
UC Davis
UC Davis Previously Published Works

Title
Teach the Hands, Train the Mind ... A Secure Programming Clinic

Permalink
https://escholarship.org/uc/item/2dv0s587

Authors
Dark, Melissa
Ngambeki, Ida
Bishop, Matt
et al.

Publication Date
2015-06-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2dv0s587
https://escholarship.org/uc/item/2dv0s587#author
https://escholarship.org
http://www.cdlib.org/

Teach the Hands, Train the Mind … A Secure Programming Clinic!

Melissa Dark, College of Technology, Purdue University
Ida Ngambeki, College of Technology, Purdue University

Matt Bishop, Dept. of Computer Science, University of California at Davis
Steven Belcher, National Security Education

Introduction

One of the major weaknesses in software today is the failure to practice defensive or
secure programming. Most training programs include only a shallow introduction to
secure programming, and fail to integrate and emphasize its importance throughout the
curriculum. Yet the community advocates for the inclusion of good coding practices into
the teaching and practice of programming in learning institutions. This begs the question;
Shouldn’t we teach those who program to use robust coding practices from the beginning
of writing programs, rather than the failed strategy of making programs robust after they
are written?

Considerable pressure has been building to do this; perhaps most telling are the two most
recent Cybersecurity Acts proposed in Congress. The Cybersecurity Act of 2010 (S. 773,
Titles I, 11(a)1(c) and II, §302(c)) and the Cybersecurity Act of 2012 (S. 2105, Title V,
§501(d)) contain substantially similar language requiring that Congress receive reports
assessing “secure coding education in colleges and universities”. The National
Cybersecurity Workforce Framework – a report that aims to improve the ability of
academia and public and private employers to prepare, educate, recruit, train, develop,
and retain a highly-qualified cybersecurity workforce. The Framework calls for
improved software assurance and security engineering and further specifies that graduates
need to develop “new (or modify[ing] existing) computer applications, software, or
specialized utility programs following software assurance best practices” [NICE12, p.
13]. With the recent calls for improved practices in robust programming and for
improvements in software assurance education so clear, the timely and relevant question
is, how?

Academic institutions teach some secure programming in introductory classes, but often
by the time students enter advanced courses, the teachers have only enough resources to
focus on the correctness of code. Ancillary properties, such as robustness and security,
are overlooked by necessity. Three basic issues underlie the problem of teaching students
how to write secure code: the focus of introductory programming courses, the assumption
that students will apply learned techniques of good programming in future work, and the
lack of room in the computer science curriculum to add more material.

First, beginning programming classes typically focus on algorithmic and language issues
rather than environmental issues. These classes teach some elements of secure
programming, such as good program structure, basic input validation, checking bounds
for array references and checking that pointers are non-null. They do not teach more
advanced elements, such as avoiding race conditions and authentication over a network,
because those elements involve knowledge that a beginning programming student is not

expected to have. These classes, if well taught, lay a foundation for secure programming
techniques.

Second, classes after the introductory programming class assume that students know, and
will apply, principles of good programming. In practice, this is not true. Students tend to
focus on what is being taught, and regard the programs they write as instruments to
exercise that knowledge. This is appropriate, but—like an English essay comparing
Orwell’s 1984 to Huxley’s Brave New World—the expression of the content is as
important as the content. In other words, if the program is poorly crafted, the student may
convey that he or she understands the material, but the program may interfere with that
demonstration. Unfortunately, graders (and many teachers) ignore the issue of well-
crafted, robust code when they grade, and simply check that the program works. This
gives little to no reinforcement of the importance of the techniques of robust
programming, and few, if any, rewards for avoiding poor programming, in these classes.

Third is the ongoing debate of where to teach elements of secure programming. Should a
separate class cover the material, or should it be integrated with existing classes? These
approaches have advantages and disadvantages. A separate class allows the student and
instructor to focus on why these techniques are important, what happens when they are
not applied, and to explore the issues in more depth. But students have to take the class to
benefit, which often is not the case since many are elective. Integrating the material into
existing classes ameliorates this problem, but it also adds a burden to those classes. They
must now cover more material, and instructors must write the material and integrate it
into what they teach. Both these methods encounter the same problem. A review of the
ACM Computing Curricula [ACM01] shows how much material must be compressed
into courses for computer science majors. The focus of courses, naturally enough, is on
the material intrinsic to the course and not to ancillary issues. Students also reflect this
belief. Most teachers who deduct points for non-robustness or poor programming have
heard the protest, “But it works!”

In 2011, the National Science Foundation sponsored a meeting, the Summit on Education
in Secure Software. The Final Report [BuBi11] examined a number of ways to deal with
this situation; one in particular, a “secure programming clinic” approach, does not require
adding new courses, and can in fact be integrated into existing curricula. A “secure
programming clinic,” analogous to a writing clinic in law schools or English departments,
provides continual reinforcement of the mechanisms, methods, technologies, and need for
programming with security and robustness considerations throughout a student’s
undergraduate coursework. The clinic augments courses, not replaces them or their
content.

The concept of a secure programming clinic is grounded in providing practical
educational training for students that extends and reinforces the theory they learn in
classes. Practical training can be instantiated through various means including field
experience, internships, clerkships, clinical experiences, and the like. The general
purposes for practical experience in the curriculum are to: 1) link theory to practice by
providing regular and structured opportunities for students to apply and test knowledge

and skills; 2) raise problems and issues which are used to trigger the investigation of
related theory and knowledge; and 3) turn learning into experience and experience into
learning, thereby enabling learners to gain mastery of content.

Toward this end, this project is designing, developing, implementing and testing a Secure
Programming Clinic (SPC). The SPC will use the principles of clinical education to
provide students with a context-based experience. We believe that it might be a very
effective approach for 1) inculcating secure programming into a 124+ credit hour degree
program (typical BSCS) that aims to graduate students in a reasonable amount of time
(i.e., 4-5 years) and 2) promoting expertise in secure programming within learners.

Levels of Knowing: Novice to Expert

A. Novice-Expert

Early work [DrDr80] on the novice-expert continuum identified fives levels of advancing
competence: novice, advanced beginner, competent, proficient, and expert. Dreyfus and
Dreyfus identified the following characteristics of novices: 1) adherence to rules, 2)
attempting tasks with little to no strategy, 3) organizing a problem in vague or random
ways, and 4) a lack of discretionary judgment. A more recent study [SpSt00] identified a
four-stage developmental trajectory from novice to expert using two dimensions:
competence and consciousness. The four stages are: 1) unconscious incompetence, 2)
conscious incompetence, 3) conscious competence, and 4) unconscious competence.
Novices posses unconscious incompetence meaning they both lack skill and awareness of
what they need to learn. As they gain knowledge, they become more aware of what skill
they lack and what they need to learn. As mastery develops, learners exhibit more
competence in the domain, but skill must self-regulate their own learning. Finally,
experts function in a manner where they exercise the skills in their domain proficiently
and with a degree of instinctiveness and automaticity. The proficiency that experts
exhibit is not heavy reliance on rules, but rather judgment based on deep, tacit
understanding. Experts are able to relate domain specific objects and recognize complex
patterns [RCSS01]. Experts are able to recognize different elements of a problem,
integrate them and map them more accurately to the relevant knowledge systems
[BaDa92] [KaGe02]. With expertise comes the confidence to organize knowledge in
uncommon ways leading to a wider range of potentially novel solutions. Due to their
well-organized knowledge networks or mental models, experts are also able to solve
problems more quickly, and transfer what they have learned from one situation to the
next.

B. Developing “Expertise” and the Secure Programming Clinic (SPC)

Naturally, One thing educators are interested in is the type of learning activities and
environments that facilitate the progression from novice to expert. Here we elaborate on
the nature of expertise and tie that to five foundational design implications for the SPC.

The educational research literature on developing “expertise” does not naively assume
that educational programs can develop “experts” rapidly, or through a unidirectional

transfer of information. The development of expertise requires time, repetition, and the
accumulation of a large store of knowledge and patterns and the ability to retrieve and
recombine these and apply them in new situations [ChSi73] [KBNL11]. The development
of expertise is an interactive process that requires learners to be active participants in a
community of practice [BBC00].

Instructional Design Implication #1: Community of Practice - the SPC will provide this
community of practice by connecting students to each other and to a range of subject
matter experts (SMEs) in the field of secure programming who will serve as mentors.
Through SME participation in this community, novices are exposed not only to the
knowledge and language of a domain, they also learn the framework and history of that
knowledge allowing them to properly contextualize it and form more organized and
comprehensive mental models.

While it is important for those with less experience to have access to a range of SMEs
when learning, it is important that the expertise be used purposefully. The very nature of
expertise can make experts inadvertently be an obstacle to effective teaching and
learning. Because experts are able to facilely integrate material and instinctively process
information, they might take leaps that fail to explicate content to novices. Novices often
need focused practice and feedback on component knowledge and skills, as well as
practice integrating knowledge into the larger whole.

Instructional Design Implication #2: Scaffolded Learning – the SPC will scaffold
learning by breaking down complex material into component parts, and encouraging
targeted practice where appropriate. The SPC will also use whole-part strategies to help
learners practice and master fluent integration of more complex knowledge and skills.

One of the primary distinctions between experts and novices is in the organization of
their mental models. Experts have well-organized knowledge networks [GoSi98].
Novices on the other hand, generally display poorly organized knowledge networks
characterized by missing or dislocated information. Novices often fail to make critical
connections, or conversely, connect concepts that are not related, usually because of
misconceptions about how new knowledge relates to prior knowledge. It is here that
concept mapping can play an important role. Use of a concept map can help novices to
understand the relationships amongst various concepts and therefore help them build
more robust mental models.

Instructional Design Implication #3: Mental Models - the SPC will use concept maps
both to help students understand the connections amongst concepts, and to measure the
development of their mental models.

Experts accumulate knowledge over numerous learning experiences, many of which are
not traditional classroom experiences. Several studies of computer programmers found
that expert programmers were more able to recall large sections of code because they
understood the function of the code and the principles that governed the relationships
amongst functions [Bar86] [GuMa90]. These experts reported developing this expertise
largely from writing and reviewing hundreds of pages of code rather than from narrow

classroom experiences. Classroom experiences, however, can be very important in laying
the foundations of knowledge networks and addressing misconceptions.

Instructional Design Implication #4: Numerous Learning Experiences - the SPC will
give the students access to a large sampling of code provided by the expert mentors,
partner organizations, and existing repositories, and opportunity to build, check, and
refine.

Another key distinction between novices and experts is in the level of abstraction of their
knowledge. Experts display knowledge networks ranging in levels of abstraction from
specific knowledge, which only applies under specific conditions, to abstract knowledge,
which can be applied to general situations [AnFe08]. This abstracted knowledge is based
on principles and is usually derived from repeated learning at the contextual level where
the need for abstraction is designed into the problem, thus creating the potential for
transfer. For novices, on the other hand, knowledge is closely connected to the conditions
in which it was learned. Novices tie principles and concepts that they know to the surface
features of how they were taught the principle or concept; when the context changes, they
often fail to transfer what they have learned to make it applicable in the new context. It is
therefore extremely important to provide students with learning experiences that allow
them to solve problems in different contexts. This will allow them to learn to differentiate
between context dependent information and "principles", which can be transferred across
different contexts [BBC00].

Instructional Design Implication #5: Levels of Abstraction - the learning experiences
provided by the Secure Programming Clinic will not only be numerous, but will provide
the necessary diversity of experiences and contexts to help the learners abstract their
developing knowledge across contexts.

Applying the Instructional Design Implications - Proposed Clinic Structure

The SPC will therefore be designed to provide a community of practice within which
students will have numerous learning experiences both, scaffolding component
knowledge and skills, and formulating knowledge at different levels of abstraction, to
help students develop expertise through the building of correct and robust mental models.

The SPC will be built and expanded gradually over the next four years. Initially it will be
staffed by two graduate students with extensive experience in secure programming, each
working twenty hours a week. In the first few iterations it will be directly related to
specific courses. Students taking these courses will be required as part of 2-5 assignments
to submit their programs to the SPC for review and feedback. Students will email their
programs to the clinician and schedule a consultation. During this consultation, the
clinician will discuss the robustness of the program and make suggestions for
improvement. Clinicians will then assess the improvements made to the program and
provide feedback to the instructors who will include this feedback as part of the grade for
the assignment. These assignments and interactions between students and clinicians will
provide students with additional experiences that emphasize the importance of secure

programming. These interactions will also serve as the beginning of a community of
practice.

As the SPC matures the clinical education model will be utilized to a greater extent. The
clinic will therefore be structured like a residency program; students will learn theory,
practice under supervision, then have some autonomy to train others. Therefore, the SPC
will have expertise at three levels: expert clinicians, who will be volunteers, recruited
from academia and industry; proficient clinicians who will be senior undergraduate and
graduate students who have demonstrated skill with secure programming; and students
who are the primary audience for the clinic. The expert clinicians will serve as mentors
and will be available electronically at various dedicated times to interact with students
answering questions and giving mini workshops on secure programming. These expert
clinicians will also provide samples for the students to work on so they can see how
secure programming could apply in different contexts. The proficient clinicians will be
graduate and senior undergraduate students who will be "staffing" the clinic either as
volunteers, as paid student workers, or in return for course credit. They will be available
electronically or in person at regular times to discuss programs from the clinic bank, to
provide feedback to students on specific programs, and to grade students' work for
particular courses. The students will learn from both the proficient and expert clinicians
and will have the opportunity to serve as clinicians themselves either by helping their
peers by providing feedback on programs or by eventually joining the clinic as proficient
clinicians. Students will also have the opportunity to contribute to the SPC by submitting
copies of their own programs to the website or creating programs with intentional errors
that others could use as learning tools. The SPC will also have a steering committee
consisting of the primary researchers on the project and the project advisory board. This
steering committee will design the SPC, plan clinic activities and evaluate both the
performance of the clinic and student learning as a result of involvement with the clinic.

The SPC will be both a physical and virtual space so students will have access to the
clinic through appointments and drop-ins and will also be able to interact with their peers
and access the website. The web site will provide examples of non-secure and non-robust
programming, as well as an explanation of the problem and the way to write the code
robustly and securely. The target audience of the examples will vary. Basic robust issues,
such as checking the length of data entered into a buffer, basic input validation, and other
issues normally presented in an introductory programming class, will be aimed at
beginning programmers. More advanced issues, such as race conditions and input
validation on the web (to prevent cross-site scripting and SQL injection), will be aimed at
students with a background sufficient to know the basic concepts of parallel processing
(race conditions) and networking (validation on the web). Note this differs from existing
“secure programming” web sites that are written for advanced programmers, or that
provide exercises in writing such code [TK11]. The sources of such examples will be
either real programs or code snippets from the Juliet suite available at the Samate area of
the NIST web site. As these pages will be available to anyone, students can study them
while writing programs, or the clinicians can use them to supplement their interactions
with the students. It also enables clinics separated geographically to pool resources to aid
students.

This proposed SPC structure fulfills all five design principles. The interactions amongst
students and clinicians creates a community of practice that will help students to learn
secure programming language, concepts, and skills within the context of the history and
current framework of the field. These interactions, coupled with access to the website
provide both numerous learning experiences and differing levels of abstraction to help
students move from simply memorizing the principles to a deep understanding of the
concepts and the ability to evaluate programs and create appropriate robust programs in
different contexts. Finally, the multiple levels of feedback, coupled with the opportunity
to view multiple examples, learn from experts and practice consistently will help students
build well organized knowledge networks.

Table 1: Description of SPC structure

Title Role Source Remuneration Responsibilities

Expert
clinician

Primarily
teaching

Experts from
academia,

government,
and industry

None - volunteer
position

Mentoring, answer
programming and
design questions,

teach mini-
workshops, discuss

career
opportunities,

dissemination of
clinic.

Proficient
clinician

Teaching and
learning

Senior
undergraduate

students,
graduate
students

Volunteers,
credit, paid

Mentoring, answer
programming and
design questions,

teach mini-
workshops,

grading.

Student Primarily
learning

Students at the
university None

Submit programs
for review and

critique.

Instructor Evaluation Instructors at
the university None

Assign grades to
student

assignments,
possibly based on

evaluations
supplied by
proficient
clinicians.

SPC steering
committee

Management
and Evaluation

Experts from
industry,
academia

None, consulting
fee

Planning and
management of
clinic activities,

recruit clinicians,
evaluation of clinic

performance,
dissemination

Evaluating the Clinic

Assessment will be conducted in order to 1) assist learning, 2) measure individual
achievement, and 3) evaluate the SPC. Assessment data will be used to make
improvements to student learning and to the SPC, as well as to report outcomes in
achievement as well as overall effectiveness of the SPC. The evaluation plan for the SPC
consists of two primary activities 1) Assessing the knowledge gains and 2) Assessing
indication of evolution from novice to advanced beginner, from advanced beginner to
competent, from competent to proficient, and from proficient to expert. These evaluation
purposes and activities lead to the following evaluation design implications.

Evaluation Design Implication #1: assessment will provide informative and timely
feedback to learners because practice and feedback are critical to the development of
knowledge and skills building into knowledge networks.

Evaluation Design Implication #2: assessment will need to include methods to evaluate
component skills and discrete bits of knowledge, as well as abilities to integrate
knowledge and skills into more complex models. This evaluation should include how
learners 1) organize acquired information, 2) recognize patterns, 3) retrieve information,
and 4) apply knowledge.

Evaluation Design Implication #3: assessment needs to examine how well students
engage in practices appropriate to the secure programming domain, what they understand
about those practices, and how well they use the tools and knowledge appropriately
within the domain.

Evaluation Design Implication #4: assessment needs to carefully consider learners’
ability to undertake near and far transfer.

Evaluation Design Implication #5: assessment should evaluate what schemas students
are developing and under what circumstances. This includes both static, one-time
depictions of mental models and time 1, time 2, and time n, as well as dynamic depictions
showing structural changes that help us understand developmental pathways from novice
to expert.

Evaluation Design Implication #6: assessment needs to provide explanatory power that
links students’ knowledge and evolution from novice to expert in the context of the
design and implementation of the SPC. This evaluation information will help inform
modifications to improve the clinic, as well as dissemination of the effectiveness of the
SPC model to other educators.

Challenges to Implementing the Clinic

There are several challenges that still need to be addressed in the design of the SPC.

Quality control - It will be necessary to continuously evaluate the performance of the
clinicians to ensure that students are receiving appropriate and helpful feedback.
However, given the structure of the clinic where clinicians have a great deal of autonomy,
exist in a peer network rather than a hierarchical network, and most of the interaction is
virtual and anonymous, it will be impossible to evaluate all clinician-student interactions
to ensure that feedback is continuously high quality.

Plagiarism - Students will be able to use the SPC to see program samples from the
website, get feedback and input from clinicians and their peers, and see other people's
programs. They might be tempted to have others complete their work or appropriate
solutions from their peers.

Intellectual property - The SPC will encourage students to submit samples of their own
work to the website so others can learn from their mistakes and their successes. However,
all submissions will be anonymous and accessible to all users of the SPC making it
difficult to retain ownership of intellectual property.

Propagating the clinic - One of the major goals of this program is to expand the use of
secure programming clinics at other institutions. Scaling the clinic to cover multiple
universities can be done in two ways. First, each school can have its own set of clinicians.
These will be drawn from students and external volunteers. Second, several schools can
pool volunteers and others to provide a central clinic that will advise students remotely.
In either case, all clinics will be asked to develop pages for their own web sites, and the
clinics will share the pages. This way, each school can tailor their own web site to their
specific needs when necessary, and simply use other, existing web pages when such
tailoring is unnecessary.

Conclusion

Many computer science programs fail to provide students with a comprehensive
education in secure programming because 1) advanced understanding of secure
programming requires advanced programming knowledge so secure programming cannot
be taught in one introductory course 2) the importance of secure programming is not
emphasized beyond basic principles 3) overloaded curricula mean that secure
programming courses are often elective, if offered at all. We propose the use of a Secure
Programming Clinic (SPC) to help address this lack while integrating secure
programming across the curriculum without adding to the course load. This paper
describes how a Secure Programming Clinic could be structured and evaluated.

References

[ACM01] ACM Computing Curricula 2001: Computer Science, Association for Computing
Machinery, New York, NY (Dec. 15, 2001).

[AnFe08] D. Andre, & G. Fernand, G. Sherlock Holmes—An Expert’s view of Expertise. British

Journal of Psychology, 99, 109 –125. (2008).

[Bar86] W. Barfield, Expert-novice Differences for Software: Implications for Problem-solving
and Knowledge Acquisition. Behaviour & Information Technology, 5(1), 15-29. (1986).

[BaDa92] D. Batra, & J.G. Davis, J. G. Conceptual Data Modeling in Database Design:
Similarities and Differences between Expert and Novice Designers. International Journal of
Man-Machine Studies, 37(1), 83-101. (1992).

[BBC00] J.D. Bransford, A.L. Brown, & R.R. Cocking, How People Learn—Brain, Mind,
Experience, and School, National Academy Press, Washington DC. (2000).

[BuBi11] D. Burley, & M. Bishop, M. Summit on Educational in Secure Software, Final Report,
June 30, 2011, Report GW-CSPRI-2011-7, Technical Report CSE-2011-15. (2011).

[ChSi73] W.G. Chase, & H. Simon, Perception in Chess. Cognitive Psychology, 4, 55– 81.
(1973).

[DrDr80]	
 S.E.	
 Dreyfus,	
 &	
 H.L.	
 Dreyfus,	
 Five-­‐Stage	
 Model	
 of	
 the	
 Mental	
 Activities	
 Involved	
 in	

Directed	
 Skill	
 Acquisition.	
 Washington,	
 DC:	
 Storming	
 Media.	
 (1980).

[GoSi98] F. Gobet, & H. Simon, Expert Chess Memory: Revisiting the Chunking Hypothesis.
Memory, 6, 225–255. (1998).

[GuMa90] B. Guerin, & A. Matthews, The Effects of Semantic Complexity on Expert and
Novice Computer Program Recall and Comprehension. The Journal of General
Psychology, 117(4), 379-389. (1990).

[KaGe02] M. Kavakli, & J.S. Gero, The Structure of Concurrent Cognitive Actions: A Case
Study of Novice and Expert Designers. Design Studies, 23(1), 25-40. (2002).

[KBNL11] K. Kim, J. Bae, M. Nho, & C.H. Lee, How Do Experts and Novices Differ? Relation
Versus Attribute and Thinking Versus Feeling in Language Use. Psychology of Aesthetics,
Creativity, and the Arts, 5 (4), 379-388. (2011).

[MaWe86] R. Spencer Mason, & R.W. Weisberg, Context-dependent Efforts on Analogical
Transfer. Memory and Cognition, 14 (5), 442-449. (1986).

[NICE12] The National Cybersecurity Workforce Framework, National Initiative for
Cybersecurity Education (2012); available at http://csrc.nist.gov/nice/framework/

[RCSS01] E.M. Reingold, N. Charness, R.S. Schultetus, & D.M. Stampe, D. M. Perceptual
Automaticity in Expert Chess Players: Parallel Encoding of Chess Relations. Psychonomic
Bulletin and Review, 8, 504 –510. (2001).

[SpSt00] J. Sprague, & D. Stuart, The Speaker’s Handbook Fort Worth, TX, Harcourt College
Publishers. (2000).

[TK11] B. Taylor and S. Kaza, “Security Injections: Modules to Help Students Remember,
Understand, and Apply Secure Coding Techniques,” Proceedings of the 16th Annual Joint
Conference on Innovation and Technology in Computer Science Education pp. 3–7 (2011).

