

(dWAT) (Driskell et al., 2014, Festa et al., 2011, Schmidt and Horsley, 2012, Wojciechowicz et 

al., 2013). In mice, the dWAT is separated from the subcutaneous WAT (sWAT) by a later of 

striated muscle called the panniculus carnosus. In humans, however, this layer of muscle is 

rudimentary. In addition to HFs, skin contains sweat glands consisting of a straight duct and 

secretory coil nested in the dermis (Lobitz and Dobson, 1961, Lu et al., 2012) and sometimes, 
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abuts dWAT (Kimani, 1983). While in humans sweat glands are distributed widely throughout 

the skin, in many other species, including mice, they are restricted to the paws (Lu et al., 2016, 

Montagna, 1984).  (Figure 1.1).  

THE HAIR FOLLICLE AND ITS REGENERATIVE BEHAVIOR 

Traversing through the skin are its ectodermal appendages – hair follicles (HFs), and 

sweat glands. HFs are stem cell-rich mini-organs that regenerate new hairs repetitively in a 

process known as the hair growth cycle. This regenerative cycle consists of three phases: active 

hair growth (anagen), regression (catagen), and rest (telogen) (Muller-Rover et al., 2001, Oh et 

al., 2016). HFs attain its largest size during anagen, when its proximal end, the hair bulb, extends 

deep into dWAT. Hair bulb harbors actively dividing epithelial matrix progenitors and 

specialized dermal papilla (DP) fibroblasts, that serve as the key signaling center of the HF 

(Morgan, 2014). Hair growth is sustained by proliferation and differentiation activities taking 

place in the hair matrix. Distally, above the dWAT, the HF houses its stem cells (Brownell et al., 

2011, Jensen et al., 2009, Morris et al., 2004, Snippert et al., 2010), including the so-called bulge 

stem cells – the principal hair-fated, long-lasting progenitor cells (Cotsarelis et al., 1990, Morris 

et al., 2004). Above the bulge, HF contains sebaceous glands. Collectively, this structure is 

known as pilosebaceous unit. Connecting the bulge with the bulb is the outer root sheath (ORS). 

Hair growth termination during catagen is mediated by events of terminal differentiation, 

apoptosis, and phagocytosis (Foitzik et al., 2000, Lindner et al., 1997, Mesa et al., 2015). DP 

fibroblasts and some epithelial ORS cells survive catagen involution, move upwards toward the 

bulge, and constitute the lower portion of the resting telogen HF. Surviving ORS cells form the 

secondary hair germ (sHG) compartment. At the onset of new anagen, sHG progenitors respond 

to activating signals from DP, divide, and fuel rapid HF growth (Hsu et al., 2011, Panteleyev et 
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al., 2001). Bulge progenitors divide with a delay and contribute progenies toward mature anagen 

HF (Hsu et al., 2011, Morris et al., 2004). This process occurs in cycles, allowing each HF to 

grow multiple rounds of hair shafts over the lifetime of the mouse. Furthermore, in many species 

thousands of neighboring HFs regenerate collectively as dynamic hair growth waves (Plikus et 

al., 2011, Plikus and Chuong, 2008, 2014, Plikus et al., 2008, Plikus et al., 2009, Wang Q. et al., 

2017). Thus, their interactions with dWAT occur also at the collective level.  

DERMAL ADIPOCYTES 

White adipose tissue (WAT) is a complex tissue with roles in energy balance and nutrient 

homeostasis (Rosen and Spiegelman, 2014). Anatomically, WAT is compartmentalized in 

various areas called depots that are conveniently allocated throughout the body. To-date, the 

most widely studied WAT depots include visceral (vWAT) – which extends within the body 

cavity and includes the epicardial, mesenteric, retroperitoneal, perirenal, omental and gonadal 

adipose tissues; and subcutaneous (sWAT) – which includes anterior, flank and the subcutaneous 

tissue below the skin. Each depot is characteristically different from each other in terms of the 

origin of their precursors, overall functionality, and their profound effects on pathophysiology. 

For example, vWAT is regarded as unfavorable due to its positive correlation with metabolic 

disease, whereas sWAT is considered beneficial because of its protective nature. Emerging 

evidence is now providing clues about the importance of other adipose tissue depots and their 

prominent roles in homeostasis and disease (Rivera-Gonzalez et al., 2014). Of these, dermal 

adipose tissue has recently gained broad interest as it has emerged as an important tissue with 

prominent roles in skin physiology, innate immunity and wound healing (Guerrero-Juarez and 

Plikus, 2018, Zwick et al., 2018).    
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Within the skin dermis lies a group of specialized unilocular, lipid-laden cells known as 

dermal/intradermal adipocytes (Driskell et al., 2014, Guerrero-Juarez and Plikus, 2018). Defined 

collectively as dermal white adipose tissue (dWAT), this highly dynamic, complex and 

heterogeneous tissue is geometrically arranged as a three-dimensional structure that is 

continuous throughout the dermis and is clearly demarcated from subcutaneous white adipose 

tissue (sWAT), which is physiologically and morphologically different, by a layer of striated 

muscle called the panniculus carnosus. In other species, such as rabbits, dWAT is non-

continuous and, instead, forms complex clustered units with compound hair follicles (Guerrero-

Juarez and Plikus, 2018). Human skin also harbors dWAT and is structured differently than that 

of mice. Indeed, the close spatial relationship between HFs and dWAT has been previously noted 

and their close association traced back to embryonic development. Spatio-temporal association 

studies between HFs and dWAT have been mainly conducted in pigs, and rats (Anderson et al., 

1972, Hausman et al., 1981, Hausman and Kauffman, 1986, Hausman and Martin, 1981, 1982). 

Recently, however, owing to its wide usage in biomedical research, the association between 

dWAT and HFs was established in mice (Festa et al., 2011, Wojciechowicz et al., 2013, Zhang et 

al., 2016).  

HAIR FOLLICLE AND DERMAL ADIPOCYTE SYMBIOSIS? 

Although a close association between HFs and dermal adipocytes had been noted in the 

classic literature, recent advances in imaging, immunohistochemical and genetic approaches 

have shed light onto their closely related regulation and signaling crosstalk (Borodach and 

Montagna, 1956, Chase et al., 1953, Gipbs, 1941, Moffat, 1968). HF formation precedes dermal 

adipogenesis with the emergence of OilRedO-positive adipocytes at the base of growing HFs 

(Wojciechowicz et al., 2008). Rapid accumulation of lipid and subsequent enlargement of the 
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firstly established multilocular intradermal adipocytes (Wojciechowicz et al., 2013) follows. The 

association between HFs and dWAT extends beyond embryonic and pre-natal days and is further 

exemplified during the HF cycle (Plikus et al., 2008, Zhang et al., 2016). HFs undergo cyclic 

regeneration throughout the life time of an organism and the mechanisms underlining this 

regenerative behavior have been widely studied in individual HF units (Plikus et al., 2008) and 

collectively as propagating HF waves (Plikus et al., 2011, Plikus and Chuong, 2008). The HF 

cycle can be divided into three functional states: anagen (growth), catagen (regression), and 

telogen (rest) (Muller-Rover et al., 2001). Indeed, novel genetic approaches, coupled with 

imaging, histochemical analyses and transplantation studies have confirmed previous 

observations that dWAT undergoes major changes in parallel with HF cycling, which include 

pre-adipocyte proliferation and hypertrophy of existing adipocytes, leading to approximately 20-

40% contribution of new adipocytes during each hair cycle (Festa et al., 2011, Rivera-Gonzalez 

et al., 2016, Zhang et al., 2016). This parallel behavior appears to be a unique feature of dWAT 

as similar, intricate adipose tissue rearrangements have not been thoroughly described in other 

depots as an immediate consequence of changes in neighboring tissues. For example, bone 

marrow adipose tissue (BMAT) is encased and spatially constrained within a rigid bone structure 

– restricting a possible dynamicity (Zwick et al., 2018). Nonetheless, similar co-opted behaviors 

also occur during pre- and post-natal mammary gland development, although further 

investigation into the possible communication between mammary gland epithelium and adipose 

tissue is warranted. Hence, this sophisticated level of organized behavior between dWAT and 

HFs suggests a mutually inclusive, physiologically relevant relationship with possible functional 

roles in homeostasis, injury, and disease.  
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Can HFs influence dWAT to undergo rearrangement during cycling, and viceversa? 

Recent studies have shed light to the macro-environmental regulation of HF cycling (Plikus and 

Chuong, 2014); that is, cues emanating from surrounding tissues that directly or indirectly 

influence the hair cycle. Elevated expression of Bone Morphogenetic Protein (BMP) ligands – 

BMP2 and BMP4 in the dermis during the telogen stage (Plikus et al., 2008) suggested that 

BMPs expressed by mature intradermal adipocytes can modulate HF cycling by inhibitory 

expression areas, capable of maintaining HFs in a state of refractivity and preventing them from 

re-entering anagen after the first hair cycle. This level of regulation serves as one of the main 

regulators of the HF wave formation in mouse skin. A reciprocal, yet opposite effect where HFs 

direct regeneration of dWAT via canonical BMP signaling is observed during repair of large skin 

wounds. Large skin wound model differs greatly from the traditional, small excisional wound 

model. Adult mammals typically heal skin wounds with a scar devoid of HFs and dermal 

adipocytes. However, we and others identified that HFs can regenerate in the center of large 

excisional wounds in a phenomenon known as wound induced hair neogenesis (WIHN). Our 

most recent work uncovered that dermal adipocytes also form de novo in healing skin wounds 

via conversion of non-adipogenic wound bed myofibroblasts. This process is dependent on the 

ability of wounds to first regenerate HFs via WIHN, however, as hairless parts of skin wounds 

lack dermal adipocytes and cannot form adipocytes when cultured under conditions that promote 

adipocyte differentiation. Because HFs precede dermal adipocyte regeneration, it was postulated 

that hair follicles must therefore instruct myofibroblasts to reprogram into intradermal adipocytes  

(Plikus et al., 2017). Similarly, this HF-dermal adipocyte communication mechanism is also 

mediated by BMP signaling (Figure 1.2).   

DERMAL ADIPOCYTES AS A MODEL TO STUDY ADIPOSE LINEAGE DEVELOPMENT 
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The identification of skin pre-adipocytes, which share core signature genetic markers 

with sWAT and vWAT (Berry and Rodeheffer, 2013, Rodeheffer et al., 2008), enabled the 

identification of a putative role in HF cycling. For example, using several lipodistrophic mice 

models with known phenotypes in adipogenesis, Festa et al showed that intradermal pre-

adipocytes begin to proliferate during late catagen and reach their apex during mid-anagen (Festa 

et al., 2011). This proliferative expansion of intradermal pre-adipocytes coincides with activation 

of HF cycling, which relies on activation of SCs in the HF bulge. A functional role of pre-

adipocytes in HF cycling was established by careful analysis of histological sections at distinct 

timepoints between WT, Ebf1-/-, which lack pre-adipocytes (Schmidt-Ott, 2014), and Azip mice 

(Kim et al., 2000). Additionally, by performing transplantation of WT pre-adipocyte cells into 

Ebf1-/- mice, and whole telogen skin allografts into the same recipient mice, it was determined 

that pre-adipocytes can initiate precocious HF SC activation. HF SC activation by pre-adipocytes 

was shown to be influenced in part by PDGF signaling (Rivera-Gonzalez et al., 2016). Pdgfa is 

expressed in pre-adipocytes while its receptor Pdgfr expression varies and is dependent on hair 

cycle stage. For instance, in anagen and telogen, it is expressed mainly in HF DP and bulge, 

while during anagen induction (AnaIII) it is found in the DP and matrix cells. Hence, it can be 

postulated that intradermal pre-adipocytes influence activity of HF SCs directly or indirectly via 

activation of PDGF signaling in DP or matrix cells, respectively.  

Recently, a new study identified the precise molecular mechanism by which HF growth 

and expansion of the dWAT layer are coupled. The changes in the dWAT layer are directly 

attributed to SHH signaling by Transit-Amplifying Cells (matrix cells) in the hair follicle bulb 

(Zhang et al., 2016). This was discerned by cell-specific manipulations using distinct genetic 

tools. Specifically, the targeting of mature adipocytes with Adipoq-CreERT2 for specific deletion 
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of SHH ligand Shh and receptor Smo, in conjuction with their deletion in matrix cells by means 

of K15-CrePR1 (a doxycycline-inducicle Cre line (Morris et al., 2004)) enabled the precise 

spatio-temporal regulation of an adipogenesis program in skin that is closely regulated by these 

cells. This level of regulation is intriguing, however, because it shows that matrix cells 

orchestrate not only regeneration of the HF, but also of the dWAT layer. Using a lineage tracing 

approach, it was observed that the newly infiltrated dermal adipocytes begin to influence the 

thickness of the skin during anagen III, a sub-level of anagen where fueling of matrix cells 

ensues. This level of lineage tracing was enabled by the ability to interrogate spatio-temporal 

regulation by means of inducible Cre activity. Similarly, in an experiment where anagen was 

induced via plucking of club hairs, similar results were observed in which dermal adipocytes 

begin to appear around a time when matrix cells form – further corroborating that dWAT 

expansion begins in anagen III and is coincidental with appearance of matrix cells in the 

regenerating hair follicle. Because Shh is a known factor solely secreted by matrix cells during 

anagen, it was postulated that it might play a role in directing adipocyte formation. This was 

interrogated using available Cre lines. For instance, when Shh is ablated specifically in matrix 

cells, dermal adipocyte formation is abrogated. However, this was not the case when Smo, a 

receptor of SHH signaling, was deleted in the same cells and mature adipocytes, as normal 

adipogenesis was observed, suggesting that activation of SHH signaling in mature cells and in 

matrix cells is not required for adipogenesis. These results suggest that the level of regulation lies 

in the ability of matrix cells to target and influence the behavior of adipocyte progenitors in skin. 

Indeed, when Smo is deleted in Pdgfr-alpha, which gives rise to the majority of skin dermal 

adipocytes, a defect in dermal adipogenesis was observed, exemplified by a thinner layer of 

adipocytes, despite normal hair growth. SHH is presumably required to 1) autonomously induce 
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pre-adipocyte proliferation by regulating proliferation genes and subsequently 2) promote their 

differentiation into lipid-filled adipocytes by expression of Ppar-gamma. Indeed, when Shh is 

overexpressed in the vicinity of skin epidermis, skin dermis is thickened and is accompanied by 

an increase in mature adipocytes. The positive role in adipogenesis of SHH signaling in skin is 

intriguing, given that in other tissues it has been shown to have opposite roles.   

GENETIC TOOLS TO STUDY DERMAL ADIPOCYTE DEVELOPMENT 

In skin, HFs and dWAT or its progenitors can act as reciprocal dominant signaling 

sources, depending on the signaling context. Other adipocyte depots in the body do not have 

such degree of separation between the signaling source and the target, making in vivo studies 

regulating the mechanisms of adipose lineage development challenging or unfeasible. To this 

end, the development of WAT-specific Cre lines has revolutionized the study of WAT 

development and regeneration in vivo. To-date, a multitude of Cre lines targeting WAT exist, but 

only a handful have proven effective for specific-labeling of pre- and mature adipocytes (Jeffery 

et al., 2014). Additionally, another consideration is the use of specific reporters. In this case, 

cytosolic reporters, such as R26R-LacZ and others, do not allow for effective quantification of 

individual adipose phenotypes. To mitigate these concerns, fluorescent membrane-bound 

reporters should be implemented instead. For example, the reporter of choice in WAT lineage 

tracing studies is the mTmG reporter strain (Muzumdar et al., 2007) which, upon activation of a 

tissue-specific Cre/CreERT2, a permanent switch from the tdTomato fluorescent tag to GFP is 

achieved. Two constitutive Cre lines were generated under the Fatty acid binding protein 4 

(Fabp4) promoter to specifically label mature WAT. Careful lineage tracing studies, however, 

have shown non-specific labeling of brown adipose tissue (BAT) and endothelial cells using 

these lines, coupled with a rather low recombination efficiency (Jeffery et al., 2014). Two other 
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mouse lines, Pdgfr-alpha-Cre and Pdgfr-alpha-CreERT2, are widely used to label adipocyte 

progenitors in skin and precursors within WAT SVF. Similarly, Pdgfr-alpha-CreERT2 mice 

efficiently label dWAT and fibroblast-like cells in skin, suggesting some dWAT cells derive 

from Pdgfr-alpha+ cells. Mature adipocytes can also be specifically labeled using constitutive 

and conditional Cre lines under the promoter of Adiponectin (Adipoq). These mouse lines do not 

mark pre-adipocytes in WAT SVF, suggesting high specificity to mature adipocytes. Using these 

lines, nearly all mature adipocytes within WAT, including idWAT, are labeled. Indeed, this is a 

Cre line employed in experiments described in Chapter 4.  

One of the issues with studying vWAT and sWAT depots is the inability to conduct 

highly precise developmental studies. Skin, however, offers a solution to study the orderly 

progression of hair follicle and dermal adipocyte development in normal skin and their 

regeneration in skin wounds. To better understand the dynamics of adipocytes in different WAT 

depots, a novel doxycycline-inducible, mature adipocyte-specific Cre system was recently 

developed (Wang and Scherer, 2014, Wang et al., 2013). Cre expression in this AdipoChaser 

mouse is dependent on doxycycline treatment and is capable of labeling nearly all pre-existing 

mature adipocytes with an unpresented level of temporal resolution. Because the system is 

reversible, owing to the doxycycline-responsive rtTA-mediated expression of Cre, the rate of 

newly differentiated adipocytes can be assessed upon doxycycline removal. AdipoChaser is 

therefore a useful system for evaluating the rate of adipocyte formation during development and 

postnatally in response different challenges, including HFD, cold, and homeostatic turn-over 

rates. Because a large number of hair follicle-specific genetic tools already exist, the crossing of 

these tools with mice targeting pre-adipocytes and mature adipocytes in dWAT can serve as an 
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attractive model system for studying mechanisms of adipose lineage development in response to 

hair follicle-derived signals.     

NON-METABOLIC FUNCTIONS OF SKIN DERMAL ADIPOCYTES 

Residing at the interface with the outside environment and in close association with hair 

follicles, dWAT evolved to play novel, non-traditional functions not readily observed by other 

depots. One of the main functions of dWAT mature adipocytes and its progenitors are to regulate 

HF cycling via BMP (Plikus et al., 2008) and PDGF signals (Rivera-Gonzalez et al., 2016), 

respectively. By doing so, they regulate activation of hair follicle stem cells and modulate the 

pace of hair growth during the lifetime of a mouse. Recently, the identification of how skin 

adipocyte stem cell self-renewal is regulated added yet another layer of complexity to the 

interplay between HFs and dWAT (REF). During aging, skin adipocyte stem cells, characterized 

by the signature marker Lin-;Cd29+;Cd34+;Sca1+;Cd24+, become depleted with age or repeated 

depilation. The adipocyte stem cell pool appears to be maintained by Pdgfa, which, acting via 

PI3K/AKT signaling, regulates expression of proliferation and self-renewal genes. Maintenance 

of the skin adipocyte stem cell pool has implications in hair follicle cycling. For example, upon 

loss of the Cd24 mark, skin adipocyte stem cells give rise to a proliferative population of pre-

adipocytes, which act to regulate both, directly and indirectly, hair follicle growth.  

After skin injury, adipose progenitors activate and transiently populate early wounds, 

where they signal to facilitate efficient recruitment of fibroblasts, the key cellular building blocks 

of the scar tissue (Schmidt and Horsley, 2013) (Figure 1.3.B). By utilizing the lipodistrophic 

mouse model Azip, it was shown that they are defective in proper wound healing in a small skin 

wound injury model. To thie end, pre-adipocytes were shown to populate the wound bed by post-

wounding day 5-7, directly after bypassing the preceding phases of inflammation and 
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proliferation, characteristic of normal wound healing. Defective wound healing was associated 

with a reduced number of fibroblasts and myofibroblasts – in charge in contraction and 

remodeling of the wound bed. Indeed, these phenotypes were not due to improper macrophage 

recruitment and wound closure deficits associated with a diabetic phenotype. Hence, the results 

suggest a lack of mature adipocyte regeneration in the wounds of Azip mice as responsible for 

the wound healing defects. These results were further corroborated by pharmacological treatment 

with two distinct Ppar-gamma inhibitors during early and late stages of healing. These results 

suggest adipocytes are important in wound healing. In sharp contrast, dermal adipocytes 

regenerate in large excisional wounds via reprogramming of myofibroblasts (Figure 1.3.C). 

Another role of dermal adipocytes is their ability to fight infection (Zhang et al., 2015). 

Upon infection of the skin with the opportunistic bacteria S. aureus, the dWAT layer expands in 

thickness in the next few days in an event similar to those observed as a result of hair follicle 

cycling. This expansion occurs via hypertrophy of pre-existing adipocytes and recruitment of 

pre-adipocytes via hyperplasia shown by an increase in proliferation in Pref1+ and Zfp423+ pre-

adipocytes (Figure 1.3.A). Lipodistrophic mice lacking Zfp423 and WT mice treated with Pparg 

inhibitors showed increased infection area accompanied by septicemia. The ability of dWAT to 

kill S. aureus is dependent on expression of the antimicrobial peptide Cathelicidin. Indeed, Camp 

expression increase during pre-adipocyte differentiation relative to alpha- and beta- defensins 

and relative Camp mRNA expression increased nearly 20-fold when pre-adipocytes were 

differentiated in the presence of S. aureus conditioned media or UV-killed S. aureus. Similarly, 

Zfp423 KO mice were more susceptible to bacterial infection and did not express Camp upon 

infection compared to controls. Hence, dWAT is an important component of the skin innate 

immune system. 
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1.2 SKIN WOUND HEALING 

SKIN WOUND HEALING AND REGENERATION 

 Wound healing of skin is a complex process that takes approximately 2-52 weeks to 

complete. It is divided into 3 distinct but overlapping phases –inflammation, tissue formation, 

and remodeling (Eming et al., 2014, Gurtner et al., 2008). Several mechanisms orchestrate the 

first stage of the wound healing response to prevent blood loss, remove dying cells, and prevent 

infection. First, the coagulation cascade plugs the wound to prevent blood loss (Versteeg et al., 

2013). Immune cells, namely neutrophils, are recruited to degrade infiltrating bacteria (Wilgus et 

al., 2013). A few days later, macrophages appear in the wound to further modulate the wound 

healing response (Koh and DiPietro, 2011). The second stage of wound healing involves tissue 

formation, and it is characterized by proliferation and migration of cells into the wound bed. 

During this process, keratinocytes re-epithelialize the wound, angiogenesis and capillary 

sprouting occurs, and fibroblasts migrate to begin the formation of the granulation tissue. The 

differentiation of fibroblasts to alpha smooth muscle actin-expressing myofibroblasts also takes 

place during this stage. Myofibroblasts are in charge of wound contraction and collagen 

deposition (Gonzalez et al., 2016). During the remodeling stage, it is believed that cells present 

during the former two stages, including myofibroblasts, undergo cell death, or leave the wound 

(Gurtner et al., 2008). However, while this could hold, recent evidence suggests that 

myofibroblasts can attain a different fate and undergo reprogramming into dermal adipocytes 

during wound healing (Plikus et al., 2017). In the next few weeks, metalloproteins further 

remodel the wound bed in efforts to bringing the skin back to its original integrity.  

The process of wound healing often culminates with the formation of a scar, a fibrous 

tissue devoid of appendages and dermal adipose tissue. These observations have been made in 
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small wounds, which is the prevalent model of wound healing studies (Dunn et al., 2013). 

Recently, a new model of wound healing was established. In this model, large full-thickness 

squared (>1.0cm2 or 2.25cm2) wounds are inflicted in the lower dorsum of adult mice. These 

full-thickness wounds typically regenerate new hair follicles in their center. Interestingly, 

regeneration of hair follicles is age and strain dependent, but it doesn’t gender and hair cycle 

(Nelson A. M. et al., 2015). This phenomenon was termed wound-induced hair neogenesis 

(WIHN) (Ito et al., 2007, Wang et al., 2015). Some of the cellular and molecular mechanisms for 

WIHN have elucidated (Ito et al., 2007, Snippert et al., 2010, Wang X. et al., 2017). Canonical 

WNT signaling (Gay et al., 2013, Ito et al., 2007, Myung et al., 2013) is important for WIHN, 

including dermal and epidermal ligands. A profound example is dermal WNT signaling. γδ T-

cells migrate into the wound bed early during wound healing and secrete Fgf9, which acts on 

wound bed fibroblasts and amplifies a Wnt2a signal via a feed-forward positive loop (Gay et al., 

2013). In the epidermal compartment, another signaling pathway also plays a prominent role in 

the establishment of WIHN. Toll-like receptor 3 (Tlr3) is activated by the double-stranded RNA 

released from damaged keratinocytes at the wound edge at the onset of wound healing. This 

signal promotes WIHN downstream of Il6/Stat3 signaling, which leads to up-regulation of 

Wnt/Shh and Edar signaling – leading to onset of HF regeneration (Nelson A. M. et al., 2015). 

WIHN is also modulated by macrophages via Tnfα signaling (Wang X. et al., 2017), and requires 

transient expression of the transcriptional regulator Msx2 (Hughes et al., 2018). Further research 

into WIHN has also identified negative regulators of this regeneration phenomenon. For 

example, prostaglandin (Pdg2) signaling (Nelson A. M. et al., 2013), the transcriptional regulator 

Cxxc5 (Lee et al., 2017) and Msi2 RNA-binding protein (Ma et al., 2017) all have negative roles 

in WIHN. 
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 WIHN has been definitely documented to take place in rabbits (Billingham and Russell, 

1956, Breedis, 1954, Stenbäck et al., 1967). In sheep and humans, however, definitive 

assessment of WIHN efficiency remains fully inconclusive (Brook et al., 1960, Kligman, 1959). 

Recently, we reported the deficit of WIHN in laboratory rats (Rattus norvegicus) and how this 

process compares to that in mice using inter-species transcriptome analyses (Guerrero-Juarez et 

al., 2018). This study was conducted because of the contradicting reports in the classic literature 

on the outcomes of rat skin repair and regeneration following cryo-injury. For example, Taylor 

(1949) and Mikhail (1963) suggest that the skin of rats repairs with HF neogenesis after cryo 

injury. In sharp contrast, Stenbäck et al. (1967) failed to replicate such findings. We aimed to 

interrogate the potential of rat skin regeneration by inflicting large skin wounds in rats and 

asking whether they are capable of WIHN.  Our results show that rats distinctly fail to regenerate 

new HFs in large full-thickness excisional wounds. These results are further explored and 

discussed in Chapter 2. 

THE MYOFIBROBLAST 

 During wound healing, interstitial and peripherally-derived fibroblasts differentiate into 

contractile myofibroblasts, an alpha-smooth muscle actin-expressing cell with important roles in 

wound contraction and extracellular matrix (ECM) deposition. Myofibroblasts were first 

described in 1971 in the granulation tissue of healing wounds (Gabbiani et al., 1971). 

Myofibroblasts have a “hybrid” morphology – they appear to have fibroblastic spindle-like and 

smooth muscle cell-like features, contain bundles of actin microfilaments with associated 

contractile proteins, higher levels of ED-A splice variants, and are juxtaposed to one another via 

gap junctions (Tomasek et al., 2002). The latter suggests that a functional “myofibroblast unit” 

may be required for optimal force generation during late stages of wound healing. 
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Myofibroblasts are considered to be a terminally differentiated cell type. The process of 

fibroblast-to-myofibroblast differentiation begins after an injury has been inflicted, when 

fibroblasts begin to migrate into the wound bed via chemo-attraction by cytokines produced by 

inflammatory and other resident cells present in the wound bed (Gurtner et al., 2008, Werner and 

Grose, 2003). Once in the granulation tissue, tension generated at the wound bed leads to the 

formation of a proto-myofibroblast, a precursor cell type that forms cytoplasm-localized actin 

fibers and express and organize ED-A fibronectin splice variants. These characteristics enable 

proto-myofibroblasts to generate a weak contractile force. Subsequent TGF-beta expression 

leads to their differentiation into a mature, alpha-smooth muscle actin-expressing myofibroblast. 

Because this leads to the expression of more contractile proteins, enhanced focal adhesion sites, 

and higher collagen deposition and ED-A fibronectin splice variant expression, myofibroblasts 

can generate a higher contractile force with physiological relevance during wound healing 

(Tomasek et al., 2002). The source of the TGF-beta signal that stimulates differentiation of 

myofibroblasts (Vaughan et al., 2000) appears to be diverse within the context of wound healing. 

For example, it has been suggested that plaletes and immune cells produce TGF-beta and that 

this signaling is important for myofibroblast differentiation (Massague, 1998). Autocrine and 

paracrine TGF-beta signaling by fibroblasts and re-epithelializing keratinocytes, respectively, 

may also play a role (Yang et al., 2001). Indeed, inhibiting TGF-beta1 inhibits myofibroblast 

formation in vivo (Hinz et al., 2001). 

TRACING THE ORIGIN OF MYOFIBROBLASTS 

Myofibroblasts can be regarded as “the culprit cell of fibrosis and scarring” – they are the 

main cell type that inflict a fibrotic and scarring phenotype. This is achieved in different organ 

systems including the heart, lung, kidney, bone marrow and skin after injury (Kramann et al., 
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2015, Schneider et al., 2017), and the role of myofibroblasts does not appear to be organ or 

tissue-specific. Similarly, myofibroblasts have also been regarded as important regulators of 

tumor stroma formation (Otranto et al., 2012). However, their origin appears to be highly 

heterogeneous; that it, it is largely tissue- and injury context-specific. The heterogeneous origin 

of myofibroblasts and their implications in skin wound healing and regeneration is further 

explored in Chapter 4. For example, by using a GFP-labeling and FACS quantification 

approach, it was determined that approximately ~95% of all myofibroblasts present in liver after 

carbon tetrachloride or bile duct ligation were derived from hepatic stellate cells or portal 

fibroblasts, with a contribution of ~87% and ~70%, respectively (Iwaisako et al., 2014). 

Pericytes have also been suggested to give rise to myofibroblasts in kidney (LeBleu et al., 2013). 

Similarly, Henderson et al., showed that Pdgf-beta+ cells also give rise to myofibroblasts in 

lung, kidney and heart (Henderson et al., 2013). By implementing a completely different 

approach and experimental regimen, Kramann et al., showed that perivascular Gli1+ cells from 

liver vasculature commit to a myofibroblast lineage in different organs. For example, after 

hepatotoxic injury, Gli1+ cells contribute approximately to ~40% of the total myofibroblast pool 

(Kramann et al., 2015). In a myocardial infarction model, it was determined that approximately 

60% of myofibroblasts in heart derived from Gli1+ progenitors; whereas ~37% were Gli1-

derived in a model of intratracheal bleomycin instillation in lung, and ~45% in kidney. Indeed, 

ablation of Gli1+ cells using human diphtheria toxin receptor allele driven under Gli1-CreER 

driver ameliorated kidney fibrosis and reduced heart fibrosis. In myelofibrosis (fibrosis of the 

bone marrow), Gli1+ cells also give rise to myofibroblasts. Indeed, myofibroblasts in 

myelofibrosis can be targeted using Gli1 inhibitors, ameliorating the condition (Guerrero-Juarez 

and Plikus, 2017, Schneider et al., 2017). These studies highlight the heterogeneity of origin of 
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myofibroblasts and distinct ways in which they can be targeted for ablation and amelioration of 

tissue and organ fibrosis. Even though Gli1+ cells do not appear to give rise to myofibroblasts in 

skin during wound healing or fibrosis, ADAM12+ vascular pericytes can give rise to 

myofibroblasts in injured skin dermis, and theire ablation leads to reduced scarring (Dulauroy et 

al., 2012). A recent study suggest that cells developed from somites during embryonic 

development have important roles in collagen deposition during homeostasis, wound healing, 

and cancer stroma formation. Using lineage tracing with En1-Cre, Rinkevich et al. (2015) 

identified two major fibroblasts populations – En1-positive and negative populations, with the 

former making major contributors toward wound repair. These cells express Cd26/Ddp4. By 

using small molecule inhibitor against this molecule, they were able to reduce scarring of skin. A 

recent study also suggests that “engrailed 1-history-naïve” E1HP fibroblasts reduce in numbers 

during aging and their decline leads to scarring as “engrailed 1-history-positive” fibroblasts 

emerge. Accordingly, this can be reversed upon transplantation of E1HP fibroblasts (Jiang et al., 

2018).  

REPROGRAMMING OF MYOFIBROBLASTS 

 The treatment of fibrotic conditions remains a great challenge and health disparities in 

today’s society. It is estimated that ~600K patients in the United States alone are affected by 

liver fibrosis (Scaglione et al., 2015). In the case of liver fibrosis, liver transplant is the only 

option for most affected by this condition. In other cases, such as skin, aesthetic approaches are 

often undertaken (Monstrey et al., 2014). The identification of the origin of certain myofibroblast 

populations have led to the identification of novel treatment regimes, including the use of 

inhibitors, targeted deletion, and replacement therapy. However, this does not ablate all 

myofibroblasts, as extensive heterogeneity, acquired by their origin, exists. Recent studies have 
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suggested yet a different approach. Various studies have proposed to reprogram the 

myofibroblast to change its fate and ameliorate fibrosis and scarring. Myofibroblasts from a 

CCl4-induced fibrotic liver can be reprogrammed into induced hepatocytes (iHeps) using viral-

mediated ectopic expression of the transcription factors Foxa3, Gata4, Hnf1a, and Hnf4a. The in 

vivo iHep reprogramming efficiency ranged from 0.2-1.2%. iHeps were functionally similar to 

normal hepatocytes in that they demonstrated albumin secretion, urea synthesis, ability to uptake 

indocyanine green, uptake OilRedO dye, store glycogen, and showed cytochrome activity (Song 

et al., 2016). Myofibroblasts can also be reprogrammed into iHeps in a cholestasis-induced liver 

fibrosis model. An independent study also showed that myofibroblasts in liver can be 

reprogrammed into hepatocyte-like cells using AAV vectors expressing the hepatic transcription 

factors Foxa1, Foxa2, Foxa3, Gata4, Hnf1a, or Hnf4a (Rezvani et al., 2016). In a hepatotoxic 

model of liver fibrosis, approximately 0.87% myofibroblast-iHep reprogramming took place, 

whereas cholestatic model of liver fibrosis was not evaluated. In a recent study by us, we showed 

that in skin wound healing, the myofibroblast can be influenced by hair follicles via Bmp ligands 

to change fate into dermal adipocytes via activation of white adipose transcriptional lineage 

program. The newly formed dermal adipocytes are reminiscent of those in peri-wound skin in 

terms of depth relative to skin surface, size and volume, uptake or OilRedO, and expression of 

certain adipokines (Plikus et al., 2017). A more detailed explanation and full characterization 

of myofibroblast reprogramming under natural conditions is explored in Chapter 3. A recent 

study in lungs also showed a two-way reprogramming of myofibroblasts-lipogenic fibroblasts is 

possible under normal conditions or fibrosis and formation and its resolution (El Agha et al., 

2017). These new methods of cellular reprogramming – using cell specific, ectopically expressed 

transcription factors, or under natural reprogramming conditions, pave the way to novel, targeted 
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therapeutic approaches to treating fibrosis and scarring in distinct complex tissues and organs by 

specifically targeting the myofibroblast.  

1.3 WOUND HEALING AND REGENERATION IN WILD ANIMALS 

EMERGING MODELS OF WOUND HEALING AND REGENERATION: SPINY MICE 

Although some mammalian species are capable of regenerating complex tissues and 

mini-organs, other species can and do it more efficiently than others. For example, in comparison 

to humans and laboratory rats (Guerrero-Juarez et al., 2018), small rodent species, such the house 

mouse (Mus musculus), are capable of regenerating hair follicles (Ito et al., 2007) and dermal 

adipocytes (Plikus et al., 2017) post-injury. Careful lineage tracing analyses, coupled with 

genetic gain and loss-of-function studies suggest these depend on the re-activation of embryonic 

mechanisms, such as WNT and BMP signaling. In comparison to laboratory mice, wild African 

mice of the genus Acomys were shown to have evolved enhanced regeneration of skin in 

response to injury and have become an emerging model of wound healing and regeneration 

(Gawronska-Kozak et al., 2014, Pinheiro et al., 2018). Acomys can regenerate parts of skin 

following full-thickness excisional wounding in what was regarded as an autotomy-like 

mechanism. This phenomenon is believed to have evolved as a response to predation  and also 

depends on activation of WNT and BMP signaling (Seifert et al., 2012). A recent study has also 

suggested that epimorphic regeneration of the Acomys ear is enhanced and dependent on 

presence of macrophages (Matias Santos et al., 2016, Simkin et al., 2017). Indeed, wild animals 

might be a good model organism to study enhanced regeneration and wound healing under non-

traditional, non-sterile and stressful environments. 

Although the first experiments on Acomys were carried in out in captivity using wild-

caught mice in the African savanna, recent interest in their biology has led to the establishment 
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of this animal as a laboratory animal. Recent documentation exists on their husbandry and 

establishment of viable colonies of Acomys in the laboratory (Haughton et al., 2016). Indeed, this 

is an advantage when identifying and establishing novel species as emerging models of wound 

healing and regeneration. Nonetheless, there are certain animal species that offer similar 

advantages to studying wound healing and regeneration but simply cannot be kept in a proper 

laboratory setting. To overcome issues like this, different approaches must be taken. For 

instance, studies must rely on using interval censored-sampling (Archie, 2013b). Similarly, the 

development of xenograft transplantation models can enable high resolution interrogation on the 

mechanisms regulating wound healing in these animals. These alternative approaches to wound 

healing can be interrogated when studying wound healing and regeneration in the northern 

elephant seal, Mirounga angustirostris. Their ability to heal infected wounds and regenerate skin 

and their appendages under stressful conditions is superb. The wound healing dynamics and the 

use of the aforementioned alternative studies to study them are presented in Appendix A.  
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Figure 1.1. Anatomy of mouse and human skin. Intrinsic differences exist between human 

and mouse skin. Although both display stratification of epidermis residing on top of a 

heterogeneous collagen structure, in mouse skin, (A) dWAT is separated from sWAT via the 

striated muscle layer known as panniculus carnosus. (B) Human skin displays ectodermal-

derived sweat glands. In mice, sweat glands are restricted to the paws. Unlike mice, no clear 

separation exists between dWAT and sWAT in humans.   
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Figure 1.2. Hair follicle-dermal adipocyte symbiosis. The hair follicle is divided into active 

hair growth (anagen), involution (catagen), and rest (telogen). Dramatic changes in morphology 

and gene expression are observed in each of these stages. Concomitant with hair follicle cycle is 

the cycling of dWAT. Several mechanisms have been identified that suggest an intricate and 

functional relationship between them.   
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Figure 1.3. Non-metabolic functions of skin dermal adipocytes. Schematics showing the 

non-metabolic functions of dWAT. (A) dWAT has been shown to modulate innate immunity of 

skin upon infection with S. aureus via expression of Cathelicidin. Similarly, (B) dermal 

adipocytes have important roles in wound healing. Recently (C) dWAT has been shown to 

regenerate in large skin wounds. Regeneration of dWAT may have important roles in 

maintaining skin integrity.   

 
 

 

A B 

C 



26	
	

CHAPTER 2 
 

Wound regeneration deficit in rats correlates with low morphogenetic potential and 
distinct transcriptomic profile of epidermis 

 
 
 

Reprinted from Wound regeneration deficit in rats correlates with low morphogenetic potential 

and distinct transcriptome profile of epidermis 138/6, Guerrero-Juarez, F. Christian, et al., 

Journal of Investigative Dermatology, / Wound regeneration deficit in rats correlates with low 

morphogenetic potential and distinct transcriptome profile of epidermis, 1409-1419, 2018, with 

permission from Elsevier.  
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ABSTRACT 

 Large excisional wounds in mice prominently regenerate new hair follicles (HFs) and 

dermal adipocytes. Currently, wound-induced regeneration, i.e. wound-induced hair neogenesis 

(WIHN), remains a clinically desirable, but poorly understood phenomenon. In this chapter, it is 

shown that large excisional wounding in rats, across seven different strains, fail to regenerate de 

novo HFs. To shed light on possible reasons of this regenerative failure program, the 

transcriptomes of mouse and rat wound tissues were resolved and compared against one another 

using inter-species transcriptome analyses. Wound tissues were collected at the time of scab 

detachment, which coincides with the onset of HF regeneration in mice. In both species, wound 

tissues shared core dermal and epidermal transcriptional programs, however, prominent inter-

species differences were observed. For instance, rat epidermis expresses an array of distinct 

transcriptional and epigenetic factors, markers of epidermal repair, hyperplasia, and 

inflammation, and lower levels of the pleiotropic WNT signaling effectors and regulators. These 

findings help to establish rats as a potential non-regenerating rodent model for excisional wound 

healing that favors scarring over regeneration, and suggest that their associated transcriptional 

profile may contribute to such regenerative deficiency.  
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INTRODUCTION 

 Full-thickness wounds in adult mammals typically repair with scarring. However, large 

wounds in laboratory mice (Mus musculus) regenerate new hair follicles in their center. This 

phenomenon, known as wound-induced hair neogenesis (WIHN), largely recapitulates 

embryonic HF morphogenesis programs (Ito et al., 2007, Wang et al., 2015). While the cellular 

sources for new HFs are poorly understood (Ito et al., 2007, Snippert et al., 2010, Wang X. et al., 

2017), some of the signaling and epigenetic requirements for WIHN have been partially 

elucidated. Critical for WIHN is canonical WNT signaling (Gay et al., 2013, Ito et al., 2007, 

Myung et al., 2013). Physiologically, both dermal (Gay et al., 2013) and epidermal sources of 

WNT ligands (Myung et al., 2013) are important; however, they likely act at distinct phases of 

WIHN. Enhanced HF neogenesis in wounds of the African spiny (Acomys) is also positively 

correlated with high WNT activity (Seifert et al., 2012). Other signals also play a role in WIHN. 

For instance, dermal WNT signaling is driven by Fgf9, initially secreted by γδ T-cells (Gay et 

al., 2013). Also important for WIHN is Toll-like receptor 3 (Tlr3) signaling and its downstream 

effectors Il6 and Stat3 (Nelson A. M. et al., 2015). Tlr3 is activated by the double-stranded RNA 

released from damaged keratinocytes at the onset of wound healing. Promoting WIHN 

downstream of Il6/Stat3 signaling is TAp63, a p63 isoform (Nelson et al., 2016). WIHN 

efficiency is also negatively regulated by prostaglandin Pdg2 signaling (Nelson A. M. et al., 

2013), Cxxc5 transcriptional regulator (Lee et al., 2017) and Msi2 RNA-binding protein (Ma et 

al., 2017), and modulated by the macrophage-derived Tnfα signaling via TNF/p-AKT/p-β-

catenin pathway (Wang X. et al., 2017). Distinct from mice, definitive WIHN has been shown 

only in rabbits (Billingham and Russell, 1956, Breedis, 1954, Stenbäck et al., 1967). Although 

suggested to take place in sheep, the reported evidence for WIHN was inconclusive (Brook et al., 
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1960). In humans, Kligman A. M. and Strauss J. S. (1956) reported regeneration of sparse vellus 

HFs in the facial skin following partial freezing and dermabrasion. However, robust regeneration 

of new HFs in human wounds is generally not observed (Gay et al., 2013). In this study, it is 

interrogated whether WIHN occurs in laboratory rats (Rattus norvegicus) and how this process 

compares to that in mice. This inquiry was stimulated by the contradicting reports in the classic 

literature on the outcomes of rat skin repair following cryo-injury. While Taylor (1949) and 

Mikhail (1963) suggested that cryo-damaged skin in rats repairs with HF neogenesis, Stenbäck et 

al. (1967) failed to replicate these findings. In this chapter, it is shown that rats distinctly fail to 

regenerate new HFs in large full-thickness excisional wounds, and further explore non-

regenerative wound healing in rats with means of inter-species comparative transcriptomic 

analyses and tissues recombination experiments.  

RESULTS 

 Large excisional skin wounds in adult mice regenerate new HFs soon after re-

epithelialization, around post-wounding day (PWD) 15 (Gay et al., 2013, Ito et al., 2007), and 

new adipocytes surrounding neogenic HFs from PWD21 onward (Plikus et al., 2017) (Figure 

2.1). Whether large excisional wounds in adult rats regenerate new HFs and dermal adipocytes 

similar to mice was interrogated. This was tested by inflicting large skin wounds (circular d 

(diameter) = 2.0 cm) in rats (outbred Sprague-Dawley strain), compared to mice (squared s (side) 

= 1.5 cm). Complete re-epithelialization in rats, as measured by the timing of scab detachment, 

took comparatively longer, 30.0+/-1.0 days; however, no neogenic HFs were observed in all 

animals when examined at PWD40 (n=5) (Figure 2.1.A, 2.1.B, Table 2.1). Because WIHN 

efficiency in mice can vary across strains (Nelson A. M. et al., 2013), wound repair outcomes 

across six other strains of rats were assessed. In addition to Sprague-Dawley, three other outbred 
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strains were evaluated: CD IGS (n=5), Long-Evans (n=5), Wistar (n=5) and three inbred rats: 

F344 FISCH (n=5), Brown Norway (n=3), Buffalo (n=5). The timing of wound re-

epithelialization varied significantly across the strains (P=0.0011) with a range of 25-33 days. 

Compared to mice (number of regenerated hair follicles=15±5.85), all rats studied consistently 

failed to undergo WIHN (P=0.0127). Absence of neogenic HFs in PWD40 wounds was further 

validated in Sprague-Dawley rats (n=4) by Krt17 and alkaline phosphatase whole-mount staining 

(Figure 2.2.B), and in several other rat strains by histology. Commonly, wound epidermis formed 

small peg-like projections, however these displayed clear epidermal, rather than HF, 

organization.  

 Next, it was considered that relatively large wounds, with their extended re-

epithelialization dynamics, could be incompatible with WIHN. This possibility was assessed by 

studying repair outcomes of smaller squared s = 1.5 cm and s = 1.0 cm wounds in Sprague-

Dawley (n=5 and n=4 respectively) and CD IGS rats (n=5 and n=5 respectively) (Table 2.2, 2.3). 

Surprisingly, generally slower wound re-epithelialization dynamics as compared to these in mice 

were observed, and all wounds studied failed to undergo WIHN by PWD40. Lack of neogenic 

HFs was further confirmed on Krt17 and alkaline phosphatase whole-mount staining. Consistent 

with a recent report in mice (Plikus et al., 2017), hairless wounds in rats failed to regenerate new 

adipocytes (Figure 2.2.C, 2.2.D). This is in contrast to mouse wounds (Table 2.4, 2.5). These 

observations suggest that rat is a suitable rodent model for studying non-regenerative healing of 

large excisional skin wounds. 

To identify molecular signatures that underlie regenerative behavior differences between 

rats and mice, the transcriptomes of wound epidermis and dermis collected at the time of 

complete re-epithelialization were resolved. Inter-species transcriptome analysis was performed 



31	
	

using mouse and rat one-to-one orthologs and principal component analysis (PCA) revealed 

significant separation between all tissue types, yet close clustering of biological replicates 

(Figure 2.3.A). To resolve the transcriptome of mouse vs. rat wound tissues, the Bioconductor 

package edgeR was utilized (Li and Dewey, 2011), which fits a generalized linear model to 

RNA-seq count data using a negative binomial distribution to model gene expression variance. 

Approximately 3,850 differentially expressed gene orthologs (DEGOs) (5% FDR level and 

minimum 4X-fold change) were identified, which grouped into eight distinct clusters (Figure 

2.3.B). Clusters 1 and 2 include DEGOs upregulated in both species in wound epidermis and 

dermis, respectively (aka shared epidermal and dermal genes). Cluster 3 identifies mouse-

specific and cluster 4 – rat-specific epidermal DEGOs, while clusters 5 and 6 identify mouse- 

and rat-specific dermal DEGOs, respectively. Finally, cluster 7 contains mouse-specific DEGOs 

upregulated both in epidermis and dermis, while cluster 8 contains rat-specific DEGOs. 

 The shared epidermal and dermal genes were assessed and whether these include multiple 

established markers of epidermal and dermal lineages was determined (Figure 2.3.C). On 

pathway analysis, epidermal cluster 1 is enriched for terms such as keratinocyte proliferation, 

keratinocyte differentiation, skin barrier, phospholipid metabolism and wound healing while 

dermal cluster 2 is enriched for terms such as extracellular matrix, cell-matrix adhesion, 

leukocyte migration, wound healing, WNT and BMP signaling. Rat and mouse wound epidermis 

share core transcriptional regulators of the epidermal lineage (Cebpb, Gata3, Grhl2, Grhl3, Irf6, 

Klf4/5, Ovol1, Vdr, Zfp750), key early epidermal differentiation markers (Cnfn, Evpl, Krt1, 

Krt14, Krt15, Krt16, Tgm1, Tgm5) and epidermal adhesion molecules (Cdh1, Col17a1, Dsc1, 

Dsc3, Dsp, Epcam, Itga6, Lamb3, Ocln, Pkp1, Pkp3). Rat and mouse wound dermis share 

multiple mesenchymal transcriptional regulators (En1, Meox1, Meox2, Snai1, Tbx15) and 
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extracellular matrix proteins (Col1a1, Col3a1, Col5a1, Col6a1). At the same time, notable 

species-specific differences are present. Rat wound epidermal DEGOs include Notch1, Krt17 

and transcriptional regulators Hopx, Hr, Id4, Sox9. Hopx (Takeda et al., 2013) and Sox9 (Vidal 

et al., 2005) mark HF stem cells in unwounded mouse skin and given the non-regenerative 

characteristics of rat wounds, their elevated expression in rat epidermis, including on 

immunostaining, appears paradoxical. However, Hopx (Mariotto et al., 2016) and Sox9 (Shi et 

al., 2013) can also regulate epidermal lineage program in humans, and similar to Sox9 (Shi et al., 

2013), elevated Krt17 (Depianto et al., 2010) and Notch1 expression (Li et al., 2016) correlate 

with epidermal repair, hyperplasia and inflammation. Mouse epidermal DEGOs include Cebpa, 

Dlx3, Dlx5, Sox7 and Tcf23. Of these, Cebpa (Lopez et al., 2009) and Dlx3 (Hwang et al., 2011) 

reduce epidermal hyperplasia and inflammation, and promote differentiation. Consistently, on 

pathway analysis, rat wound epidermis is enriched for epithelial migration and proliferation 

terms, while mouse wound epidermis shows enrichment for lipid biosynthesis terms, including 

cholesterol synthesis typically associated with terminal differentiation. Therefore, these results 

suggest that, compared to mouse, rat wound epidermis is less mature at the time of scab 

detachment. Regarding the species-specific differences in wound dermis, rats express higher 

levels of transcriptional regulator Runx2, implicated in keloid scarring (Hsu et al., 2017), and 

extracellular matrix proteins Col5a3, Des and Tnn, while mice express higher levels of 

transcriptional regulators Dnmt3a, Hdac7, Sox18, contractile proteins Acta2, Afap1 and collagens 

Col26a1, Col27a1. 

 The signaling activities implicated in HF development and regeneration were also 

evaluated in rat and mouse wounds. Prominently, we observe species-specific differences in 

canonical WNT signaling. While in both species, canonical WNT ligands Wnt3, Wnt4 and Wnt7b 
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are expressed in wound epidermis and soluble WNT inhibitors Dkk3, Sfrp2 and Sfrp4 in wound 

dermis, only mouse wounds (both epidermis and dermis) show high expression of Axin2, a direct 

WNT signaling target. Furthermore, compared to rats, mouse wound epidermis shows higher 

expression of the negative WNT signaling regulators, Ctnnbip1 and Kremen2. In terms of BMP 

signaling, both species express Bmp7 in wound epidermis, while wound dermis expresses BMP 

antagonists Chrdl2, Grem1 and Grem2. Additionally, in rats, epidermis expresses the BMP 

antagonist Sostdc1, while mouse dermis expresses Bmp4. No prominent inter-species differences 

are seen for the FGF and SHH pathways. Among the pathways not implicated in HF 

development, mouse wounds show expression patterns consistent with higher IGF/insulin and 

TGFβ signaling, and distinct repertoire of immune cytokines.  

Lastly, epigenetic factor differences were evaluated. Rat wounds overexpress chromatin 

modifiers regulating epidermal differentiation Satb1 (Fessing et al., 2011), Smarca4 (Mardaryev 

et al., 2014), and Cbx2, Kdm8, Rbbp4, Setdb1. Mouse wounds overexpress Dnmt3a, Hdac4, 

Ing5, Kdm2a, Mysm1, Setd1b, Smyd4, Whsc1l1. Select epigenetic factors were further validated 

by qRT-PCR (Rat/Mouse F.C., P<0.05) and immunostaining (Figure 2.4. A, 2.4.B, 2.4.C). These 

analyses suggest that despite sharing core transcriptional programs, wound epidermis in rats 

appears to be less mature, less WNT responsive, and potentially, less competent as compared to 

mice. 

 To further investigate if HF regeneration deficit in rat wounds relates to low epidermal 

competence, autologous tissue recombination assays were developed, in which inter-follicular 

epidermis (IFE) is co-transplanted with vibrissa dermal papillae (DPs) onto the surface of 

circular, d = 2.0 cm wound (Figure 2.5). Briefly, in this assay a full-thickness wound is created 

on the dorsal skin inside of an isolating chamber. DPs are microdissected from vibrissae HFs and 
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grafted onto the wound surface. Lastly, an intact sheet of IFE is isolated from the animal’s flank 

using vacuum-suction and transferred in an unfolded state on top of the grafted DPs using 

adhesive semi-dissolvable carrier. This model enables studying regenerative responses of 

epidermis to hair-inducing DPs within wound settings.    

 The interaction outcomes between IFE and DPs were evaluated on post-grafting days 3, 

5, 7, 10, 14 and 20 (n=5 per time point; ≥ 10 DP per experiment). Following grafting, IFE 

underwent transient hyperproliferation, increased in thickness and reformed the basal membrane 

(2.5.A, 2.5.B). By day 7, IFE formed prominent pocket-like invaginations surrounding DPs 

(2.5.C). However, no neogenic HFs formed even by day 20 (Figure 2.5. D). Because the hair-

inducing properties of DPs may change with respect to the hair growth cycle, as previously 

shown in the vibrissa amputation model (Iida et al., 2007), DPs derived from eight different time 

points, comprehensively covering the entire vibrissa hair cycle, were used. Synchronized 

vibrissae were grafted as follow: post-plucking week 1 – latent period; weeks 2, 3 – early 

anagen; weeks 4, 5 – mid-anagen; week 6 – late anagen; week 7 – catagen/telogen and week 8 – 

second early anagen. The resulting morphogenetic interactions on day 10 (n=5 per time point; ≥ 

10 DP per experiment) and day 20 (n=5 per time point; ≥ 10 DP per experiment) were evaluated. 

Upon evaluation of grafts, it was determined that transplanted DPs generally preserved their 

relative sizes, such that initially larger anagen DPs maintained greater volume as compared to 

initially smaller telogen DPs both on day 10 and day 20 (data not shown). Secondly, the extent of 

DP-IFE interactions changed as a function of hair cycle with a statistically larger portion of 

anagen DPs contacting IFE as compared to telogen DPs, both at day 10 (P=0.002) and day 20 

(P=0.0039). Lastly, for all eight hair cycle time points tested, no morphologically recognizable 

neogenic HFs were induced at the sites of DP-IFE interactions. Despite failing to regenerate new 
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HFs, in rare instances DP-IFE interactions occurred some distance away from the surface and 

produced cup-like structures morphologically reminiscent of the hair peg stage of normal HF 

morphogenesis (data not shown). Taken together, it is shown that rat epidermis fails to 

regenerate new HFs or activate hair-specific differentiation program in response to DPs in this 

wound reconstitution assay. Considering that no HFs regenerate in rats spontaneously from 

wound epidermis or from wound-grafted IFE under the influence of DPs, their transcriptomes 

were compared. Expression differences are observed among transcriptional factors, with IFE 

upregulating Foxo1/3, Klf2, Nfatc2, Rora, Rxra and Stat5a/5b and wound epidermis upregulating 

Cebpb, Fhl2, Foxp1, Nfkb1, Pitx1, Runx1, Sox9 and Stat1. Apart from Wnt7b in IFE, no 

substantial expression differences are observed for other canonical WNT ligands and 

antagonists; yet wound epidermis distinctly upregulates several non-canonical WNT pathway 

members, Wnt4, Wnt11 and Fzd6. The latter also upregulates BMP antagonists Fstl1 and Sostdc1 

and VEGF ligands Vegfa, Vegfb. Expression differences are also observed for some members of 

TGFβ pathway and immune cytokines, without clear epidermal type preferences. Together, albeit 

different in some respects, gene expression across the key pathways implicated in HF 

development is largely similar between the IFE and wound epidermis and the observed 

differences, including Sox9, Wnt4 and Wnt11 differences, do not positively correlate with the 

regenerative potential of epidermis. 

DISCUSSION 

 In mice, neogenesis of HFs (Ito et al., 2007) and adipocytes (Plikus et al., 2017) in large 

excisional wounds shifts the repair process away from scarring and toward embryonic-like 

regeneration. Unlike mice, however, humans rarely show signs of neogenesis (Kligman A. M. 

and Strauss J. S., 1956) and commonly heal with scarring (Gay et al., 2013, van den Broek et al., 
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2014). Therefore, regeneration of HFs and fat remains a desirable, yet clinically unmet outcome 

of wound repair and understanding the basis for WIHN and its failure constitutes an important 

research question. Non-regenerative healing in rats establishes a new paradigm for future WIHN 

studies through cross-species comparison with mice. This approach is facilitated by close 

evolutionary distance (Kimura et al., 2015) and similar skin anatomy between rats and mice. The 

analyses already show that transcriptomic profiles substantially differ between the two species at 

the time of complete wound re-epithelialization. Rat wound epidermis upregulates distinct 

transcriptional and epigenetic factors from that of mice. Rats also overexpress Notch1 and Krt17. 

Considering the role of Sox9 (Shi et al., 2013), Krt17 (Depianto et al., 2010) and Notch1 (Li et 

al., 2016) in epidermal hyperplasia and inflammation, and that of Cebpa (Lopez et al., 2009) and 

Dlx3 (Hwang et al., 2011) in their reduction, we conclude that wound epidermis in rats is 

immature and, likely, not competent for HF neogenesis. The tissue reconstitution studies further 

support this notion. Future works will be required to explore the impact of inter-species 

differences in wound dermis. To this end, the transcriptomic data already points toward 

significant inter-species differences in the dermal wound compartment. 

 These findings are placed in the context of the classic works on wound healing and tissue 

recombination. These findings generally agree with these by Stenbäck et al. (1967) that full-

thickness wounds in rats cannot regenerate new HFs, however, new inquiry into the cryo-injury 

wounding model is warranted. In terms of the reconstitution assays, new HFs were shown to 

form from non-hair fated adult epidermis (Jahoda, 1992, Jahoda et al., 1993, McElwee et al., 

2003, Reynolds and Jahoda, 1992). Nonetheless, when tested in the context of well-controlled 

experimental conditions, HF-forming abilities of non-hair fated epidermis are on an order of 

magnitude lower than those of hair-fated epithelia (Ehama et al., 2007, Ferraris et al., 1997, 
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Yang and Cotsarelis, 2010). This data reveals a general failure of adult rat IFE to reconstitute 

HFs in the presence of DPs, while vibrissa-like HFs are readily induced by the DPs from hair-

fated epithelium. Reflecting on these differences with the classic literature, we note that our 

vacuum-assisted IFE isolation technique minimized contamination for HF epithelium, while 

prior experimental models contained endogenous HFs (ear pinna slit-wound model), or included 

hair-fated epithelial cells (enzymatically-digested newborn skin epithelium). In conclusion, the 

data presented in this chapter reveal an inability of excisional wounds in rats to undergo WIHN 

and implicate low epidermal competence and its associated gene expression signature as the 

possible contributing factors. Lastly, the non-regenerating rat vs. regenerating mouse wound 

comparison presented in this chapter can served as the new experimental paradigm for studying 

the basis for HF neogenesis across species. 

METHODS 

Rat strains. The following rat strains were utilized in this study: Sprague-Dawley (Charles River 

Laboratories, strain code 400), Buffalo (strain code 281), Brown Norway (strain code 091), CD 

IGS (strain code 001), F344 FISCH (strain code 403), Long-Evans (strain code 006) and Wistar 

(strain code 003). Mixed background mice were used in this study.   

Wounding procedures. All wounding experiments were carried out in accordance with 

corresponding IACUC guidelines. Briefly, hairs were clipped, skin site was disinfected and a 

single full thickness excisional wound was created on the dorsum of adult mice (squared s = 1.5 

cm) (Gay et al., 2013, Ito et al., 2007, Plikus et al., 2017) and rats (circular d = 2.0 cm, squared s 

= 1.5 cm and s = 1.0 cm) using scissors. Following wounding, all animals were housed 

individually. Wounds were let to heal by secondary intention. No wound dressing was applied. 

Rats were approximately 150 g at the time of wounding, which corresponds to an age of 
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approximately 5-7 weeks (as per Charles River’s on-line growth chart). Mice were between 4-8 

weeks of age. Animals were used as biological replicates. All animals were anesthetized with 

isoflurane and received acetaminophen for postoperative analgesia.  

Wound site preparation for autologous transplantation. Autologous transplantation was 

performed in adult Wistar rats (100-150 g body weight). Recipient area was prepared twenty-

four hours prior surgical procedure. Briefly, body hair was clipped and a circular incision (d = 

2.0 cm) was made in the interscapular area, resulting in a full-thickness excisional wound. A 

sterile, nonreactive ring chamber was then inserted and sewn to the edges of the skin to isolate 

the inside portion of the wound. The chamber was then covered with a lid to prevent desiccation. 

Synchronization of vibrissae hair follicles and microdissection of dermal papillae and isolation of 

interfollicular epidermis was performed as previously described (Guerrero-Juarez et al., 2018).  

Histology, immunohistochemistry and morphometric analysis. Tissues were fixed in 4% 

paraformaldehyde, dehydrated, paraffin embedded, and sectioned at 7 µm or 10 µm thickness. 

Frozen tissues sectioned at 12 µm were also utilized. Tissue sections were stained with H&E. For 

immunohistochemistry, the following primary antibodies were used: mouse anti-PCNA (1:500; 

Millipore), rabbit anti-β-catenin (1:200; Sigma), rabbit anti-Krt14 (1:400; Berkeley Antibody 

Company), rabbit anti-Krt10 (1:200, Sigma), mouse AE13 and AE14 (Dr. Tung-Tien Sun, 

NYU), rabbit anti-Satb1 (1:200, Novus Biologicals), rabbit anti-Setdb1 (1:200, Cell Signaling), 

rabbit anti-Setd1b (1:200, Novo Pro), rabbit anti-Whsc1l1 (1:200, Novo Pro) and rabbit anti-Krt5 

(1:200, BioLegend). Tissues were counterstained with Hoechst (1:200, Life Technologies). The 

AEC substrate kit was used for color development (Vector Laboratories). When necessary, 

antigen retrieval was performed by heating histological sections in citric buffer. Morphometric 

analyses were performed on serial H&E stained sections.  



39	
	

Whole mount staining. Whole-mount staining was performed as previously described 

(Guerrero-Juarez et al., 2018). 

Wound tissue processing and RNA isolation. Fully re-epithelialized rat and mouse wounds 

were dissected from euthanized animals. Tissue was placed in a solution containing 0.2% 

Dispase (Roche) in RPMI medium (Gibco) and incubated overnight at 4°C or 0.33% Dispase in 

RPMI medium for 30-40 min at 37°C. Wound epidermis was then carefully separated from 

wound dermis using watch maker forceps. Following separation, wound epidermis and dermis 

were placed in cold RLT buffer containing 0.01% β-mercaptoethanol to preserve RNA integrity 

and homogenized using Precellys. Total RNA was isolated using the RNeasy Micro Kit protocol 

(Qiagen) as per manufacturer’s instructions with minor modifications, including DNase I 

treatment to remove residual DNA. RNA samples with RIN scores higher than 8.5 were 

considered for library preparation. 

RNA sequencing. cDNA libraries were prepared using the SMART-seq2 assay using total RNA 

as previously described with minor modifications (Picelli et al., 2013, Picelli et al., 2014). 

Briefly, 10 ng and 100 ng of total RNA was used for reverse transcription. The latter was 

performed using Super Script II as recommended per manufacturer with minor modifications. 

cDNA was pre-amplified for 12 and 10 cycles, respectively. Tagmentation was performed on 18 

ng and 20 ng cDNA using the Nextera DNA Sample Preparation Kit (Illumina) at 55°C for 5 

minutes. Tn5 was deactivated with PM buffer (Qiagen) and samples were purified using PCR 

Purification Kit (Qiagen). Adapter-ligated fragments were amplified for 8 continuous cycles 

using Phusion Polymerase (NEB) with unique barcodes (IDT). Amplified fragments were 

purified with AMPure XP beads (Beckman Coulter) at a 1:1 ratio and eluted with elution buffer 

(Qiagen). Final libraries were loaded on a High-Sensitivity DNA chip for quality control 
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(Agilent) and quantified using KAPA for Illumina Sequencing Platforms (Illumina). Libraries 

were multiplexed at a concentration of 2nM and sequenced as single-end 43 bp on a NextSeq 

500 Illumina Sequencing Platform (Illumina).  

qRT-PCR analysis. Total RNA was quantified using Qubit (ThermoFisher). 200 ng of total 

RNA was converted to cDNA using the SuperScriptTM First-Strand Synthesis System for RT-

PCR (Invitrogen) as per manufacturer’s directions with minor modifications. cDNA was 

amplified using PerFecta SYBR Green MasterMix with ROX (Quantas) and the following 

validated mouse and rat-specific primers Genecopoeia were used: SATB1 (rat catalog 

#RQP046263, mouse catalog #CS-MQP043505-1); HDAC (rat catalog #RQP085245; mouse 

catalog #MQP043505); SETD1B (rat catalog #CS-QP00830L, mouse catalog #MQP025449); 

SETDB1 (rat catalog #RQP084673, mouse catalog #CS-KQP074457-01); WHSC1L1 (rat catalog 

#RQP081826; mouse catalog #CS-MQP023522-01); ACTB (rat catalog #RQP051050; mouse 

catalog #MQP026493) in a C1000 Touch Thermocycler (BioRad). Transcripts from both species 

were normalized to corresponding ACTB transcripts. Relative fold change was computed using 

the ∆∆CT method. 

Interspecies RNA-sequencing comparison. Transcript alignment and quantification and inter-

species transcriptome analyses was performed as previously described (Guerrero-Juarez et al., 

2018).  

Statistics. One-way ANOVA, two-tailed paired and unpaired t-tests were computed to determine 

statistically significant differences. P<0.05 was considered statistically significant. One-Way 

ANOVA with was performed using Prism, version 5.c for Mac OS X. For data representation, 

we used Prism’s standard significance scheme.  
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Table 2.1. Quantification of scab detachment timing, hair follicle and dermal fat regeneration in 

circular wounds in different rat strains.   

 
Rat strain Biological 

replicate 
(n) 

Strain 
type 

Scab detachment  
(avg. PWD ± S.E.M.) 

De novo regeneration 
(on PWD40) 

Hair 
follicles 

Dermal 
fat 

F344 FISCH 5 Inbred 25.0 ± 1.09 No No 
Buffalo 5 Inbred 25.8 ± 0.80 No No 

Brown Norway 3 Inbred 33.0 ± 0.00 No No 
CD IGS 5 Outbred 29.8 ± 1.49 No No 

Sprague-Dawley 5 Outbred 30.0 ± 1.0  No No 
Long-Evans 5 Outbred 28.2 ± 1.49 No No 

Wistar 5 Outbred 26.6 ± 0.75 No No 
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Table 2.2. Quantification of scab detachment timing, hair follicle and dermal adipocyte 

regeneration in squared wounds in CD IGS and Sprague-Dawley rats. 

 
Rat strain Biological 

replicate 
(n) 

 

Scab detachment 
(avg. PWD ± S.E.M.) 

De novo regeneration 
(on PWD40) 

Hair 
follicles 

Dermal fat 

CD IGS 5 23.4 ± 1.16  No No 
Sprague-Dawley 5 20.6 ± 0.245 No No 
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Table 2.3. Quantification of scab detachment timing, hair follicle and dermal adipocyte 

regeneration in squared wounds in CD IGS and Sprague-Dawley rats. 

 
Rat strain Biological 

replicate 
(n) 

Scab detachment 
(avg. PWD ± S.E.M.) 

De novo regeneration 
(on PWD40) 

Hair 
follicles 

Dermal fat 

CD IGS 5 20.2 ± 0.8 No No 
Sprague-Dawley 4 20.25 ± 0.25 No No 
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Table 2.4. Assessment of hair follicle regeneration in squared wounds in mice.   

 
Mouse strain Biological 

replicate 
(n) 

Strain type De novo regeneration (on PWD28) 

No. of mice with 
hair follicle 
regeneration 

No. of mice lacking 
hair follicle 
regeneration 

Mixed 5 Outbred 3 2 
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Table 2.5. Quantification of hair follicle regeneration in squared wounds in mice.   

 
Mouse strain Biological 

replicate 
(n) 

Strain type No. of de novo hair follicles 
(on PWD28) 

Mouse 1 Mouse 2 Mouse 3 
Mixed 3 Outbred 6  13  26 
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Figure 2.1. Wound closure in laboratory rats. (A) Timeline of full-thickness excisional 

wound healing in mice and rats. Despite their inability to regenerate, circular (d = 2.0 cm) 

wounds in rats undergo complete re-epithelialization, ranging between 25-33 days depending on 

the strain. (B) Mouse wounds heal and regenerate new HFs and dermal adipocytes (DA), while 

rat wounds fail to regenerate. Values in the graphs on (b) and (c) are means ± S.E.M. One-way 

analysis of variance in (A), P < 0.05; post hoc Tukey’s multiple comparison test in (A), *P < 

0.05, **P < 0.01; two-tailed unpaired t-test in (B), *P = 0.0127. 
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Figure 2.2. Lack of appendage and fat regeneration in rats. Circular d = 2.0 cm wounds in 

all strains of rats (n=5 per strain) failed to regenerate new HFs and new DA. (A) Whole-mount 

Krt17 and (B) alkaline phosphatase (AP) staining revealed lack of new HFs in circular excisional 

wounds in rats at PWD40. (C) Whole-mount OilRedO staining confirms the absence of new HFs 

based on the lack of OilRedO+ sebaceous glands (SGs) and (D) new DA in circular excisional 

wounds in rats. Size bars: A, B, D – 100 µm. 
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Figure 2.3. Interspecies transcriptome analyses of wound tissues. (A) Principal Component 

Analysis (PCA) reveals distinct separation between tissue types (wound epidermis and dermis) 

and between species (mouse vs. rat wound tissues). (B) Heat map representing 3,850 

differentially expressed one-to-one gene orthologs between mouse and rat wound tissues 

grouped into eight different clusters. (C) Pathway analysis on gene clusters #1 (shared epidermal 

genes), #2 (shared dermal genes), #3 (mouse-specific epidermal genes) and #4 (rat-specific 

epidermal genes). 

    

 
 
 
 
 
 
 
 

A B C 



49	
	

 
 
 
 
 
 
 
 
 

 
Figure 2.4. Validation of epigenetic factors in mouse and rat wounds. (A) Rat and mouse 

TPM values for select epigenetic factors from differentially expressed one-to-one gene orthologs. 

(B) qRT-PCR validation of select differentially expressed epigenetic factors between rat and 

mouse wound epidermis, including Satb1, Hdac4, Setd1b, Setdb1 and Whsc1l1. (C) 

Immunostaining of mouse and rat wounds at the time of scab detachment for select epigenetic 

factors: Satb1, Setd1b, Setdb1 and Whsc1l1. Differential gene ortholog expression identification 

was performed at 5% FDR level and minimum 4X-fold change. Values in the graphs on (A) and 

(B) are means ± S.E.M. Two-tailed paired t-test in (A), *P=0.0124, **P=0.0033, **P=0.0032, 

*P=0.0238, **P=0.0054; and in (B), **P=0.0022. Size bars: C – 25 µm.  
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Figure 2.5. Evaluation of IFE-DP interactions. (A-C) Upon co-transplantation with IFE, DPs 

induce epidermal hyperplasia and rearrangements with complex DP-IFE structures forming as 

early as day 7 (n=5 per time point). (D) DPs and IFE often undergo extensive remodeling, with 

IFE forming pocket-like invaginations and with DPs assuming elongated, tongue-like shapes by 

day 20 (n=5 per time point). Representative images are shown. Size bars: A-D – 20 µm. 
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CHAPTER 3 
 

Regeneration of fat cells from myofibroblasts during wound healing 
 

 

From: 

Plikus MV, Guerrero-Juarez CF, Ito M, et al, Regeneration. Regeneration of fat cells from 

myofibroblasts during wound healing. Science. (2017). Feb;17;355(6326):748-752. Reprinted 

with permission from AAAS.  
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ABSTRACT 

The skin of mice regenerates hair follicles after large excisional wounding. Dermal 

adipocytes, a lipid-laden cell in close association to hair follicles, also regenerate. These dermal 

adipocytes are very reminiscent of normal skin adipocytes and form only after hair follicles do. 

Lineage tracing suggests dermal adipocytes regenerate from myofibroblasts. Using bulk RNA-

sequencing from genetically labeled myofibroblasts isolated from various time points during 

wound healing, it was established that up-regulation of Zfp423 occurs at the onset of dermal 

adipocyte regeneration. Indeed, using two independent approaches, Zfp423 was shown to be 

expressed in cells juxtaposed to hair follicles. In Zfp423 KO mice, dermal adipocyte 

regeneration fails to take place. BMP signaling acts upstream of Zfp423. LDN-193189 treatment 

of wounded mice leads to lack of Zfp423 activation and subsequent failure to regenerate dermal 

adipocytes, despite forming otherwise normal looking hair follicles. Overexpression of the BMP 

antagonist, Noggin, in epithelial cells, leads to failure to regenerate dermal adipocytes. Temporal 

deletion of the Bmp receptor 1a (Bmpr1a) in myofibroblasts phenocopies the former two Bmp 

signaling ablation conditions. In vitro differentiation of skin dermal cells into adipocytes isolated 

from early wounds is dependent on Bmp4 and 2. These results demonstrate that myofibroblasts 

are bona fide precursor cells of dermal adipocytes in adult cutaneous wounds and that the 

observed myofibroblast-adipocyte reprogramming phenomenon observed depends on Bmp-

Zfp423 signaling. 
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INTRODUCTION 

Cutaneous wound healing in adult mammalian organisms has long been regarded as a 

process that culminates with the formation of a collagen-rich scar, devoid of appendages, 

elasticity – i.e. elastin fibers, and lack of overall physiological, mechanical and, possibly, 

immune integrity (Zhang et al., 2015). Previous studies, however, have shown that when adult 

mice are challenged with large excisional dorsum wounds (i.e. ≥ 1.0 cm2), fully functional de 

novo hair follicles (HFs) sporadically regenerate at the center of the healing skin – such 

phenomenon is regarded as Wound Induced Hair Neogenesis (WIHN) (Gay et al., 2013, Ito et 

al., 2007). We discovered that dermal adipocytes, a complex tissue intimately and 

physiologically associated with HFs within the dermal portion of the skin (Reviewed in Driskell 

et al., 2014, Guerrero-Juarez and Plikus, 2018, Zwick et al., 2018) also regenerate after 

wounding (Figure 3.1). Detailed histological and whole-mount analyses demonstrated that such 

dermal adipocytes begin to appear in the wound bed around post-wounding day (PWD) 24, and 

become fully mature lipid-laden adipocytes by PWD28. Closer characterization of such dermal 

adipocytes revealed that they are morphologically and biochemically similar to those in normal, 

unwounded adult skin. For example, they are similar in terms of depth relative to skin surface, 

cell size and volume, and expression of the hormones Adiponectin (Hu et al., 1996) and Resistin 

(Steppan et al., 2001). An interesting observation is that dermal adipocytes only form after de 

novo HFs have regenerated and reached anagen stage, suggesting that mature HFs are important 

for this regeneration event. The observation of HFs and its associated dermal adipocyte tissue 

suggests that restricted embryonic events, such as HF development and adipocyte lineage pre-

determination (Guerrero-Juarez and Plikus, 2018, Hausman et al., 1981), can become reactivated 

in adults under normal, non-artificial conditions as part of a repair mechanism following injury.  
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Myofibroblasts are known as the “culprit cell of scarring”. They are responsible for 

wound contraction, remodeling of the extra-cellular matrix and secretion of pro-inflammatory 

cytokines (Hinz et al., 2012). In addition to skin, they are “common” modulators of wound 

healing and fibrosis in many organs including lung, liver, heart, kidney, and bone marrow 

(Kramann et al., 2015, Schneider et al., 2017). Myofibroblasts follow a typical differentiation 

pathway, which begins with the formation of a proto-myofibroblast and is triggered by 

mechanical stress; and continues with the transformation into a mature, alpha-smooth muscle 

actin-expressing myofibroblasts, which is mediated by mechanical tension and TGF-beta 

signaling (Tomasek et al., 2002). In the WIHN model, myofibroblasts begin to appear in the 

wound bed 5 days post-wound infliction, and by PWD12 there is a large number of alpha-SMA+ 

myofibroblasts covering the entire wound bed (Plikus et al., 2017). In agreement with previous 

literature, we observed that alpha-SMA expression disappears in the wound bed cells (i.e. 

myofibroblasts) but remains in peripheral blood vessel cells at the end of wound closure (i.e. re-

epithelialization) (Darby et al., 1990, Gabbiani, 2003). This might be explained by the fact that 

granulation tissue, i.e. myofibroblasts, undergo cellular death via apoptosis. These observations 

have definitely been shown in small excisional wound models but not within the context of 

WIHN. Whether myofibroblasts undergo other processes is unknown – i.e. de-differentiation into 

a primitive fibroblast stage or trans-differentiation into a distinct cell lineage. We interrogated 

the origin and mechanism of regeneration of dermal adipocytes in the WIHN model. Because of 

the dynamics of myofibroblast differentiation in large wounds, and the activation of adipogenic 

markers observed after myofibroblasts cease to express alpha-SMA, we hypothesized that a 

subset of myofibroblasts can adopt an alternate adipogenic fate in regenerating skin.  

RESULTS 
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To address this hypothesis, lineage tracing using conditional CreER-loxP technology 

(Kretzschmar and Watt, 2012) was performed. The contractile cell-specific, inducible Sma-CreER 

mouse strain (Wendling et al., 2009) was used. In this mouse model, tamoxifen-dependent 

activation of CreER strictly occurs in smooth muscle cells – including myofibroblasts, and 

crossed them with two independent reporter strains, tdTomatoSTOP/loxP (Madisen et al., 2010) and 

R26RSTOP/loxP (Soriano, 1999). These reporters contain a STOP cassette flanked by loxP sites and, 

when crossed with a Cre transgenic strain, the STOP sequence is removed and the cell and their 

downstream progeny will be permanently labeled with that particular reporter system. Hence, 

this enabled us to reliably label myofibroblasts and their potential downstream progeny.  

The efficiency and reliability of this reporter system to label myofibroblasts in 

regenerating wounds was tested (Fig. 3.2). To do this, two induction protocols were designed, 

one before (Fig. 3.2.A) and one after wounding (Fig. 3.2.B). In the first treatment regime, mice 

were induced two weeks prior wounding for five consecutive days. In the latter case, we created 

a 1.5 x 1.5 cm squared wound (2.25 cm2) in the dorsum of adult mice and induced with 

tamoxifen at PWD 6-16. In both cases, wound tissues were collected at PWD28 for analyses. As 

expected, no labeling of myofibroblasts was observed when induced before wounding, but 

sporadic labeling of vascular smooth muscle cells in the wound became labeled with the reporter 

(van der Loop et al., 1997). On the contrary, the entire wound bed became labeled with the 

reporter when induced after wounding (Figure 3.2.A vs. 3.2.B).  

A similar wounding and induction protocol was performed and collected Sma-CreER;R26R 

wounds (n=6), these were stained with X-gal and counter-stained with Oil Red O (OilRedO), a 

glycerol-based lipid dye specific to adipocytes (Mehlem et al., 2013), to analyze the number of 
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reporter-labeled OilRedO-positive dermal adipocytes in regenerated skin wounds (Figure 3.3.A). 

Peri-lesional dermal adipocytes are not labeled by the reporter system (Fig. 3.3.B)  

To further validate these initial lineage tracing studies and show a myofibroblastic origin 

of dermal adipocytes in cutaneous regeneration, peroxisome proliferator-activated receptor 

gamma (Pparg), a transcription factor important for maturation and lipid accumulation of pre-

adipocytes (Siersbaek et al., 2010) was deleted. Ppar-gammaloxP mice (He et al., 2003) were 

crossed with conditional Sma-CreERT2 mice to achieve specific Ppar-gamma deletion in 

myofibroblasts and their downstream progenies. The number of regenerated dermal adipocytes 

was quantified using a dermal adipocyte (DA) / hair follicle (HF) index (IDA/HF) (Plikus et al., 

2017), which takes into account the number of dermal adipocytes relative to hair follicles in hair-

bearing portions of the skin wound. This regeneration metric is reliable and easily quantifiable. 

By employing a similar induction protocol following wounding, it was shown that deletion of 

Ppar-gamma in myofibroblasts reduced the number of wound adipocytes compared to littermate 

controls (IDA/HF = 0.5 ± 0.07 vs. 22.7 ± 5.1, n=6; represented as avg ± s.e.m.) despite the 

formation of fully mature hair follicles (Figure 3.3.C). Taken together, these independent genetic 

lineages tracing and functional analyses suggested a myofibroblastic origin of dermal adipocytes 

in regenerating skin. 

Next, the molecular mechanisms important for regeneration of dermal adipocytes from 

myofibroblasts during wound healing were determined. To do this, the transcriptome of 

myofibroblasts across wound healing was resolved. The dermal fraction from dorsal cutaneous 

wounds of adult Sm22-Cre;tdTomato mice was resected and viable myofibroblasts were FACS-

sorted as Zombieneg;tdTomatohi from four post-wounding time points which included: (1) 

PWD12 – which corresponds to initial wound closure and peak of myofibroblast presence, (2) 
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PWD15 – which corresponds to active formation of new hair follicles, (3) PWD 21 – which 

corresponds to regeneration of dermal adipocytes, and (4) PWD26 – which corresponds to 

maturation of de novo dermal adipocytes (Fig. 3.4.A). SMART-seq2 (Picelli et al., 2013, Picelli 

et al., 2014) on whole RNAs isolated from viable, uncultured FACS-sorted tdTomatohi 

myofibroblasts was performed (Figure 3.4.B). Myofibroblasts displayed typical morphology in 

culture (Fig. 3.4.C). To identify unbiased gene expression profile changes in myofibroblasts 

across cutaneous wound healing, inferential statistical analyses using the two-step regression 

model algorithm Next MaSigPro was performed (Conesa et al., 2006, Nueda et al., 2014). Next 

MaSigPro identified 4,120 transcripts that showed statistically significant differential expression 

across all four time points analyzed (P<0.05) Principal component analysis (PCA) demonstrated 

that ZombieNEG;tdTomatohi from individual wound healing time points clustered together (PC1 – 

65.3% vs. PC2 – 18.0%), whether those from distinct time points did not, corroborating that 

pooled populations of myofibroblasts isolated across wound healing display unique and dynamic 

transcriptomic profiles (Figure 3.5, and 3.6). The expression patterns of all differentially 

expressed genes across wound healing was determined using K-means clustering and plotted on 

a heat map (Fig. 3.6.A). These differentially expressed transcripts were grouped into five distinct 

clusters: Cluster C1 contained 1,412 transcripts and displayed genes that were up-regulated on 

PWD12 and down-regulated by PWD21, (ii) Cluster C2 contained 1,244 transcripts that were 

up-regulated on PWD12 and 15 and down-regulated on PWD26, (iii) Cluster C3 displayed 379 

transcripts in that displayed transient dynamics and appear up-regulated on PWD15 and 21 

compared to PWD 12 and 26, (iv) Cluster C4 contained 688 transcripts up-regulated on PWD 21 

and 26 and, lastly, (v) Cluster C5 contained 397 transcripts that were up-regulated on PWD26. 

These differentially expressed genes grouped into seven distinct gene ontologies (GOs) (Figure 



58	
	

3.6.B). Interestingly, the number of enriched cell cycle regulators significantly decreased during 

late post-wounding time points. Similar temporal gene dynamics (i.e. down-regulated gene 

categories on late PW time points) were observed for transcriptional regulators, epigenetic 

enzymes and inflammatory pathway genes. Contractile genes became down-regulated after 

PWD15, consistent with the shutdown of the active contractile state by myofibroblasts during 

late wound healing stages and preceding dermal adipocyte regeneration.   

Signaling pathways were also identified to be differentially expressed across the time 

course (Fig, 3.6.C). WNT ligands, previously regarded as negative regulators of adipogenesis 

(Kennell and MacDougald, 2005, Kirton et al., 2007, Ross et al., 2000), were down-regulated in 

early stages of wound healing. Among the most significant ligands are Wnt2b (-3.8x), and Wnt7b 

(-1.2x). Conversely, WNT soluble antagonists were up-regulated in late stages of wound healing; 

these included Dkk2 (+14.3x), Wif1 (+32.5x) and Sfrp4 (+2.3x) (Park et al., 2008). Members of 

the Bone Morphogenic Protein (BMP) pathway (Hata et al., 2003, Jin et al., 2006, Sottile and 

Seuwen, 2000) showed dynamic expression and appeared consistent with BMP activation at late 

post-wounding stages, merely on PWD21 and 26. BMP antagonists Bambi (-1.6x) and Grem1 (-

3.5x) were down-regulated, while BMP ligands Bmp4 (+5.0x) and Bmp7 (+7.4x) became 

upregulated in late post-wounding time points. Id1 (+2.0x) and Id2 (+1.7x), known direct BMP 

transcriptional targets, were also up-regulated on PWD26. BMP receptor 1a (Bmpr1a) was 

transiently up-regulated on PWD15 and 21. The dynamics in gene expression on BMP signaling 

members suggest that this signaling pathway may be important in regeneration of dermal 

adipocytes during wound healing.  

Known modulators of adipogenesis, including negative regulators, such as Nr2f6 (-1.4x) 

(Pelaez-Garcia et al., 2015) and E2f4 (-2.1x) (Landsberg et al., 2003) were down-regulated, 
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while Zfp423 (+2.6x) (Addison et al., 2014, Gupta et al., 2010, Gupta et al., 2012, Kang et al., 

2012, Yun et al., 2015, Zhang et al., 2015), Crebl2 (+1.9x) (Ma et al., 2011),  Stat5b (+1.7x) 

(Gao et al., 2015, Stephens et al., 1999, Wakao et al., 2011), and Klf15 (+2.6x) (Lee da et al., 

2016, Mori et al., 2005) were upregulated. Other established and differentially expressed 

negative regulators of adipogenesis, including Dlk1 (-10.5x) (Lee et al., 2003, Mitterberger et al., 

2012, Moon et al., 2002, Mortensen et al., 2012, Nueda et al., 2007, Smas et al., 1997, Smas and 

Sul, 1993) and Mest (-23.9x) (Karbiener et al., 2015), were downregulated (early in time course), 

while Agouti (+2.2x) (Mynatt and Stephens, 2001, 2003), a known positive regulator, was up-

regulated (late in time course). Interestingly, transcriptional regulators or chondrogenic and 

osteogenic lineages, including Sox9 (-2.7x), and Runx2 (-2.9x) (Ohba et al., 2015, Yoshida et al., 

2002) were down-regulated in early stages of wound healing in myofibroblasts, suggesting that 

myofibroblasts reprogram into an adipocyte lineage rather than a osteo/chondrogenic one. 

Of interest was the upregulation of Zfp423, a transcription factor with known roles in 

adipocyte lineage commitment in vitro (Gupta et al., 2010) (Fig. 3.6.C). Ii was hypothesized that 

Zfp423 could be important in initiation of adipogenesis in myofibroblasts. Indeed, analyses of 

PWD21 Zfp423[XH542] mouse wounds (Warming et al., 2006) show transactivation of Zfp423 

(by means of LacZ activity) in areas of wound immediately adjacent to neogenic hair follicles. I 

then evaluated how whole-body knockout of Zfp423 would affect de novo dermal adipogenesis. 

Mice null for Zfp423 display ataxia, tremors and brain malformations associated with a 

proliferation and differentiation defect of neural precursor cells (Alcaraz et al., 2006). To 

determine whether Zfp423 is important for pre-adipocyte commitment of myofibroblasts in this 

in vivo model of dermal adipocyte regeneration, a Zfp423 null mouse (Zfp423[nur12]) (Alcaraz 

et al., 2006) was used and its ability to form adipocytes following injury was interrogated. Few-
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to-none dermal adipocytes in the wound bed regenerated, despite the formation of normal hair 

follicles (IDA/HF = 0.07 ± 0.06 vs. 29.6 ± 5.4, n=9) (Figure 3.7). An interesting observation is that 

Zfp423[nur12] mice are not lipodistrophic, suggesting the presence of an alternate, surrogate 

mechanism driving adipogenesis during development. In contrast, de novo dermal adipocyte 

regeneration in the wound bed following injury seemed to be strictly dependent on expression of 

Zfp423, as Zfp423[nur12] mice do not readily regenerate dermal adipocytes post-injury.  

Zfp423 is known to contain Smad binding sitess the downstream effectors of BMP 

signaling (Rahman et al., 2015), which allow it to regulate expression of downstream target 

genes, including Ppar-gamma (Gupta et al., 2010, Hammarstedt et al., 2013). Hence, these 

observations suggest an interplay between Zfp423 and BMP ligands that may regulate 

adipogenesis. Indeed, BMP signaling has been implicated in adipocyte differentiation in vitro 

(Jin et al., 2006, Wang et al., 1993). Next, it was determined whether BMP signaling may be an 

important regulator of dermal adipocyte regeneration in our in vivo model of skin regeneration 

and act via Zfp423 to induce dermal adipogenesis. To determine this possibility, BMP signaling 

was down-modulated in regenerating skin using three independent and distinct approaches. 

Previous studies identified Dorsomorphin as a compound with moderate inhibitory effects of 

BMP type I receptors ALK2, ALK3, and ALK6, allowing for blockage of BMP signaling 

activity by preventing phosphorylation of Smad1/5/8 and preventing translocation of the 

Smad/Co-Smad complexes into the nucleus and further preventing activation of BMP target 

genes. However, the inhibitory activity of Dorsomorphin proved only to be moderate and lacked 

metabolic stability in vivo (Yu et al., 2008b). In order to address these two issues, Cuny et al. 

conducted a structure-activity relationship study of Dorsomorphin and identified a superior 

compound capable of increased inhibitory activity and higher metabolic stability following 
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intraperitoneal administration in rodents (Cuny et al., 2008). This compound, termed 4-[6-[4-(1-

Piperazinyl)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]-quinole hydrochloride, commercially known 

as LDN-193189, was used to treat postnatal ossification in a mouse model of Fibrodysplasia 

Ossificans Progresiva (FOP) (Yu et al., 2008a), as well as prevention of the development of 

anemia in mice (Mayeur et al., 2015), showing its wide use in vivo and specificity towards 

blocking canonical BMP signaling. Hence, LDN-193189 was used to down-modulate BMP 

signaling activity in our in vivo model of skin regeneration.  

Non-specific pharmacological ablation of BMP signaling activity in Adipoq-Cre;R26R 

mice using LDN-193189 at 2.0 mg/kg every 24 hours (Fig. 3.8). The treatment period ranged 

from PWD10-27. The efficacy of BMP down-modulation was determined by assessing the 

regeneration of fully matured lipid-laden dermal adipocytes based on OilRedO dye uptake at 

PWD28 (Fig. 3.8.B). Importantly, there was no adverse effects on rate of wound re-

epithelialization and/or overall hair follicle regeneration (Lewis et al., 2014), rather, a reduced 

number of Zfp423-expressing dermal cells around neogenic hair follicles (Fig. 3.8.A) and dermal 

adipocytes (3.8.B) in LDN-193189-treated mice compared to vehicle-treated controls, despite the 

formation of normal neogenic hair follicles (IDA/HF = 0.58 ± 0.35 vs. 5.8 ± 1.4, n=7/4, 

respectively) was observed and further indicating a role for BMP signaling in expression of 

Ppar-gamma (Hammarstedt et al., 2013). Potential explanations for these phenotypic effects are 

1) inhibition of Zfp423-mediated adipogenic pathway (prevention of entry to pre-adipocyte 

lineage), or 2) prevention of Ppar-gamma expression and subsequent differentiation.  

To further interrogate the function of BMP signaling in dermal adipocyte regeneration, 

BMP signaling was down-modulated using two distinct mouse genetic models. In the first 

model, the soluble antagonist Noggin was up-regulated in basal keratinocytes of the inter-
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follicular epidermis using Krt14-Noggin mice (Plikus et al., 2004) (Fig. 3.9.A). In this mouse 

model, up to four copies of Noggin are over-expressed under the endogenous Krt14 promoter. 

Hence, Noggin is specifically over-expressed  in the basal epidermal layer of the inter-follicular 

epidermis and outer root sheath of hair follicles (Coulombe et al., 1989). A reduced number of 

dermal adipocytes in Krt14-Noggin mice compared to WT controls (IDA/HF = 0.2 ± 0.1 vs. 30.6 ± 

6.3, n=10) was observed and further indicated a role for BMP signaling in expression of Ppar-

gamma (Figure 3.9.B). Krt14-Noggin;Zfp423[XH542] mice showed a lack of Zfp423 

transactivation in hair-bearing portions of the wound bed at PWD21 (data not shown), further 

suggesting that Noggin affects activation of Zfp423. Subsequently, these mice do not regenerate 

dermal adipocytes despite regenerating hair follicles. Indeed, the hair follicles look very similar 

to those already described (Botchkarev et al., 2001, Botchkarev and Sharov, 2004). Second, 

Sma-CreER;Bmpr1afloxf/lox mice were generated to achieve ablation of Bmpr1a specifically in 

myofibroblasts. A tamoxifen-induction regime similar to the one previously stated was employed 

and evaluated dermal adipocyte regeneration at PWD28. A reduced number of dermal adipocytes 

in Sma-CreER;Bmpr1afloxf/lox mice was observed compared to Bmpr1a controls (IDA/HF = 23.9 ± 

1.5 vs. 0.38 ± 0.36, n=3/6, respectively) (Figure 3.10).  

Lastly, in toto single cells were isolated from PWD15 dermal skin wounds of Sm22-

Cre;tdTomato mice and treated them in vitro with Bmp ligands to further show that activation of 

BMP signaling can reprogram them into adipocytes. PWD15 dermal wound cells were cultured 

in three different conditions, including 1) commercially available adipogenic differentiation 

media, 2) growth media containing hBMP2, and 3) growth media containing hBMP4. Only the 

dermal skin wound cells cultured under the presence of Bmp2 and Bmp4 were able to reprogram 

them into adipocytes as confirmed by uptake of Bodipy® (Fig. 3.11.A). This was further 
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confirmed by up-regulation of Ppar-gamma (+4.4x), Adipoq (+16x), and Resistin (+12.6) (Fig. 

3.11.B). Taken together, this chapter describes the phenomenon that regenerated hair follicles in 

large skin wounds can reprogram myofibroblasts into adipocytes by activation of a BMP-Zfp423 

axis.  

DISCUSSION 

It has been well-documented that the regenerative potential of complex tissues and organs 

in response to injury varies greatly between distinct animal species, ranging from mammals to 

amphibians. In this regard, the animal with the most superb regeneration potential is the axolotl, 

Ambystoma mexicanum. Axolotls can regrow a multitude of organs and organ systems (Bryant et 

al., 2017), including spinal cord (Rost et al., 2016), brain (Amamoto et al., 2016), and limbs 

(Holder et al., 1980). Recently, important molecular mechanisms regulating limb regeneration in 

the axolotl have been described  (Nacu et al., 2016, Roensch et al., 2013, Sugiura et al., 2016). 

Additionally, novel genomic and genetic techniques may pave the way to further identify genes 

important in regeneration (Khattak and Tanaka, 2015, Nowoshilow et al., 2018). An interesting 

aspect of axolotl limb regeneration is that this process replicates aspects of normal embryonic 

limb development. Traditionally, the final outcome of adult mammalian wound healing was 

considered to be scarring. This was considered the default repair pathway in most, if not all, 

types of injury. Recent advances in our understanding of lineage plasticity and the identification 

of novel models of wound healing and regeneration has led to identification of exceptions to this 

paradigm. Some examples include regeneration of digit tips (Johnston et al., 2016, Lehoczky et 

al., 2011, Rinkevich et al., 2011) and hair follicle neogenesis and dermal adipocyte regeneration 

in the skin of mice (Ito et al., 2007, Plikus et al., 2017). Lineage studies suggest the structures in 

the regenerated digit tip of mice arise from fate-restricted progenitor cells only; further pointing 
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out that multipotent progenitor cells or lineage transdifferentiation events are not observed in this 

model. In contrast, large excisional wounds in adult mice demonstrate lineage plasticity toward 

regeneration of hair follicles and dermal adipocytes. For example, de novo hair follicles in the 

WIHN model regenerate via lineage commitment of non-hair fated wound epidermis cells. 

Lineage tracing suggests that peri-wound hair follicle bulge cells do not contribute to this de 

novo structures and other cell types contributing to re-epithelialization only transiently (Ito et al., 

2007, Plikus et al., 2012). In this chapter, the regeneration of dermal adipocytes from non-

adipogenic myofibroblasts is described. Lineage commitment of myofibroblasts to adipose 

lineage occurs via Bmp signaling. Neogenic hair follicles secrete Bmp ligands that instruct 

myofibroblasts to commit to an adipose lineage via activation of Zfp423, the master regulator of 

adipogenesis (Gupta et al., 2010). Hence, this suggests that, unlike regeneration of digit tip in 

adult mice, dermal adipocytes regenerate by lineage commitment of non-adipogenic wound 

myofibroblasts. It is possible that injury size could evoke regeneration via lineage commitment 

rather than from lineage restricted progenitor cells.  

The current paradigm suggests that wounds in mammals heal by scarring. Although 

myofibroblasts are necessary to elicit a normal wound healing response; high number of 

myofibroblasts can lead to excessive scarring and modulation of fibrogenic potential. For 

example, wounds in fetal human embryos heal without scar – presumably because they lack 

myofibroblasts and prominent inflammatory pathways (Rowlatt, 1979). Similarly, 

myofibroblasts are largely absent in other tissues that heal without scars, including wounds in 

African spiny mice (Seifert et al., 2012). Contrary to these reports is the finding that 

myofibroblasts can induce regeneration of dermal adipocytes in large excisional skin wounds. 

This regenerative potential is driven, in large part, by other cell types that instruct myofibroblasts 
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to acquire certain lineages (i.e. lineage determination). For example, early during the wound 

healing response, immune gamma delta T cells instruct myofibroblasts to initiate hair follicle 

neogenesis via Fgf9 signaling (Gay et al., 2013). Following regeneration of the hair follicle, 

myofibroblasts can become dermal adipocytes to reconstitute skin after injury.  

The identification that skin injuries in adult mice can regenerate without scar formation 

debunks the long-lasting paradigm that adult skin healing culminates with formation of a scar. 

Additionally, the report in this chapter that myofibroblasts can be reprogrammed into distinct cell 

types opens up new venues for modulation of scarring and fibrogenic behavior, not only in skin, 

but also in other tissues and organs prone to such conditions.  

METHODS 

Mouse strains. The following mice were used in this study: Sm22-Cre (Boucher et al., 2003); 

SMA-CreER (Wendling et al., 2009); tdTomato (Madisen et al., 2010); Zfp423[XH542] 

(Marshall et al., 1985); Zfp423[nur12] (Alcaraz et al., 2006); Pparγ-flox (He et al., 2003); and 

WT Axin Negative inbred mice. SMA-CreER mice were obtained via MTA. Mixed background 

mice were used in this study.   

Genotyping. Genotyping was performed on genomic DNA isolated from tail or ear. Tissues 

were digested using proteinase-K. Different thermocycler programs were used for each 

individual strain. The following primers were used: Sm22-Cre, Adipoq-Cre: Gnrc-Cre-F: 

GCGGTCTGGCAGTAAAAACTATC; Gnrc-Cre-R: GTGAAACAGCATTGCTGTCACTT; 

Gnrc-Cre-Ctr-F: CTAGGCCACAGAATTGAAAGATCT; Gnrc-Cre-Ctr-R: 

GTAGGTGGAAATTCTAGCATCATCC. Expected results: Internal control: ~324 bps, Mutant 

allele: ~100 bps. ROSA - R26R: ROSA-Mut: GCGAAGAGTTTGTCCTCAACC; ROSA-F: 5’-

AAAGTCGCTCTGAGTTGTTAT; ROSA-R: GGAGCGGGAGAAATGGATATG. Expected 
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results: Mutant: 340 bps, Heterozygote: 340 bps and 650 bps, Wild-type: 650 bps. 

Zfp423[XH542]: bgeo1F (aka ZH542-F): CGGTCGCTACCATTACCAGT; bgeo1R (aka 

ZH542-R): TCGTCCTGCAGTTCATTCAG. Expected results: ~ 300 bp. Zfp423[nur12]: 

nur12-5'SNP-wt(3): GAGCTACTTGAAGAGGCATGAAC; nur12-5'SNP-mt(3): 

GAGCTACTTGAAGAGGCATGAAT; nur12-5'end: CTGCAGATGGTGATGACGAC; nur12-

3'(1): 5’- GAGCTGGTGGAGGAGAAGC-3’. Expected results: Diagnostic band: ~200bps; 

Internal positive control: ~400bps. Bmpr1a: BmpR1a-Fx2: GCAGCTGCTGCTGCAGCCTCC; 

BmpR1a-Fx4: TGGCTACAATTTGTCTCATGC. Expected results: Wild type: 130 bps, Mutant 

230 bps. tdTomato: TdTomato F: 

CGGATCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGGTC; TdTomato R: 

GAGCGGCCGCTTACTTGTACAGCTCGTCCATGCCGTACAG. Expected results: Mutant 

200 bps, Wild type 300 bps. 

Wounding procedures. All animal experiments were carried out in accordance with the 

guidelines of the IACUC of the University of California, Irvine. Full thickness 1.5 x 1.5 cm 

(2.25cm2) excisional wounds were inflicted on the backs of three to eight week-old mice as 

previously described (Ito et al., 2007). 

Whole mount lacZ staining. To detect lacZ activity, freshly isolated wound tissue samples were 

incubated with X-gal reagent in lacZ staining buffer as previously described (Ito et al., 2007, 

Plikus et al., 2017). Samples were post-fixed in 4% PFA. 

Whole mount OilRedO staining. PFA-fixed wound tissue samples were pre-incubated in 

propylene glycol and then stained with OilRedO buffer for 20 minutes. Samples were then 

washed in propylene glycol and stored in 0.05% aqueous solution of sodium azide. 

RNA isolation and SMART-seq2. Sorted, uncultured Zombieneg;tdTomatohi myofibroblasts 
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were re-suspended in RLT buffer supplemented with 1% beta-mercaptoethanol and homogenized 

with QIAshredder (Qiagen). Total RNA was isolated using the RNEasy Micro-Kit (Qiagen) as 

per manufacturer’s protocol with minor modifications, including DNase I treatment (Qiagen). 

Optimal-quality RNAs were considered for cDNA library preparation (RIN>8.8). Full-length 

cDNA library amplification was performed as previously described (Picelli et al., 2013, Picelli et 

al., 2014). Briefly, 1ng total RNA was reversed-transcribed, and resulting cDNA was pre-

amplified for 17 cycles. Tagmentation was carried out on 18ng cDNA using the Nextera DNA 

Sample Preparation Kit (Illumina). The tagmentation reaction was carried out at 55°C for 5 

minutes and purified using PCR Purification Kit (Qiagen). Adapter-ligated fragments were 

amplified using limited cycle enrichment PCR with v2_Adx.x barcodes (IDT). Libraries were 

amplified for 7 continuous cycles and resulting libraries were purified with AMPure XP beads 

(Beckman Coulter). Library quantification was done using KAPA for Illumina Sequencing 

Platforms (Illumina). Libraries were multiplexed and sequenced as paired-end on an Illumina 

Next-Seq500 platform (Cluster density = 296K/mm2, Clusters PF = 71.2%, Q30 = 87.6%).    

Fluorescence-activated cell sorting. Dorsal skin was collected from mice at different post-

wounding time points. Scar tissue was micro-dissected, devoid of fascia and incubated in 

Dispase II solution (Sigma) to separate epidermis from dermis. Dermis was disaggregated into 

single cells with Collagenase IV (Sigma) at 37°C with constant rotation. Single cell fractions 

were stained with Zombie VioletTM (1:1000; BioLegend) and FACS-sorted as 

Zombieneg;tdTomatohi using a BD FACSAria II flow cytometer (BD Biosciences). 

SMART-seq2 analyses. Paired-end reads were aligned to the mouse genome 

(mm10/gencode.vM4) and quantified using the RNA-seq by Expectation-Maximization 

algorithm (RSEM) (version 1.2.12) with the following standard parameters: rsem-calculate-
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expression -p $CORES --paired-end (Li and Dewey, 2011). Samples displaying >20,000,000 

mapped reads and >75% mapping efficiency were considered for downstream analyses. 

Differential expression dynamics across our single time experimental series was identified using 

the two-step regression model algorithm MaSigPro with a P-value cutoff of 0.05 for multiple 

hypothesis testing and a false discovery control rate of 0.01 (Conesa et al., 2006, Nueda et al., 

2014). Principle component analysis was performed using the R ggbiplot package.  

Primary mouse adipogenic cell culture. Primary scar cells were isolated from day 15 wounds 

as previously described (Gay et al., 2013) with minor modifications. Single cell fractions were 

created and cultured to confluence in high-glucose DMEM (Gibco) supplemented with 10% FBS 

(Atlanta Biologicals) and 10,000 µl/ml Pen/Strep cocktail (Gibco). Upon confluency, cells were 

cultured in adipocyte differentiation media alone (Cell Solutions) or DMEM supplemented with 

5µg/ml insulin (Sigma), and 1µM rosiglitazone (Sigma) with either 6ng/ml of recombinant 

hBMP4 (R&D Systems), or 25ng/ml of recombinant hBMP2 (R&D Systems), or differentiation 

media alone (Cell Solutions). After three days, cells differentiation media was switched to 

adipocyte maintenance media (Cell Solutions). Cells were cultured in a water-jacketed incubator 

at 37°C with 5% CO2 output. 
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Table 3.1. Wound regeneration quantification. 

Transgenic mouse line 
Dermal 

adipocyte/hair 
follicle index 

 P value 
Post-

wounding 
day 

N 

 Experiment: Inducible deletion of Ppar-gamma in  
 myofibroblasts 

Sma-CreER;Pparγflox/flox  0.5 ± 0.07 P<0.05 Day 28 6 

Sma-CreER;Pparγ flox/+  22.7 ± 5.1  Day 28 6 

Experiment: Skin specific over-expression of soluble  
BMP antagonist Noggin     

K14-Noggin  0.2 ± 0.1 P<0.05 Day 28 10 

WT  30.6 ± 6.3   Day 28 10 

Experiment: Inducible deletion of BMP receptor Bmpr1a in  
Myofibroblasts   

Sma-CreER;Bmpr1aflox/flox  0.38 ± 0.36 P<0.05 Day 28 6 

Tamoxifen treated control 23.9 ± 1.5  Day 28 3 

Experiment: Pharmacological treatment of mice 
with LDN-193189       

WT (LDN-193189 treated)  0.58 ± 0.35 P<0.05 Day 28 7 

WT (Vehicle control) 5.8 ± 1.4  Day 28 4 
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Figure 3.1. Schematic of regeneration of hair follicles and fat in mouse wounds. (A) In 

the model of Wound-Induced Hair Neogenesis (WIHN), adult mice are inflicted large excisional 

back skin wounds (2.25cm2). 28 days post-wounding, mice regenerate (B) hair follicles and (C) 

dermal fat. Size bars: B-C – 1mm. 
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Figure 3.2. Generation of Sma-CreER;tdTomato mice. (A) Cre induction in Sma-

CreER;tdTomato mice 14 days before wounding results in preferential labeling of vascular 

smooth muscle cells. In the second panel, (B) induction during days 9-14 after wounding results 

in labeling of myofibroblasts in the wound center. Size bars: A, B – 2mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 

A B  



72	
	

 
 
 
 
 

 
 
Figure 3.3. Lineage tracing in mouse wounds. (A-C) Functional lineage tracing identifies 

myofibroblasts as bona fide precursors of dermal adipocytes during wound healing. Sma-

CreERT2;R26R and Sma-CreERT2;Pparg-/- mice showed that (A) the origin of dermal adipocytes 

is myofibroblastic. (B) Dermal adipocytes in perilesional skin is not labeled by reporter. (C) 

Specific deletion of Pparg in myofibroblasts prevents differentiation into lipid laden adipocytes. 

Size bars: B (left), C – 1 mm; in A (center), 200 µm; in A (right), 50 µm; in C, 200 µm. 
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Figure 3.4. Schematic of myofibroblast isolation and characterization. (A) Myofibroblasts 

were isolated from various time points post-wounding, coincident with days were heightened 

myofibroblast presence is observed, hair follicle regeneration initiation, dermal fat regeneration 

initiation, and end of regeneration. (B) Viable myofibroblasts were isolated from cutaneous 

wounds from Sm22-Cre;tdTomato mice as ZombieNeg; tdTomatohi across wound healing using 

fluorescent activated cell sorting (FACS). (C) Isolated myofibroblasts possess spindle shape-like 

morphology and express messenchymal genes, including Vim, and Acta2, and (data not shown). 

Size bars: C – 200µm. 
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Figure 3.5. PCA of myofibroblasts across wound healing. SMART-seq2 was performed on 

freshly sorted, uncultured viable isolated myofibroblasts (sorted as ZombieNeg; tdTomatohi) 

across wound healing. (A) Biological replicates show strong Pearson correlation, suggesting high 

reproducibility and minimal technical variance. (B) Cladogram shows myofibroblasts from 

distinct post-wounding time points clustered together (biological replicates) and separately based 

on time point post-wounding from when they were isolated. (C) Myofibroblasts from distinct 

time points separate from each other (PC1 – 65.3% vs. PC2 – 18.0%).    
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Figure 3.6. Differential gene expression and distinct gene ontologies of myofibroblasts 

across wound healing. (A) Inferential statistical analyses using Next MaSigPro identified 4,120 

differentially expressed genes during wound healing (P<0.05) and form 5 distinct clusters (C1-

C5) in heat map. (B) Gene Ontology (GO) terms identify significant changes in major pathways, 

including genes involved in cell cycle, matrix remodeling, contractile and epigenetic remodeling. 

(C) Gene scoring identified significant expression changes members of the IGF, FGF, WNT and 

BMP signaling pathways across wound healing. Zfp423 is shown to be differentially expressed 

at post wounding day 21.    
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Figure 3.7. Genetic ablation of Zfp423 leads to lack of dermal adipocyte regeneration in 

mouse wounds. Whole body KO of Zfp423 leads lack of dermal adipocyte regeneration during 

wound healing, despite regeneration of hair follicles. Samples were collected 28 days post-

wounding. Tissues were stained with OilRedO to visualize dermal adipocytes. Size bars: 100µm. 
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Figure 3.8. Pharmacological downmodulation of BMP signaling in mouse wounds. (A) 

Pharmacological inhibition of BMP signaling using LDN-193189 led to downregulation of 

Zfp423 expression in dermal cells juxtaposed to hair follicles and (B) ablation of dermal 

adipocyte regeneration despite the regeneration of otherwise normal looking hair follicles. 

Samples were collected 28 days post-wounding. Tissues were stained with OilRedO to visualize 

dermal adipocytes. Size bars: 100µm. 
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Figure 3.9. Genetic downmodulation of BMP signaling in mouse wounds. (A) 

Overexpression of Noggin in skin epithelium leads to (B) ablation of dermal adipocyte 

regeneration despite regeneration of hair follicles. Samples were collected 28 days post-

wounding. Tissues were stained with OilRedO to visualize dermal adipocytes. Size bars: 100µm. 
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Figure 3.10. Tissue specific ablation of BMP signaling in mouse wounds. Sma-

CreER;Bmpr1a-/- mice allowed to spatio-temporally ablate Bmpr1a specifically in 

myofibroblasts. BMPR1a deficient mice formed less adipocytes in the wound center. Samples 

were collected 28 days post-wounding. Tissues were stained with OilRedO to visualize dermal 

adipocytes. Size bars: 100µm. 
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Figure 3.11. Ectopic human BMP expression directs myofibroblasts to conversion into 

adipocytes in vitro. (A) Total dermal cells isolated from early cutaneous wound tissues were 

cultured ex vivo in differentiation media or growth media supplemented with either hBMP4 or 

hBMP2. Only cells cultured in media supplemented with hBMPs differentiated into adipocytes. 

(B) qPCR analyses found white adipose-tissue gene expression up-regulation in hBMP-treated 

samples compared to differentiation medium only. Values in the graphs are represented as mean 

expression ± SEM. Size bars: A – 400µm. Values in graph are means ± SEM. 
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CHAPTER 4 
 
Single cell transcriptomics reveals myofibroblast heterogeneity and hematopoetic-derived 

adipose progenitors during wound regeneration 
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ABSTRACT 

During wound healing in adult mouse skin, hair follicles precede dermal adipocyte 

regeneration. Dermal adipocytes regenerate from contractile, mature myofibroblasts and is 

dependent on BMP-Zfp423 signaling. To interrogate the heterogeneity of fibroblasts in the 

wound, I used single-cell RNA-sequencing to profile skin wounds 12 days after wounding. This 

time coincides with the onset of appendage regeneration. Dimension reduction analyses clustered 

wound fibroblasts into twelve distinct groups – based on their unique mRNA signatures. 

Pseudotime analysis revealed that some of these clusters likely represent consecutive 

differentiation states, directed toward a contractile phenotype. Interestingly, one group of 

fibroblasts co-expressed contractile and myeloid markers, suggesting a putative hematopoietic 

origin. These findings were validated using single-cell western blot and full-length single-cell 

RNA-sequencing on FACS-purified, genetically labeled contractile wound cells. Using a series 

of bone marrow transplantation (BMT) experiments, it was confirmed that wounding recruits 

hematopoietic cells that give rise to myofibroblasts, which subsequently contribute to 

regeneration of new dermal adipocytes. Regenerated dermal adipocytes in wounds of BMT mice 

reconstituted with hematopoietic stem cells (HSCs) from fat-specific Retn reporter donors 

contained lacZ-positive dermal adipocytes. Furthermore, contribution of hematopoietic cells to 

regenerating dermal adipocytes was confirmed by lineage tracing in mice expressing the R26R 

reporter under the pan-hematopoietic Cd45-Cre and myeloid-specific LysM-Cre drivers. In 

conclusion, this chapter described that wounding induces a high degree of heterogeneity among 

wound fibroblasts and recruits highly plastic hematopoietic cells that contribute to dermal 

adipocyte regeneration. 
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INTRODUCTION 

 Upon significant injury, such as full-thickness excisional wounding, skin undergoes 

extensive repair. While small skin wounds typically repair via re-epithelialization, significant 

contraction, and formation of scar tissue largely devoid of epidermal appendages and dermal 

adipocytes, large wounds can regenerate de novo hair follicles (Ito et al., 2007) and dermal 

adipocytes in their center (Plikus et al., 2017). Already noted in the classic literature  (Billingham 

and Russell, 1956, Breedis, 1954, Brook et al., 1960, Stenbäck et al., 1967), this process of de 

novo hair follicle regeneration, now termed wound-induced hair neogenesis (WIHN), involves 

the reactivation of embryonic hair developmental programs within epidermal and dermal cells 

(Ito et al., 2007, Wang et al., 2015). Similarly, the process of de novo dermal adipocyte 

regeneration involves reactivation of an embryonic adipose lineage developmental program in 

myofibroblasts (Plikus et al., 2017). Beyond laboratory mice (Gay et al., 2013, Ito et al., 2007, 

Myung et al., 2013, Nelson Amanda M. et al., 2013, Nelson Amanda M. et al., 2015), WIHN has 

been definitively observed African spiny mice, member of the genus Acomys  (Seifert et al., 

2012), and in rabbits (Billingham and Russell, 1956, Breedis, 1954, Stenbäck et al., 1967). 

WIHN has also been documented in sheep (Brook et al., 1960) and in seldom occurs in humans 

(Gillman, 1955, Kligman Albert M. and Strauss John S., 1956, Muller, 1971) – where vellus 

hairs form after dermabrasion. However, WIHN appears lacking in the laboratory rat (Guerrero-

Juarez et al., 2018).  

Over the last decade, the signaling pathways for WIHN in mice have been partially 

elucidated. Activation of canonical WNT signaling in the center of the wound is necessary for 

WIHN (Gay et al., 2013, Ito et al., 2007, Myung et al., 2013) to take place, and both epidermal 

(Myung et al., 2013) and dermal wound cells secrete and respond to WNT ligands at distinct 
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phases of regeneration (Gay et al., 2013). Production of WNT ligands by dermal wound cells is 

initiated by Fgf9, secreted by γδ T cells (Gay et al., 2013) and this positive forward feedback 

loop initiates regeneration of hair follicles. Macrophages also promote WIHN by secreting Tnfα, 

which, in turn, activates p-AKT/p-β-catenin signaling (Wang X. et al., 2017). Activation of Tlr3 

signaling by double-stranded RNA released at the wound edge increases the production of Il6 

and activates Stat3, both of which positively impact WIHN (Nelson Amanda M. et al., 2015). 

The pro-regenerative effect of Stat3 signaling in this context is mediated by TAp63 (Nelson et 

al., 2016). Contrary to Fgf9/WNT, TNF/p-AKT and Tlr3/Il6/Stat3 pathways, prostaglandin Pdg2 

signaling inhibits de novo hair follicle regeneration in WIHN (Nelson Amanda M. et al., 2013). 

Furthermore, WIHN outcomes are prominently modulated by several transcriptional regulators, 

including the homeobox factor Msx2 (Hughes et al., 2018), zinc finger protein Cxxc5 (Lee et al., 

2017) and RNA-binding protein Msi2 (Ma et al., 2017). De novo dermal adipocyte regeneration 

is activated by BMP ligands produced by growing neogenic hair follicles (Plikus et al., 2017). 

Wound myofibroblasts activate the transcription factor Zfp423, a transcriptional regulator that 

drives adipogenic lineage commitment (Gupta et al., 2010), leading to dermal adipocyte 

regeneration. Hair follicles are critical for dermal adipocyte, as no dermal adipocytes can 

regenerate in hairless wounds (Plikus et al., 2017).  

While the signaling pathways for wound-induced hair follicle and dermal adipocyte 

regeneration have been partially elucidated, much less is known about the origin of both, the 

epithelial and mesenchymal cells competent for de novo regeneration (Plikus et al., 2012). 

Lineage tracing experiments by Ito et al. (2007) demonstrated that progeny of pre-existing 

Krt15-positive epithelial bulge stem cells from peri-lesional hair follicles do not give rise to de 

novo hair follicle components. Instead, lineage studies by Snippert et al. (2010) and Wang X. et 
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al. (2017) suggest that progeny of non-bulge Lgr6-positive and Lgr5-positive epithelial stem 

cells can contribute to the generation of neogenic hair follicles. Furthermore, the origin of de 

novo dermal papillae, the principal mesenchymal component of neogenic hair follicles, remains 

elusive. Lineage studies on Cd133-positive dermal papillae cells of preexisting hair follicles 

indicate that they do not mobilize upon skin wounding (Kaushal et al., 2015). At the same time, 

recent lineage tracing studies suggest that multiple pre-existing skin fibroblast lineages 

contribute progeny toward the repair of small wounds and that their contribution is not 

equivalent. Using lineage tracing with En1-Cre, Rinkevich et al. (2015) identified En1-positive 

and En1-negative dermal fibroblast populations, with the former making major contributors 

toward wound repair. In an independent study and using different Cre lines, Driskell et al. (2013) 

demonstrated that distinct dermal fibroblast lineages contribute to repair of small wounds and 

this occurs in successive waves. For instance, the progeny of lower, reticular dermal fibroblasts 

are recruited early after wounding and constitute the reticular dermis, while the progeny of 

upper, papillary fibroblasts migrate into the wound with a significant delay and establish the 

papillary dermis. On this end, contribution from distinct dermal fibroblast lineages toward 

newly-formed dermal papillae in the context of WIHN model warrants further investigation. The 

diverse nature of dermal papillae cell types (Driskell et al., 2011) and the lack of clear dermal 

papilla lineage master-regulators complicates functional validation of their origin. 

Unlike dermal papillae, the white adipose lineage with its well-established master-

regulators, such as Zfp423 (Gupta et al., 2010), Cepbs and Pparγ (Cristancho and Lazar, 2011), 

provides a tractable model system for studying de novo cell type regeneration. Recently, it was 

showed that de novo adipocytes regenerate from Sm22/Sma-positive contractile wound 

myofibroblasts (Plikus et al., 2017). Myofibroblast-specific ablation of Pparγ or BMP receptor 
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1a (Bmpr1a) largely prevented adipocyte regeneration in otherwise hair-bearing wounds. 

However, it remained unclear to what degree wound myofibroblasts are heterogeneous and if 

only some or multiple types of myofibroblasts are competent for reprogramming into new 

adipocytes under the signaling effects of de novo hair follicles. While it is broadly accepted that 

skin fibroblasts are highly heterogeneous in terms of their plasticity and secretory profile in 

normal skin, its heterogeneity in wounds, how it changes across wound healing and its potential 

contribution to the regeneration of skin appendages remains profoundly elusive, mainly due to 

the lack of cell surface markers that would render enable high-resolution fibroblast sorting, 

transcriptomic, proteomic and functional studies. The advent of microfluidic and droplet-enabled 

single-cell RNA-sequencing (scRNA-seq) technologies (Macosko et al., 2015, Pollen et al., 

2014) provides the ability to profile cellular heterogeneity in tissues with poorly characterized 

cell types and limited lineage-tracing tools. In fact, recent scRNA-seq studies performed on 

human skin demonstrates heterogeneity among dermal fibroblasts under homeostatic conditions 

(Philippeos et al., 2018a, Tabib et al., 2017). Similarly, scRNA-seq studies have also revealed a 

large degree of cellular heterogeneity in diseased (Filbin et al., 2018, Gaublomme et al., 2015, 

Puram et al., 2017, Stubbington et al., 2017, Tirosh et al., 2016a) and injured (Wurtzel et al., 

2015)tissues. Using a scRNA-seq approach, I identified and characterized multiple distinct 

fibroblast populations in regenerating mouse wounds in silico, demonstrated that they co-exist in 

wounds across the time course of regeneration and using distinct functional approaches, 

demonstrated that a rare myeloid-derived subset of wound myofibroblasts is capable of 

contributing toward de novo dermal adipocyte regeneration.    

RESULTS 
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3-end scRNA-seq was performed on viable cells isolated in toto from PWD12 large 

excisional wounds isolated from Sm22-Cre;tdTomato mice (Fig. 4.1). This time point was 

chosen for several reasons. First, it coincides with completion of wound re-epithelialization. 

Second, precedes the onset of hair follicle neogenesis and lastly, this time point shows 

heightened presence of alpha-smooth muscle actin-expressing myofibroblasts (Plikus et al., 

2017). Post capture in the droplet-enabled Chromium Platform, a total of approximately 22,322 

cells were obtained. Out of these, approximately 21,819 cells met quality control metrics post 

initial processing using Cell Ranger and were used for downstream analyses (see Chapter 2 for 

quality control metrics, Figure 4.2). Unsupervised clustering analysis using t-distributed 

stochastic neighbor embedding (t-SNE) (van der Maaten and Hinton, 2008), which is a feature 

built in Seurat and the package used in this analyses (Satija et al., 2015), identified 13 distinct 

cell clusters that were grouped based on differentially expressed gene signatures (Fig. 4.3.A). 

This information was utilized to attribute their putative cell type identities in silico and their 

unique gene expression profiles (Fig. 4.3.B, 4.3.D, 4.3.E). Among the clusters, the most 

abundant of them, representing 15.3% of all cells, was cluster C3, which was enriched for cells 

expressing macrophage markers, including C1qb, Cd14, Cd68, Lyz2, Mafb and Pf4 (Murray et 

al., 2014). Cluster C7 cells were classified as lymphocytes (representing approximately 4% of 

the total cell population) and they expressed Cd3d, Cd52, Ccl5, Icos and Nkg7 markers. Cluster 

C8 cells were identified as B lymphocytes (3.1%), C10 cells as T lymphocytes (1.4%) (Raff, 

1971, Tedder, 2015) and C12 as dendritic cells (0.8%) (Chu et al., 2011). Two other distinct cell 

clusters were C5 (9%) and C13 (0.6%). Cluster C5 cells were enriched for the endothelial 

markers Cav1, Cd34, Cd93, Ly6e, Ly6c1 and Pecam1 (Vecchi et al., 1994), while cluster C13 

cells were classified as lymphatic endothelial cells based on their expression of Ccl21a, Lyve1, 
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Pdpn and Prox1 (Kong et al., 2017). The remaining five cell clusters – C1, C2, C4, C6 and C9, 

representing approximately 64.6% of all wound cells analyzed and based on marker expression, 

were collectively characterized as wound fibroblasts. These five cell clusters were highly 

enriched for the expression of the collagens Col1a1 (Sokolov et al., 1995), Col3a1 (Le Goff et 

al., 2006), Col5a1, Col12a1 and the extracellular matrix proteins Dcn (Decorin) (Asano et al., 

2009) and Fbln2 (Fibulin 2) (Sicot et al., 2008). Many of putative fibroblasts also showed high 

expression levels of contractile proteins implicated in a myofibroblast-like phenotype 

acquisition, including Cald1 (Caldesmon 1), Acta2 (aka Sma) and Tagln (aka Sm22) (Hinz et al., 

2007).  

In order to learn more about the distinct fibroblast sub-populations/states that may be 

present in the wound, unsupervised clustering analysis (Satija et al., 2015) on all wound 

fibroblasts (those expressing the genes aforementioned and belonging to clusters C1, 2, 4, 6 and 

9) and observed further heterogeneity, which included 12 sub-clusters termed sC1-sC12 (Fig. 

4.4). Each sub-cluster contained unique marker gene profile signatures that may represent unique 

wound fibroblast sub-populations/states (Fig. 4.4.B, 4.4.C). Considering that transcription factors 

(TFs) commonly regulate cellular characteristics and fates (Iwafuchi-Doi and Zaret, 2016), the 

TF expression patterns of these putative distinct fibroblasts were examined. All fibroblast sub-

clusters shared expression of the following twenty TFs: Cebpb, Egr1, Fosb, Fosl2, Hif1a, Klf2, 

Klf4, Klf6, Klf9, Nfat5, Nfatc1, Nfkb1, Nr4a1, Nr4a2, Pbx1, Prrx1, Runx1, Stat3, Tcf4 and Zeb2. 

Collectively, these TFs can be defined as a common wound fibroblast TF signature. Notably, 

among these signature factors, Runx1 (Kim et al., 2014), Tcf4 (Noizet et al., 2016)  and Zeb2 

(Cunnington et al., 2014) were recently shown to regulate a contractile fibroblast differentiation 

program. Additionally, prominent sub-cluster specific TF signatures in sC3, sC9 and sC11 were 
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characterized by Ebf1high/Id3high/Zeb2high/En1low/Nfixlow/Prrx2low/Sox9off. Intriguingly, En1 

(Engrailed 1) was shown to mark a major pro-fibrotic population of skin fibroblasts, while 

selective enrichment of wounds for En1-negative fibroblasts via ablation of En1-Cre expressing 

cells, led to reduced scarring (Rinkevich et al., 2015). This suggests that cells present in sC3, sC9 

and sC11 sub-clusters might be developmentally related to an En1 negative fibroblast lineage, 

although further lineage tracing and functional analyses might be needed to further validate these 

claims. Among the remaining nine En1high sub-clusters, fibroblasts in six sub-clusters, namely 

sC1 and sC4-sC8, displayed low expression of Id2 and Id3 – direct targets of BMP signaling 

(Balemans and Van Hul, 2002). Among these six En1high/Id2low/Id3low sub-clusters, sC4 was 

Sox11high, sC5 – Twist2high, sC7 – Twist1high/Twist2high/Foxp1low and sC8 – Nfiahigh. Other En1high 

sub-clusters also displayed their own, albeit complex TF expression signatures. Lineage tracing 

studies, coupled with functional tissue-specific deletion experiments will be required to 

conclusively delineate the contribution of such fibroblasts in the acquisition of a scarring vs. 

regeneration phenotype after wounding. 

The expression of signaling pathway markers, secreted ligands and receptors of these 

putative fibroblast sub-populations/states was then determined. Three of the afore-mentioned 

En1low sub-clusters displayed the following receptor expression signature: 

Mcamhigh/Pdgfrbhigh/Fgfr1low/Tgfbr2low/Tgfbr3low/Ncam1off/Pdgfraoff, and ligand expression 

signature: Il6high/Pdgfahigh/Igf1low/Igfbp3low/Mdklow/Dkk3off. Nine En1high sub-clusters were 

primarily differentiated from En1low sub-clusters on the basis of their expression of PDGF 

receptor alpha (Pdgfra), while displaying low Il6, Pdgfa, Pdgfrb, high Igf1, Mdk, Tgfbr2 and 

Tgfbr3 expression. Additionally, among En1high sub-clusters, fibroblasts in sC2 were Angptlhigh, 

sC5 – Ccl8high/Cxcl5high/Grem1high/Spp1high, sC6 – Il1bhigh, sC7 – Ccl8high/Igfbp3low, sC10 – 
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Angptl1high/Il1bhigh/Pf4high and sC12 – Angptl1high/Fsthigh. Fibroblast sub-clusters were also 

profiled based on their cell cycle state (Scialdone et al., 2015, Tirosh et al., 2016b). Intriguingly, 

En1high sC4 and En1low sC11 sub-clusters were prominently enriched for G2/M cell cycle 

markers, suggesting these cells represent an actively highly cycling population. (Figure 4.5) 

Taken together, this scRNA-seq analyses suggests that, upon completion of re-epithelialization 

on PWD12, large skin wounds may contain two major fibroblast populations (Fig. 4.3.C). One 

population, representing 23.6% of wound fibroblasts, consists of three sub-clusters sC3, sC9 and 

sC11, which express low levels of En1, low levels of TGFβ receptors Tgfbr2, Tgfbr3, high levels 

of PDGF receptor Pdgfrb, but not Pdgfra. The second and more heterogeneous population, 

representing 76.4% of all wound fibroblasts, consists of nine En1high sub-clusters and expresses 

intermediate to high levels of TGFβ receptors Tgfbr2, Tgfbr3, high levels of PDGF receptor 

Pdgfra, but not Pdgfrb. Compared to En1low cells, the En1high population also expresses higher 

levels of extracellular matrix genes, including Col1a1 and Col3a1, but significantly fewer 

contractile factor genes, such as Acta2 and Tagln. The existence of two major wound fibroblast 

populations differentiated by their En1 expression is consistent with the report by Rinkevich et 

al. (2015), which identified two distinct contributions of En1-positive/negative cells to fibrosis. 

Notably, the En1high population also expresses high levels of Pdgfra, and previous studies 

implicated activation of Pdgfra signaling as the driver of fibrosis in the context of multiple 

tissues (Olson and Soriano, 2009), including adipose tissue  (Iwayama et al., 2015) and skeletal 

muscle (Mueller et al., 2016). The En1high population also expresses higher levels of receptors for 

the TGFβ pathway, another well-established driver of fibrosis (Branton and Kopp, 1999). At the 

same time, the En1low population expressed high levels of Pdgfrb. In line with this observation, a 

recent study identified Pdgfrb-expressing perivascular cells as the precursors for new adipocyte 
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regeneration in visceral white adipose tissue (WAT) depots in obesity (Shao et al., 2018). 

Similarly, this scRNA-seq analyses identified a high level of previously unappreciated 

heterogeneity within both fibroblast populations. Future studies will be necessary to definitely 

establish the role of each fibroblast sub-population in scar formation, wound contraction, as well 

as de novo hair follicle and dermal adipocyte regeneration.   

While t-SNE analysis helped to reveal a high degree of cellular heterogeneity among 

wound cells as well as fibroblasts, I was interested in determining whether fibroblasts shared a 

common, interconnected differentiation trajectory and could be revealed using an unsupervised 

algorithm for ordering cells based on their differential gene expression profiles. Indeed, in 

response to wounding, many fibroblasts undergo a differentiation program (Qiu et al., 2017a, 

Qiu et al., 2017b, Trapnell et al., 2014) into mature, alpha-smooth muscle actin expressing 

contractile myofibroblasts (Hinz et al., 2007, Tomasek et al., 2002). Importantly, in large 

wounds, myofibroblasts serve as the principal progenitors for de novo dermal adipocyte 

regeneration (Plikus et al., 2017). Wound fibroblasts were ordered in pseudotime using Monocle 

2, which performs pseudo-temporal ordering of cells based on differential gene expression 

profile and places cells along a putative differentiation trajectory (Qiu et al., 2017a, Qiu et al., 

2017b, Trapnell et al., 2014) (Fig. 4.6). Indeed, unbiased Monocle 2 analyses arranged most of 

wound fibroblasts into a major putative differentiation trajectory. Indeed, Monocle 2 placed cells 

expressing contractile factors Acta2 and Tagln toward the right end of the trajectory along 

Component 1, while cells expressing mature extracellular matrix genes Eln and Fn1, 

characterizing undifferentiated fibroblasts, preferentially distributed at the beginning of the 

pseudotime trajectory along Component 2 (Fig. 4.6.A). This analyses parallels the tSNE analyses 

performed on fibroblasts. This pseudotime analyses along Path 1 may represent a putative 
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fibroblast-to-myofibroblast differentiation trajectory. To interrogate the genes involved in this 

putative developmental trajectory scEpath was utilized (Jin et al., 2018). scEpath is a broadly 

unsupervised probabilistic method directed to reconstruct developmental trajectories in silico. 

scEpath revealed five pseudo-temporal “rolling wave” clusters of genes, which represent gene 

sets up- or down-regulated on different time scales across pseudotime (Fig. 4.6.B). Independent 

gene scoring analyses of these “rolling wave” clusters revealed multiple secreted signaling 

factors and TFs differentially expressed across pseudotime (Fig. 4.7.A, 4.7.B). Among the 

identified factors, expression of the signaling ligands Pdgfa (Bostrom et al., 1996), Tgfb1, Tgfb2 

(Thannickal et al., 2003) and TF Zeb2 (Cunnington et al., 2014), previously implicated in 

myofibroblast differentiation, preferentially distributed in the same pseudotime scale as Acta2 

and Tagln (Fig. 4.6.C). Taken together, unsupervised pseudotime analysis establishes a basis for 

exploring new signaling and transcriptional regulators of a wound fibroblast-myofibroblast 

differentiation program in vivo.  

Attention was turned to the fact that, in in silico data, many wound fibroblasts across all 

twelve sub-clusters expressed pan-hematopoietic markers (Fig. 4.8). Specifically, many 

fibroblasts expressed the myeloid-specific marker Lyz2 (Lysozyme 2) (Clausen et al., 1999) (Fig. 

4.8.A, 4.8.B). t-SNE analyses revealed fibroblasts that co-expressed Lyz2 with collagen Col12a1 

and the contractile markers Acta2 and Tagln, hence, identifying Lyz2+/Acta2+/Tagln+/Col12a1+ 

quadruple-positive wound myofibroblasts. These Lyz2-expressing myofibroblasts represented 

11.3% of all wound fibroblasts and were present as puncta in all fibroblasts sub-clusters (Fig. 

4.8.C). Following these findings, and to corroborate that these quadruple-positive cells do not 

represent duplets/multiplets, a common technical feature of droplet-enabled scRNA-seq, mRNA 

and protein of single cell analyses was performed on genetically labeled myofibroblasts (Fig. 
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4.9). Full length scRNA-seq (Pollen et al., 2014) (Fig. 4.9.A) was performed on tdTomatohi cells 

isolated from Sm22-Cre;tdTomato wounds at PWD12 (Plikus et al., 2017). Due to the low yield 

of capture in Fluidigm IFCs, 3 individual experiments were performed (Figure 4.10.A). Gene 

sets were normalized using SCnorm (Bacher et al., 2017). Post quality control assessment, a total 

of 166 cells were used in downstream analyses (Figure 4.11.A, 4.11.B, 4.11.C). t-SNE analyses 

revealed tdTomatohi myofibroblasts clustered into 3 distinct clades (fC1-3), with fC3 showing a 

subset of cells expressing Lyz2 (Fig. 4.11.B). Indeed, cells in this clade also expressed Acta2, 

Talgn, and Ptprc (Bryder et al., 2006) (Fig. 4.11.C). In parallel, single cell immunoblotting 

(Hughes et al., 2014) was performed on cells isolated in toto from wounds of Sm22-

Cre;tdTomato mice (Fig. 4.9.C). Blots were probed with mCherry and LYZ antibodies to detect 

tdTomato+/Lyz2+ cells. Indeed, a total of X cells were tdTomato+ and approximately Y cells 

were Lyz2+ cells (Fig. 4.11.D, 4.11.E). Taken together, 3’-end droplet-enabled scRNA-seq 

analyses, with further corroboration and characterization using full length scRNA-seq and single 

cell immunoblotting, identified a population of wound myofibroblasts with hematopoietic 

features that could contribute to wound remodeling and regeneration. 

Previous work indicates that circulating hematopoietic cells can convert into 

myofibroblasts at sites of injury (Ogawa et al., 2006), and that the extent and significance of this 

conversion tends to be organ and injury context-specific (Badiavas et al., 2003, Barbosa et al., 

2010, Fathke et al., 2004, Ishii et al., 2005, Opalenik and Davidson, 2005, Roufosse et al., 2006, 

Sinha et al., 2018, Suga et al., 2014, van Amerongen et al., 2008). Considering that in large 

excisional wounds de novo dermal adipocytes originate predominantly from myofibroblasts 

(Plikus et al., 2017), the extent to which hematopoetic cells contribute to wound remodeling and 

regeneration of dermal adipocytes was determined. First, bone marrow transplantation (BMT) 
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mouse models (Duran-Struuck and Dysko, 2009) were utilized to interrogate the hematopoetic 

contribution to large wound repair and regeneration. In some BMT models, lethally-irradiated 

mice were reconstituted with GFP-expressing hematopoetic stem cells. In others, bone marrow 

was reconstituted with cells expressing lacZ under the control of various lineage specific 

promoters. Peripheral blood chimerism was determined to assess bone marrow reconstitution. 

Hematopoietic lineage specificity in these experiments was determined by generating BMT mice 

using multipotent hematopoietic stem cells (HSCs) purified based on the described SLAM 

marker signature: Lineageneg,Sca1+,c-kit+,Cd150+,Cd48neg (Yilmaz et al., 2006). Between 2,300 

and 4,400 HSCs were transplanted per recipient mouse and in all cases achieved successful 

reconstitution of the hematopoietic lineage, which was confirmed by high levels of peripheral 

blood chimerism and bone marrow fluorescence. Following large excisional wounding, healed 

tissue in GFP+ HSC BMT mice showed consistently high contribution from hematopoietic 

lineage on PWD28, with many GFP+ cells surrounding neogenic hair follicles (n=18). Flow 

cytometry analysis of wound tissue confirmed that long-term contribution from the 

hematopoietic lineage constituted approximately 30% at both PWD28 (n=3) and 2 months PW 

(n=3). In contrast, BMT mice that received GFP+ Cd45neg non-hematopoietic bone marrow 

fraction had no GFP+ contribution to the wound. Wounding in BMT mice reconstituted with 

Sm22-Cre;R26R HSCs was performed whether LacZ marked hematopoietic-derived contractile 

cells in the wound bed. Indeed, consistent with the possibility of hematopoietic contribution to 

wound myofibroblasts, many lacZ positive cells in the wound tissue of Sm22-Cre;R26R HSCs 

BMT mice (n=9) were observed, suggesting they can graft in the wound for long term (Fig. 

4.12.A).  
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Because fibroblast and white adipose lineages are closely related, it was hypothesized 

that some hematopoietic cells that initially convert into wound myofibroblasts might then 

become de novo dermal adipocytes. Although contested (Berry and Rodeheffer, 2013, Koh et al., 

2007, Tomiyama et al., 2008), several studies report that, in principle, hematopoietic cells can 

convert into adipocytes upon integration into pre-existing white adipose tissue depots (Crossno et 

al., 2006, Majka et al., 2010, Sera et al., 2009) under normal conditions. Contribution of 

hematopoietic cells toward adipose depots appears to be variable, and largely depends on gender 

and anatomical site (Majka et al., 2010). To evaluate the possibility of hematopoietic 

contribution toward de novo dermal adipogenesis in the wound, BMT and non-BMT mouse 

models were interrogated (Fig. 4.12.B, 4.13.B). Indeed, wounds in GFP+ HSC BMT mice 

contained many GFP+ cells that co-stained for the adipocyte marker FabP4 (Shan et al., 2013) in 

the areas surrounding neogenic hair follicles, but not in the hairless portions of the scar. 

Importantly, further BMT assays determined that hematopoietic to dermal adipose conversion, 

rather than cell fusion, takes place during de novo dermal adipocyte regeneration in large wounds 

(data not shown). 

Functional lineage tracing using Cd45-Cre;R26R mice further verified that hematopoietic 

cells contribute to de novo dermal adipocyte regeneration under physiological conditions, and 

not only in the context of BMT models (Fig. 4.14.A). In these mice, where Cre recombinase 

activity is restricted to the hematopoietic lineage (Yang et al., 2008), consistent, albeit occasional 

formation of lacZ positive de novo dermal adipocytes (n=9) was observed. Similarly, lacZ 

positive dermal adipocytes formed in the wounds of LysM-Cre;R26R mice (n=12) (Clausen et 

al., 1999) (Fig. 4.14.B), suggesting that hematopoietic contribution to dermal adipocyte 

regeneration is mediated, at least in part, via myeloid progenitors. Consistent with occasional 
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distribution patterns of lacZ positive adipocytes in LysM-Cre;R26R mice, as well as the small 

percentage of Talgn/Lyz2, Acta2/Lyz2, or quadrupled-positive cells, LysM-Cre;Pparγ-/- mutants 

did not have a significant de novo dermal adipocyte defect  (n=20), unlike that observed in 

constitutive Sm22-Cre;Pparγ-/- or conditional Sma-CreER;Pparγ-/- mice described before (Plikus 

et al., 2017) (Fig. 4.11.C). Of interest, in both mouse models, occasional formation of neogenic 

hair follicles with lacZ positive dermal papillae and dermal sheath were observed, suggesting 

that the lineage plasticity repertoire of hematopoietic cells during wound regeneration might 

extend beyond dermal adipogenesis. Taken together, functional BMT and lineage tracing studies 

help to establish the role of hematopoietic cells as a source of dermal adipogenic progenitors 

during wound healing. 

DISCUSSION 

Traditionally, adult mammals are considered to have limited regenerative abilities and 

scarring is thought to be the default repair response in most types of injuries. The notable 

exceptions to this rule are digit tip regeneration after amputation (Johnston et al., 2016, 

Lehoczky et al., 2011, Rinkevich et al., 2011, Takeo et al., 2013), pancreatic islet (Thorel et al., 

2010), lung alveoli (Jain et al., 2015), stomach epithelium (Stange et al., 2013), biliary system 

(Schaub et al., 2018), and neogenesis of hair follicles (Billingham and Russell, 1956, Breedis, 

1954, Brook et al., 1960, Gay et al., 2013, Ito et al., 2007, Myung et al., 2013, Nelson Amanda 

M. et al., 2013, Nelson Amanda M. et al., 2015, Stenbäck et al., 1967) and dermal adipocytes 

(Plikus et al., 2017) in large excisional skin wounds. Intriguingly, lineage studies reveal 

important differences in the regenerative strategies between these systems, including 

regeneration from fate-restricted progenitors, lineage reprogramming and transdifferentiation. 
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A remaining question that stands in the field is whether all wound myofibroblasts are 

identical or heterogeneous in terms of their origin (Mack and Yanagita, 2015), properties and 

morphogenetic competence (i.e. scarring vs. regeneration-prone)? Indeed, myofibroblast origin 

has been determined to be tissue and injury-context specific, with Gli1+ perivascular cells giving 

rise to myofibroblasts in kidney, lung, liver, heart (Kramann et al., 2015) and bone marrow 

(Schneider et al., 2017). While studying the cellular pedigree of cells requires specific genetic 

fate mapping strategies and assessment of morphogenetic competence using functional studies, 

scRNA-seq analyses enables large-scale profiling of cellular properties in complex tissues. 

Indeed, scRNA-seq has been successfully applied to studying cellular heterogeneity in skin, 

including epithelial cells of mouse hair follicles (Joost et al., 2016, Yang et al., 2017), and 

immune cells (Ahn et al., 2017) and fibroblasts of human dermis (Philippeos et al., 2018b, Tabib 

et al., 2017). Tabib et al. (2017) identified two major populations of human dermal fibroblasts, 

characterized by co-expression of SFRP2+/DPP4+ and FMO1+/LSP1+ markers, respectively. 

These further subdivide into several sub-populations, each with unique differentially expressed 

gene sets. Philippeos et al. (2018b) on the other hand, identified five fibroblast populations: 

corresponding to upper (papillary) and lower (reticular) dermal fibroblasts, pericytes, and two as 

of yet uncharacterized populations. scRNA-seq has also been used to study heterogeneity of 

disease-associated fibroblasts in the synovial tissue upon rheumatoid arthritis (Mizoguchi et al., 

2018, Stephenson et al., 2018).  

In this chapter, a description of a scRNA-seq study aimed at identification of 

heterogeneity of wound fibroblasts in the mouse model for injury-induced skin regeneration is 

presented. Data shows that fibroblasts can be broadly classified into two major populations on 

the basis of their En1 and PDGF receptor expression patterns. Indeed, previous work showed that 
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En1 differentiates between two major mouse skin fibroblast populations and that En1-Cre 

expressing cells dominate during fibrotic repair of small skin wounds (Rinkevich et al., 2015). 

En1high wound fibroblasts in our analyses also expressed high levels of Pdgfra, a known 

signaling driver of tissue fibrosis (Iwayama et al., 2015, Mueller et al., 2016, Olson and Soriano, 

2009). In the wound model employed, En1low/Pdgfralow cell clusters constituted 23.6% of all 

wound fibroblasts. In the future, it will be important to examine if these cells preferentially 

contribute toward newly regenerating dermal adipocytes as compared to En1high/Pdgfrahigh 

fibroblasts. Future work will be required to understand the functional significance of this 

heterogeneity in the context of regeneration and to lineage trace their origin to distinct skin 

fibroblast populations in unwounded skin (Driskell et al., 2013, Lesko et al., 2013, Philippeos et 

al., 2018a, Rinkevich et al., 2015, Rivera-Gonzalez et al., 2016, Schmidt and Horsley, 2013).  

BM-derived progenitors, including circulating HSCs, fibrocytes, endothelial progenitors 

and mesenchymal stem cells can contribute progenies toward injured tissues in various organs. 

For instance, scar tissue in heart following myocardial infarction (van Amerongen et al., 2008), 

cornea following keratectomy (Barbosa et al., 2010) and lung in pulmonary fibrosis (Ishida et al., 

2007, Schmidt et al., 2003) contains many BM-derived collagen-producing myofibroblasts. In 

skin, many studies have documented BM giving rise to fibroblasts at the sites of injury, such as 

in wounds (Badiavas et al., 2003, Chen et al., 2017, Ding et al., 2011, Fathke et al., 2004, Ishii et 

al., 2005, Maan et al., 2015, Oh et al., 2011, Opalenik and Davidson, 2005, Ou et al., 2015, Sinha 

et al., 2018, Suga et al., 2014, Sun et al., 2018, Yang et al., 2005). Despite the vast majority of 

works describing these findings, some studies, however, report this contribution to be minimal 

(Barisic-Dujmovic et al., 2010, Higashiyama et al., 2011). Such a discrepancy is likely attributed 

to several factors, including the type and extent of injury and experimental timing. The 
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contribution from BM progenitors toward repairing tissues was shown to increase with the extent 

of injury (Ishii et al., 2005, Mansilla et al., 2006, Yamaguchi et al., 2007), yet most of the 

previous studies were performed on small wounds. In addition, many previous studies failed to 

evaluate long-term BM contribution to the wound. 

This data from large excisional wounds shows that the contribution from hematopoietic 

cells to the scar tissue one month after wounding is significant, and that at least a portion of these 

cells can convert into de novo dermal adipocytes around neogenic hair follicles. Previously, 

adipogenic conversion of hematopoietic cells has been shown both in vitro (Eto et al., 2013, 

Gavin et al., 2017, Hong et al., 2007, Hong et al., 2005) and in vivo in major adipose depots, 

such as in inguinal fat (Crossno et al., 2006, Gavin et al., 2016, Majka et al., 2010, Sera et al., 

2009). Most recently, approximately 10% of adipocytes were shown to form from hematopoietic 

progenitors in human subjects undergoing BMT treatment (Ryden, 2016, Ryden et al., 2015), 

while in another human BMT study, up to 35% of adipocytes were traced to transplanted BM 

source (Gavin et al., 2016). Overall, the findings presented here illustrate the dynamic nature of 

fibroblast identities during wound healing, and the powerful wound induced plasticity of 

hematopoietic derived cells. scRNA-seq its subsequent analysis inferred three main results. First, 

it revealed a previously unappreciated degree of cellular heterogeneity in healing large skin 

wounds, composed of large subsets of immune, endothelial and fibroblast cells. Second, sub-

clustering of fibroblasts and unsupervised pseudotime analyses revealed a putative fibroblast-

myofibroblast differentiation trajectory and identified putative TFs involved in this process. 

Lastly, it revealed a high degree of myofibroblast heterogeneity and identified a hematopoetic-

derived sub-population of myofibroblasts that contribute to wound healing long-term and 

undergo reprogramming toward a dermal adipocyte fate. This intimate relationship between the 
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hematopoietic derived cells and dermal adipogenesis suggests further characterization of the 

factors influencing plasticity and lineage switching in skin wounds and could help uncover 

potential novel therapeutic approaches to the treatment of wounds and scars. 

METHODS 

Mouse strains. The following transgenic mouse models were used in this study: Retn-lacZ 

(Banerjee et al., 2004), Sm22-Cre (JAX stock 004746), Cd45-Cre (Yang et al., 2008), LysM-Cre 

(Clausen et al., 1999), FabP4-Cre (JAX stock 005069), Pparγ-flox (JAX stock 004584), R26R 

(JAX stock 003474), tdTomato (JAX stock 007909), GFP (UBC-GFP; JAX stock 004353), RFP 

(ACTB-DsRed.MST; JAX stock 006051), Rag1-/- (JAX stock 002216). Mixed background mice 

were used in this study.   

Genotyping. Genotyping was performed on genomic DNA isolated from tail or ear. Tissues 

were digested using proteinase-K. Different thermocycler programs were used for each 

individual strain. The following primers were used: Cd45-Cre, Sm22-Cre, Adipoq-Cre: Gnrc-

Cre-F: GCGGTCTGGCAGTAAAAACTATC; Gnrc-Cre-R: 

GTGAAACAGCATTGCTGTCACTT; Gnrc-Cre-Ctr-F: 

CTAGGCCACAGAATTGAAAGATCT; Gnrc-Cre-Ctr-R: 

GTAGGTGGAAATTCTAGCATCATCC. Expected results: Internal control: ~324 bps, Mutant 

allele: ~100 bps. ROSA - R26R: ROSA-Mut: GCGAAGAGTTTGTCCTCAACC; ROSA-F: 5’-

AAAGTCGCTCTGAGTTGTTAT; ROSA-R: GGAGCGGGAGAAATGGATATG. Expected 

results: Mutant: 340 bps, Heterozygote: 340 bps and 650 bps, Wild-type: 650 bps. tdTomato: 

TdTomato F: CGGATCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGGTC; 

TdTomato R: GAGCGGCCGCTTACTTGTACAGCTCGTCCATGCCGTACAG. Expected 

results: Mutant 200 bps, Wild type 300 bps. 
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Wounding procedures. All animal experiments were carried out in accordance with the 

guidelines of the Institutional Animal Care and Use Committee of the University of California, 

Irvine. Animals were anesthetized with isoflurane, hairs were clipped, skin site was disinfected 

and a single full thickness excisional wound was created on their dorsum using scissors (squared 

s = 1.5 cm) (Gay et al., 2013, Ito et al., 2007, Plikus et al., 2017). Following wounding, all 

animals were housed individually. Wounds were let to heal by secondary intention. No wound 

dressing was applied. Animals were used as biological replicates. 

Histology and immunohistochemistry. Tissues were fixed in 4% PFA, dehydrated, paraffin 

embedded, and sectioned at 7 µm thickness. Frozen tissues were sectioned at 12 µm. 

Immunostaining was performed both on frozen and paraffin sections. Heat-based antigen 

retrieval was performed when necessary. The primary antibodies used were goat anti-FabP4 

(1:200; R&D Systems), rabbit anti-Sma (1:200; Abcam), rabbit anti-Krt5 (1:250; BioLegend). 

3’-end single cell RNA-sequencing. Pooled skin wound tissues (n=12 animals) were collected 

from Sm22-Cre;tdTomato mice on day 12 PW. Wound tissues were micro-dissected and 

incubated in a Dispase II/Collagenase IV/Liberase solution for 60 minutes with constant rotation. 

Post-incubation, cell aggregates were mechanically dissociated using GentleMACS (MACS). 

Single cell suspensions were treated with 1X RBC lysis buffer, washed, and re-suspended in 

0.04% UltraPure BSA (Biolegend). Dead cells were removed using the MS columns of the Dead 

Cell Removal Kit (MACS) as per manufacturer’s directions. Live cells were resuspended in 

0.04% UltraPure BSA and counted using the automated cell counter Countess (Thermo). Single 

cells were captured using the Chromium® Platform (10X Genomics) and libraries were 

generated using Single Cell 3’ v2 chemistry, which is related to Drop-seq technology (Macosko 

et al., 2015). Library metrics were as follow: 550.19 pg/µl with an avg. size ~454 bps. Libraries 
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were sequenced on an Illumina Next-Seq4000 platform (Illumina) (one lane, 100 PE). Cell 

counting, capture, chemistries, library preparation, quality control and sequencing was performed 

at the Genomics High Throughput Sequencing facility at the University of California, Irvine. 

Full length single cell RNA-sequencing. Pooled skin wound tissues (n=2 to 3 animals) were 

collected from Sm22-Cre;tdTomato mice on days 12, 15 and 21 PW. Cells were collected and 

sorted as previously described (Plikus et al., 2017). Pre-sorted, viable tdTomatohi single cells 

were re-suspended at appropriate concentrations in DMEM supplemented with 10% FBS, 

antibiotics and antifungals, diluted with suspension reagent for attribution of optimal buoyancy, 

and loaded onto a large 17-25µm 96-well microfluidic IFC (Fluidigm) for single cell capture in 

the automated C1® system for single-cell genomics (Fluidigm) (Pollen et al., 2014). Capture 

efficiency was assessed using bright field/fluorescent microscopy. Only cells captured singly 

(singlets) per micro-well were considered for downstream purposes. Double (doublets) and 

multiple (multiplets) cells captured per well were excluded. Lysis, RT and cDNA pre-

amplification were performed in loco (protocol 1.773x) with ultra-low input RNA reagents as 

suggested per manufacturer (Clonetech). RNA spike-in controls were omitted. cDNA 

concentrations were estimated using Qubit 2.0 (Thermo) and cDNAs with concentration ≥ 1.0 

ng/µl were used for downstream library preparation. Libraries were amplified using the Nextera 

XT v2 Index Kit (Illumina). Quality control on multiplexed libraries was performed using the 

Agilent Bioanalyzer and quantification was performed using KAPA for Illumina Sequencing 

Platforms (Illumina). Multiplexed libraries were sequenced as paired-end on an Illumina Next-

Seq500 platform (Illumina).  

Data processing for 3’-end single cell RNA transcripts. Transcripts were mapped to the mm10 

reference genome (GRCm38.91) using Cell Ranger Version 2.1.0. Sequencing metrics: 
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~308,471,010 total number of reads, ~98.5% valid barcodes; Mapping metrics: ~90.4% reads 

mapped to genome, ~85.5% reads mapped confidently to genome, ~65.9% reads mapped 

confidently to transcriptome. Cell metrics: ~22,322 estimated number of cells, ~84.2% fraction 

reads in cells, ~13,819 mean reads per cell, ~1,101 median genes per cell, ~19,070 total genes 

detected, ~2,448 median UMI counts per cell. Quality control metrics for 3’-end transcripts, 

downstream analyses of 3’-end transcripts were performed using Seurat (Satija et al., 2015). 

Cell-cycle discrimination analyses were performed as described in (Tirosh et al., 2016a). All 

details pertaining to these analyses are described in Guerrero-Juarez et al., In Review. 

Differential gene expression across pseudotime was performed using Monocle 2 (Qiu et al., 

2017a, Qiu et al., 2017b, Trapnell et al., 2014). Identification of differentially expressed gene 

clusters across pseudotime, as well as rolling wave plots were generated using scEPath package 

(Jin et al., 2018). 

Full length single cell RNA transcript alignment and quantification. Demultiplexed, paired-

end FASTQs were aligned to the mouse genome (mm10/gencode.Mv13) using Bowtie (version 

1.0.0) with the following standard parameters: rsem-prepare-reference --bowtie --gtf and 

quantified using the RNA-seq by Expectation-Maximization algorithm (RSEM) (version 1.2.31) 

(Li and Dewey, 2011) with the following standard parameters: rsem-calculate-expression -p 

$CORES --paired-end. Samples displaying ≥ 159,000 aligned reads were considered for 

downstream quality control filtering. All details pertaining to these analyes are described in 

Guerrero-Juarez et al., In Review. 

Single cell immunoblotting. All details pertaining to these analyes are described in Guerrero-

Juarez et al., In Review. 
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Figure 4.1. Schematic of single cell RNA-seq on early mouse wounds. Schematic of cell 

isolation from day 12 wounds, cell processing, capture by droplet-enabled device (Chromium® - 

10X Genomics), sequencing and downstream analysis. 
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Figure 4.2. Quality control metrics of 3’-end single cell data. (A, B) Genes/Cell, unique 

molecular identifiers (UMI)/Cell, and ratio of mitochondrial (mito)/Cell genes are shown. (C) t-

SNE plot with color-coded UMIs per cell is shown. Cells with the highest UMI are colored 

black. t-SNE plot with color-coded number of expressed genes per cell is shown. Cells with the 

lowest number of genes are colored in light yellow and highest number of expressed genes are 

colored black. 
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Figure 4.3. Identification of the cellular ecosystem of early mouse skin wounds. (A, B) t-

SNE plot reveals cellular heterogeneity in post-wounding day 12 skin wounds. 13 distinct 

cellular clusters are identified and color-coded with hierarchical clustering of sequenced cells. 

(C) Wound schematic showing cellular repertoire in day 12 wounds. (D) Different cell types, as 

identified on scRNA-seq, are color-coded to match cell cluster colors. Heatmap of differentially 

expressed genes. (E) Relative expression of select cluster-specific genes in all sequenced wound 

cells is shown. Two differentially expressed genes are shown per cluster.  
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Figure 4.4. Sub-clustering of wound fibroblast. (A, B) Sub-clustering of wound fibroblasts 

identified twelve sub-clusters with distinct gene expression profiles. (C) t-SNE plots of select 

cluster-specific genes. Expression levels for each cell are color-coded and overlaid onto the t-

SNE plot. Cells with the lowest number of genes are colored in light yellow and highest number 

of expressed genes are colored black. 
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Figure 4.5. Cell cycle analyses. (A) t-SNE plot of assigned cycling score on total wound cells. 

Cells in S phase are colored pink, G2/M phase – blue and G1 phase – grey. (B) t-SNE plot of 

assigned cycling score on wound fibroblasts. (C) Proportion of hair cycle stages per cluster.  
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Figure 4.6. Pseudotime analyses of wound fibroblasts. (A) Unbiased pseudotime analysis on 

wound fibroblasts reveals putative fibroblast lineage trajectories. Putative fibroblast 

differentiation trajectory (Path 1) is marked. (B) scEpath analysis performed on Path 1 wound 

fibroblasts identifies five gene clusters (pC1 through pC5) of differentially expressed genes. 

“Rolling wave” plot of the expression levels for all differentially expressed genes in wound 

fibroblasts. (C) Expression levels of contractile markers Tagln (top) and Acta2 (bottom) overlaid 

onto the pseudotime trajectory of wound fibroblasts.  
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Figure 4.7. Rolling wave plots and gene expression dynamics across pseudotime. (A) Rolling 

wave plots for select signaling molecules (left) and transcription factors (right) identified as 

differentially expressed in wound fibroblasts from Path 1 pseudotime trajectory. (B) Pseudotime 

analyses of select extracellular matrix genes, signaling factors, and transcription factors. 
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Figure 4.8. Identification of rare hematopoietic-derived wound myofibroblasts in silico. (A) 

Overlay of Lyz2, Tagln and Acta2 expression onto t-SNE space reveals Lyz2/Tagln and 

Lyz2/Acta2 double-positive cells among wound fibroblasts. Similarly, quadruple-positive cells 

distribute throughout all wound fibroblast subclusters, similar as double-positive cells. (B) 

Correlation plots of Lyz2 vs Tagln or Lyz2 vs. Acta2. (C) Quantification of quadrupled-positive 

cells in each fibroblast sub-cluster.   
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Figure 4.9. Schematic of hematopoetic-derived myofibroblast characterization. (A) 

Schematic of characterization of Lyz2-expressing myofibroblasts using (B) full length single cell 

RNA-sequencing and (C) single cell immunoblotting. 
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Figure 4.10. Full length scRNA-seq quality control metrics. (A) Visual discrimination of 

automated singlet and multiplet cell capture is shown. (B) Genes/cell, FPKM/cell, and ratio of 

mitochondrial (mito)/cell genes are shown. (C) Normalization of scRNA-seq data using scNorm. 

Graph on the left shows pre-normalization distribution of gene expression counts to sequencing 

depth for ten equally sized groups of genes. Each gene group is color-coded. Graph on the right 

shows post-normalization count-depth relationship. A – 125 µm. 
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Figure 4.11. Identification of rare hematopoietic-derived wound myofibroblasts. (A) t-SNE 

plot reveals cellular heterogeneity among tdTomato+ cells in day 12 skin wounds from Sm22-

Cre;tdTomato mice. A total of 116 sequenced cells are analyzed. Three distinct cellular clusters 

are identified and color-coded. (B) Heatmap of top differentially expressed genes is shown in the 

center and Lyz2 is marked. (C) Violin plots of contractile markers Acta2 and Tagln, pan-

hematopoietic marker Ptprc (aka Cd45) and myeloid marker Lyz2 are shown on the right. (D) 

Single-cell western blot analysis on unsorted cells from day 12 post-wounding Sm22-

Cre;tdTomato wounds reveals Lyz2-expressing myofibroblasts. Relative fluorescence units are 

shown. (E) Quantification of tdTomato+/Lyz2+ cells shows that approximately 6% of tdTomato-

expressing wound cells were Lyz2+/tdTomato+ double positive (77 out of 1,293 cells). 
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Figure 4.12. Long term contribution of hematopoetic-derived cells to regenerating wounds. 

(A) LacZ expression patterns in the wounds of Sm22-Cre;R26R HSCs BMT mice confirm that a 

portion of contractile scar cells originate from hematopoietic progenitors. (B) GFP expressing 

cells in GFP+ HSCs BMT mice show significant contribution to the areas of hair follicles and 

dermal fat neogenesis 28 days post-wounding. Size bars: A – 1 mm, B – 50 µm. 
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Figure 4.13. Contribution of hematopoetic-derived cells to regenerating wounds. β-

galactosidase positive cells (red) with adipose morphology form in the wounds of myeloid-

specific LysM-Cre;R26R mice. Size bars: 200 µm. 
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Figure 4.14. Recruited hematopoetic progenitors contribute to regeneration of skin. (A, B) 

LacZ positive clusters of adipocytes (white arrowheads) and lacZ positive dermal papillae are 

consistently observed in the wounds of hematopoietic specific Cd45-Cre;R26R and myeloid-

specific LysM-Cre;R26R mice. (C) When Pparg is deleted in Cd45 or LysM-expressing cells, 

dermal adipocytes regenerate, suggesting that the contribution of hemaeopoetic-derived dermal 

adipocytes is limited. Size bars: A, B – 200 µm; C – 1mm. 
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CHAPTER 5 
 

Summary, conclusions and future directions 
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 In the works presented in this thesis, I investigated and expanded on important concepts 

in wound healing and regeneration previously observed in the laboratory mouse – Mus musculus. 

The paradigm in the field of wound healing suggested that mice healed wounds by scarring, and 

this idea prevailed for many years in the field. Skin scar tissues are different from normal, 

unwounded skin in that they lack appendages and may be compromised and susceptible to 

further injury and infection from opportunistic pathogens. In the mid 1950s, Breedis et al. 

described the ability of rabbits to regenerate hair follicles de novo after wounding, which 

partially reminisces nascent skin. Since then, several models of skin regeneration have been 

described. It wasn’t until the 2000s when Ito and colleagues re-discovered this phenomenon in 

mice and fully characterized the molecular mechanisms driving it. It was termed wound induced 

hair neogenesis (WIHN). Because of the contradicting literature on the ability of rats to 

regenerate hair follicles de novo after wounding, I became interested in comparing their ability to 

regenerate with mice, the established model of skin and appendage regeneration. By performing 

detailed characterization of the wound healing dynamics in both systems, it was determined that 

both animal species can heal and carry out otherwise normal wound re-epithelialization 

dynamics after large excisional wound infliction. However, rats, unlike mice, consistently failed 

to regenerate de novo hair follicles. This lack of regenerative potential held true in different large 

injury models and strains/genetic backgrounds. I took advantage of the growing field of 

transcriptomics and devised a strategy to interrogate the transcript profile changes in dermis and 

epidermis of rats – both important for hair follicle regeneration, and compared with those in mice 

at a time point coincident with initiation of hair follicle neogenesis. Interspecies transcriptome 

analyses revealed intrinsic tissue differences between both species, whereby rat epidermis 

expressed an array of distinct transcriptional and epigenetic factors, markers of epidermal repair, 
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hyperplasia, and inflammation, and lower levels of the pleiotropic WNT signaling effectors and 

regulators. Epigenetic regulators involved in WIHN have been seldom studied. In the 

interspecies analyses, several epigenetic factors were identified, suggesting that these might be 

important for achieving, or not, a regenerative potential. These included including Satb1, Setd1b, 

Setdb1, and Whsc1l1. Currently, there are many available transgenic mouse systems available 

that may be used to evaluate the role of the aforementioned epigenetic factors in WIHN. The 

number of transgenic rats, however, is rudimental. To overcome this issue, xenotransplantation 

rat models were used to evaluate the lack of competency of rat adult epidermis to inductive 

signals by dermal papillae. Indeed, it was determined that the epidermis of rats cannot be 

induced to regenerate hair follicles, further confirming the interspecies analyses that the 

epidermis of rats appears less mature. Future experiments in this area can further explore the role 

of transcription and epigenetic factors in WIHN in mice by taking advantage of the availability 

of tissue specific Cre and LoxP systems. In rats, one could exploit new technologies for in vivo 

gene KO, such as CRISPR (Wu et al., 2017), as well as in vivo CRISPR screens (Wu et al., 

2018) to identify genes involved in regeneration vs. scarring in rats.  

The characterization of hair follicle neogenesis in mice opened up new areas of 

investigation in the field of wound healing. Surprisingly, recent study identified that dermal 

adipocytes also regenerate in the wound area, and this process is coupled with hair follicle 

neogenesis. Intriguingly, the origin of dermal adipocytes was determined to be from 

myofibroblasts. In the past, myofibroblasts were believed to be a terminally differentiated cell 

type. Nonetheless, it was identified that hair follicles instruct myofibroblasts with signals to 

change its fate toward adipose lineage. This research opened up various research venues toward 

modulation of scarring and fibrogenic behavior in organs and tissues via reprogramming of 
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myofibroblasts. This novel concept has also the potential to be applied to skin cancers. For 

example, modulation of myofibroblast reprogramming can have profound effects on resolution 

of cancer stroma formation. Future studies should aim at characterization of the roles of dermal 

adipocytes in wound behavior. For example, it should be determined whether dermal adipocytes 

can confer wounds with the ability to fight infection by S. aureus, the most common type of 

infection in soft tissues (Zhang et al., 2015) and whether they can also modulate hair cycling of 

neogenic hair follicles (Zhang et al., 2016). Additionally, some myofibroblasts are unable to 

undergo regeneration into dermal adipocytes. It should also be explored whether this is due to 

myofibroblast heterogeneity, or specification prior onset of hair follicle regeneration. 

Although the origin of myofibroblasts is quite heterogeneous and tends to be dependent 

on injury type and organ, the myofibroblast tends to express contractile proteins, including alpha 

smooth muscle actin, when mature. By using advent single cell sequencing technologies, coupled 

with functional lineage tracing and bone marrow transplantation assays, the heterogeneity of 

early stage wounds prior the onset of regeneration was explored. First, a large repertoire of cell 

types were identified. These cell types ranged from endothelial, immune to several subsets of 

fibroblasts. Collectively, this wound ecosystem might work in concert to initiate a regenerative 

response in wounds. This idea should be explored in future studies. By taking advantage of tools 

to explore the behavior of lineage connected cells in pseudotime, the trajectory of fibroblasts 

toward a myofibroblast state was explored. Indeed, many putative genes were identified in this 

differentiation trajectory that may be important in myofibroblast differentiation. Future studies 

should aim at functionally testing these genes in the context of wound healing using in vivo 

CRISPR KO techniques, or tissue specific gene ablations using Cre-Lox technologies. Similarly, 

one should determine which fibroblast populations have the potential to give rise to dermal 
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adipocytes in the wound by employing functional lineage tracing technologies and loss- or gain- 

of function experiments. Lastly, a hematopoetic-derived, collagen producing fibroblast was 

identified in the wound. This cell, indeed, exists in wounds and has the potential to maintain 

itself in the wound environment long term, and reprogram into a small number of dermal 

adipocytes during regeneration. Future studies should aim at further delineating the heterogeneity 

of myofibroblasts. For this, a time course of single cell analyses spanning major regenerative 

events in the wound bed should be performed. This type of analyses can shed light on 

specification of lineages important for establishment of regeneration vs. scarring in skin wounds. 

My interest in the concept of biomimicry led to identification of novel model organisms 

to study wound healing and regeneration in wild environments. Studying animal behavior in their 

natural habitat has advantages and disadvantages. For example, it provides the researcher with 

the opportunity to interrogate wound healing and regeneration mechanisms under natural 

conditions, including under times of stress, which are largely obscured when working with 

already established model systems in the laboratory. One such organism is the northern elephant 

seal M. angustirostris. This large, aquatic animal provides the opportunity to study wound 

healing using an interval censored sampling approach. Indeed, despite the stresses M. 

angustirostris faces, which include fasting and infection, they are able to heal large predator 

wounds even when they become infected. Hence, this animal can enable the identification of 

mechanisms of innate immunity during wound healing to prevent infection, as well as the 

resolution of fibrogenic behavior. Thus far, I have characterized wound healing dynamics in the 

northern elephant seal, and they appear to undergo normal healing kinetics. Future studies should 

aim at resolving the microbiome of skin wounds, as well as identifying the genes important in 

innate immune response upon the presence of bacterial products in vitro. Finally, functional 
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testing of such genes in vivo by means of xenotransplantation and mouse KOs will help to 

uncover their roles in innate immunity and wound healing.  

The research presented herein expands on concepts related to cell reprogramming, tissue 

competency and signaling, advent single cell sequencing technologies for identification of cells 

with intrinsic regenerative and/or fibrogenic potential, and novel models of skin wound healing 

and regeneration under stressful environments to learn about efficient wound healing and 

regeneration of skin and shed light on the development of novel therapeutics for the treatment of 

conditions characterized by chronic wound healing and fibrosis (Fig. 5. 1) 

 

.  
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Figure 5.1.  Schematic summarizing novel concepts in study of wound healing and 

regeneration. Concepts in cell reprogramming, tissue competency and signaling, single cell 

genomics and non-traditional models of wound healing and regeneration may shed light on 

enhanced wound healing and regeneration of skin for the future development of novel and 

efficient therapies for the treatment of chronic wounds and those prone to fibrosis. 
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APPENDIX A.1 
 

Wound healing in Northern Elephant Seals in natural habitats 
 
Statement of contribution 

In this study, I designed (in agreement with my thesis advisor Dr. Maksim V. Plikus) and 

performed experiments, analyzed data and interpreted results. My data contributes to Figs. A.1.3, 

A.1.4., A.1.5, A.1.6 and A.1.7. In instances, Raul Ramos (University of California, Irvine) 

helped to collect skin biopsies. Dr. Dorian Houser (National Marine Mammal Foundation), Dr. 

Daniel Crocker (Sonoma State University), and Dr. Jane Khudyakov (University of the Pacific) 

helped to chemically immobilize elephant seals (related to Fig. A.1.2.) and provided insightful 

comments, advice and criticism. Dr. Xiaoling Cao (UC Irvine/First Affiliated Hospital of Sun 

Yat-Sen University – People’s Republic of China) aided technically with preliminary xenograft 

transplantation (Related to Fig. A.1.7). 
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ABSTRACT 

Wound healing is an intricate process that requires coordination among the innate and 

adaptive immune systems, tissue stem cells, and growth factor signals to launch an effective 

antimicrobial defense, coupled with a robust regenerative response. The northern elephant seal 

(Mirounga angustirostris) is able to effectively repair large cutaneous wounds, as well as to 

regenerate prominent adnexal structures despite being influenced by factors that are known to 

exacerbate the healing process in humans, such as fasting and infection. Despite these stressors, 

M. angustoristris undergo normal wound healing dynamics and display normal wound closure. 

The closing wound displays a stratified epidermis with strong basal expression of Krt5 and 

actively proliferating keratinocytes. In contrast, the un-repithelialized wound center does not. 

Remodeling of their dermal compartment is also observed, with minimal myofibroblast presence 

and an intricate, yet complex composition of interweaved collagen fibers. Indeed, M. 

angustoristris is capable of undergoing hair follicle neogenesis. Preliminary xenograft 

transplantation studies are developed to study wound healing and modulation of infection in seal 

cells in an immunocompromised mouse host. 
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INTRODUCTION 

The northern elephant seal (NES) is a pinniped within the family Phocidae (Bininda-

Emonds et al., 1998) of the genus Mirounga that follows a dichotomous lifestyle (Figure A.1.1, 

A.1.2) (Hindell and Perrin, 2009). Their habitat includes open oceanic waters of the Pacific 

coastline and range from the Gulf of Alaska to Baja California Sur, Mexico (Block et al., 2011, 

Robinson et al., 2012). Despite being largely aquatic, NES spend substantial time on land. In late 

December and early January, NES settle ashore, where females undergo parturition (Reiter et al., 

1981) and estrus females breed with dominant alpha males (Leboeuf and Mesnick, 1991, 

Mesnick and Leboeuf, 1991). In contrast, NES undergo molting in mid-summer months – an 

energetically costly period (Worthy et al., 1992) characterized by synchronous shedding of club 

hairs (Ling, 1970). NES have a rich diet. Stomach lavage analyses in chemically-immobilized 

NES revealed their diet consists mainly of fish and crustaceans (Antonelis et al., 1987). NES 

have wound healing prominently built into their life cycle (Figure A.1.1). During the winter 

breeding season, alpha males engage in physical combats in efforts to establish hierarchical 

dominance over estrus females (Haley et al., 1994, Leboeuf, 1974). Combats are often violent 

and males inflict upon each other multiple abrasions. While numerous, male-male fighting-

inflicted wounds are mostly deep punctures or small to medium size lacerations and are largely 

restricted to the male’s specialized neck shield and facial proboscis – highly keratinized 

anatomical structures that evolved to help minimize the depth, size and prominence of such 

wounds. During their time in open waters, NES fall prey not only to apex-predators, which 

include orcas (Orcinus orca) (Ferguson et al., 2012), great white sharks (Carcharodon 

carcharias) (Klimey, 1994, Klimley, 1994a, 1994b, Klimley et al., 1996) and cookie cutter 

sharks (Isistius brasiliensis) (Leboeuf et al., 1987), but also to marine debris which, aside from 
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contributing to the ghost fishing effect (Stelfox et al., 2016), inflict life-threatening wounds and 

often times result in malformations of the head and neck areas (Dau et al., 2009, Hanni and Pyle, 

2000). Unlike combat wounds, however, wounds inflicted by apex-predators are often significant 

in prominence, surface area and depth.  

Routine fieldwork has led to anecdotal and recorded evidence that seals are capable of 

rapidly and efficiently repairing skin injuries, including apex-predator-inflicted (Naessig and 

Lanyon, 2004, van den Hoff and Morrice, 2008), branding-inflicted (van den Hoff et al., 2004) 

and tagging-inflicted wounds (Paterson et al., 2011). Some of these accounts have been 

described also in free-roaming NES found along the Pacific coastline, as well as southern 

elephant seals (Mirounga leonina) in the coastline of Australia and Mexican islands. Stranded 

NES are also capable of healing in captivity upon human intervention, leading often times to 

their release into the wild (Higgins and Hendrickson, 2013). Because of these accounts, I became 

interested in characterizing wound healing dynamics and the effects natural life stressors have on 

wound healing outcomes in wild NES. For example, NES often heal wounds under septic 

conditions. Similarly, they often undergo severe stresses, which are known exacerbations of 

wound healing in humans and which include certain wound-specific (i.e. infection) and systemic 

variables (i.e. nutrition (Mrosovsky and Sherry, 1980)), and diseases and conditions (i.e. genetic 

skin diseases, obesity and metabolic syndrome during prolonged fast (Houser et al., 2013)) (Sun 

et al., 2014). The severity and extent of apex predator-inflicted wounds was analyzed using 

existent photographic records of free-roaming NES obtained between 1980 and 2018 from Año 

Nuevo State Reserve, CA, USA (37°7′59″N, 122°19′59″W). The wounds analyzed were 

consistent with previously reported predator-inflicted wounds and some displayed dentition 

marks corresponding to apex predators, including C. carcharias. Apart from integument rupture 
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and loss, we found some NES sustained additional traumas, which included open bone fractures 

and perineal abscesses (data not shown). The nature of these secondary traumas, coupled with 

susceptibility to local and systemic infection posed by the septic coastline environment 

(Yamahara et al., 2007), may be detrimental to the health and survival of wounded NES and may 

negatively affect their fitness. Nevertheless, and contrary to popular expectation, large scale 

macrophotography and interval-censored monitoring of NES injuries corroborated previous 

accounts and further highlighted their superb ability to recuperate and survive from major 

traumatic injuries (data not shown).   

RESULTS 

To interrogate the molecular mechanisms of wound healing in NES, wounds from free-

roaming males (n=3 animals total) from a sizeable colony at Año Nuevo State Reserve obtained 

between August 2014 and April 2018 were sampled. Early and late healing events in non-

standardized, apex predator-inflicted wounds were analyzed by taking advantage of the fact that 

injured seals mainly remain on shore during wound healing. This healing period coincides with 

the breeding season or foraging migration (1966) and seals can be approached for interval-

censored sampling (Archie, 2013a). This provided the opportunity to study wounds within days 

of infliction, as well as late-stage wounds undergoing active re-epithelialization, remodeling and 

regeneration (Gurtner et al., 2008). Close examination of early-stage predator-inflicted wounds 

revealed a build-up of purulent exudate emanating from their surface, suggesting local infection 

(n=3). Furthermore, histological analyses revealed the presence of bacteria, a high degree of 

erosion with granular appearance – characteristic of a dense inflammatory infiltrate and 

increased numbers of superficially proliferating capillary plexuses, suggesting active 

angiogenesis (Tonnesen et al., 2000) (Figure A.1.3). In contrast, closing wounds underwent 
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active re-epithelialization and displayed two morphologically distinct healing areas. The wound 

edge, displaying re-epithelialization zones, depicted a characteristic hypertrophic stratified 

interfollicular epidermal (IFE) structure expressing the acidic cytokeratin marker Krt5 (Moll et 

al., 1982, Nelson and Sun, 1983) (Fig. A.1.4). Pcna expression in the stratum basale (Furukawa 

et al., 1992) indicates actively proliferating basal keratinocytes. Of interest is the observation of 

regenerated Rete ridges – spatial epidermal oscillations at the interface between the regenerating 

epidermis and dermis. Seal wounds at this stage assume a pattern of collagen fibers similar to 

unwounded dermis and are also associated with low presence of α-Sma+ myofibroblasts. 

Furthermore, the ECM in seals had less densely packed collagen fibers, contained more porous 

and weaved-like collagen bundles and elastin fibers. Future studies should follow a comparative 

wound healing analyses between Mirounga and Mus at the histological level (data not shown). 

To establish if healed NES wounds recapitulate aspects of nascent skin (Gay et al., 2013, 

Guerrero-Juarez et al., 2018, Ito et al., 2007, Nelson A. M. et al., 2015, Plikus et al., 2017, Wang 

et al., 2015), healed wounds were sampled for evidence of de novo hair follicle (HF) 

regeneration. Evidence of mature, neogenic HFs was found on a healed dorso-lateral wound, 

easily identifiable by its unpigmented epidermis. Similar to mice (Gay et al., 2013, Ito et al., 

2007, Nelson A. M. et al., 2015), de novo HFs initially localize to the center of the healed skin 

and at a relatively low density, and display variable follicle polarity (Figure A.1.5). This 

regeneration event is different from normally regenerating HFs in response to molting. At the 

histological level, de novo HFs contained an associated sebaceous gland. In contrast to normal, 

unwounded skin, however, dermal adipocytes were absent, suggesting de novo HF regeneration 

precedes dermal adipocyte regeneration in wild animals – similar to rodents (Plikus et al., 2017), 

or, in a latter case, is rudimentary (Guerrero-Juarez et al., 2018). Similar to previous observations 
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in normal skin, the epidermis adjacent to neogenic HFs regenerated prominent Rete ridges and 

appears hypertrophic. Evidence of normal wound healing and subsequent tissue and appendage 

regeneration was surprising, however, given the septic conditions in which wound healing takes 

place. Evidence of WIHN suggests that an ample regenerative response over scarring might be 

favored during skin repair in NES, most likely to enable them to thrive and maintain their fitness 

in their natural habitat.  

Macro-photography and histological analyses suggested that early stage NES wounds 

might become infected. In general, humans and rodents demonstrate poor wound healing when 

wounds become infected (Loesche et al., 2017, Sun et al., 2014). Indeed, a recent study that 

interrogated different types of chronic wounds in humans, including non-healing surgical 

wounds, as well as chronic diabetic foot, venous leg, and decubitus ulcers contain a uniquely 

distinct microbiome profile that correlates with poor healing and contain high proportions of 

Staphylococcus and Pseudomonas (Wolcott R. et al., 2016, Wolcott R. D. et al., 2016). Future 

studies will include interrogating the microbiome of seal skin wounds using 16S rRNA gene 

sequencing (Janda and Abbott, 2007).  

The fact that NES are able to heal and regenerate skin appendages under septic beach 

conditions prompted me to ask whether NES possess an inherent innate ability to combat 

infection. Indeed, the skin is a complex heterogeneous organ system and many of the cells in the 

skin engage in a specific type of immune response upon infection (Nestle et al., 2009). 

Fibroblasts, however, tend to be highly heterogeneous and distinct subsets may be involved in 

eliciting an immune response. For example, primary human fibroblasts infected with DENV-2 

activated TLR3 and RIG-1 signaling and up-regulated IFN-beta, TNF-alpha, HB5 and H-beta-

D2, suggesting that skin fibroblasts can engage contribute to inflammation and anti-viral 



132	
	

activities (Bustos-Arriaga et al., 2011). In addition to anti-viral properties of human fibroblasts, a 

recent review describes the immune responses elicited by fibroblasts in response to 

microorganism exposure (Bautista-Hernandez et al., 2017). For example, fibroblasts express 

various Toll-like receptors (TLRs) and these become activated upon presence of microbial 

ligands, such as PGN, LTA, and LPS. Hence, fibroblasts can recognize PAMPs via TLRs of 

various microorganisms, including Staphylococcus aureus, Pseudomonas aeruginosa, 

Pseudomonas gingivalis, and Escherechia coli and have the ability to produce antimicrobial 

peptides, proinflammatory cytokines, and certain chemokines (Bautista-Hernandez et al., 2017, 

Zhang and Gallo, 2016, Zhang et al., 2015).  

Hence, I reasoned that NES dermal fibroblasts could be an important modulator of 

infection. To interrogate this possibility, the antimicrobial activity of NES dermal fibroblasts will 

be tested in vitro. For example, various Gram-positive and negative bacteria, including 

Staphylococcus aureus, Pseudomonas aeruginosa, and Escherechia coli will be cultured with 

NES and mouse dermal fibroblast conditioned media and bacterial growth will be evaluated 

across time. It is hypothesized that conditioned media from NES dermal fibroblasts will display 

heightened antimicrobial killing activity compared to that of mice. Additionally, the genes 

involved in this possible heightened antimicrobial killing activity will be evaluated using bulk 

RNA-sequencing. For example, NES dermal fibroblasts will be cultured in vitro and activated 

with the bacterial products Malp2 and LPS for 24 hours. Primary NES dermal fibroblasts have a 

common spindle-like morphology, possess adipogenic potential (Louis et al., 2015), and migrate 

into a wound area in in vitro wound healing assays (Louis et al., 2015) (Figure A.1.6). RNA-seq 

and differential gene expression analyses of Malp2-treated vs. control, LPS-treated vs. control 

will be conducted. Because the genome of M. angustirostris has not been sequenced, de novo 
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transcriptome assembly of activated M. angustirostris dermal fibroblasts will be performed 

(Khudyakov et al., 2017, Khudyakov et al., 2015, Stephan et al., 2018). These analyses will help 

characterize the emergent properties of NES dermal fibroblasts as sentinel cells and regulators of 

innate immunity in wild animals. Future studies will be necessary to definitely establish the role 

of NES dermal fibroblasts as modulators of innate immunity. Experiments include seal-on-

mouse xenotransplantations (Figure A.1.7) (Wosgrau et al., 2015) to test antimicrobial killing 

ability in vivo, as well as mouse KO experiments. 

DISCUSSION 

NES is an emergent model to study wound healing under adverse healing conditions. It is 

evident that seals have evolved an outperforming wound healing and regeneration program that 

increases their fitness in wild habitats and it may partially depend on expression of certain 

immune modulators in skin. NES appear to be capable of healing wounds amidst facing local and 

systemic stressors posed by their immediate natural habitat. These stressors are known 

exacerbations of wound healing paradigms in humans and include wound specific- and systemic-

variables, as well as certain conditions such as metabolic syndrome (Sun et al., 2014). NES 

demonstrate a remarkable ability to quickly repair full-thickness skin wounds inflicted by large 

apex-predators and might also prevent infection by tissue-specific immune modulator 

expression. I do not rule out, however, the possibility that abiotic factors (i.e. sea salt) (Pougatsch 

et al., 2017) or maggot debridement (Sherman, 2003, Tantawi et al., 2007) may confer extra 

protection against infection and/or modulate efficient healing.  

These enhanced wound healing mechanisms are likely shared amongst other pinnipeds, 

including Odobenidae (Kryukova et al., 2012a, 2012b) and Otariidae (Galloreynoso and 

Figueroacarranza, 1992), which thrive in similar habitats, co-habit with and belong to similar 
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food chains, and depict prominent predator-inflicted wounds and analogous healing abilities as 

NES. Cetaceans, in particular Indo-Pacific bottlenose dolphins (Tursiops aduncus), also 

demonstrate similar fast-healing properties (Zasloff, 2011). Because NES can undertake 

prolonged fasts in connection with reproductive activities, molting and wound healing, this type 

of healing can have physiological implications to maintaining fitness in their respective habitats. 

For example, regeneration of compact pilosebaceous units can also have survival implications 

and help NESs cope with the demands of aquatic and terrestrial habitats, including proper 

insulation in water. Hence, I posit that enhanced wound regeneration in NES and other pinnipeds 

may have evolved convergently as an adaptation to similar predation pressures by large apex-

predators and facilitate their fitness in their natural habitats (Stern, 2013). Because of its unique 

yearly lifecycle, M. angustirostris can serve as a novel model organism to study wound 

regeneration mechanisms under extreme environmental conditions and natural habitats.  

METHODS 

Study site and wild subjects. Molting and non-molting juveniles, adult and sub-adult northern 

elephant seal males and females from a sizeable colony at Año Nuevo State Reserve, San Mateo 

County, CA, USA (37°7′59″N, 122°19′59″W) were sampled between 08/2014 – 05/2018. 

Animals were chemically immobilized as previously described (Khudyakov et al., 2017, 

Khudyakov et al., 2015). Animal handling was approved by National Oceanic and Atmospheric 

Administration Fisheries Permit No. 19108. 

In vitro scratch assay. Primary NES pup dermal fibroblasts were grown to confluency on 

RadiusTM 24-well cell migration assay (CellBiolabs). Upon reaching confluency, the gel layer 

was removed as per manufacturer’s directions and cell migration was evaluated at specific time 

points (12-96 hours). Covered area was calculated using ImageJ.  
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Histology and immunohistochemistry/immunofluorescence. Skin tissues were collected and 

fixed in 4% paraformaldehyde, dehydrated, paraffin embedded, and sectioned at 10 µm. Sections 

were stained with Hemotaxylin and Eosin (national diagnostics). When required, antigen 

retrieval was performed by heating histological sections in citric buffer (0.1M citric acid/0.1M 

sodium citrate, pH 6). Antibodies used were rabbit anti-SMA (1:200; Abcam), mouse anti-PCNA 

(Pcd10) (1:200, Abcam), and rabbit anti-keratin 5 (1:1000, Abcam). The AEC substrate kit was 

used for color development (Vector Laboratories). Secondary biotinylated antibodies (1:200, 

Vector) and anti-HRP (1:200, Vector) were used. Trichrome staining was performed on paraffin 

sections using the Trichrome stain kit (Abcam) as per manufacturer’s recommendations with 

minor modifications. Gram and Elastin staining were performed at the UC Irvine Pathology 

CORE. Images were taken with a Nikon Eclipse TI inverted microscope.   

Adipocyte differentiation. Dermal fibroblasts were isolated in toto from normal skin as 

previously described and expanded in vitro in DMEM (Gibco) supplemented with 10% heat-

inactivated FBS (Atlanta biologics), Penn/Strep (Gibco) and Fungizone (Gibco). Upon reaching 

~95% confluency, cells were switched to adipocyte differentiation medium (Cell solutions) for 

48 hours and then switched to maintenance media (Cell solutions) for seven days. Cells were 

maintained in a water-jacketed incubator at 37°C and 5% CO2 output. Lipid droplets were 

visualized with Bodipy® (Thermo) on day seven. Cells were harvested for RNA isolation on day 

seven.  

Xenograft. Xenograft transplantation was performed as described before (Lei et al., 2017) with 

minor modifications using juvenile seal dermal fibroblasts and P50 mouse keratinocytes. 

Pelnac® was used as extracellular matrix component. Cells on Pelnac® were transplanted onto 

athymic mice. 
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Figure A.1.1. Schematic of life cycle of M. angustirostris. M. angustirostris is an aquatic 

animal that spends most of its time in water, where they are exposed to apex predators. However, 

during the summer and winter months, M. angustirostris settle ashore for mating and molting 

and, in the case of females, parturition. During this time, M. angustirostris are approached for 

tissue collection, interval censored sampling, and macro-photography. © Christian F. Guerrero-

Juarez. 
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Figure A.1.2. Schematic of habitat of M. angustirostris and sample collection. (A) Map 

showing various rockeries where northern elephant seals reside during their time in land. 

Samples are taken from Año Nuevo State Reserve. (B) Samples are taken from chemically-

immobilized northern elephant seals for downstream analyses. Related to A.1.2 – Map adapted 

from (Le Boeuf et al., 2011). © Christian F. Guerrero-Juarez. 

 
 
 
 
 
 
 
 
 

A B	 



138	
	

 
 
 
 
 
 
 
 
 

 
 
Figure A.1.3. Histology of early stage wound in M. angustirostris.  Early-stage dorsal 

predator-inflicted wound displays high levels of infection – as shown by the presence purulent 

exudate. Histological analyses revealed presence of bacteria, active angiogenesis, and 

inflammatory infiltrate. The wound is covered in sand and flies. Size bars: B – 250 µm. 
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Figure A.1.4. Histology of closing wound in M. angustirostris. (A) Large closing wound, most 

likely derived from a white shark, displays active re-epithelialization zones. (B) The healing 

wound edge has undergone prominent re-epithelialization as shown by the presence of stratified 

epidermis – shown by Krt5+ basal keratinocytes. In contrast, the wound center has not undergone 

re-epithelialization and lacks a stratified epidermis. Pcna+ proliferating cells are observed in both 

wound areas albeit in distinct skin compartments. In both cases, the dermis appears reticular and 

is largely devoid of contractile dermal cells (myofibroblasts). Sma+ cells, however, are observed 

in the vasculature. Size bars: B (left and middle panels) – 125 µm, (right panels) – 250 µm. 
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Figure A.1.5. Histology of early stage regenerating wound in M. angustirostris. (A) Healed 

wound from a partial lateral bite displays signs of hair follicle regeneration with many pigmented 

shafts emanating from the wound surface. At this stage, the epidermis remains unpigmented. In 

comparison, normal, unwounded skin contains both pigmented hair shafts and epidermis. (B) 

Healed M. angustirostris skin displays signs of enhanced regeneration, including a differentiated, 

stratified epidermis, composed of Rete ridges, as well as prominent regeneration of 

pilosebaceous units. Compared to normal, unwounded skin displays similar skin architecture and 

abundant adnexal structures. Size bars: B – 250 µm. 
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Figure A.1.6. Characterization of M. angustirostris skin fbroblasts. (A) Isolated fibroblasts 

in culture depict typical fibroblast-like morphology. (B) A portion of NES dermal fibroblasts 

display adipogenic potential, as observed by incorporation of Bodipy®. (C) NES dermal 

fibroblasts can migrate into a wound area in in vitro scratch assay. Size bars: B – 125 µm. 
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Figure A.1.7. Example of seal-on-mouse xenograft. Representative seal fibroblast-on-mouse 

xenograft model to study wound healing and infection in vivo. Juvenile seal dermal fibroblasts 

and P50 mouse keratinocytes were combined and seeded onto Pelnac®. Pelnac® was used as 

extracellular matrix component. Cells on Pelnac® were transplanted onto athymic mice. 
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