
UC Davis
UC Davis Previously Published Works

Title
Integrated adaptive optics optical coherence tomography and adaptive optics scanning 
laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging

Permalink
https://escholarship.org/uc/item/2ds8b6h6

Journal
Biomedical Optics Express, 2(6)

ISSN
2156-7085

Authors
Zawadzki, Robert J
Jones, Steven M
Pilli, Suman
et al.

Publication Date
2011-06-01

DOI
10.1364/boe.2.001674
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2ds8b6h6
https://escholarship.org/uc/item/2ds8b6h6#author
https://escholarship.org
http://www.cdlib.org/


Integrated adaptive optics optical coherence 
tomography and adaptive optics scanning laser 

ophthalmoscope system for simultaneous cellular 
resolution in vivo retinal imaging 

Robert J. Zawadzki,
1,*

 Steven M. Jones,
2
 Suman Pilli,

1
 Sandra Balderas-Mata,

1
  

Dae Yu Kim,
1
 Scot S. Olivier,

2
 and John S. Werner

1
 

1Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Dept. of Ophthalmology & Vision Science,  
UC Davis, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA 

2Lawrence Livermore National Laboratory, 6000 East Avenue, Livermore, CA 94550, USA 
*rjzawadzki@ucdavis.edu 

Abstract: We describe an ultrahigh-resolution (UHR) retinal imaging 
system that combines adaptive optics Fourier-domain optical coherence 
tomography (AO-OCT) with an adaptive optics scanning laser 
ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the 
two modalities. The AO-SLO subsystem was integrated into the previously 
described AO-UHR OCT instrument with minimal changes to the latter. 
This was done in order to ensure optimal performance and image quality of 
the AO- UHR OCT. In this design both imaging modalities share most of 
the optical components including a common AO-subsystem and vertical 
scanner. One of the benefits of combining Fd-OCT with SLO includes 
automatic co-registration between two acquisition channels for direct 
comparison between retinal structures imaged by both modalities (e.g., 
photoreceptor mosaics or microvasculature maps). Because of differences in 
the detection scheme of the two systems, this dual imaging modality 
instrument can provide insight into retinal morphology and potentially 
function, that could not be accessed easily by a single system. In this paper 
we describe details of the components and parameters of the combined 
instrument, including incorporation of a novel membrane magnetic 
deformable mirror with increased stroke and actuator count used as a single 
wavefront corrector. We also discuss laser safety calculations for this 
multimodal system. Finally, retinal images acquired in vivo with this system 
are presented. 

©2011 Optical Society of America 

OCIS codes: (110.4500) Optical coherence tomography; (010.1080) Adaptive optics; 
(220.1000) Aberration compensation; (170.0110) Imaging system; (170.4470) Ophthalmology; 
(120.3890) Medical optics instrumentation 
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1. Introduction 

In vivo cellular resolution human retinal imaging is relatively new, and holds promise for 
scientific and clinical applications. In most cases, in vivo cellular resolution refers only to 
successful imaging of the cone photoreceptor mosaic, not the hundreds of millions of other 
retinal cells. Thus, while progress in retinal imaging has been impressive over the past decade, 
many challenges lie ahead. 

All three retinal imaging modalities used in today’s ophthalmic clinics, i.e., the fundus 
camera [1], scanning laser ophthalmoscope (SLO) [2], and optical coherence tomography 
(OCT) [3], have been combined successfully with adaptive optics (AO) for cellular resolution 
imaging. Historically, the first AO implementation was with a fundus camera [4]. After a few 
years, an AO-SLO [5] was introduced, followed shortly by AO-OCT [6–8]. 

Because cone photoreceptor density changes with retinal eccentricity (decreasing with the 
radial distance from the fovea) [9], one can observe cones at higher eccentricities even using 
retinal instruments with relatively low lateral resolution [10]. Additionally, recent 
improvements in acquisition speed and sensitivity of research-grade OCT instruments now 
permits clear and reliable imaging of the cone mosaic in young healthy volunteers without AO 
[11,12]. However, as predicted by diffraction theory and ocular aberrations in the normal 
healthy human population [13], AO with wavefront correction is required [14] to allow 
cellular resolution imaging near the fovea. The need for AO becomes evident if one increases 
the size of the imaging aperture over 2 mm at the eye’s pupil [15]. 

The main difference between AO-fundus and AO-SLO instruments is full field vs. raster 
image acquisition schemes and the optional confocal detection scheme of the latter. Both 
systems can be used to detect scattered as well as fluorescent photons from the sample. In 
contrast, standard OCT, due to its coherent detection nature, can only detect elastic back-
scattered photons. This difference has many implications and explains why the fundus camera 
and/or SLO can be seen as complimentary modalities to OCT. Despite limitations of OCT 
(e.g., inability to detect fluorescent photons) recent progress in acquisition speed and 
sensitivity allowed by Fourier domain Fd-OCT [16,17] has already revolutionized clinical 
diagnostics and monitoring of retinal diseases [18–20]. This is because OCT offers sufficient 
axial resolution (few µm), independent from lateral resolution, for in vivo visualization and 
characterization of all the main cellular layers in the human retina [21,22]. 

Interestingly the confocal detection nature of SLO and standard OCT makes the 
combination of these modalities rather straightforward for multimodal retinal imaging 
systems. For example, some recently introduced state-of-the-art clinical Fd-OCT systems 
have a built-in SLO to be used as a large field-of-view (FOV) finder. Some of these clinical 
systems even support an SLO for fundus autofluorescense (AF) as well as fluorescein 
angiograpy (FA) and indocyanine green angiography (ICGA) imaging. In parallel with these 
developments, several laboratories have actively explored the possibility of multimodal 
imaging with SLO and OCT. A recent review by Podelanu and Rosen [23] includes a detailed 
summary of the main developments in that area. 

There are generally two main approaches for combing SLO and OCT modalities: one 
implements transverse scanning time-domain (Td)-OCT and the second uses Fd-OCT. Both 
approaches have been combined with adaptive optics to achieve cellular resolution retinal 
imaging. Merino et al. [24] described AO SLO/OCT with Td-OCT using T-scan acquisition, 
and this was followed by Pircher et al. [25] showing increased acquisition speed using a 
similar configuration. Recently the combination of AO SLO/OCT with OCT based on A-scan 
acquisition has been presented for both Fd-OCT variations: spectral OCT [26] and swept 
source OCT [27]. In the first approach (transverse scanning time-domain OCT), due to 
identical data acquisition mode (T-scans), all the scanning and adaptive optics components 
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can be shared while in the second approach some additional components are needed to allow 
multiplexing of OCT and SLO signals. 

In this manuscript we describe an AO system that combines an SLO with spectrometer-
based Fourier-domain OCT to allow simultaneous data acquisition with two modalities. In 
contrast to the design for combined SLO and Fd-OCT presented by Mujat et al [27], here SLO 
and OCT horizontal scanning is decoupled. Detailed information about instrument design and 
its performance are provided. This includes the implementation of an ALPAO novel 
membrane magnetic deformable mirror with increased stroke and actuator count used as 
single wavefront corrector. We also discuss laser safety levels for this multimodal system. 
Finally images of the retina acquired in vivo with this multimodal system are presented. 

2. Materials and methods 

The UHR-AO-OCT subsystem used as a base for our combined AO-OCT and AO-SLO 
design has been described in detail in our previous publications [28–30]. Therefore in this 
paper we will focus mainly on the SLO subsystem components and changes made to the AO-
OCT sample arm and detection unit to accommodate the AO-SLO subsystem. 

2.1. AO-OCT/AO-SLO instrument 

As mentioned in the introduction, the key design criterion for our combined system was to be 
able to acquire simultaneously rather than consecutively retinal images with both OCT and 
SLO. In the optical design of our AO-OCT/AO-SLO sample arm, we used a series of focal 
telescopes to image the eye’s pupil on all key optical components, including vertical and 
horizontal scanning mirrors, wavefront corrector, the Hartmann-Shack wavefront sensor and 
the fiber collimator for light delivery and detection for both OCT and SLO channels. The 
magnification factor, γ, between the eye’s pupil and the DM as well as WFS was 1.5x (~10 
mm diameter), based upon the ~6.7 mm subject pupil diameter used for imaging. Figure 1 
shows a detailed view of the AO-OCT sample arm (as visualized in Zemax) with the AO-SLO 
beam plotted and its components overlaid on top of that design. 

 

Fig. 1. Schematic of AO-OCT/AO-SLO sample arm. Red rays—AO-OCT path; blue rays—
AO-SLO path. Note that the focal lengths of spherical mirrors S6’ and S7’ are identical to S6 
and S7. AO sub-system uses OCT light for wavefront sensing. S—spherical mirrors; H-S 
WSF—Wavefront Sensor; SLD—Superluminescent diode; PMT—Photomultiplier tube; H—
horizontal scanner (OCT or SLO); V—Vertical Scanner 

The SLO beam depicted in blue was introduced into the AO-OCT sample arm by a 
dichroic mirror (CVI Melles Griot: LWP-45-RU670-TU800-PW-1025-C) placed in front of 
the OCT collimator. To allow different acquisition planes of SLO (En-face x-y plane) and 
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OCT (B-scan x-z plane) beams we separated scanning optics for the horizontal plane, while 
keeping the same frame rate and one common vertical scanner. This was accomplished by 
introducing two additional dichroic mirrors from CVI placed between spherical mirrors S5 
and S6. This provided an alternative pupil plane for the SLO beam only. The reflected SLO 
beam (blue ray) was directed to the horizontal SLO scanner (HSLO) via spherical mirror S6’, 
after being reflected from the horizontal scanner beam toward S7’ and was then introduced 
back to the ―main‖ AO-OCT path by one more dichroic mirror. Using the same magnification 
for both OCT and SLO channels limited noncommon path aberrations between these two 
paths. This is critical because only the OCT beam is used in the AO subsystem as a reference 
for wavefront aberration correction. (A high-pass filter was placed in front of the WFS 
Semrock: FF735-Di01-25x36.) Therefore any noncommon aberrations between SLO and 
OCT, beside defocus that are introduced to compensate for the eye’s longitudinal chromatic 
aberration (LCA) [28], would not be corrected and would limit the performance of the SLO 
channel. 

The actual AO-OCT/AO-SLO system occupied a 5 ft x 6 ft laboratory optical table. Figure 
2 shows a schematic of the AO-OCT/AO-SLO system including optical and electronic 
components. Note that both systems share the vertical scanner operating at 27 Hz, which sets 
the system frame rate. Thus, the horizontal positions of the OCT B-scan (acquired in our 
system vertically) with respect to the SLO frame were determined by angular offset of the 
OCT horizontal scanner. 

 

Fig. 2. Schematic chart of the optical and electronic components of AO-OCT/AO-SLO system. 
Three computers have been used to control AO, OCT and SLO sub-systems. Purple lines 
represent electrical paths. Black lines represent fibers; red, orange and green lines represent 
free-space light paths. V—vertical, H—horizontal scanner; H2O—cuvette with water (to 
compensate for the eye’s material dispersion); H-S WS—Hartmann-Shack Wavefront Sensor; 
LSC—Line Scan Camera (CCD); NDF—Neutral Density Filters, DM—ALPAO deformable 
mirror; DAQ—Data Acquisition Card; DG—diffraction grating. 

A pupil diameter of 6.7 mm was used in our imaging system to allow for up to 3 μm 
lateral resolution for both subsystems when AO correction was optimized. A bite-bar and a 
forehead-rest assembly have been mounted on an X-Y-Z motorized translation stage to reduce 
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head motion and allow precise positioning of the subject’s eye pupil in the center of the 
imaging system entrance pupil. A calibrated fixation point was used to position the eye for 
imaging at specified retinal locations as well as to reduce eye motion. To ensure the maximum 
pupil size and minimize fluctuations in accommodation, the subject’s eye was dilated and 
cyclopleged with 2.5% Phenylephrine and 1% Tropicamide. All procedures were in 
accordance with the tenets of the Declaration of Helsinki and were approved by the University 
of California, Davis Institutional Review Board. 

2.1.1 AO-subsystem 

In our previous AO-OCT systems we used dual DMs to correct wavefront aberrations. The 
wavefront correctors were 35 + 2 actuator bimorph deformable mirror from AOptix and a 
140-actuator MEMS deformable mirror manufactured by Boston Micromachines. Here we 
replace these two wavefront correctors by a single novel membrane magnetic deformable 
mirror from ALPAO with increased stroke and actuator count. This deformable mirror was 
placed at the AOptix DM pupil plane position and a flat mirror was placed at the MEMS DM 
pupil plane position. The initial results of testing performance of this DM suggested that it can 
offer a good compromise between cost and performance if compared to our previously 
reported 2DM-AO system. Simple evaluation of the AO subsystem included testing the 
ALPAO DM dynamic range and the wavefront correction performance with healthy 
volunteers. Figure 3 shows actuator geometry and an image of the ALPAO DM and AOptix 
DM for comparison. 

 

Fig. 3. Actuator geometry and an image of the 35 + 2 element Bimorph DM (a) and 97 element 
ALPAO DM (b). The gray center circular area represents the mirror surface of both DMs. The 
image of the subject’s eye pupil as imaged on each mirror is marked by the red dashed circle 
(diameter 6.75 mm). Note that it matches the AOptix DM diameter of ~10 mm and is smaller 
than the 13.5 mm diameter of the ALPAO DM. 

Note that in the current optical design only part of the ALPAO DM pupil was used for 
imaging. Table 1 shows specifications for these two mirrors. 

Table 1. Specification of AOptix DM and ALPAO DM 

 AOptix ALPAO 

Active area: 10 mm, round 13.5 mm (10 mm), round 

No of actuators: 35 (19 + 16) + 2 
5 across pupil 

97 (69) 
9 (7) across pupil 

Mirror surface: Continuous surface Continuous surface 

Stroke (wavefront): Defocus: ± 32 mm 
Maximum deflection:  ± 16 µm 

Tip/tilt: ± 60 µm 
Inter actuator: >3 µm 

3x3: >30 µm 

Speed: Response speed: ~4 kHz Bandwidth: 750 Hz 

This limits the usable aperture of that mirror from nine to seven actuators across the pupil. 
Therefore results presented in this paper are similar to what may be expected from the 69-
actuator ALPAO DM. The current AO configuration used the same wavefront sensor 
previously reported. This allowed us to directly compare the performance of new and old 
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configurations. Briefly, our Hartmann-Shack wavefront sensor used a 20x20 lenslet array with 
500 µm pitch and 30 mm focal length. The 284 lenslets from the array were used to sample 
the wavefront at a ~14 Hz frame rate (that is synchronized to AO-OCT/AO-SLO system 
frame rate). The current AO control software, as in the previous one, allows shifting of the 
focus of the AO-OCT beam axially onto retinal structures of interest while still correcting 
higher-order aberrations. The system operator determined the axial layer of interest by adding 
preset defocus to the WFS centroids reference file. 

2.1.2. SLO subsystem 

Our SLO subsystem used electronic components similar to the SLO described by Chen et al. 
[31]. A Superluminescent Diode SLD: S-680 G 1-5 SM (8 nm @ 683 nm; Pout = 5 mW) from 
Superlum Ltd. (Moscow, Russia) was used instead of a laser as an SLO light source to limit 
speckle in the retinal images. A dichroic mirror (CVI Melles Griot: LWP-45-RU670-TU800-
PW-1025-C) that reflects the SLO beam and transmits the OCT beam introduced the SLO 
beam into the AO-OCT system. The SLO beam was collimated by the 50 mm focal length 
achromatic lens (Thorlabs: AC254-050-B) and an identical lens was used in the fiber 
collimator of the detection arm. The detection channel of the SLO system consisted of a 50 
µm diameter multimode fiber (Thorlabs: AFS50/125 Y) that was connected to the 
photomultiplier tube (PMT) module (Hamamatsu H7422-20). The resonant optical scanner 
from Electro-optical Products Corporation (SC-30, 14 kHz, 6°) operated at 13.7 kHz allowing 
fast horizontal scans and provided horizontal synchronization for the SLO LEI video 
generator. The photons were detected by the PMT, and the synchronization signal was fed to 
the frame-grabbing board (Matrox Helios). The frame grabber presented the raw image of 500 
x 500 pixels at 27 frames per second. The extra lines from the raster scan images of 525 lines 
per frame were used for blanking and synchronizing the frame grabber. The SLO detection 
had a duty cycle of about 40%; therefore, to reduce the average SLO beam at the retina, we 
modulated the SLO light intensity using a fiber pigtailed acousto-optics modulator AOM (AA 
Optoelectronic: MT 200-R9-Fio-SM 0,5-J 1-A) to deliver light to the retina only during SLO 
acquisition. This reduction in average light power was important because the laser safety 
standards, as described in following paragraphs, are more restrictive for the shorter 
wavelengths used for the SLO. 

2.1.3. UHR-OCT subsystem 

The UHR-OCT subsystem components were identical to those in our previous publication. 
This instrument offered images of the retina with isotropic ~3x3x3.5 μm

3
 volumetric 

resolution. A custom achromatizing lens was developed for correction of the eye’s 
longitudinal chromatic aberrations (LCA) across the near infrared wavelengths at which the 
ultra-broadband light source operates. The same light source was used for both wavefront 
sensing and imaging to permit the OCT data to be saved without interfering with the AO 
system operation. The main change in our OCT detection was that the B-scan consisted of 620 
A-scans rather than 1000 as used previously. This allowed higher frame acquisition (without 
changing line exposure time) to 27 frames/s allowing synchronization with SLO frames. 

2.2. Simultaneous Acquisition of OCT and SLO Data Sets 

Proper timing of SLO and OCT beam scanning and frame acquisition is a key component of 
successful operation of a combined AO-OCT/AO-SLO system. Figure 4 shows timing 
diagrams for one AO-OCT/AO-SLO frame. Additionally, the beam traces for the single frame 
acquisition are also shown overlaid on the magnified retinal fundus photo. Because these two 
data sets are acquired independently on two computers, we had to synchronize the two PCs by 
using AO-OCT software start, stop and save as pointers for the AO-SLO software. The start 
of OCT acquisition also starts SLO data streaming to the circular buffer. Stop of OCT data 
collection also stops SLO data streaming. Therefore, both the OCT and SLO buffers have the 
same last frame. Saving OCT data also saves SLO data sets with corresponding time stamps. 
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A schematic of the electronic connections used for synchronization of OCT and SLO scanners 
and data acquisition can be found in our previous manuscript [26]. 

 

Fig. 4. (a) Timing diagrams and (b) visualization of the beam scanning pattern on the retina for 
one AO-OCT/AO-SLO frame. Red rays—OCT path; blue rays—SLO path. 

As already noted, for each AO-SLO en-face frame, an AO-OCT vertical B-scan is 
acquired at the horizontal position set by the horizontal OCT scanner HOCT. To illustrate the 
timing within a single frame, Fig. 5 shows three time points during single-frame acquisition 
with the scanning path of SLO and OCT beams on the retinal plane with corresponding retinal 
data sets as acquired up to the each point in time within this frame. 

 

Fig. 5. Simultaneously acquired AO-OCT and AO-SLO data sets with schematic scanning path 
during single frame acquisition at  (a) 30%, (b) 60%. and (c) 100% of the finished frame 
acquisition (only paths already scanned are showed on the image). Blue rectangles represent 
AO-SLO acquisition area; red arrows represent horizontal position of AO-OCT acquisition 
line. Note that the OCT B-scan is acquired perpendicular to the AO-SLO frame. 

Thus, during simultaneous OCT/SLO acquisition, OCT scanning patterns are limited to 
vertical line acquisition and 3D acquisition only. Using different OCT scanning patterns 
(circular, horizontal) would result in corrupting the SLO channel. In our standard acquisition 
scheme a circular buffer saves 200 AO-OCT B-scans and corresponding AO-SLO frames 
simultaneously. 

2.3. Laser Safety Considerations 

To ensure that the light levels used for imaging the human retina in vivo are safe, we followed 
the ANSI laser safety standards [32]. Delori et al. [33] published practical examples of the 
ANSI standards applied to ophthalmic imaging systems. Following these recommendations 
we calculated the maximum permissible radiant power (MPΦ) rather than maximum 
permissible radiant exposure (MPHc) for our combined AO-OCT/AO-SLO instrument using 
different scanning scenarios. 

 5 1 0.256.93 10 T EMP C C P t       (1) 
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where CT, CE and P are parameters described in the ANSI standards and t denotes exposure 
time. As an example, Table 2 shows the most restrictive MPΦ values calculated for both OCT 
and SLO with an imaging field of 5 mm (~17.5 deg) commonly used in OCT. Additionally, 
MPΦ for an imaging field of ~288 µm (~1 deg), the smallest field size we use for imaging in 
our AO-OCT system, is presented as well. Two OCT scanning scenarios (line scan and 
volumetric scan) are shown. Since our system employs both SLO and OCT beams 
simultaneously, the light powers at the eye pupil must satisfy the multiple light sources 
exposure rule [33]: 

 
   

830 680 1
830 680

P P

MP MP
 

 
  (2) 

In our initial system configuration, the power of our AO-OCT beam at the eye pupil was 
about 400 µW. The power of the AO-SLO beam was about 150 µW. Entering these values 
into Eq. (2) and assuming the most restrictive scanning scenarios (continuous 5 minutes 
imaging at one eccentricity, with 1 deg scanning field for AO-SLO and line scan for OCT) 
yields: 0.72 + 0.19 = 0.91 < 1; resulting in power levels just below the ANSI limits. 

Table 2. MPΦ values for different imaging scenarios with 1 minute and 5 minute 
continuous exposure 

Maximum Permissible Radiant Power (MPΦ) for 1 minute exposure 

5 mm (~17.5 deg)  288 µm (~1 deg 

MPΦOCT line [830 nm] = 1.7 mW  MPΦOCT line [830 nm] = 835 µW 
MPΦOCT 3D [830 nm] = 5.4 mW  MPΦOCT 3D [830 nm] = 1.5 mW 
MPΦSLO [680 nm] = 2.8 mW  MPΦSLO [680 nm] = 1.15 mW 

Maximum Permissible Radiant Power (MPΦ) for 5 minute exposure 

5 mm (~17.5 deg)  288 µm (~1 deg) 

MPΦOCT line [830nm] = 1.14 mW  *MPΦOCT line [830nm] = 560 µW 
MPΦOCT 3D [830nm] = 3.6 mW  MPΦOCT 3D [830nm] = 1 mW 
MPΦSLO [680nm] = 1.88 mW  *MPΦSLO [680nm] = 795 µW 

*Denotes the most restrictive values for both OCT and SLO sub-systems 

As mentioned earlier, to reduce SLO light exposure we implemented an AOM to modulate 
the SLO beam power. Because our SLO data acquisition had a duty cycle of about 40% (we 
acquired SLO data only during one-way sweep of resonant scanner), we can reduce its 
average power by 60%. Additionally, a more realistic value of 1 min exposure and 3D AO-
OCT data acquisition leads to these ANSI light limits and multiple light exposure calculation. 
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 (3) 

Note that in our standard imaging sessions several different retinal eccentricities were 
evaluated with each retinal site tested up to four times. We estimate that the average data 
acquisition time for one data set did not exceed 30 seconds with a one-minute interval 
between consecutive acquisitions. Additionally, our standard imaging field for AO-OCT/AO-
SLO system covers 2 degrees, which further increases the MPΦ for the system. This results in 
a multiple light exposure value of 10 times below the ANSI limit. 

3. Results and discussion 

In this section we present initial results of testing the AO-subsystem using the ALPAO 
deformable mirror and its typical performance for correcting aberrations of a healthy 
volunteer. Additionally, images acquired with AO-OCT/AO-SLO system are presented along 
with examples of multi-system image visualization. 

3.1. The dynamic range of the ALPAO DM 

To test the dynamic range of the deformable mirror we used a model eye as the sample and 
placed trial lenses in front of it to check the DM’s ability to correct refractive errors of 
different magnitudes. Note that in our AO system we report total measured wavefront RMS 
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value. Thus in our case wavefront error is always greater than zero and includes residual 
wavefront errors [30]. In our original AO system the defocus correction range was limited by 
the AOptix DM stroke to ±3 Dpt. In contrast, for ALPAO correction we are now limited by 
the optical system itself. This is because aberrations larger than ±3.5 Dpt cannot be imaged in 
our system (the imaging beam is vignetted by optical elements). We also noted that AO 
system performance degrades with increase of the low-order aberration amplitude, namely the 
higher initial defocus/astigmatism, the lower AO ability to achieve diffraction limited RMS. 
This can be also observed in lower Strehl Ratios and image quality. This effect can be 
explained by the fact that our current sample arm design is not free from residual aberrations 
and the wavefront from the eye pupil is not accurately mapped to the deformable mirror and 
wavefront sensor conjugate pupil planes. Thus, changes in optical design of the sample arm 
are necessary [34] to reduce this effect and fully utilize the potential of the ALPAO DM. 
Figure 6 compares ALPAO DM performance for correcting defocus and astigmatism 
introduced by trial lenses placed at the eye pupil plane. 

 

Fig. 6. AO correction of defocus and astigmatism with ALPAO DM only. 

3.2. Performance of the ALPAO DM for wavefront correction 

In our AO-subsystem, the operator can monitor the RMS wavefront error in real time during 
data acquisition. To evaluate statistically the performance of our new AO system, a large 
number of subjects is required. Here, as an example, Fig. 7 compares the correction of three 
healthy subjects using the ALPAO DM. RMS wavefront error is presented as seen in real time  
 

 

Fig. 7. Example traces of the wavefront RMS (µm) reconstructed from H-S centroid 
displacements (measured on eyes of three healthy volunteers) plotted as a function of time for 
the ALPAO DM based AO system. (a) JA: 41-year-old male. (b) AP: 30 year-old-male. (c) RF 
19-year-old male. 
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by the AO-OCT operator. Note that in this example the ALPAO DM provided very similar 
performance to the earlier 2DM-AO system. For each of these three subjects we achieved 
diffraction-limited performance when AO was active, with averaged Strehl Ratios over 0.82. 

We plan to perform more detailed analyses of ALPAO DM performance when we change 
the optical design of our sample arm to match the pupil size of that mirror with the image of 
the eye pupil. This would allow use of all 9 visible actuator across pupil for wavefront 
correction. 

3.3. In vivo retinal imaging with combined AO-OCT/AO-SLO system 

Here we show images acquired with the AO-(UHR-OCT/SLO) system along with our custom 
multi-modality image visualization. One of the benefits of combining Fd-OCT with SLO 
includes automatic co-registration between the two imaging modalities. Additionally, this 
allows for direct comparison between retinal structures that can be imaged with both 
modalities (e.g., photoreceptor mosaics or microvasculature maps). 

3.3.1. Initial AO correction (turning Adaptive Optics ON) 

Figure 8 shows a video of simultaneously acquired AO-OCT and AO-SLO data sets from a 
healthy 30-year-old female volunteer MS. (AO-OCT is shown in linear and logarithmic 
intensity scales for comparison) 

 

Fig. 8. Real time movie sequence of AO-(UHR-OCT/SLO) frames during AO correction 
(Media 1 and 3). The video starts before AO correction is applied and improvement in image 
quality as seen by two modalities can be observed. (a) AO-SLO frame. (b) AO-OCT linear 
intensity scale B-scan. (c) AO-OCT log intensity scale B-scan. 

Note that SLO and OCT linear scales have the same dynamic range and show similar 
increases in photoreceptor layer intensity with AO correction. The larger dynamic range 
offered by OCT logarithmic scaling makes this effect less obvious. 

3.3.2. Visualization of combined data sets 

Figure 9 shows example visualization, using custom IDAV volume rendering software 
developed in our laboratory [35], of simultaneously acquired AO-OCT and AO-SLO frames 
acquired from a healthy 26-year-old female volunteer, KI. Here, one can correlate retinal 
features seen on the AO-SLO image of the photoreceptor mosaic with disruption of retinal 
layers as seen on the AO-OCT B-scan image. 
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Fig. 9. Visualization of AO-(UHR-OCT/SLO) frame (acquired during one period of vertical 
scan marked as gray rectangle on Fig. 5. (a) AO-UHR-OCT frame. (b) AO-SLO frame. 
(c) visualization of co-registered AO-UHR-OCT and AO-SLO frames. 

3.3.3. Large field-of-view imaging 

To better visualize the potential of our combined AO-OCT/AO-SLO system we show an 
example of large field-of-view (FOV) imaging of the foveal composite from four data sets 
acquired from a healthy 23-year-old male volunteer CJ. Figure 10 shows AO-OCT / AO-SLO 
data simultaneously acquired in four quadrants of the retina. In each case the subject fixated 
on each of the corners of the AO-SLO raster. Next we created a large FOV representation of 
the fovea with both AO-SLO and AO-OCT data sets. 

 

Fig. 10. Visualization of four AO-OCT/AO-SLO data sets simultaneously acquired in four 
quadrants of the retina. Retinal eccentricity of the fixation points for the presented data sets are 
1N 1SR; 1T 1SR; 1N 1IR; 1T 1IR. (a) Composite video of the real time AO-SLO data sets 
(Media 2 and 4). (b) Composite 3D visualization of the stitched AO-OCT data sets acquired 
simultaneously with AO-SLO images from (a). 

This type of data acquisition and visualization may have an impact on diagnosis and 
monitoring of retinal diseases in clinical settings. For example, it could be used for 
quantitative evaluation of cone densities (from AO-SLO data sets) and retinal layers thickness 
or intensity profiles (from AO-OCT data sets) with both maps automatically co registered. 

4. Conclusions 

We have presented an AO-OCT/AO-SLO system that is capable of acquiring OCT and SLO 

in vivo images of the human retina at 3.5 µm resolution. Several features of the instrument 
design and changes to our AO subsystem are described along with tests of the new ALPAO 
DM dynamic range and its wavefront correction performance. Even though our DM has a 
large dynamic range for AO correction due to the optical system design, AO performance 
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decreases with the amplitude of the aberrations. This is because large amplitude aberrations 
are not accurately mapped from the eye pupil to the deformable mirror and wavefront sensor 
conjugate pupil planes. Thus, we plan to make changes in the optical design of the sample arm 
to reduce this effect and fully utilize the potential of the ALPAO DM. Additionally this design 
will match the pupil size of that mirror with the image of the eye pupil to allow using the 
whole mirror surface for correction. As an example of the system performance, OCT and SLO 
data simultaneously acquired on a 30-year-old volunteer were presented. We noticed some 
problems with proper triggering and timing of OCT and SLO data acquisition, due to 
separation of both systems on two computers. Manual matching of the OCT and SLO frames 
was needed to ensure co-registration of the frames. Our future work will focus on simplifying 
data acquisition and processing to facilitate application of this instrument for clinical retinal 
imaging. This dual imaging modality could provide insight into retinal features that could not 
be accessed by a single imaging system. We also plan to improve correction of lateral and 
transversal eye motion using AO-SLO images to create motion artifact-free volumetric AO-
OCT retinal images. Additionally, as extension of OCT and SLO beyond structural imaging 
may open new avenues for diagnostics and testing in ophthalmology with multimodal imaging 
platforms like the one presented in this manuscript. 
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