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Synthetic biology has enabled the engineering of biological networks capable of

producing quantitatively predictable, dynamic function in a host organism. Advanced

synthetic toolkits have been developed and applied within model bacterial systems to

construct functional assemblies of biological parts that toggle (Gardner et al., 2000),

oscillate (Elowitz and Leibler, 2000; Stricker et al., 2008; Danino et al., 2010), con-

trol cellular populations (You et al., 2004) and trigger host responses (Lu and Collins,
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2007), form logical gates (Tamsir et al., 2010; Moon et al., 2012), perform arithmetic

operations (Friedland et al., 2009), filter signals (Sohka et al., 2009) and sense com-

plex environmental cues (Tabor et al., 2009; Kobayashi et al., 2004). This diverse set

of genetic circuit designs, varying in complexity and host, have further been applied

to systematically engineer biological systems towards applications in biosynthesis, en-

vironmental remediation, intracellular diagnostics, and therapeutics. Amidst this rapid

expansion of tools and extensive demonstration of complex functional capabilities, the

lack of commercially translatable technologies thus far reflects a looming challenge for

the field. Specifically, an integrated synthetic design must go beyond matching signal

levels between interacting circuits in model organisms. It must also function effectively

across relevant spatial scales and among industrial hosts, for which the genetic circuit

must predictably integrate with the host’s regulatory and metabolic biology. In this the-

sis, we focus on constructing scalable synthetic circuits that are inspired by the natural

functionality of bacteria and translatable into commercially relevant hosts. Here we

discuss host selection, modeling, design, construction, and characterization of gene cir-

cuits towards applications in biosensing and protein production. In Chapter One, we

give an introduction to the field of synthetic biology and how our research area fits into

this discipline. In Chapter Two, I describe a circuit design that leverages native reg-

ulatory components of bacteria to produce a scalable frequency modulated biosensor.

In Chapter Three, I demonstrate further functionalities of quorum sensing signaling in

bacteria. In Chapter Four, we discuss the translation of synthetic circuits to a thera-

peutically relevant host. In Chapter Five, I present an integrated approach to engineer

industrially relevant cyanobacteria for efficient protein production. These sections com-

bine to expand our approach in engineering natural biological systems towards directed,

translatable applications.
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Chapter 1

Introduction

The study of biology has transformed amid a wave of technological innovation

that enabled rapid sequencing of genetic material and provided the tools with which to

rapidly synthesize libraries of biological elements, including entire microbial genomes.

The field of systems biology emerged in a push to direct rich sequencing datasets to-

ward unraveling patterns of connectivity that enable complex genetic networks to exhibit

functional behavior. Moreover, a desire to demonstrate control of such networks led to

the emergence of synthetic biology. The ability to rewire endogenous gene regulatory

systems afforded by synthesis technologies allows rapid swapping of functional biolog-

ical parts (not limited to genes, promoters, repressors, enhancers) within and between

organisms to explore network design principles.

Targeting the predictable and modular design of gene circuits, synthetic biol-

ogy has sought to rigorously characterize the dynamics of smaller motifs in isolation

before scaling complexity towards larger networks. This is reflected by the fact that

the majority of existing examples of synthetic gene circuits consist of fewer than 10

genes. The bottom-up approach has brought forward powerful design principles that

occur repeatedly across natural gene networks. An ability to further reconstruct circuits

with externally tunable parts derived from a variety of organisms has allowed synthetic

biologists to build small regulatory motifs, inspired by nature, that allow for its quan-

1
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titative characterization captured by computational modeling. This work has fostered a

next generation of circuit design, supported by a careful understanding of the dynamics

spanning gene expression through regulation, to construct novel genetic functions that

switch, perform logical operations, and trigger host responses.

Yet this reductionist approach reaches a stark discontinuity with our technologi-

cal ability to mine rich sequencing information across a diversity of organisms to access

novel, transferable biological elements. Furthermore, advancement in synthesis capabil-

ities have yielded demonstrations of reconstructing artificial genomes in excess of 1,000

genes (Gibson et al., 2010). The difficulty in transitioning the principles elucidated by

bottom-up synthetic biology research into more complex, industrially applicable syn-

thetic systems represents the lack of well-characterized genetic components which can

seamlessly be integrated into larger devices as well as the ability to predictably design

according the host’s regulatory and metabolic biology to construct robust systems.

A significant amount of consideration in the field has been directed towards more

efficient ”part” screening, characterization, and classification to support the construction

of more complex genetic devices (Wang et al., 2013). Minimizing crosstalk between

components has been a particular focus, as increasing the scale of designed genetic in-

teractions will require a precise understanding of pairwise regulatory dynamics across

the system to achieve the predicted behaviors. Screened libraries of orthogonal genetic

elements has provided more specific pairing, with the mathematical ability to predict

off-target interactions within a multilayer genetic circuit (Mutalik et al., 2012). Properly

matching elements such that their input and output levels operate within a consistent dy-

namic range is also necessary to engineer complex functionality and represents a signif-

icant design bottleneck. Poor input-output alignment can manifest in differences in con-

centration, stoichiometry, enzymatic activities, or expression levels and lead to genetic

instability, protein mislocalization, accumulation of toxic intermediates, and growth in-

hibition.

More fundamentally, inconsistent output levels between parts as well as vari-

ability in measurement techniques can lead to poor device sensitivity. In the case of
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applications for synthetic circuits to detect input stimuli, optical or chemical reporters

require careful instrument calibration and signal normalization. In Chapter 2 we address

these design challenges by constructing an oscillatory sensor that digitizes the output of

a genetic sensor by converting input simuli into the frequency space. This enables the

design of multiple sensing strategies, including a threshold sensor with an On/Off output

as well as a frequency modulated sensor.

The host’s regulatory and metabolic biology also plays an important role in the

construction of more advanced genetic circuits. As the complexity of genetic elements

is scaled, the need to reduce crosstalk and level-match ”parts” is joined by the challenge

of designing around host interference. This represents both the effect of a synthetic

network on the host’s native functionality as well as the host’s unintended impact on

the gene circuit dynamics. Traditionally work has aimed to introduce orthogonal parts,

including transcriptional machinery via novel polymerases or translational machinery

by introducing unnatural amino acid biology via mutant tRNAs (Rackham and Chin,

2005; Chin et al., 2003; Chatterjee et al., 2012). Further obstacles include designing for

evolutionary stability, whereby the circuit is not subject to host adjustments of circuit

expression level that may cause unprogrammed changes in synthetic circuit activity or

performance over time.

Another approach to build complexity into a synthetic circuit is to specifically

harness the native regulatory networks of the host in its design. In Chapter 2, we demon-

strate the ability to utilize native redox-sensing machinery of E. coli to couple the be-

havior of genetic circuits across individual cells as well as between colonies. This work

further demonstrates the ability to scale synthetic circuits spatially, generating precise

functionality between cells across large populations and distances. As cellular activity

is governed by stochastic bursts of transcription and translation, reducing intercellular

variability in circuit behavior represents yet another challenge to designing complex

networks more robustly.

Similarly, design considerations for transitioning an engineered circuit into the

relevant environment for which it was designed has not carefully been addressed in
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”bottom-up” synthetic biology research. Recent work has demonstrated that even sim-

ple circuits can have difficulties translating towards industrial scenarios (Moser et al.,

2012). Designing circuits that function in hosts that are more amenable to industrial

scaling and applicable media conditions is crucial to translating synthetic biology. In the

therapeutics space, for example, a trigger circuit has recently been demonstrated in-vivo

using hosts that reside naturally in the human gut (Kotula et al., 2014). In Chapter 4, we

demonstrate the ability to construct quorum-mediated circuits in the therapeutically rel-

evant microbe, S. typhimurium. Attenuated strains of this bacteria have exhibited safety

in several human clinical trials and specifically grow in tumor environments, providing

a chassis capable of facilitating a functional synthetic behavior at a relevant point of

intervention.

To realize the potential of novel circuit designs, synthetic biology must aim to

harness the natural functionality exhibited in biological organisms towards useful ap-

plications. Bacteria have adapted sophisticated modalities for survival across nearly all

environmental conditions via metabolic and regulatory evolution. Across this phyloge-

netic diversity, the scope of native bacterial phenotypes may provide useful frameworks

for synthetic design. Highly sensitive regulatory modules have evolved in bacteria based

on pressures to sample and respond to environmental cues. Cells have developed precise

intercellular communication strategies to preserve energy for host colonization (Fuqua

et al., 1994), metabolic functionalities as both individual cells and larger communities

to achieve symbiosis with complex host biologies (Kiers et al., 2003; Lundberg et al.,

2012; Human Microbiome Project Consortium and others, 2012), as well as community

strategies to overcome threats to the microbial ecosystem (Lee et al., 2010). Autotrophic

bacteria have specifically optimized their photosystems to utilize incident light for ef-

ficiently producing chemical energy (Nogales et al., 2012). Finding the intersection

between a significant unmet need and the evolutionary niche of a biological organism

will likely yield the most profound results in this field. Likewise the development of

synthetic biology toolkits that can be implemented across host types to utilize these di-

verse functionalities will significantly expand the field. In Chapter 5, we present an
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integrated approach to engineer an industrially relevant cyanobacteria for efficient pro-

tein production, including the characterization of new synthetic biology components

for engineering marine autotrophs. This work demonstrates the capacity to re-direct a

specific, highly complex biological functionality towards the following crucial problem:

The world’s population, and its demand for food, is growing at a rate that cannot

be sustained by our current agricultural infrastructure. With food demand expected to

rise between 70-100% by 2050, driven by increased urbanization of a growing popula-

tion projected to reach 9.1 billion, annual cereal and meat production will need to double

(rom, 2009). While the green revolution provided a dramatic rise in productivity of our

major wheat and rice food crops, resulting in a doubling of grain production over the

past 50 years, arable agricultural land has only increased 9% globally (Godfray et al.,

2010). Looking forward, 90% of the required increase in crop production is expected

to come from higher cropping intensity and productivity, closing yield gaps globally,

with only 5% from arable land expansion (rom, 2009). Yet wheat and rice annual yield

increases are now slowing to below 1%, including in developing countries that suffer

from the highest yield deficiencies (Fischer et al., 2009). Moreover, the impact of cli-

mate change on cropping regions worldwide is beginning to drive a measurable decline

in yield and arable land (Lobell et al., 2011; Zhang and Cai, 2011).

To ensure the security of future food production, meeting increased demand re-

quires a sustainable solution. A rapidly increasing demand for sources of concentrated

protein and vitamins from meat and dairy poses unique challenges. Low production

efficiencies (10% plant to animal conversion) occupies 33% of the world’s cereal, while

leaving a serious environmental footprint due to a freshwater demand of >100L and

methane emissions surpassing 115 kg CH4 every day per head of cattle (Godfray et al.,

2010; Goodland et al., 2009). Using a single cell marine cyanobacteria, we leverage

synthetic biology to design and characterize a sustainable alternative to crop and animal-

based protein production. Streamlining their highly optimized photosynthetic capacity

towards direct protein production enables a significant leap in productivity over conven-

tional practices.
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As the field of synthetic biology seeks to increase complexity through assem-

bling large sets of orthogonal genetic elements, building off of the complex biology al-

ready perfected by natural organisms may far outpace our ability to design from scratch.

In this thesis, I will implement such an approach to engineer natural biological systems

toward directed, translatable applications.



Chapter 2

A sensing array of radically coupled

genetic biopixels

Introduction

While there has been significant progress in the development of engineering

principles for synthetic biology, a substantial challenge is the construction of robust cir-

cuits in a noisy cellular environment. Such an environment leads to considerable inter-

cellular variability in circuit behavior, which can hinder functionality at the colony level.

Here, we engineer the synchronization of thousands of oscillating colony ”biopixels”

over centimetre length scales through the use of synergistic intercellular coupling involv-

ing quorum sensing within a colony and gas-phase redox signaling between colonies.

We use this platform to construct an LCD-like macroscopic clock that can be used to

sense arsenic via modulation of the oscillatory period. Given the repertoire of sensing

capabilities of bacteria such as E. coli, the ability to coordinate their behavior over large

length scales sets the stage for the construction of low cost genetic biosensors that are

capable of detecting heavy metals and pathogens in the field.

Synthetic biology can be broadly parsed into the ”top-down” synthesis of genomes

(Gibson et al., 2010) and the ”bottom-up” engineering of relatively small genetic cir-

7
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cuits (Hasty et al., 2002; Sprinzak and Elowitz, 2005; Endy, 2005; Ellis et al., 2009;

Kobayashi et al., 2004; You et al., 2004; Basu et al., 2005; Mukherji and Van Oude-

naarden, 2009; Grilly et al., 2007). In the genetic circuits arena, toggle switches (Gard-

ner et al., 2000) and oscillators (Elowitz and Leibler, 2000) have progressed into trig-

gers (Lu and Collins, 2007), counters (Friedland et al., 2009) and synchronized clocks

(Danino et al., 2010). Sensors have arisen as a major focus in the context of biotechnol-

ogy (Tamsir et al., 2010; Tabor et al., 2009; Kobayashi et al., 2004), while oscillators

have provided insights into the basic-science functionality of cyclic regulatory processes

(Stricker et al., 2008; Mondragón-Palomino et al., 2011; Tigges et al., 2009). A com-

mon theme is the concurrent development of mathematical modeling that can be used for

experimental design and characterization, as in physics and the engineering disciplines.

The synchronization of genetic clocks provides a particularly attractive avenue

for synthetic biology applications. Oscillations permeate science and technology in

a number of disciplines, with familiar examples including AC power (Westinghouse,

1887), GPS (Lewandowski et al., 1999), and lasers (Vladimirov et al., 2003). These

technologies have demonstrated that operating in the frequency domain can offer signif-

icant advantages over steady-state designs in terms of information gathering and trans-

mission. In particular, oscillatory sensors confer a number of advantages to traditional

ones (Gast, 1985), since frequency is easily digitized and can be quickly updated with

repeated measurements. For sensors that use optical reporters, measurements of fre-

quency are less sensitive to experimental factors such as beam power and exposure time

than intensity measurements which must be normalized and calibrated.

While the bottom-up approach to synthetic biology is increasingly benefiting

from DNA synthesis technologies, the general design principles are still evolving. Within

this context, a substantial challenge is the construction of robust circuits in a cellular en-

vironment that is governed by noisy processes such as random bursts of transcription

and translation (Ozbudak et al., 2002; Elowitz et al., 2002; Golding et al., 2005; Blake

et al., 2006; Austin et al., 2006). Such an environment leads to considerable intercellular

variability in circuit behavior, which can hinder their functionality at the colony level.
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An ideal design strategy for reducing variability across a cellular population would in-

volve both strong and long-range coupling that would instantaneously synchronize the

response of millions of cells. Quorum sensing typically involves strong intercellular

coupling over tens of microns (Waters and Bassler, 2005; Basu et al., 2005; Danino

et al., 2010), yet the relatively slow diffusion time of molecular communication through

cellular media leads to signaling delays over millimetre scales. Faster communication

mechanisms, such as those mediated in the gas phase, may increase the length scale

for instantaneous communication, but are comparatively weak and short-lived since the

vapor species more readily disperse.

Synergistic Synchronization

In order to develop a frequency modulated biosensor, we designed a gene net-

work capable of synchronizing genetic oscillations across multiple scales (Fig. 2.1a and

Fig. 2.5). We constructed an LCD-like microfluidic (Ferry et al., 2011) array that al-

lows many separate colonies of sensing bacteria to grow and communicate rapidly by

gas exchange (Fig. 2.1b and Fig. 2.13). Since previous work (Danino et al., 2010) has

demonstrated that coupling through quorum sensing leads to incoherent oscillations at

the millimetre scale, this mode of cellular communication is too slow for the genera-

tion of synchronized oscillations at the macroscopic scale. However, the slower quorum

sensing can be used to synchronize small local colonies, provided there is a second level

of design that involves faster communication for coordination between the colonies.

Therefore rather than attempting to engineer a sensor from a single large-colony os-

cillator, we wired together thousands of small oscillating colonies, or ”biopixels”, in

a microfluidic array. Coupling between biopixels involves redox signaling by hydro-

gen peroxide (H2O2) and the native redox sensing machineries of E. coli. The two

coupling mechanisms act synergistically in the sense that the stronger, yet short-range,

quorum sensing is necessary to coherently synchronize the weaker, yet long-range, re-

dox signaling. Using this method we demonstrate synchronization of approximately 2.5
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million cells across a distance of 5 mm, over 1,000 times the length of an individual

cell (Fig. 2.1c-d and Supplementary Movies 1 and 2). This degree of synchronization

yields extremely consistent oscillations, with a temporal accuracy of about 2 minutes

compared to 5 - 10 minutes for a single oscillator (Danino et al., 2010) (Fig. 2.1d).

Figure 2.1: Sensing array of radically coupled genetic biopixels. (a) Network dia-
gram. The luxI promoter drives expression of luxI, aiiA, ndh, and sfGFP in four identical
transcription modules. The quorum-sensing genes luxI and aiiA generate synchronized
oscillations within a colony via AHL. The ndh gene codes for NDH-2, an enzyme that gen-
erates H2O2 vapor which is an additional activator of the luxI promoter. H2O2 is capable
of migrating between colonies and synchronizing them. (b) Conceptual design of the sens-
ing array. AHL diffuses within colonies while H2O2 migrates between adjacent colonies
through the PDMS. Arsenite-containing media is passed in through the parallel feeding
channels. (c) Fluorescent image of an array of 500 E. coli biopixels containing about 2.5
million cells. Inset: brightfield and fluorescent images display a biopixel of 5,000 cells. (d)
Heatmap and trajectories depicting time-lapse output of 500 individual biopixels undergo-
ing rapid synchronization. Sampling time is 2 minutes.

The global synchronization mechanism is comprised of two modes of communi-

cation that work on different scales. The quorum-sensing machinery (LuxI, AiiA) uses

an acyl-homoserine lactone (AHL) to mediate intracolony synchronization. In our de-
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vice, the degree to which neighboring colonies are able to influence each other via AHL

diffusion is negligible owing to the high media channel flow rates. Instead, we engi-

neered the cells to communicate via gas exchange by placing a copy of the gene coding

for NADH dehydrogenase II (NDH-2) under the control of an additional lux promoter.

NDH-2 is a membrane-bound respiratory enzyme that produces low levels of H2O2 and

superoxide (O2
-) (Messner and Imlay, 1999). Since H2O2 vapor is able to pass through

the 25 µm oxygen-permeable PDMS walls that separate adjacent colonies, periodic pro-

duction of NDH-2 yields periodic exchange of H2O2 between biopixels. When H2O2

enters the cell, it transiently changes its redox state, interacting with our synthetic cir-

cuit through the native aerobic response control systems, including arcAB which has a

binding site in the lux promoter region (Bose et al., 2007; Georgellis et al., 2001). Under

normal conditions, ArcAB is partially active so lux is partially repressed. In contrast, ox-

idizing conditions triggered by H2O2 inactivate ArcAB, relieving this repression. Each

oscillatory burst promotes firing in neighboring colonies by relieving repression on the

lux promoter. This constitutes an additional positive feedback that rapidly synchronizes

the population (Fig. 2.6 and Supplementary Movie 1).

We investigated the effects of catalase and superoxide dismutase (SOD) to probe

the nature of H2O2 communication. When a population of synchronized colonies was

exposed to a step increase of 200 U/ml catalase, an enzyme that rapidly degrades ex-

tracellular H2O2 (Seaver and Imlay, 2001), synchronization was broken and colonies

continued to oscillate individually (Fig. 2.7). Since the cell membrane is impermeable

to catalase, this confirms that communication between colonies depends on external

H2O2 while oscillations within a colony do not. Conversely, when we enhanced the

rate of superoxide conversion to H2O2 by expressing sodA (Fridovich, 1978; McCord

and Fridovich, 1969) from an additional lux promoter, colonies quickly fired in a spatial

wave and failed to oscillate further despite no changes to growth rate or cell viability

(Fig. 2.8). Since H2O2 is produced internal to the cell, this confirms that H2O2 is capa-

ble of escaping the cell and activating lux-controlled genes in neighboring colonies via

diffusion. The apparent higher output of H2O2 by SOD as compared to NDH-2 is likely
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due to its very high catalytic efficiency (Berg et al., 2006). Finally, we observed syn-

chronization between arrays of traps even when they were fluidically isolated but held

in close proximity (Fig. 2.9). These devices share no common fluid sources or channels,

making communication by dissolved molecules like AHL impossible. Taken together,

these results confirm that gaseous H2O2 is the primary mode of communication between

oscillating colonies.

Based on our understanding of the mechanism for global synchronization, we

expected that we could simplify the circuitry by eliminating ndh and achieve the same

effect with intermittent bursts of high-intensity blue light. In this design, the GFP

molecule acts as a photosensitizer, releasing free radicals upon exposure that produce

oxygen species (ROS) including H2O2 (Remington, 2006). At the peak of oscillation,

significant vapor-phase H2O2 is produced by exposing GFP-containing cells to fluores-

cent light. Conversely, at the trough of oscillation, cells contain almost no GFP, and

therefore produce very little H2O2 upon fluorescing. Bursts of light thus generate bursts

of H2O2 vapor whose concentration depends on the oscillating GFP level, just as pe-

riodic production of NDH-2 did previously. Indeed, this strategy was similarly able

to synchronize our sensor array (Fig. 2.1d and Supplementary Movie 2). Numerous

controls were performed to ensure that synchronized oscillations did not occur at low

fluorescence intensities (Fig. 2.10 and Supplementary Movie 9).

To probe this mode of synchronization, we investigated the effects of thiourea

and the antibiotics ampicillin and kanamycin. When a synchronized population of

colonies was exposed to 35 mM thiourea, a potent radical quencher (Kelner et al.,

1990; Touati et al., 1995), we observed sharply decaying synchronized oscillations while

growth rate and cell viability were unaffected (Fig. 2.11). This suggests that without

O2
-, oscillations cannot be produced. Next, we ran a series of experiments switch-

ing the antibiotic resistance genes on our plasmids. We noted that radical-producing

antibiotics (Kohanski et al., 2010), particularly Ampicillin, significantly reduced the

degree of synchronization, showing that an excess of radical species such as O2
- also

hinders communication (Fig. 2.12). Since our final constructs included a plasmid with
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kanamycin resistance, which was also found to produce some radicals, we used full (50

µg/ml) selection when growing up the cells but very low (5 µg/ml) selection during the

experimental run. Persistence of oscillations, sequencing, and subsequent growth in full

selection following the run confirmed the presence of all 3 plasmids despite this low ex-

perimental selection. Catalase and sodA results were identical to those with NDH-2 syn-

chronization. These results show that fluorescence-mediated synchronization involves

the production of radical species following fluorescence exposure and communication

via H2O2.

Sensing Array of Biopixels

With a platform for generating consistent and readily-detectable oscillations, we

sought to use the circuit to engineer an arsenic-sensing macroscopic biosensor. We

rewired the network to include an extra copy of the positive-feedback element, the AHL-

synthase LuxI, under the control of a native arsenite-responsive promoter which is re-

pressed by ArsR in the absence of arsenite (Fig. 2.2a). When arsenite is not present in

the media, supplemental luxI is not transcribed and the circuit functions normally, gen-

erating baseline oscillations. However, the addition of trace amounts of arsenite relieves

this repression and allows supplemental luxI to be produced, increasing the oscillatory

amplitude and period. Tuning the level of LuxI by varying arsenite concentration re-

sults in clear changes to the oscillatory period (Fig. 2.2b and Supplementary Movie 2).

To determine the range of detection, we swept arsenite concentrations from 0 to 1 µM

and measured the oscillatory period (Fig. 2.2c, top). Using statistical methods (Sup-

plementary Data Analysis), we generated a sensor calibration curve (Fig. 2.2c, bottom)

that depicts the maximum possible arsenite concentration present (α = 95%) for a given

measured period. This curve is an illustration of how data generated by our array would

be used to measure arsenite concentrations in an unknown sample using our device. Our

system was able to reliably quantify arsenite levels as low as 0.2 µM, below the 0.5 µM

WHO-recommended level for developing nations (Nordstrom, 2002).
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Figure 2.2: Frequency modulated genetic biosensor. (a) Network diagrams depicting
two constructed sensing modules. In thresholding (1), the luxR gene is removed from the
oscillator network and supplemented by a new copy driven by an arsenic-responsive pro-
moter. In period modulation (2), a supplemental luxI gene tagged for increased degradation
is driven by the arsenic-responsive promoter which affects the period of oscillation. (b) A
sample period modulation sensor output following a step increase of 0.8 µM arsenite. Os-
cillatory period increases from 69 minutes to 79 minutes. (c) (Top) Period versus arsenite
concentration for the sensor array. Error bars indicate± 1 standard deviation averaged over
500 biopixel trajectories. Dotted line represents model-predicted curve. (Bottom) Sensor
calibration curve generated from experimental data. Points indicate the maximum arsenite
level with 95% certainty for a given measured period as determined statistically from ex-
perimental data. (d) Thresholder output following a step increase of 0.25 µM arsenite. A
dramatic shift from rest to oscillatory behavior is observed within 20 minutes following the
addition of arsenite.
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As an alternative sensing strategy, we rewired the network to include a copy

of the luxR gene controlled by an arsenic-responsive promoter while removing it from

the rest of the circuit (Fig. 2.2a). Since the LuxR-AHL complex must be present to

activate the lux promoter (Waters and Bassler, 2005), cells produce no LuxR when the

media is free of arsenite, generating no fluorescence or oscillations. The addition of

arsenite stimulates the production of LuxR, restoring circuit function and producing

clear, synchronized oscillations (Fig. 2.2d and Supplementary Movie 3). This ON/OFF

detection system has a threshold of 0.25 µM, a detection limit that can be adjusted by

changing the copy number, ribosome binding site (RBS) strength, or promoter strength

of the sensing plasmid (Supplementary Methods).

The sensing array is also capable of producing complex behaviors arising from

the dynamic interaction of cellular colonies. By making modifications to the size, num-

ber, and arrangement of biopixels in the device, we are able to dramatically alter the

output waveforms. For example, when we constructed a device in which trap separation

distance is increased (45 µm versus 25 µm), we observed local anti-phase synchroniza-

tion between neighboring colonies (Fig. 2.3d, top right). To explore this phenomenon

on a larger scale, we constructed a device that contains an array of 416 traps constructed

according to the specifications above. In these experiments, we observe initial global

synchronization that gradually falls into local anti-phase synchronization across the ar-

ray (Fig. 2.3d, middle and Supplementary Movie 4). Phase alignment is maintained

over at least 48 hours, with patches of synchronization typically 3-6 colonies in size.

Alternatively, by changing dimensions such that the array contains traps of two slightly

different sizes, we observe a 1:2 resonance synchronization where larger traps pulse at

double the frequency of smaller traps while maintaining synchronization (Fig. 2.3d, top

left and Supplementary Movie 7). Lastly, when LuxR is limited as in the threshold-

ing scheme, we observe synchronized oscillations of alternating large and small peaks

in both experiment and model (Fig. 2.16). Our computational model (see Modeling

Box) captures these effects (Fig. 2.3d, bottom and Figs 2.15 and 2.16) and indicates that

further array manipulation will yield new, richer dynamics that could not be produced
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directly by changing circuit structure.

Figure 2.3: Computational modeling of radical synchronization and biosensing. (a)
Time series of a population of biopixels producing varying amounts of H2O2 vapor. Syn-
chronization occurs only for moderate levels while high levels lock ON and low levels
oscillate asynchronously. (b) A typical time series for our period modulation sensor under-
going a step increase of arsenite. Oscillations increase in both amplitude and period. (c) A
typical time series output for the thresholding sensor. Oscillations arise following the ad-
dition of arsenite. (d) Experimental and computational output depicting complex dynamic
behaviors between neighboring traps. (Top 2 panels) 1:2 resonance and anti phase synchro-
nization observed when trap size (left, black/blue = 95 µm depth and red/magenta = 85 µm
depth) and separation distance (right, same colors) are modified experimentally, (Middle)
Scaled-up array experimental data for increased trap separation experiments demonstrating
anti phase synchronization, (Bottom) Computational model trajectories depicting 1:2 res-
onance and anti phase synchronization when trap size (same colors as experimental data)
and separation distance are changed.

While our sensor array is capable of performing a variety of complex functions

in the laboratory, adapting this technology to a real-world device will require the elimi-

nation of the expensive and bulky microscopy equipment. However, measuring genetic

oscillations in the absence of any magnification or powerful illumination will require

even further increased signal. Using this mechanism of global synchronization, we were

able to scale up to a 24 mm x 12 mm array that houses over 12,000 communicating

biopixels (Fig. 2.4a). Synchronization is maintained across the entire array, a distance
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over 5,000 times the length of an individual cell, using an inexpensive light-emitting

diode, LED (Fig. 2.4b,c and Supplementary Movie 5). The signal strength generated by

the large number of cells in the array (about 50 million) will allow us to adapt the device

to function as a handheld sensor. In our conceptual design (Fig. 2.4d), the sensor will

continuously read the oscillatory frequency using off-the-shelf electronic components

costing less than $50.

There have been many examples of bacteria-based biosensors (van der Meer

and Belkin, 2010; Daunert et al., 2000; Leveau and Lindow, 2002), usually involving

an optical reporter driven by a single promoter. Since optical intensity readings are sen-

sitive to imaging conditions like beam power and exposure time, measurements must

typically be normalized and calibrated. Measuring period of oscillation allows us to

avoid these issues since peak-to-peak time does not depend on individual peak intensity.

Secondly, oscillations produced at the colony level effectively decouple the signal from

the growth state of individual cells, which can also affect fluorescence intensity. By us-

ing a dynamic readout that depends on communication between biopixels, we scan and

tune potential output signals by changing device parameters rather than redesigning the

underlying circuit. For example, we might design a new sensing scheme in which oscil-

lations synchronize with the addition of some toxin and shift to anti phase or resonant

synchronization when critical toxin levels are present.

Scaling Up Synthetic Biology

By nesting two modes of communication we are able to expand the scale over

which individual cells are coordinated and increase the complexity of their interaction.

Indeed, there are many familiar examples of hierarchical systems. Airline routes are

often designed such that small airports are connected locally to larger hubs that are

connected internationally. It would neither be feasible nor desirable to connect every

airport together. Similarly, individual cells communicate locally by one method, gen-

erating impulses large enough to enable colonies to communicate globally by another.
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Figure 2.4: Radical synchronization on a macroscopic scale. (a) The scaled-up array is
24 mm x 12 mm and houses over 12,000 biopixels that contain approximately 50 million
total cells when filled. (b) Global synchronization is maintained across the array. Heatmap
of individual trajectories of all 12,224 oscillating biopixels. (c) Image series depicting
global synchronization and oscillation for the macroscopic array. Each image is produced
by stitching 72 fields of view imaged at 4X magnification. (d) Schematic diagram illus-
trating our design for a handheld device utilizing the sensing array. An LED (A) excites
the array (B) and emitted light is collected by a photodetector (C), analyzed by an onboard
processor (D), and displayed graphically (E).
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Nesting communication mechanisms in this way may allow us to better scale up syn-

thetic circuits of different types, such as switches and logic gates, paving the way for the

next generation of synthetic biology pursuits.

Quantitative Modeling

Our model of the frequency modulated (FM) biosensor is based on a published

model for the quorum-sensing synchronized oscillator (Danino et al., 2010). In addition

to the reactions reflected in that model, we include the arsenite-induced production and

degradation of LuxI and/or LuxR. From the biochemical reactions, we derived a set of

delay-differential equations to be used as our model. These delayed reactions mimic

the complex cascade of processes (transcription, translation, maturation, etc.) leading

to formation of functional proteins. As expected, our model predicts oscillations that

change frequency when changes in arsenite occur (Fig. 2.2c and 2.3b). The amplitude

and period of the oscillations both depend on the concentrations of the toxin. We then

modified the model to describe the LuxR-based detection system. Our model predicts

a marked transition from rest to oscillations upon addition of arsenite, consistent with

experimental observations (Fig. 2.3c).

The multi-scale nature of communication in our array allows us to treat colony

and array-level dynamics separately, where arsenite affects the quorum-sensing ma-

chinery of a colony, producing changes to oscillatory period that propagate between

biopixels in the array. To quantitatively describe the mechanisms driving synchroniza-

tion at the array-level, we treat each colony as a single oscillator that acts according to

degrade-and-fire kinetics (Mather et al., 2009). We also include the production of H2O2

and its interaction with neighboring colonies by two-dimensional diffusion. Using this

model we identified three regimes that correlate well with experimental observations

(Fig. 2.3a). When the effective production of H2O2 is low, as with catalase, we observe

unsynchronized oscillations owing to constant, mild repression of the lux promoter via

ArcA (Fig. 2.3a, left). In contrast, when H2O2 production is very high, neighboring
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colonies rapidly fire in succession and remain on due to the permanent activation of the

lux promoter, consistent with the SOD experiment (Fig. 2.3a, right). Finally, at inter-

mediate H2O2, we observe globally synchronized oscillations (Fig. 2.3a, middle). As

colonies are moved further apart, synchronicity breaks due to slowed migration of H2O2

(Fig. 2.14).
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Methods

Strains and Plasmids

The plasmids were constructed using a CPEC (Quan and Tian, 2009) cloning

strategy in which the origin of replication, antibiotic resistance, and circuit genes were

assembled in different combinations using PCR reactions. The ndh and sodA genes were

amplified directly from the native E. coli genome by PCR. Various arsenic-responsive

promoters were tested, including a recently reported synthetic version (Stocker et al.,

2003), but the final design uses the native E. coli version. Promoter output was tuned

by changing the RBS sequence and quantified using flow cytometry. All circuit com-

ponents except luxR were tagged by PCR with a carboxy-terminal ssrA tag (AAN-

DENYALAA) (Keiler et al., 1996) for fast degradation.

Microfluidics and Microscopy

Image acquisition was performed on a Nikon Eclipse TI epifluorescent inverted

microscope outfitted with fluorescence filter cubes optimized for GFP imaging and a

phase-contrast based autofocus algorithm. Images were acquired using an Andor Clara

cooled CCD camera or Andor DU-897 EMCCD camera, both controlled by Nikon El-

ements software. Images were acquired every 2 minutes in phase contrast and fluores-

cence. The cells were imaged inside a microfluidic device with an upstream switch, with

the ability to mix or switch between two different media sources. A custom application

written in LabVIEW (National Instruments, Austin, Texas) controlled linear actuators,

to which two reservoirs of arsenite-containing and pure medium were attached. Using

this algorithm, arsenite concentration was dynamically varied to probe sensor output.

The microfluidic experiments were performed as previously described (Danino

et al., 2010). Briefly, 50 µL of an overnight culture was diluted in 50mL of LB (Difco)

+ antibiotics the day of the experiment. When cells reached an OD600 of 0.1, cells were
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spun down and resuspended in 5mL of fresh media and loaded into the device.

Plasmid Construction

The oscillator plasmids were constructed by modifying the constructs used in a

previous study (Danino et al., 2010). The antibiotic resistance genes of pTD103AiiA

was switched to chloramphenicol. The reporter protein on pTD103LuxI/GFP was

switched to a recently reported superfolding green fluorescent protein, sfGFP (Pedelacq

et al., 2006). The ndh and sodA genes were amplified directly from the native E. coli

genome by PCR. Promoter output was tuned by changing the RBS sequence and quan-

tified using flow cytometry. We initially constructed the sensing plasmid with a pub-

lished synthetic background-reduced version that contains additional ArsR operator sites

(Stocker et al., 2003) but failed to produce enough LuxR. To increase LuxR output, we

reverted to the native promoter sequence, switched the RBS to that of pZ plasmids (Lutz

and Bujard, 1997), and increased the copy number by a factor of 5 by switching to a mu-

tated SC101 origin of replication. All circuit components except LuxR were tagged by

PCR with a carboxy-terminal ssrA tag (AANDENYALAA) (Keiler et al., 1996) for fast

degradation. Modular pieces (resistance genes, promoters, origins, and ORFs) were

assembled using a PCR-based cloning scheme named CPEC (Quan and Tian, 2009).
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Figure 2.5: Plasmids for the coupled sensing array strain. Top row is the threshold-
ing sensor: 2 oscillator plasmids with luxR genes removed and a plasmid containing
pArs::luxR. Middle row is the period modulator: 2 oscillator plasmids and a plasmid con-
taining pArs::luxI-laa. Bottom row contains 2 plasmids used to study H2O2production and
synchronization: pLux::ndh and pLux::sodA. NDH-2 synchronization strain is the oscilla-
tor plasmids with pZSm45 ndhII.
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Additional Experimental Results
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Figure 2.6: Biopixels with NDH-2 engineered synchronization observed at ultra-low fluo-
rescence (4X, 20ms exposure, 3% power) using an EMCCD camera to ensure no fluores-
cence interaction. Synchronized oscillations are maintained across the array for the length
of the experiment (14 hours).
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Figure 2.7: Catalase degrades external H2O2 and prevents communication between
colonies. When a synchronized population of biopixels was exposed to a step increase
of 200 U/ml catalase, synchronization was broken and biopixels continued to oscillate in-
dividually. Since catalase can’t cross the cell membrane, this shows that synchronization
between colonies depends on H2O2but oscillations with a colony do not.
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Figure 2.8: SodA produces H2O2internal to the cell, permanently switching the cellular
redox state (oxidizing) thereby activating lux-controlled genes. Biopixels rapidly fire and
lock on in a spatial wave, far earlier than is typical for colonies of this size. The propagation
of ON biopixels suggests that colonies are capable of activating those nearby via migrating
H2O2species.
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Figure 2.9: Synchronized oscillations occur across 2 fluidically isolated devices held in
close proximity. In this experiment, the devices were started at different times yet become
synchronized. Since these devices share no common fluid sources or sinks, this confirms
that synchronization is mediated by vapor species.
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Figure 2.10: Heatmap of trajectories extracted from low fluorescence intensity control
(Suppl. Movie 9) when NDH-2 plasmid is not present. Biopixels oscillate individually but
fail to synchronize.
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+ 25 mM Thiourea

Figure 2.11: The introduction thiourea, a potent radical quencher, produces decaying syn-
chronized oscillations across a population of biopixels. Because radical species are pre-
cursors for H2O2, eliminating them lowers the production of H2O2and therefore dampens
the oscillations. Colonies are still able to synchronize because, while thiourea eliminates
radicals within cells, it does not prevent H2O2from diffusing between cells.
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Figure 2.12: Synchronization is prevented when 100 µg/ml Ampicillin is used in the me-
dia. The constructs, strains, and experimental conditions are otherwise identical.
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Data Analysis

Fluorescence data was obtained by importing fluorescent images into ImageJ

and subtracting cell signal from background signal. Oscillatory period was taken to be

the average of peak-to-peak and trough-to-trough distance, calculated using a MATLAB

script. The data represented in Fig. 2.1d and 2.2b-d were collected by stitching 4 images

taken at 4X magnification. The mean trajectory in Fig. 2.1d was found by averaging

373 individual biopixel trajectories, of which 20 are shown. Biopixel trajectories were

extracted from image series using a MATLAB script, where a bright field image of

the corresponding array was used to generate a mask. The data shown in Fig. 2c was

measured over 4 separate experiments using 10-30 oscillatory periods per data point.

Sensor calibration curve (Fig. 2.2c, bottom) was generated using a series of

2-population ttests comparing the experimental datasets to randomly generated new

sample sets. The mean of generated sets was decremented until the ttest failed with

α = 95%, indicating the lowest period that could be associated with that arsenite con-

centration. We repeated this process for each arsenite level and fit the points with a

quadratic since we expected it to take the inverse shape of the period vs. arsenite mea-

surements.

Microscopy and Microfluidics

We used a microscopy system similar to our recent studies (Danino et al., 2010),

with the addition of a high-sensitivity Andor DU-897 EMCCD camera. Fluorescent

images were taken at 4X every 30 seconds using the EMCCD camera (20ms exposure,

97% attentuation) or 2 minutes (2s exposure, 90% attenuation) using a standard CCD

camera to prevent photobleaching or phototoxicity.

In each device, E. coli cells are loaded from the cell port while keeping the media

port at sufficiently higher pressure than the waste port below to prevent contamination

(Fig. 2.13). Cells were loaded into the cell traps by manually applying pressure pulses
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to the lines to induce a momentary flow change. The flow was then reversed and allowed

for cells to receive fresh media with 0.075% Tween which prevented cells from adhering

to the main channels and waste ports.

To measure fluid flow rate before each experiment, we measured the streak

length of fluorescent beads (1.0 µm) upon 100 ms exposure to fluorescent light. We

averaged at least 1,000 data points for each.

We constructed several microfluidic devices over the course of the study. The

trap dimensions were always 100 µm x 85 µm x 1.65 µm high, which we previously

found to be optimal for oscillator function, except when size was varied to study dy-

namic interactions. Spacing between traps was 25 µm, except in devices designed to

study the effects of increasing separation distance between traps. For sensor array de-

vices, we constructed 500 and 12,000 trap arrays as well as a tandem device which holds

two 150 trap arrays in close proximity (25 µm) without sharing fluid sources or sinks.
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Figure 2.13: Primary microfluidic device used for this study. Media containing variable
arsenite concentration is fed through the cell port, flowing past the biopixel array into the
cell and waste ports. During loading, pressure is increased at the cell port and decreased
at the waste ports to reverse the flow, allowing cells to pass by the trapping regions. Other
microfluidic devices used have the same layout with trap number, separation, and size
varied.
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Modeling for Biosensor Array

To model the dynamics of the quorum-sensing oscillator, we used our previously

described model for intracellular concentrations of LuxI (I), AiiA (A), internal AHL

(Hi), and external AHL (He) (Danino et al., 2010),

∂A

∂t
= CA[1− (d/d0)

4] G(α, τ)− γAA

1 + f(A+ I)
(2.1)

∂I

∂t
= CI [1− (d/d0)

4] G(α, τ)− γII

1 + f(A+ I)
(2.2)

∂Hi

∂t
=

bI

1 + kI
− γHAHi

1 + gA
+D(He −Hi) (2.3)

∂He

∂t
= − d

1− d
D(He −Hi)− µHe +D1

∂2He

∂x2
(2.4)

In the original model, the concentration of the constitutively produced LuxR

protein R was assumed constant. In the ON/OFF threshold arsenic biosensor circuit,

LuxR production is induced by arsenic, which we model by the equation

Ṙ =
αcA

(A0 + A)
− γRR (2.5)

in which the LuxR expression from the arsenic promoter follows a standard saturating

function of the arsenic concentration A. Accordingly, we modified the Hill function for

Lux promoter to include the explicit dependence on R:

G(α, τ) =
δ + α(RτHτ )

2

1 + k1(RτHτ )2
(2.6)

For modeling the period-modulating sensor, we modified the equation for LuxI

(4.5) to include additional production from the arsenic promoter,

İ = CI [1− (d/d0)
4]G(α, τ) +

αcA

(A0 + A)
− γII

(1 + f(A+ I)
(2.7)

The following additional parameters were used for the biosensor simulations:

αc = 50, A0 = 2, γR = .1.

Arsenic levels were swept across the dynamic range of the arsenic promoter to

produce the curve in Fig. 2.2c. The period for each arsenic level was calculated from
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the peak-to-peak average of 15 oscillatory periods. Adjusting the flow rate to match the

baseline period (A = 0) with that of our large array, the resulting curve fits the experi-

mental data closely.

To model the spatial synchronization of oscillating colonies across a microfluidic

array, we generalized a simplified “degrade-and-fire” model (Mather et al., 2009). The

delay-differential equation

Ẋi,j =
α(1 + νPi,j,τ2)

(1 +
Xi,j,τ1
C0

)2
− γXi,j

k +Xi,j

(2.8)

describes oscillations of individual biopixel {i, j} as a combined effect of production

and delayed autorepression (first term in the r.h.s.) of the colony-averaged LuxI con-

centration Xi,j and its enzymatic degradation by ClpXP (second term). Unlike (Mather

et al., 2009), the first (production) term in Eq. 5.4 describes both delayed auto-repression

of LuxI and its delayed activation by H2O2 proportional to its local concentration Pi,j .

Subscripts τ1 and τ2 indicate the delayed concentrations, Xi,j,τ1(t) = Xi,j(t − τ1) and

Pi,j,τ2(t) = Pi,j(t− τ2). The dynamics of Pi,j is described by the equation

Ṗi,j = µ+ αpXi,j − γpPi,j + Ŝ{Pi,j} (2.9)

where the first three terms describe the basal and induced production and degradation of

H2O2. The last term models the spatial coupling of neighboring biopixels via the H2O2

exchange. For a square N × N array of traps, we used the following discrete diffusion

form of the spatial operator,

Ŝ{Pi,j} = D∆−2[Pi−1,j + Pi+1,j + Pi,j−1 + Pi,j+1 − 4Pi,j] (2.10)

Each colony is affected by the H2O2 produced in four neighboring colonies, two in

each dimension of the array, separated by the equal distance ∆. We used the boundary

condition Pi,j = 0 for the edges of the array i, j = 0, N + 1. This represents the infinite

external sink of H2O2 diffusing out of the microfluidic chip. The diffusion operator
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above can be generalized if the row spacing differs from the column spacing, or for

other spatial arrangements of colonies within the biosensor.

Since we were specifically interested in the dynamics underlying the spatial cou-

pling of independently oscillating colonies, this simplified representation of the quo-

rum sensing oscillator was appropriate. The equation for LuxI (X) takes the observed

degrade-and-fire oscillatory waveform by including enzymatic degradation proportional

to γ, due to its ClpXP degradation tag, and delayed negative feedback, caused by the

repressor (AiiA) tracking bursts in LuxI (Danino et al., 2010). The production of LuxI

depends inversely on its own past concentration, Xτ1(t) = X(t − τ1). Activated cou-

pling is mediated by production of H2O2 within a trap. The level of H2O2 response to

oscillatory bursts is controlled by αp, which is tuned according to whether H2O2 is be-

ing produced by ndhII/sodA enzymes, and tracking the the Lux promoter in the genetic

circuit, or by fluorescence, and tracking the level of sfGFP. H2O2 then feeds back into

the oscillator by increasing the production of the LuxI, which follows from the mecha-

nism of H2O2 relieving the repression by sodA on the Lux promoter. To account for the

redox signaling involved in this response, we use the delayed level of H2O2 , Pτ2(t) =

X(t− τ2), to upregulate the Lux promoter.

We introduced variability among different traps by randomizing oscillator pa-

rameters for individual traps in each simulation. Specifically, LuxI (X) activation and

degradation parameters (p = {α, γ}) of each of the oscillators in the array were varied

around their nominal values (p0) as p = p0 + δ where δ is a random number uniformly

distributed between −0.25 and 0.25. We used the following dimensionless parameters

for most of our simulations: α0 = 8.25, γ0 = 5.75, ν = 1, τ1 = 10, τ2 = 20, C0 = 6,

k = 10, µ = 20, αp = 1, γp = 10, D = 7, ∆ = 1.

For the characterization of various regimes of array synchronization, 16 colonies

were modeled in the 4 × 4 array. Scaling up the simulation with larger numbers of

colonies produced equivalent results. Overproduction of H2O2 by expressing sodA was

captured by increasing αp 20-fold. This is consistent with expression from a pSC101m

plasmid with a copy number of 20-30. Depletion of external H2O2 by catalase was mod-
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eled by increasing H2O2 degradation (γp) and decreasing H2O2 diffusion, D. In (Fig. 2.14)

we show the variance of the concentrations Xi,j within the array averaged over time and

parameter variations. This plot demonstrates that the synchronicity among the biopixels

decreases with increase of spacing among them, and for ∆ > 5 is completely lost.
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Figure 2.14: Computational results depicting biopixel synchronicity as a function of trap
separation distance. As biopixels are moved farther apart, the entropy increases due to
decreased effective migration of H2O2 between colonies.

Increasing the trap spacing ∆ 2-fold while simultaneously decreasing k 4-fold

allowed us to reproduce the more complex waveforms observed experimentally in our

arrays. Note that changing k models the change of the trap depth. As the size of the

trap decreases, the flow of media is able to more rapidly sweep away AHL and increase

the effective degradation for the colony. Simulating smaller and more sparse trap sizes

recovered antiphase behavior for neighboring biopixels (Fig. 2.15). We also simulated

the arrays with traps of two different sizes in different rows and recovered the experi-
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mental 2:1 biopixel resonance or 2:1 + antiphase behavior depending on the trap spacing

(Fig. 2.3d, bottom).
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Figure 2.15: Antiphase behavior of 4 neighboring biopixels having equal trap sizes and
spacing ∆ = 3.
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The model was also able to capture the alternating large and small amplitude

oscillations observed in the ON/OFF biosensor (Fig. 2.16). This behavior was seen when

C0 was increased 2-fold, capturing the decreased level of LuxR in ON/OFF experiments

where it was the limiting factor for oscillations.
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Figure 2.16: Oscillations of alternating large and small amplitude when LuxR is limited in
experiments and simulations. The alternating oscillations vanish when LuxR is restored to
its normal level in the model. Experimentally, we were unable to build a system in which
LuxR is tunable between big/small and normal amplitude regimes. This is probably due to
the small dynamic range of arsenite promoter-driven output of LuxR compared to the level
produced by 3 constitutively expressed copies in the original circuit.
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Supplementary Movies

Supplementary information, including methods, supplementary figures and ta-

bles, and timelapse microscopy movies, is linked to the online version of the paper at

www.nature.com/nature.

Supplementary Movie 1. Timelapse fluorescence microscopy of a 200 trap sensor array

displaying NDH-2 engineered synchronization. An EMCCD camera was used to

keep exposure times extremely low (4X magnification, 20ms, 95% attenuation)

to ensure no fluorescence interaction, hence the appearance of lower signal.

Supplementary Movie 2. Timelapse fluorescence microscopy of the 500 trap biosensor

array showing the onset of synchronization from disparate initial conditions us-

ing period modulator circuit. Flashes indicate changes in arsenite concentration

which result in changes in the oscillatory period.

Supplementary Movie 3. Timelapse fluorescence microscopy of a sensor array contain-

ing thresholding circuit. Red color indicates addition of 0.25 µM arsenite that

initiates oscillations in blue.

Supplementary Movie 4. Timelapse fluorescence microscopy of a modified 500 trap

sensor array in which traps are farther apart. This increased separation results

in anti phase oscillations, where a biopixel and its nearest neighbors alternate

bursts.

Supplementary Movie 5. Timelapse fluorescence microscopy of the 12,000 trap scaled

up array showing oscillation and synchronization maintained over a maximum

distance of 27 mm.

Supplementary Movie 6. Real time microscopy depicting the loading of our microflu-

idic device. Cells flow in from the cell port and fill the trapping regions.

www.nature.com/nature
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Supplementary Movie 7. Timelapse fluorescence microscopy of a modified 500 trap

sensor array in which traps of 2 sizes are present. This results in 2:1 resonant

oscillations where larger traps oscillate at twice the frequency of smaller traps.

Supplementary Movie 8. Timelapse fluorescence microscopy of a 500 trap sensor ar-

ray showing unsynchronized oscillations when NDH-2 is not present and high-

intensity fluorescence bursts are not used.

Supplementary Movies can be found at http://www.nature.com/nature/journal/

v481/n7379/full/nature10722.html#/supplementary-information
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Chapter 3

Applications of Quorum Sensing

Biology

A fast and robust macroscopic toggle switch using syner-

gistic coupling

Introduction

A synthetic gene toggle switch circuit was first implemented in E. coli over a

decade ago when synthetic biology was still in its infancy (Gardner et al., 2000). Sev-

eral other designs of bistable and hysteretic circuits were proposed and implemented

more recently (Atkinson et al., 2003; Kramer and Fussenegger, 2005; Ham et al., 2008).

Most of the existing designs suffer from the intrinsic stochasticity of the underlying bio-

chemical processes and cell-cell variability that leads to spontaneous transitions between

states and a lack of robust and yet sensitive switching behavior. Here we improve on the

previous switch designs by building on the synergistic coupling mechanisms described

in Chapter 1 of quorum-sensing and redox signaling (Mondragón-Palomino et al., 2011;

Prindle et al., 2011). Specifically, by synchronizing the switching behavior of millions

of cells, we aimed to increase the sharpness of state transitions while reducing erroneous
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stochastic switching. This required balancing the strength of the two states experimen-

tally by modifying plasmid copy number, ribosome binding site strength, or promoter

strength. To guide this process, we constructed and fit a computational model based on

the underlying genetic interactions.

Toggle Design

We designed a symmetric macroscopic toggle switch; each state stabilizes it-

self through two positive feedbacks and destabilizes the opposing state through a single

negative feedback (Fig. 3.1). In state 1, a hybrid RHL/Lac promoter is induced by the

quorum sensing molecule RHL while a hybrid AHL/Tet promoter is repressed by the

TetR dimer. In state 2, AHL/Tet promoter is induced by AHL while RHL/Lac promoter

is repressed by the LacI tetramer. The second positive feedback through the long-range

redox coupling is achieved by fluorescence induced production of H2O2 that in turn

activates the promoters via the native aerobic response system arcAB similar to the

biosensor circuit described above. The negative feedback elements TetR and LacI can

be modulated through the chemical inducers Dox and IPTG, respectively, providing a

chemical way of switching between the two states.

Computational Modeling

Our preliminary computational model is based on a system of six stochastic

differential equations describing a four-gene system, LacI (L), TetR (T ), LuxI (U ), RhlI

(H) and two small molecules, AHL (A), and RHL (R). For simplicity we neglected the

dynamics of two reporter proteins and redox signaling here. The model equations can

be written in the following abbreviated form,

∂X

∂t
=P (Y, Z)− γXX

1 + fT
+

[
P (Y, Z) +

γXX

1 + fT

]1/2
ξ (3.1)

∂V

∂t
=

bW

1 + kW
− γA+D(〈V 〉 − V ) (3.2)
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Quorum Sensing
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AHL
lux

H2O2
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Figure 3.1: Circuit diagram for the macroscopic toggle switch system The circuit can
be switched between the two states with the introduction of the chemical inducers IPTG
and Dox. The activity of each half is independently visualized with the fluorescent proteins
CFP and YFP.

where P (Y, Z) = (δ + αZ2)[(1 + k1Y
2)(1 + k2Z

2)]−1, the triplet (X, Y, Z) stands

for (L, T,A), (U, T,A), (T, L,R), (H,L,R), the pair (V,W ) stands for (A,U) and

(R,H), and T stands for the sum of concentrations of all proteins L + T + U + H .

The last term in Eq. 3.1 denotes multiplicative noise due to intrinsic fluctuations in the

underlying biochemical reactions, and the last term in Eq. 3.2 describes global coupling

through the external fields of corresponding quorum-sensing molecules. We find that

without coupling across cells (D = 0), individual cells spontaneously switch from one

metastable state to another (see Fig. 3.2a-b). However, global coupling between the cells

via quorum sensing molecules (D = 1) locks the system in one of the two states, as set

by inducers (see Fig. 3.2b).

Results

We constructed various plasmid systems to test the macroscopic toggle switch.

Because neither of the hybrid promoters previously existed, our first iteration of the cir-

cuit had unbalanced feedback, where only one state, ”ON”, has stabilizing positive feed-
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Figure 3.2: Space-time diagrams of uncoupled and coupled toggle systems Concen-
trations of a reporter protein (LacI) in uncoupled (a) and coupled (b) systems. External
inducers are imposed (indicated by shaded vertical lines) to temporarily bias the toggle
into a particular polarity. Coupling extends the persistence of polarity.

back (Fig. 3.3a). This version included a new hybrid AHL/Tet promoter that was built

by adding a Tet operator site (Lutz and Bujard, 1997) following the transcription initi-

ation site of the lux promoter (Bose et al., 2007). The AHL/Tet promoter exhibited the

predicted expression in response to various combinations of chemical inducers AHL and

Dox when tested in an E. coli strain expressing constitutive TetR. The TetR repression is

dominant over AHL induction, which is necessary to ensure that fluctuations in global

AHL cannot incorrectly trigger the ”ON” state during the high TetR ”OFF” state. Fol-

lowing relief of TetR repression by Dox, the promoter exhibits a large range of induction

for increasing concentrations of AHL (Fig. 3.3b). We employed a two plasmid circuit to

enable the relative strength of the two states to be easily tuned by plasmid copy number.

The ON plasmid consists of the hybrid AHL/Tet promoter expressing LacI, LuxI, and

the reporter, sfGFP, while the OFF plasmid is the PLlacO-1 promoter (Lutz and Bujard,

1997) expressing TetR. Using the same E. coli strain that constitutively expressed TetR,

the ON plasmid was characterized to ensure that the positive AHL feedback leads to

stabilization of the ”ON” state (Fig. 3.3c). Interestingly for high levels of Dox (300

ng/ul), the expression level decreases slightly from full induction, which is likely due to
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toxicity from the chemical inducer.

We co-transformed the two plasmids into our JS006 experimental strain, which

expresses no genomic LacI or TetR (Stricker et al., 2008). Various combinations of

replication origins were tested by flow cytometry for the ability of the strain to maintain

each of the ”OFF” and ”ON” states following the introduction and subsequent removal

of the corresponding chemical inducers (IPTG and Dox respectively). This ensures the

strain is capable of stably toggling to two states, as opposed to transiently switching

and remaining dependent on the chemical inducer. After testing all combinations of

ColE1 (100-300 copies), p15A (50-100 copies), Sc101m (30-50 copies), and Sc101* (3-

5 copies), we found one combination that exhibited coupled toggling. Placing the OFF

plasmid on the p15A origin and the ON plasmid on Sc101m exhibited maintenance of

each state by flow cytometry, and was confirmed by testing in the microfluidic array

described previously (Fig. 3.3d). Individual colonies within the array behaved identi-

cally, with no traps remaining OFF or switching OFF after the removal of Dox. This

was expected based on the coupled positive feedback design that includes AHL quorum

sensing between cells and long-range fluorescence-mediated redox coupling between

colonies. Interestingly, the transition to the ON state was bi-phasic, presumably consist-

ing of the rapid quorum-switching followed by the slower ramping up of signal as TetR

undergoes enzymatic degradation. Confirmation of this would require the addition of a

reporter to the OFF plasmid to track the level of TetR during the switch from ”OFF” to

”ON”.

Redox Induced Toggling

Using the synergistically coupled toggle with the microfluidic array platform,

we investigated the scale of redox mediated communication between colonies. We con-

structed a split media microfluidic array, where individual channels of side traps receive

their own supply of media. This enabled us to trigger certain sets of traps directly by the

chemical inducer Dox, and observe neighboring channels of traps for transitions to the
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Figure 3.3: Unbalanced coupled toggle switch. (a) Network diagram. The high LacI
”ON” state is stabilized by AHL coupling through the hybrid AHL/Tet promoter. (b) Hy-
brid AHL/Tet promoter FACS characterization. The hybrid promoter exhibits AHL in-
duced expression only when TetR repression is relieved by the addition of the chemical
inducer Dox. (c) ON plasmid FACS characterization. The ON plasmid reaches the ”ON”
state, without externally added AHL, in the presence of Dox. (d) Coupled toggle in a mi-
crofluidic array. The mean fluorescence of all traps (blue) stably maintains both the ”OFF”
and ”ON” states following the removal of the chemical inducer (green, first pulse = 1mM
IPTG; second pulse = 50 ng/ul Dox).
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”ON” state (Fig. 3.4). This constrained the triggering event in channels not exposed to

Dox to a H2O2 related response. By observing the timing of redox-mediated switches

we were be able to deduce the range of H2O2 diffusion.

Figure 3.4: Redox-triggered toggle split media array. Traps along a channel containing
the Dox inducer (a) are directly switched on, while traps along neighboring channels (b)
are later triggered by H2O2 diffusion that upregulates the basal lux promoter activity.

The microfluidic device was designed to have full channels of side traps receiv-

ing a chemical inducer along the bottom, with adjacent channels on the upper portion of

the chip exposed to a separate media supply that does not trigger side trapped colonies.

Transitions of the upper channels can only be induced as a result of an H2O2 response to

the triggered lower channel. The upper portion is sparsely filled with side traps to gen-

erate a directed triggering path, exposed to a more even left-right distribution of H2O2

from the chemically induced region (Fig. 3.5).

Triggering the lower channel with Dox initially only directly activates the chem-

ically exposed colonies along the bottom of the chip (Fig. 3.6, top). The upper redox

triggered lanes were then measured over the next 10 hours as they were exposed to the

H2O2 release from the activated lower channel. This proved to be sufficient stimula-
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Figure 3.5: Split Media Chip Design. Microfluidic device with channels that either
receive chemical inducer (blue channel, bottom) or are only triggered via H2O2 diffusion
(clear channels).

tion to trigger colonies that weren’t directly modulated by Dox, with the majority of the

redox-modulated colonies toggling to the on state within 10 hours (Fig. 3.6, bottom).

The pattern of individual channel stimulation further supports the outward H2O2

diffusion from chemically triggered colonies, as channels proximal to the dox-induced

lane appear to trigger earliest (Fig. 3.7). While this experiment describes the transmis-

sion of H2O2 between colonies and implies a diminishing signal strength with distance

from the original H2O2 source, it is limited in its ability to discern the absolute range of

H2O2 interaction between colonies of various distances. Future chip designs must imple-

ment single channels of varying distances from the chemically-induced set of colonies

to determine the range of H2O2 diffusion across which an induced colony can trigger an

un-induced one.
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Figure 3.6: H2O2 -induced Toggling. Colony fluoresence following initial exposure of
the lower channel to Dox (top) and long-term activation of all microfluidic channels via
H2O2 (bottom).
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Figure 3.7: Pattern of H2O2 mediated colony stimulation. Time profile of the dox-
induced channel and dox-free channels (Redox 1-5), ranging from closest to furthest from
the chemically induced bottom channel.
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A population-controlled therapeutic oscillator

Since the number of bacteria in organs such as the spleen is low (approximately

10e3), while much greater inside tumors (>10e6), a quorum based-trigger can provide a

useful strategy to trigger therapeutic production and delivery only in high density popu-

lations of bacteria in tumors. Quorum sensing was previously used in synthetic biology

to build synchronized oscillators, biosensors, edge detectors, and predator prey models

(Danino et al., 2010; Prindle et al., 2011; Tabor et al., 2009; Balagadde et al., 2008;

Basu et al., 2005) and is a well studied system for engineering gene circuits. We sought

to engineer a network capable of producing quorum-mediated synchronized oscillations

that maintain cell density at a prescribed level. This strain would accomplish the dual-

purpose of delivering therapeutic periodically and controlling the bacterial population.

Additionally, in limiting the rate at which tumor cells are destroyed, it may provide a

clinical platform for reducing the risk of tumor necrosis and host sepsis.

We cloned an enhanced version of the kill-gene, ccdB (Balagadde et al., 2008), in

place of AiiA in the previously published synchronized oscillator (Danino et al., 2010),

where cell death takes the place of AHL degradation as a negative feedback (Fig. 3.8a).

To test this design, we transformed E. coli with this network and observed their behavior

in vitro in a large microfluidic chamber (Fig. 3.8b-c). The colony initially grew, followed

by a burst in the lux promoter when it reached a critical density, and consequently ter-

minated itself via gyrase inhibition. A small number of surviving cells at the perimeter

grew to form a second colony which similarly died, and the colony proceeded in this

pattern. Testing our population-controlled oscillator in multiple microfluidic designs,

we were able to achieve remarkable patterns of colony proliferation and death, such as

the stripes of E. coli in Fig. 3.9. We additionally observed, in the mcherry channel,

fluorescent dye entering the cells which had recently expressed ccdB, indicating that

the membrane became permeable. This will be a particularly useful property if further

engineering the bacterial delivery device to express specific therapeutic agents, with the

goal of releasing it proximal to the disease site.
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Figure 3.8: Population-controlled oscillators. (a) The AiiA gene is replaced with ccdB,
a gyrase inhibitor that has been previously shown to be highly toxic to E. coli. (b) Mean
output from the first experimental test of the circuit in E. coli showing 3 periods of oscil-
lation. (c) Microscope image depicting the 3D colony just after the 2nd round of quorum
sensing fires. (d) A proposed circuit in which ccdB is replaced with (KLAKLAK)2, a
peptide toxic to both microbes and mammalian cells.
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In an integrated design (Fig. 3.8d), we could replace ccdB with a kill gene that

is toxic to both microbes and mammalian cells, such as (KLAKLAK)2 which has been

recently used for cancer therapy (Agemy et al., 2011). Thus, every time the colony kills

itself, it also kills neighboring tumor cells. This strategy could solve multiple problems:

bacterial overgrowth, tumor necrosis, and tumor cell drug resistance.

Figure 3.9: E. coli stripes formed by a population-controlled oscillator. Generations
of E. coli arrange from left-to-right as populations proliferate and terminate sequentially,
with new cell populations accumulating upstream of the stagnant cells from the preceeding
generation.



Chapter 4

Genetic circuits in Salmonella

typhimurium

Introduction

Synthetic biology has rapidly progressed over the last decade and is now posi-

tioned to impact important problems in health and energy. In the clinical arena, the field

has thus far focused primarily on the use of bacteria and bacteriophages to overexpress

therapeutic gene products. The next generation of multi-gene circuits will control the

triggering, amplitude, and duration of therapeutic activity in vivo. This will require a

host organism that is easy to genetically modify, leverages existing successful circuit

designs, and has the potential for use in humans. Here, we show that gene circuits that

were originally constructed and tested in E. coli translate to Salmonella typhimurium,

a therapeutically relevant microbe with attenuated strains that have exhibited safety in

several human clinical trials. These strains are essentially non-virulent, easy to geneti-

cally program, and specifically grow in tumor environments. Developing gene circuits

on this platform could enhance our ability to bring sophisticated genetic programming

to cancer therapy, setting the stage for a new generation of synthetic biology in clinically

relevant microbes.
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An explosion of DNA sequencing (Jasny and Zahn, 2011), synthesis (Matzas

et al., 2010), and manipulation (Gibson et al., 2010) technologies has driven the devel-

opment of synthetic genetic programs of increasing complexity in living cells (Weber

and Fussenegger, 2011; Nandagopal and Elowitz, 2011; Khalil and Collins, 2010). Un-

derlying this work is the hope that engineered biological systems will be used to solve

important problems in energy and health over the coming years. Initially inspired

by electronic circuits, researchers began by designing small transcriptional switches

(Gardner et al., 2000) and oscillators (Elowitz and Leibler, 2000). These early suc-

cesses fostered a growing population of physicists, computer scientists, and engineers

that aimed to apply an engineering-based methodology to the design of biological sys-

tems. In the past decade, substantial success has been achieved using this genetic cir-

cuits approach termed synthetic biology (Weber and Fussenegger, 2011; Nandagopal

and Elowitz, 2011; Hasty et al., 2002).

Multi-gene logic gates capable of integrating environmental signals have been

constructed in bacteria (Tamsir et al., 2010), yeast (Regot et al., 2010), and mam-

malian cells (Guido et al., 2006). Electronics-inspired networks have included counters

(Friedland et al., 2009), pulse generators (Basu et al., 2004), filters (Sohka et al., 2009;

Hooshangi et al., 2005), and communication modules (You et al., 2004; Basu et al.,

2004). Sophisticated circuits can now be controlled by light, yielding genetic programs

readily tunable both in vitro (Tabor et al., 2009) and in vivo in live animals (Ye et al.,

2011). Dynamic genetic clocks have been constructed that function at the single-cell

(Stricker et al., 2008), colony (Danino et al., 2010), and multi-colony (Prindle et al.,

2011) level in growing bacterial populations, and even in mammalian cells (Tigges et al.,

2009). In a recent study, redox signaling mediated by H2O2vapor permitted the synchro-

nization of millions of oscillating bacteria across an LCD-like sensor array (Prindle

et al., 2011).

Early efforts toward clinical applications have utilized bacteria (Anderson et al.,

2006; Xiang et al., 2006; Duan et al., 2008; Rao et al., 2005; Duan and March, 2010) and

bacteriophages (Lu and Collins, 2007, 2009) (viruses that infect bacteria) to perform
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therapeutic functions in vivo. Commensal bacteria have been engineered to fight dia-

betes (Duan et al., 2008), HIV (Rao et al., 2005), and cholera (Duan and March, 2010)

by producing and delivering therapeutic agents directly in the human microbiome. Be-

cause certain bacteria grow preferentially in hypoxic environments, a number of studies

have engineered cancer-fighting bacteria to selectively attack tumors (Anderson et al.,

2006; Xiang et al., 2006). Toward still another application, a pair of studies has en-

gineered phages to produce foreign enzymes, making them far more potent than their

unmodified counterparts at dispersing bacterial biofilms (Lu and Collins, 2007, 2009).

In most of these cases, the genetic programs involved were responsible for over-

expressing target genes, similar to traditional genetic engineering where genes are added,

removed, or modified one at a time in a stepwise fashion. To truly achieve its clinical

potential, synthetic biology must continue to do what has made it successful: engineer

progressively more complex, multi-input networks in which the triggering, amplitude,

and duration of therapeutic activity is controllable. This will require using hosts that

are easy to genetically modify and compatible with the clinical requirements regarding

safety, immunogenicity, and drug resistance. While bacteriophage and adenovirus have

their advantages, viruses have smaller genomes and therefore have a narrower range of

genetic modifications, frequently induce host resistance, and are highly cell-type spe-

cific (Merril et al., 2003; Projan, 2004).

As one potential bridge between organisms such as E. coli and clinically rele-

vant microbes, Salmonella typhimurium is a bacterial anti-cancer platform that is closely

related to E. coli , has been extensively studied in vivo for therapeutic applications

(Forbes, 2010; Pawelek et al., 1997; Hoffman, 2011; Lm et al., 2001; Forbes et al., 2003;

Low et al., 1999) and has been shown to be safe in human clinical trials (Heimann and

Rosenberg, 2003; Toso et al., 2002; Nemunaitis et al., 2003). The development of at-

tenuated strains has utilized auxotrophy and phoPQ deletions to suppress virulence cell

invasion and virulence (Hoffman, 2011). Lipid A mutations have been generated to

reduce immunogenicity, stimulating a much weaker immune response than wild-type

strains (Low et al., 1999). Despite this reduced potency, systemically injected S. ty-
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phimurium cells retain their ability to target and selectively replicate within tumors,

displaying a thousand-fold growth preference relative to other organs (Forbes, 2010;

Pawelek et al., 1997; Forbes et al., 2003; Low et al., 1999; Hoffman, 2011). Their

motility allows them to follow chemical gradients and penetrate deep into the tumor

vasculature (Kasinskas and Forbes, 2006, 2007), much further than passively diffusing

small molecules (Forbes, 2010). And many of these strains also display innate oncolytic

activity, regressing tumors simply by growing in them (Pawelek et al., 1997; Nagakura

et al., 2009; Low et al., 1999; Jia et al., 2007).

Perhaps the most important property of S. typhimurium for synthetic biology is

the ease of genetic modification. It is a model organism whose genome is sequenced

(McClelland et al., 2001), has knockout collections, and the genetic tools are almost

identical to E. coli . S. typhimurium is capable of stably expressing recombinant DNA

from plasmid-based circuits in vivo. This approach has already been used to produce

a number of therapeutic compounds directly within tumors, but most often via “always

on“ expression of well-established genes (Hoffman, 2011; Guo et al., 2011; Nguyen

et al., 2010). This work has laid the foundation for more sophisticated functionality,

such as programmed delivery profiles that take advantage of plasmid instability (Danino

et al., 2012). Such a focus will merge the dynamic sensing, production, and delivery

capabilities of genetic circuits with the native tumor seeking and penetration of S. ty-

phimurium.

Experimental Results

In order to test the degree to which existing synthetic circuits function in S. ty-

phimurium, we transformed the attenuated strain ELH430 (SL1344 ∆phoPQ, gift of

Elizabeth Hohmann, MGH) (Hohmann et al., 1996) with several genetic oscillator con-

structs. First, we tested a single-plasmid variant of a published single-cell gene os-

cillator (Stricker et al., 2008). Using our microfluidic platform (Ferry et al., 2011;

Cookson et al., 2005), we observed robust oscillations for all S. typhimurium cells over
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many generations (Fig. 4.1a,b). While the qualitative period-inducer relationship was

similar to E. coli , the curve was shifted toward faster periods as compared to E. coli

strain JS006 (MG1655 ∆araC,lacI) (Fig. 4.1c). In contrast, we initially expected S. ty-

phimurium to oscillate slower since longer division times generally result in period

lengthening (Stricker et al., 2008). When we measured the dependence of oscillatory

period on temperature in S. typhimurium, we found the trend qualitatively similar to

E. coli , where lower temperatures (and therefore longer doubling times) resulted in

longer oscillatory periods (Fig. 4.1d). We therefore hypothesized that the faster oscil-

lations in S. typhimurium are not due to growth rate differences, but rather a strain-

dependent factor such as mean promoter level, transcription rate, or enzymatic degrada-

tion rate.

To explore this quantitatively, we used automated single-cell tracking using a

previously developed algorithm (Mondragón-Palomino et al., 2011) to compare a large

number of single-cell time courses from S. typhimurium and E. coli (Supplementary

Information). Oscillators are an ideal circuit to quantify strain-specific parameters such

as transcription and degradation rates since they allow for hundreds of measurements in

a single experiment. For each oscillatory period, the trough-to-peak and peak-to-trough

slopes were measured. Since the ClpXP degradation machinery is likely saturated

(Cookson et al., 2011), the peak-to-trough slope yields an estimate for the zeroth-order

enzymatic degradation rate in degrade-and-fire oscillators (Mather et al., 2009). Inter-

estingly, we found that the apparent enzymatic degradation rate in S. typhimurium was

roughly 1.5-fold that of E. coli (Fig. 4.4a). In our computational model of the oscil-

lator, this increase reproduced the experimentally observed period-inducer relationship

(Fig. 4.4b).

Next, we transformed S. typhimurium with a quorum-sensing oscillator that had

been previously characterized in E. coli (Danino et al., 2010), and observed coherent,

colony-level oscillations for more than 48 hours (Fig. 4.2a,b). Here, we found that the

period-flow rate dependence was markedly different in S. typhimurium than in the orig-

inal study, where oscillatory period was much longer and changed very little across
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Figure 4.1: A fast, robust, and tunable genetic oscillator in S. typhimurium. (a) Timelapse
fluorescence microscopy depicting asynchronous oscillations in a growing colony of S. ty-
phimurium. (b) A single-cell trajectory extracted from image data. (c) Period vs. inducer
concentration for S. typhimurium compared to original data taken in E. coli . The trends
are qualitatively similar yet S. typhimurium is shifted toward shorter periods. Points are
experimental measurements fit to a line generated by computational modeling. (d) Period
vs. temperature for S. typhimurium compared to original data taken in E. coli with similar
trends.
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Figure 4.2: A synchronized quorum of genetic clocks in S. typhimurium. (a) Timelapse
fluorescence microscopy depicting coherent oscillations at the colony-level for a growing
colony of S. typhimurium. (b) A colony trajectory extracted from image data that illustrates
the regularity of oscillations over time. (c) Period vs. flow rate for S. typhimurium com-
pared to original data taken in E. coli . S. typhimurium displays much higher periods that
appear to be independent of flow rate.
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a wide range of flow rates (Fig. 4.2c). Interestingly, while increased degradation rate

resulted in faster oscillations for single-cells (Fig. 4.4b), our computational model cor-

rectly predicts the opposite trend for the quorum-sensing oscillator when degradation is

increased (Fig. 4.4c).
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Figure 4.3: A genetic toggle switch in S. typhimurium. (a) A time course of fluorescence
output that illustrates switching by both IPTG and ATC quantified by flow cytometry in
periodically diluted batch culture experiments. (b) Raw flow cytometer data illustrating
switching by 2mM IPTG and (c) 500 ng/µl ATC.

Finally, we tested the original genetic toggle switch, plasmid pIKE107 (Gardner

et al., 2000). In this circuit, a transient pulse of IPTG inducer turns the switch ON and

reporter expression is maintained at a high level. A second pulse of ATC inducer turns

the switch OFF, dropping reporter expression indefinitely. In periodically diluted batch

culture experiments similar to the original study, we used flow cytometry to observe

robust switching and bistability when inducing with either 2 mM IPTG or 500 ng/ul

dox in cultures growing at 37 C (Fig. 4.3a-c). Interestingly, the fluorescence level at
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which S. typhimurium settled after we removed IPTG was lower than the same circuit

in E. coli (Fig. 4.3a). We suspected that the differences in apparent degradation and

expression rates (Fig. 4.4a) might explain this change, since the steady-state repressor

balance would be adjusted.

To test this hypothesis, we used the original computational model of the tog-

gle switch (Gardner et al., 2000) and quantified the steady-state expression level over

time for strain parameters measured in E. coli and S. typhimurium. We found that the

S. typhimurium parameters reproduced the experimentally observed curves, where ex-

pression rises to a higher level when switched ON then decays to a lower steady-state

when IPTG is removed (Fig. 4.4d). While these parameters are particularly important

for dynamic circuits, they can also impact the performance of stable switches since re-

pressors are continuously being produced and degraded.

Conclusions and outlook

A central issue in the design of genetic circuits is the degree to which native and

engineered networks should be integrated. Synthetic biology began by fully isolating

itself from the strain background, using it solely to supply energy, enzymatic machin-

ery, and a cellular volume in which to function. In contrast, industrial applications in

medicine and energy have commonly utilized a variety of microbes for their native net-

works (Ruder et al., 2011; Weber and Fussenegger, 2011; Alper and Stephanopoulos,

2009). As our biological knowledge of native networks and our ability to engineer new

circuits has improved, it has become increasingly possible to blend these two strategies

(Nandagopal and Elowitz, 2011).

S. typhimurium is an ideal strain for clinical synthetic biology since it is closely

related to E. coli , well studied in vivo, has safety precedence for clinical trials in hu-

mans, and displays a thousand-fold growth preference for tumor environments (Forbes,

2010; Pawelek et al., 1997; Hoffman, 2011; Lm et al., 2001). Moving to other mi-

crobes for clinical and industrial purposes will require the determination of the critical
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strain parameters that define the space of bacteria capable of hosting genetic circuits.

Next steps will involve measurement of these parameters and testing circuits in strains

of interest that are further removed in the phylogenetic tree (Wu et al., 2009). One

such roadmap would begin with more distantly related gamma proteobacteria like Pseu-

domonas aeruginosa before moving outside the phylum to alpha proteobacteria such as

Calubacter crescentus. Additionally, individual components and modules can also re-

ceive a ”portability” score that estimate the degree to which they translate to other hosts.

For example, while lacI- and tetR-based circuits are nearly universal, more generally

the function of other components are likely to be more sensitive to strain-specific pa-

rameters. This work will enable synthetic biology to move beyond E. coli into a diverse

range of microbes for clinical and industrial applications.

Plasmid Characterization

As a preliminary test, we systematically characterized the popular pZ plasmid

system (Lutz and Bujard, 1997) (origins, markers, and promoters) in S. typhimurium,

finding that they all worked similarly to E. coli (Fig. 4.5a). While plasmid mainte-

nance is a commonly reported problem for S. typhimurium (Bauer et al., 2004; Ga-

han et al., 2007), our plasmid-based circuits appeared to be highly stable. To exam-

ine this further, we designed an experiment in which hundreds of independent colonies

of S. typhimurium were transformed with a vector containing constitutively-expressed

GFP and grown in a microfluidic device without selective pressure for many genera-

tions (Fig. 4.5b). For the duration of the experiment (48 hours, or about 100 divisions),

all colonies maintained the plasmid circuit, expressing GFP at a nearly constant level

(Fig. 4.5c). To verify that GFP signal was a measure of plasmid maintenance, we re-

turned kanamycin to the media and observed that all colonies continued to grow and

fluoresce (not shown). Thus, plasmid-based circuits could be reliably studied in vitro in

microfluidic devices without stability concerns.
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Microscopy and Microfluidics

We used a microscopy system similar to our recent studies (Danino et al., 2010).

Fluorescent images were taken at 4X every 30 seconds using the EMCCD camera (20ms

exposure, 97% attentuation) or 2 minutes (2s exposure, 90% attenuation) using a stan-

dard CCD camera to prevent photobleaching or phototoxicity.

In each device, S. typhimuriumcells are loaded from the cell port while keeping

the media port at sufficiently higher pressure than the waste port below to prevent con-

tamination. Cells were loaded into the cell traps by manually applying pressure pulses

to the lines to induce a momentary flow change. The flow was then reversed and allowed

for cells to receive fresh media with 0.075% Tween which prevented cells from adhering

to the main channels and waste ports.

To measure fluid flow rate before each experiment, we measured the streak

length of fluorescent beads (1.0 µm) upon 100 ms exposure to fluorescent light. We

averaged at least 1,000 data points for each.

We used several microfluidic devices over the course of the study. For single-cell

oscillators (Fig. 4.1), we used a previously described device consisting of a trapping re-

gion and a dynamic switch (Mondragón-Palomino et al., 2011). Traps have dimensions

40 µm wide x 50 µm long x 0.95 µm high, with the long sides open to media flow. Since

E. coli and S. typhimurium cells have a 1 µm diameter, the trap maintains growing cells

in a monolayer. For colony oscillators (Fig. 4.2), we used a previously described device

consisting of arrays of square trapping regions (Danino et al., 2010; Prindle et al., 2011).

Trap dimensions were always 100 µm x 85 µm x 1.65 µm high and spacing between

traps was 25 µm. This size allows cells to grow in a colony arrangement rather than a

monolayer, while still allowing quantitative measurement of colony fluorescence.
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Degradation and Production Rate Quantification

Single cell fluorescence trajectories were obtained from time-lapse movies us-

ing custom software previously developed in MATLAB (Mondragón-Palomino et al.,

2011). Each cell fluorescence trajectory represents the median GFP fluorescence signal

inside that cell over time. Using built-in MATLAB functions we identified the peaks and

troughs for each trajectory. The degradation rate was calculated by taking the amplitude

change from peak to the successive trough and dividing by the time change between the

peak and the trough. These peak-to-trough sections of the trajectory represent the time

when the production of GFP is repressed and the observed dynamics are solely driven

by degradation of GFP. Similarly we calculated the net production rate, by calculating

the amplitude change from trough to successive peak and dividing by the time change

between the trough and the peak. The measurement gives the net production rate, which

includes the degradation of the protein.

Table 4.1: Mean Degradation and Net Production Rate during S. typhimurium oscillation.
Calculation performed based on rate of amplitude change between peaks and troughs for
each trajectory.

Mean Degradation Rate (SE) Mean Net Production Rate (SE)
E. coli 0.024 (0.001) 0.035 (0.002)

S. typhimurium 0.035 (0.002) 0.044 (0.002)

Modeling

To generate the plot in Figure 4.4d, we used previously described genetic tog-

gle switch model (Gardner et al., 2000). We included three additional parameters to

model the effects of IPTG (CIPTG), ATC (CATC), and dilution (D) on the synthesis and

degradation of proteins:
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∂u

∂t
=

CIPTG(0,1)
αu

1 + vn
− (γu +D)u (4.1)

∂v

∂t
=

CATC(0,1)
αv

1 + un
− (γv +D)v (4.2)

In this model, we set n=2 to allow for cooperativity of repression of both pro-

moters. CIPTG0 and CATC0 were set to 1 for the case of no inducers present. Next, we

used metropolis algorithm to find the rest of the parameters to fit the qualitative nature

of the curves from Figure 4.1a. The parameters found to generate the E. coli curve were:

CIPTG1 = 1.25,CATC1 = 1.68,αu = 4.28,αv = 5.80,γu = 1.76,γv = 2.37,D = 0.11.

The parameters found to generate the S. typhimuriumcurve were: CIPTG1 = 1.25,

CATC1 = 1.68,αu = 11.00,αv = 8.36,γu = 4.86,γv = 3.21,D = 0.08. It is inter-

esting to note that the optimized parameters show higher production and degradation as

well as lower dilution for S. typhimuriumcurve relative to E. coli curve, which correlates

well with our experimental measurements.

The dynamics of single cell oscillator were modeled using previously described model

for activator (a2) and repressor (r4) proteins (Stricker et al., 2008). The production and

degradation of these proteins is described by the following set of reactions:
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P
a/r
0,0

ba/r−−→ P
a/r
0,0 +ma/r

P
a/r
1,0

αba/r−−−→ P
a/r
1,0 +ma/r

ma
ta−→ ma + auf

mr
tr−→ mr + ruf

auf
kfa−−→ a

ruf
kfr−−→ r

a+ a
kda−−−⇀↽−−−
k−da

a2

r + r
kdr−−⇀↽−−
k−dr

r2

r2 + r2
kt−−⇀↽−−
k−t

r4

auf
λf(X)−−−→ ∅

ruf
f(X)−−−→ ∅

a
λf(X)−−−→ ∅

r
f(X)−−−→ ∅

a2
λf(X)−−−→ ∅

r2
f(X)−−−→ ∅

r4
f(X)−−−→ ∅

We updated the degradation function F (X) to include dilution as follows:

f(X) =
γ

ce +X
+DX (4.3)

Here, X is the total number of ssrA tags in the system (one for each monomeric

version, two for dimers, and four for tetramers, including proteins bound to operator

sites). We varied the parameter γ from 1x to 2x to evaluate the effect of degradation

difference between E. coli and S. typhimuriumon the period of oscillation calculated
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from single cell model simulations. Dilution rate was calculated from experimentally

measured cell half life as ln(2)
T 1

2

.

To model the dynamics of the quorum-sensing oscillator, we used our previously

described model for intracellular concentrations of LuxI (I), AiiA (A), internal AHL

(Hi), and external AHL (He) (Danino et al., 2010),

∂A

∂t
= CA[1− (d/d0)

4] G(α, τ)− γAA

1 + f(A+ I)
−DA (4.4)

∂I

∂t
= CI [1− (d/d0)

4] G(α, τ)− γII

1 + f(A+ I)
−DI (4.5)

∂Hi

∂t
=

bI

1 + kI
− γHAHi

1 + gA
+D(He −Hi)−DHi (4.6)

∂He

∂t
= − d

1− d
D(He −Hi)− µHe +D1

∂2He

∂x2
(4.7)

To model the difference in periods of oscillation between E. coli and S. ty-

phimurium we varied the degradation parameters γA and γI . We looked at the changes in

the period over different values of the flow rate parameter µ, while varying the degrada-

tion prapameters from 1x to 2x of the original model value. To account for the difference

in doubling time between the two strains, we introduce exponential decay terms into the

model to account for dilution in addition to the enzymatic degradation terms. We add

terms −DI , −DHi, and −DH to the first three equations respectively, with D = ln(2)
T 1

2

.

We then looked at how the change in doubling time affected the period of both strains

shown in Figure 4.2d.

Supplementary information, including methods, supplementary figures and ta-

bles are available free of charge via the Internet at http://pubs.acs.org/.
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Chapter 5

Programming cyanobacteria to

produce protein nutrients at

supra-agricultural efficiencies

Introduction

Agriculture occupies nearly a third of all terrestrial land, making it by far the

most widely deployed solar energy technology globally. Despite this prevalence, cur-

rent agricultural and livestock production methods suffer from multiple energetic and

resource inefficiencies, resulting in annual solar energy conversion into nutrients of

>100-1,000-times lower than photovoltaic efficiencies. Here, we apply synthetic bi-

ology and systems modeling to create streamlined cyanobacterial systems for the direct

photosynthetic production of high-quality protein nutrients at supra-agricultural pho-

tonic efficiencies. Our modeling shows that these systems provide the potential to pro-

duce nutrient proteins at >100-times higher annual photonic efficiencies than common

plant- and livestock-based systems. We develop a foundation biological tools to ratio-

nally program the marine cyanobacteria Synechococcus sp. PCC 7002 and demonstrate

the selective production and secretion of model protein nutrients, including production

72
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of the agricultural protein ovalbumin at 8-fold the annualized photosynthetic efficiency

of animal production. In concert with advances in photobioreactor design, our stream-

lined approach motivates the potential for continuous agricultural nutrient production

at dramatically improved areal and resource efficiencies compared with conventional

agriculture.

Agriculture serves as the primary conduit through which solar energy is con-

verted into essential nutrients for human consumption. Plant- and animal-based agricul-

ture is the single largest user of arable land and fresh water globally and is estimated

to produce a third of global greenhouse gas emissions (Vermeulen et al., 2012; Food

and Agriculture Organization of the United Nations , FAO). Despite thousands of years

of improvement, the fundamental photosynthetic efficiency of agricultural nutrient pro-

duction has changed relatively little over time and today’s agricultural productivities are

estimated to be only ∼4-6-fold higher than the yields of conserved crops thousands of

years ago (Araus et al., 2003; Butzer, 1976). The rising global demand for high-quality

protein sources, increasing population, and limited supply of phosphate and other key

inputs are expected to further intensify pressures on food production (rom, 2009; Fischer

et al., 2009; Godfray et al., 2010; Goodland et al., 2009).

The integration of synthetic biology with systems-level mathematical model-

ing has provided a framework for rewiring biological systems and introducing entirely

new functionalities, including toggle switches (Gardner et al., 2000), logical operators

(Friedland et al., 2009; Tamsir et al., 2010; Moon et al., 2012), and synchronized com-

munity behaviors (You et al., 2004; Tabor et al., 2009; Danino et al., 2010; Prindle et al.,

2011; Danino et al., 2012). However, relatively little attention has been directed to-

ward applications of synthetic biology to the central challenges facing agriculture and

sustainable protein nutrient production. Here, through computational and experimen-

tal approaches, we find that streamlined nutrient production systems relying on single

cell photosynthetic organisms offer the potential to produce high-quality protein nu-

trients with >100-fold higher annual photonic efficiencies than traditional agricultural

practices. We extend the toolkit of synthetic biology in marine autotrophic strains and
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provide a systematic demonstration that single-cell photosynthetic cyanobacteria can be

engineered to serve as novel conduits for ’sunlight-to-protein’ conversion.

A Photosynthetic Nutrient Catalyst

Chloroplasts, theorized to have arisen from cyanobacterial endosymbionts, are

the photosynthetic engines of higher plants, harnessing solar energy to drive the as-

similation of CO2 and subsequent generation of biomass and nutrients throughout the

plant (Fig. 5.1a). While the chloroplast’s short-term photosynthetic energy efficiency

can approach that of photovoltaic-driven electrolysis in the same light spectra, agri-

cultural crops direct much of this energy toward plant growth and only store a small

portion of their captured energy in harvestable seeds and other food products (Blanken-

ship et al., 2011; Fischer and Edmeades, 2010; Zhu et al., 2008, 2010). To overcome

this limitation of agricultural nutrient production, we sought to generate synthetic bio-

logical systems that could approach the chloroplast’s theoretical photosynthetic energy

efficiency by directly converting solar energy into desired nutrients. Specifically, we

hypothesized that engineered single cell cyanobacterial autotrophs could act as ultra-

efficient nutrient production chassis by dramatically reducing the biomass requirements

of agricultural crops and allowing nutritive proteins to be photosynthetically produced

at supra-agricultural efficiencies. Using a combination of metabolic modeling and syn-

thetic biology, we present a systematic framework for generating cyanobacterial hosts

that realize significant improvements in photosynthetic protein production efficiencies

relative to traditional agriculture processes.

We initially sought to characterize the theoretical photosynthetic efficiency of

protein production in agricultural and cyanobacterial systems. The instant photosyn-

thetic efficiency of agriculture is governed by thermodynamic limits of chemical con-

version (Blankenship et al., 2011; Zhu et al., 2008) and is bounded by the plant’s require-

ment to divert fixed carbon towards biomass. We determined the average photosynthetic

efficiency of agricultural production for each crop based on USDA reported harvestable
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yield averages and NREL reported incident solar radiation. Theoretical crop efficiencies

were defined as their maximally observed short-term rate of harvestable biomass pro-

duction (Beadle and Long, 1985; Zhu et al., 2010). In order to assess the theoretical effi-

ciency of direct cyanobacterial nutrient production, we modeled the photonic efficiency

for nutritive protein production with a customized metabolic flux model for cyanobac-

terial strains producing heterologous proteins (Fig. 5.1b). Building on metabolic recon-

structions of photosynthetic performance in cyanobacteria, including nine cooperative

electron flow pathways that retain quantum efficiency of photon capture under high light

conditions (Nogales et al., 2012), we generated a model for analyzing the photosyn-

thetic conversion efficiency of sequence-specific protein biosynthesis and secretion by

cyanobacteria (Allen and Palsson, 2003). Assuming a steady state metabolic demand for

transcription and mRNA turnover, conversion efficiency of incident photosynthetically

active radiation (PAR) was constrained by the translation rates facilitated by the expres-

sion construct. Compared to the most efficiently produced commodity crop proteins,

measured during their optimally efficient window of growth, we find that an autotroph

has the potential to directly catalyze protein production at >20 times higher photosyn-

thetic efficiency (Fig. 5.1c). Because a cyanobacterial nutrient production system offers

the potential for year-round production, we assessed the annual areal protein production

potential for such a system. Even in projecting the peak efficiency of protein biomass

production in corn across an entire growing season, cyanobacterial production systems

would provide a 50-fold advantage in annual protein production. A further benchmark

is the capacity to directly produce those proteins that serve as the standard for nutritive

quality (Schaafsma, 2000). The theoretical efficiency for cyanobacterial production of

ovalbumin and beta-lactoglobulin, the major constituents of egg and whey protein re-

spectively, approaches three orders of magnitude improvement upon what is typically

achieved through animal production of these proteins.

We next sought to apply computational modeling of photosynthetic energy cap-

ture and carbon metabolism to guide cyanobacterial host selection and genetic opti-

mization for the production of agricultural proteins. We first modeled the tradeoff
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Figure 5.1: Direct nutrient catalyst. (a) Conceptual diagram illustrating a photosyn-
thetic unit capable of directly utilizing incident radiation to fix carbon for nutrient produc-
tion, including polypeptides, fatty acids, and polysaccharides. (b) Network diagram de-
picting the flux-based-analysis (FBA) photosynthetic model of nutrient production. Mod-
eled metabolic units include the photosynthetic apparatus, central metabolic pathways, and
protein biosynthesis reactions. (c) Comparison of photosynthetic conversion efficiency of
incident PAR between a simulated single cell autotroph (red squares) and agricultural pro-
duction at peak (green triangles) and average growing season (blue diamonds) efficiencies.
Conversion efficiency represents the ratio of final energy content of biomass, edible prod-
uct, or protein to energy from incident PAR. Efficiency improvements over crops by direct
protein production translate to log-scale differences in areal yield. Areal agricultural pro-
duction capacity is calculated as peak photosynthetic conversion efficiency applied to total
incident PAR trough a growing season of a top-yielding region in the United States (open
bars) or current agricultural yields (filled bars).
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in carbon metabolism between cellular growth and heterologous protein production in

metabolically active cells. Simulations of photosynthetic conversion efficiency to pro-

tein were conducted across strains of varying maximal doubling time, testing protein

production over the range of viable growth rates for each. Metabolic efficiencies were

bounded computationally such that the simulated growth rate could not exceed its max-

imal measured growth rate by capping the photosynthetic capacity of a model strain.

Our simulations predicted that cyanobacterial hosts with rapid doubling rates could

offer higher photosynthetic conversion efficiencies for protein production than slower

growing strains due to the direct shift in metabolism from biomass generation to pro-

tein accumulation that is mediated by heterologous genetic constructs (Fig. 5.2a). To

identify a strain with such rapid biomass accretion, we experimentally examined growth

rates of a diversity of cyanobacterial strains, while assessing their resilience to salt wa-

ter culture conditions and long-term viability in the absence media replenishment, and

nominated Synechococcus sp. PCC 7002 as a preferred chassis for production (Fig. 5.2b

and Fig. 5.13).

While the synthetic biology toolkit in well-studied heterotrophic organisms has

benefited from decades of development of foundational parts and some fresh water

cyanobacterial hosts have been characterized and modified for the production of lipid-

based fuels and specialty chemicals (Weyer et al., 2010; Wijffels et al., 2010; Robert-

son et al., 2011), Synechococcus sp. PCC 7002 and other marine cyanobacteria have

remained relatively unexplored as synthetic biology chassis (Wang et al., 2012; Berla

et al., 2013; Gronenberg et al., 2013). In order to divert metabolic energy from biomass

to heterologous protein production, we sought to develop expression systems with the

capacity to efficiently produce heterologous proteins in this host. In distinction to clas-

sical heterotrophic hosts in synthetic biology, PCC7002 and other marine cyanobacteria

partition genomic information across their chromosome and a large number of plasmids

that can asymmetrically segregate during host division (Xu et al., 2011). In order to

generate strains with the capacity to efficiently express nutritional protein transcripts,

we screened a set of promoters derived from multiple cyanobacterial strains with in-
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sertion targets in the host choromosome, as well as the full suite of plasmids, while

verifying stable propagation of each expression cassette through extensive plasmid seg-

regation. This yielded two promoters, Pcpc* from Thermosynechococcus elongatus

BP-1 and PpsbaII from Synechocystis elongatus PCC 7942, that when inserted into

host plasmid PAQ1 enabled protein photosynthetic conversion efficiencies throughout

the linear growth phase that far exceeds (∼5-fold) crop and animal protein efficien-

cies (Fig. 5.2c). Validating the model behavior, increases in promoter strength shifted

protein photosynthetic conversion efficiency along the simulated carbon metabolism iso-

cline, with more efficient protein production occurring at the expense of reduced cellular

biomass production (Fig. 5.2d). Such a carbon partitioning effect has been effective in

engineered fermentative systems by separating growth and production phases to achieve

high maximal productivities, and proposed for direct production of diesel-like alkanes in

cyanobacteria (Robertson et al., 2011). Recognizing this demonstrated efficiency trade-

off for carbon metabolism, our model predicts that an optimized rate of translation for

a strain with a doubling time of 4 hours at the tested culturing densities would allow

approximately 10-fold and 140-fold improvements of protein photosynthetic efficiency

beyond current crop and animal production methods, respectively.

We next sought to apply these tools to efficiently produce agricultural proteins

in cyanobacterial hosts. As heterologous protein production often exhibits variation

in the compatibility between expression constructs and desired heterologous proteins

(Punt et al., 2002; van Dijl et al., 2013) (Fig. 5.18), we screened expression vectors at

multiple plasmid sites in PCC7002 to test for photosynthetic production of ovalbumin,

the major protein constituent of chicken eggs. At lab-scale, we were able to observe

ovalbumin production efficiencies that surpassed the estimated annual photosynthetic

efficiency of agricultural-based ovalbumin production (Fig. 5.2e, Fig. 5.25). This is the

first time a sustainable means of producing an equivalent protein has been validated and

has been done at 8x the limit of nature for producing the same. Moreover, this exceeds

the solar efficiency of all animal-based protein production, demonstrating the potential

for cyanobacteria to act as conduits for the improved production of resource-intensive
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agricultural proteins.

We further applied metabolic modeling to identify bottlenecks to photosynthetic

conversion efficiency and inform strain engineering and culture optimization. By sim-

ulating the efficiency of protein production across cell densities and translation rates,

we observed the importance of balancing the PAR flux distributed per cell with the rate

of carbon assimilation into protein allowed by the expression construct. This balanc-

ing of PAR flux and translation capacity ensures minimal photon energy dissipation

through ATP-consuming futile cycles (Fig. 5.7). We identified an optimality for pro-

tein production in which the PAR flux available per cell for carbon fixation matches

the strain’s translation capacity, thereby balancing cellular carbon capacity with nutrient

protein production (Fig. 5.3a). This effect has been empirically described previously

by increasing culture density to maintain photoautotrophic growth rates at high photon

flux density irradiance (Qiang et al., 1998; Richmond et al., 2003; Grobbelaar, 1994;

Grobbelaar et al., 1996; Janssen et al., 2003). A loss in efficiency is due to the PAR

flux per cell both exceeding the rate of photosystem utilization as well as its subsequent

photoinhibitory effects.

Our computational modeling of the tradeoff between protein and cell biomass

production indicated that an inducible promoter system could allow biomass expedited

expansion to higher cell-densities prior to initiating protein production. Such a system

could circumvent the carbon metabolism bottleneck in which stronger protein expres-

sion results in a lower final culture cell-density and provide improved per-cell PAR

conversation efficiency to protein by operating at higher culture density (Fig. 5.3a and

Fig. 5.20). To evaluate this, we built a novel set of cumate inducible promoters and

constructed genetic cassettes for insertion across multiple plasmid loci (Fig. 5.3b). We

observed the system to provide tight regulation over protein expression, allowing the

initiation of protein production at variable optical densities through the linear growth

phase of PCC7002. In practice, increasing cell density in a fixed volume culture also

slows the rate of biomass production as cyanobacteria approach their carrying capacity

(Fig. 5.20). To experimentally decouple the subsequent shift towards a higher protein
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Figure 5.2: Cyanobacterial host characterization. (a) Simulated photosynthetic ca-
pacity for protein production scales with strain maximal growth rate. Curves represent
individual strains across their capable doubling times, demonstrating increasing produc-
tion efficiencies when metabolism is shifted away from cellular growth. (b) Growth rate
screen of cyanobacterial strains, identifying a fast growing strain (PCC7002) for charac-
terization of single-cell protein production efficiency. (c) YFP production efficiency in
PCC7002 across a set of expression constructs, demonstrating experimental PAR conver-
sion efficiencies to protein that exceeds agricultural capacity. (d) Relationship between
efficiency of PAR conversion to biomass and protein for individual expression constructs.
The experimental trade off between metabolism for cellular growth and protein production
matches closely to the predicted carbon metabolism isocline of the photosynthetic model.
(e) Ovalbumin production efficiency in PCC7002. Successful expression is observed from
pAQ3-Pcpc at an efficiency of 0.41%.
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production efficiency as demonstrated by the cell’s carbon partitioning above, we used a

low copy expression vector to bring protein production out of a carbon metabolism lim-

ited regime (Fig. 5.21). In this range of promoter strength, efficiency is limited by the

number of messages per cell. By inducing protein expression at increased cell densities,

we observed conversion efficiency to increase 3-fold as PAR flux per cell was reduced

to match the message-limited translation capacity (Fig. 5.3c). This finding suggests that

further improvements in production can be achieved by moving to higher light intensi-

ties, utilizing stronger expression systems, and inducing expression at even higher cell

culture densities (Fig. 5.12).

Nutrient Secretion

We next probed the potential for cyanobacterial chassis to selectively secrete

protein nutrients and provide a potential conduit for continuous nutrient production and

facile purification. Under conditions where biomass accretion is limited to maintain a

high conversion efficiency to protein, our model shows that heterologous protein pro-

duction must retain a metabolic balance by programming the cell to secrete the protein

into the culture medium. Secretion of heterologous protein has been demonstrated in

PCC6803 using a native leader sequence, but these sequences do not directly translate

to the PCC7002 host (Sergeyenko and Los, 2003). To test for Synechococcus sp. PCC

7002 capacity for heterologous protein secretion, we used a neural network strategy,

trained on a SignalP training set (Bendtsen et al., 2004), to screen >3800 genes in

the synechococcal protein database for identification of N-terminal Sec-type signal se-

quences that are functional in PCC7002. From a ranking of all putative Sec-type leader

sequences, a set of 48 N-terminal leader-sequences were selected and fused to the N-

terminus of heterologous lichenase to test for secretion from PCC7002 (Fig. 5.4a). We

found that the addition of specific N-terminal Sec-type signal sequences enabled up to

an 80-fold increase in secretion rate over that of native lichenase, demonstrating that

marine autotrophs have the capacity to direct extracellular localization of heterologous
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scaled to match the strain’s translation capacity. Arrows depict protein conversion effi-
ciency under constitutive production, pure cellular growth, or inducible production. (b)
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protein nutrients (Fig. 5.4b-c) and providing a path toward continuous production over

prolonged time periods.
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Figure 5.4: Protein secretion. (a) Conceptual diagram of the neural network imple-
mented to predict natural signal peptides within the synechococcal library of polypep-
tide sequences. A D-score above 0.57 indicates prediction of a sec leader on a queried
protein by the SignalP v4.0 network. (b) Schematic diagram of the cyanobacterial high-
throughput screening platform, enabling use of 96-well plates for parallel characteriza-
tion of strains and culture conditions. (c) Secretion screening in PCC7002 of a set of 48
network-predicted Sec-type leader sequences fused to the heterologous Lichenase protein.
Addition of an N-terminal leader peptide sequence increases heterologous protein secretion
80-fold over that of the native protein sequence.

The technology that we set forth provides a programmable conduit to convert so-

lar energy into agricultural proteins at supra-agricultural efficiencies. We computation-

ally and experimentally illustrate this system’s potential to produce nutritional proteins

at efficiencies that surpass peak agricultural conversion rates, including our production

of the model protein ovalbumin at 6-fold the annualized photosynthetic efficiency of ani-

mal production. The ability to divert large proportions of incident energy towards carbon

assimilation into nutrients rather than supporting growth of unharvested biomass within
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plants, overcomes a significant barrier to achieving yield improvements in traditional

agricultural systems. Moreover, the ability to utilize marine strains of cyanobacteria,

capable of operating in salt conditions, opens the possibility for this type of platform to

reduce fresh water requirements for nutrient production. Our experimentally-validated

model of photoautotrophic nutrient production further provides a tool to rationally guide

the improvement of protein production through iterative strain engineering and systems

design of customized bioreactors. Given the accelerated genome engineering and testing

cycles of single-cell autotrophs compared with higher plants, the tools and approach de-

scribed here offer the potential to rapidly realize systems with radically improved areal

efficiencies of nutrient production over current agricultural methods.

Methods

Strains and plasmids

All parent strains used in this study were saltwater or freshwater cyanobacteria

from the The Pasteur Culture Collection of Cyanobacteria (PCC) at the Institut Pasteur

(Paris, France) or the American Type Culture Collection (ATCC; Manassas, VA). All

engineered strains in this study were derivatives of the saltwater cyanobacteria Syne-

chococcus sp. PCC 7002. Promoters screening was chosen based on strong and/or

inducible promoters from various cyanobacteria (Pcpc, Pcpc*, Psuf, Prbc), synthetic

(Ptrc), Pseudomonas putida (Pcym), or the lambda phage (Pcro). Insertion sites for het-

erologous constructs within PCC7002 included extrachromosomally replicating plas-

mids pAQ1, pAQ3, or chromosomal loci.

Heterologous protein production

All PCC7002 derivatives were cultivated in A+ medium (18 g/l sodium chloride,

0.6 g/l potassium chloride, 1 g/l sodium nitrate, 5 g/l magnesium sulfate heptahydrate,

50 mg/l monobasic potassium phosphate, 266.4 mg/l calcium chloride, 30 mg/l tetra-
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sodium EDTA dehydrate, 3.89 mg/l iron (III) chloride hexahydrate, 8.20 mM Tris pH

8.2, 4 mg/l vitamin B12, and 1 ml/l P1 metals solution (1000x P1 metals: 34.26 g/l

H3BO3, 4.32 g/l MnC12-4H2O, 315 mg/l ZnCl, 30 mg/l MoO3, 3mg/l CuSO4-5H2O,

12.15 mg/l CoC12-6H2O), or a derivative containing a higher amount of nitrogen, phos-

phate, iron, and antifoam. All growth conditions were undertaken at 35◦C and 2%

(v/v) CO2. 96DWB experiments were undertaken with LED lights at ∼100 µE/m2/s at

800rpm, while shake flask experiments were undertaken with fluorescent lights at ∼80

µE/m2/s at 150rpm. Samples were taken intermittently from between 1 and 10 days.

Analytics

For intracellular protein expression experiments, analysis was undertaken using

either: 1) in situ fluorescence at 505/550nm for YFP against a purified standard curve,

2) anti-FLAG antibody and dot-blot platform, against a FLAG-BAP standard curve, or

3) the Caliper LabChip GXII system with automatic peak integration. For the latter two

methods, cyanobacteria pellets were lysed by bead milling using the QIAGEN TissueL-

yser II. For protein secretion with lichenase, an activity measurement based on glucose

release by the dinitrosalicylic acid assay was used to quantify productivity.

Model Construction and Simulations

Metabolic reconstruction for photosynthetic nutrient production

The Synechocystis network was constructed using the COBRA toolbox (Schel-

lenberger et al., 2011) to specifically assess photosynthetic nutrient conversion effi-

ciency. The previously published metabolic model of Synechocystis sp. PCC 6803 (No-

gales et al., 2012) was expanded to include sequence specific demands for heterologous

protein synthesis based on the model described by Allen and Palsson (Allen and Pals-

son, 2003). It was likewise expanded to include 2-oxoglutarate decarboxylase, iden-

tified by Zhang and Bryant (Zhang and Bryant, 2011) to functionally complete the



86

TCA cycle. While a number of detailed genome-scale reconstructions exist for Syne-

chocystis sp. PCC 6803 (Shastri and Morgan, 2005; Hong and Lee, 2007; Fu, 2009;

Navarro et al., 2009; Knoop et al., 2010; Montagud et al., 2010, 2011; Saha et al., 2012)

as well as a recent reconstruction of our experimental host, Synechococcus sp. PCC

7002 (Hamilton and Reed, 2012), we constructed the nutrient production model based

on the Synechocystis sp. PCC 6803 model by Nogales et al. due to the specific treat-

ment of the photosynthetic alternate flow pathways in iJN678 as well as its detailed

biomass objective function. The ability to capture robust photoautotrophic metabolism

throughout the high-light, carbon-limited regime provides a more accurate model of the

cyanobacterial capacity for nutrient production under outdoor conditions.

To model heterologous protein production, we added reactions to include tran-

scription, mRNA decay, translation, and secretion, accounting for metabolic demands

on the existing Synechocystis reconstruction based on the specific sequence of an exper-

imental construct. For tRNA charging, we used existing metabolites included as dead-

end metabolites in the iJN678 reconstruction. The protein production reaction set (Table

5.1) included additional metabolites for the expression construct (G), RNA polymerase

(Rp), initiated RNA polymerase (G∗), mRNA (M ), unfolded mRNA for degradation

(Mo), ribosome (R), initiated ribosome (R∗), cytoplasmic and periplasmic protein (Pc

and Pp respectively).

The mRNA unfolding reaction assumes a transcript secondary structure with

50% of the nucleotides engaged in a base pair. To ensure a metabolic demand for

transcription and mRNA turnover, both upper and lower reaction bounds for mRNA

degradation (equation 4) were fixed to the turnover rate (−ṁc = λ ∗ mc) that is de-

fined by transcript half life (λ), set to 2 minutes (Rott et al., 2003), and the steady-state

mRNA level (mRNAc). An example YFP construct for characterizing photosynthetic

efficiency is implemented in Supplementary Dataset S1.
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Table 5.1: A transcript containing n nucleotides, representing g gmp, a amp, u ump, and c

cmp; a coding sequence of length N , where AAcod represents the coding sequence amino

acid distribution; a signal peptide sequence of length S, whereAAsig represents the coding

sequence of the signal peptide. (N+ = N + 1)

G+Rp→ G∗

G∗ + nNTP → (N − 1)ppi +M +G+Rp

M +
n

4
(atp+ h2o)→

n

4
(adp+ h+ pi) +Mo

Mo + (n− 1)h20→ nNMP + (n− 1)h

M +R + fmettRNA+ gtp+ h2o→ R∗ + tRNAmet + gdp+ h+ pi

R∗ + 2Ngtp+N+h2o+
20∑
i=1

AAcodi → R +M + 2N(pi+ gdp) +N+h+ Pc

Pc + S(atp+ h2o)→ Pp + S(adp+ h+ pi) +
20∑
j=1

AAsigj

Simulation constraints and objective function

Simulations were performed using constraints for BG-11 minimal medium as

described in (Nogales et al., 2012) and a conversion to dry cell weight of 0.6E-12 g/cell.

Purely autotrophic metabolism was simulated using HCO3 uptake constrained to 3.7

mmol/gDW/h, representing the maximum CO2 uptake rate described in (Nogales et al.,

2012; Shastri and Morgan, 2005). The photon exchange flux was defined based on

the maximum irradiation available to the culture media, ranging from 175 µE/m2/s in

flask experiments to 7300 MJ/m2/y, representing the average outdoor ground radiation in

high light-intensity regions (Robertson et al., 2011). Available photosynthetically active

radiation (PAR) flux was calculated with a PAR radiation fraction of 0.487, a culture

reflection loss of 15%, and using an average PAR photon energy of 226E3 J/mol as in

(Robertson et al., 2011).
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For a given level of light-intensity, photon exchange per cell (or dry cell mass)

was calculated based on the media depth and culture density (0.28 gDW/L*OD730nm

for PCC7002). For flask experiments, the media depth of 0.31cm was derived from the

flask dimensions (63.2mm inner diameter) and 10 ml culture volume. Modeling of the

system under high-light intensity (as in Fig. 5.3d) used a light path of 1.5cm based on

experimental characterization of optimal light path on areal output rate under high light

intensity (Qiang et al., 1998; Richmond et al., 2003; Grobbelaar, 1994; Grobbelaar et al.,

1996). Photon uptake rate assumes a well-mixed system where each cell experiences an

average distribution of available photon flux. The dependence on light path of a cell’s

maximal growth rate is shown in Fig. 5.5a. Longer paths distribute photon flux (per m2)

over more cells for a given culture density, limiting the growth rate. Multiple strains

of varying photosynthetic capacity were modeled by scanning the proton exchange flux

constraint to affect the simulated cell’s capacity to make ATP via the ATP synthase

reaction. (Fig. 5.5b).

Media Depth (cm)

D
o

u
b

lin
g

 T
im

e
 (

h
r)

a b

Proton Uptake Rate (mmol/gDW/hr)

A
T

P
 S

y
n

th
a

s
e

 F
lu

x
 (

m
m

o
l/
g

D
W

/h
r)

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

  9   8   7   6   5   4   3   2   1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 5.5: Light path characterization. Strain growth rate depends on light path for
a given culture-cell density and light intensity. (a) Shorter media depth allows an elevated
photon distribution per cell, increasing the culture’s growth rate. Multiple curves represent
a scan of the proton exchange flux constraint, and it’s effect on cell growth capacity. (b)
Varying the proton exchange flux affects the rate of ATP production via ATP synthase,
shifting maximal growth rate.

Protein production efficiency was calculated as the per-cell energy conversion
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rate:

εi =
kJprotein/gDW/hr

kJincidentphoton/gDW/hr
(5.1)

The protein energy density was calculated based on the metabolizable energy

content of amino acids bound in a polypeptide (Ferrer-Lorente et al., 2007), calculat-

ing amino acid-specific densities of 23.32 KJ/g YFP and 23.62 kJ/g Ovalbumin. The

biomass energy density for PCC7002 was calculated to be 26.5 kJ/g, based on the

biomass composition outlined in Nogales et. al. (Nogales et al., 2012) and compo-

nent energy densities of 24 kJ/g protein, 39.8 kJ/g lipid, and 17.7 kJ/g glycogen. In

modeling heterologous protein production, the objective function was set to the transla-

tion reaction (equation 6). The biomass function was either fixed to a specific growth

rate (as in Fig. 5.2a) or unconstrained to allow for maximal protein production, with the

highest protein production efficiencies occurring when all carbon metabolism is shifted

away from cellular growth. We captured the varying expression strength of promoters

by applying a constraint to the translation flux (equation 6). Changing the steady state

level of mRNA, we scaled the upper bound on translation rate as a function of ribosome

processing rate (Tel = 16 AA/s) and minimal ribosome spacing (Dmin = 17 AA),

v6 =
mRNAc ∗ Tel

Dmin

(5.2)

Scanning the translation rate upper bound, we found the rate limit for per-cell

heterologous protein production was determined by the strains’ photosynthetic capacity

(Fig. 5.6). This rate limit was used as the strain 100% translation capacity for Fig. 5.3a.

For light intensities that provide photon flux above which the translation rate can sup-

port, the protein production efficiency diminishes as excess photons are instead dissi-

pated via futile cycles (Fig. 5.7)). Increasing the culture density, however, can reduce

the photon flux per cell to match its cellular translation rate, increasing the overall effi-

ciency of the culture (per m2). This is demonstrated across a range of cell-densities and

light paths in Fig. 5.8.
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The constitutive promoter screen (Fig. 5.2c-d) was fit to the production model

by scanning photosynthetic capacity and translation rate upper bound. Model condi-

tions matched experimental at OD730nm 8 and 85 µE/m2/s PAR light intensity. The fit

gave a Pearson linear correlation coefficient (r) of 9.845E-01. The theoretical strain pro-

tein photosynthetic efficiency (at low growth rate and with translation rate upper bound

at 100% strain capacity) is 7.6% (Fig. 5.9). The inducible promoter characterization

was similarly modeled by varying OD730nm and translation rate upper bound (induc-

tion range). A constitutive promoter producing during the early growth phase as in

Fig. 5.9 will be less efficient then a promoter which allows biomass expansion to higher

cell-densities prior to production (demonstrated in Fig. 5.3), capable of approaching a

theoretical protein production efficiency of 16%. Final productivity estimates at high

light (Fig. 5.1) were done using a dense cell culture, where photon uptake rate per cell

becomes the limiting constraint for (per m2) heterologous protein production. In this

regime, differences in maximal growth rate collapse onto one curve, as the light avail-

able to each cell is below that which can support faster growth rates (Fig. 5.10). As

such, protein production levels per cell are below their strain photosynthetic capacity,



93

and thus not limited by the translation rate limit. The areal yield per m2, however, yields

optimal protein production since the culture is efficiently utilizing all incident radiation

(Fig. 5.11 and 5.12).
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Figure 5.9: Carbon Metabolism Isocline. Photosynthetic efficiency of YFP production
in PCC7002 across a range of promoters. Strains expressing high-levels of protein exhibit
decreasing efficiencies of biomass production. PCC7002 photosynthetic capacity is pre-
dicted by FBA model fit for the pAQ1 promoter scan. The y-intercept describes the strain’s
protein production capacity when carbon metabolism is fully shifted away from growth,
with the translation rate upper bound at 100% capacity.
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Experimental Methods

High Throughput Cultivation

To develop a platform for high-throughput cultivation of cyanobacteria (Fig. 5.4a)

for testing multiples of strains, expression constructs, culture conditions, or inducer lev-

els, we retrofitted a Vertiga Micro-Expression Shaker (Glas-col; Jerra Haute, IN) to

supply 2% CO2 to the headspace of the shaker with the use of two mass flow controllers

(Alicat Scientific; Tuscon, AZ) to support 4 standard L/min (3920 standard ml/min air

and 80 standard ml/min pure CO2). This gas stream was humidified with a water bottle

in-line before the shaker to reduce evaporation from the culture. Mixing studies re-

vealed 800rpm at an orbital offset of 0.070” worked best to generate vigorous mixing

with a square-well, conical bottom, 2ml 96 Deep-well block (DWB) with 1ml of culture

volume.

A manifold to hold a 96DWB and an LED panel used for camera systems with

associated heat dissipation was designed internally using SolidWorks and manufactured

by stereolithography (SLA) 3-D printing technology at RealizeInc (Noblesville, IN).

The LED panels (Litepanels Micropro) had a 12×8 grid design in the same footprint

as the 96DWB, allowing one LED to supply the light to every well. A UV absorbent

film was overlaid above the LED panel and an optical diffusing film was overlaid over

that. This allowed for ∼90% light transmittance but improved the light uniformity over

the surface of the panel by >400%. The supplying AC power was tuned to achieve an

intensity of 100±10 µE/m2/s over the surface of the panel. Transmittance through the

bottom of the 96DWB to the culture was >95%. PAR was measured using a LI-COR

(Lincoln, NB) LI-250A light meter.

Strain Selection and Growth Rate Testing

Strains were purchased from The Pasteur Culture Collection of Cyanobacteria

(PCC) at the Institut Pasteur (Paris, France) or the American Type Culture Collection
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(ATCC; Manassas, VA). All strains purchased were isolated from saltwater or brackish

water environments. The base medium for all strains was A+. This medium contained

18 g/l sodium chloride, 0.6 g/l potassium chloride, 1 g/l sodium nitrate, 5 g/l magnesium

sulfate heptahydrate, 50 mg/l monobasic potassium phosphate, 266.4 mg/l calcium chlo-

ride, 30 mg/l tetrasodium EDTA dehydrate, 3.89 mg/l iron (III) chloride hexahydrate,

8.20 mM Tris pH 8.2, 4 µg/l vitamin B12, and 1 ml/l P1 metals solution (1000x P1

metals: 34.26 g/l H3BO3, 4.32 g/l MnC12-4H2O, 315 mg/l ZnCl, 30 mg/l MoO3, 3mg/l

CuSO4-5H2O, 12.15 mg/l CoC12-6H2O). Strains were cultivated on solid A+ medium

(A+ medium with 15 g/l agar) at 30◦C, ambient CO2 concentration, and a light intensity

of ∼15 µE/m2/s with fluorescent lights. Single colonies were isolated and inoculated

into 2 ml liquid A+ medium (in 22x175 mm2 (50 ml) culture tubes with foam stoppers)

and grown to OD730nm ≈ 2-3 at 35◦C, 150rpm, 2% CO2 (v/v), and ∼80 µE/m2/s with

fluorescent lights. Cell-density was measured spectrophotometrically (using a BioTek

MX II microplate reader) at 730nm. Samples were diluted in sterile, A+ medium to

ensure the raw absorbance value was below 0.5. All strains were then inoculated to

OD730nm = 0.1 in 10 ml A+ medium (in a 125 ml glass, baffled shake flask) and grown

for 120hr at 35◦C, 150rpm, 2% CO2 (v/v), and ∼80 µE/m2/s with fluorescent lights.

Samples were taken intermittently to measure cell-density. The OD730nm vs. time data

was then fit to a logistic population model,

X(t) =
X0e

µt

1− X0

Xsat
(1− eµt)

(5.3)

This equation describes the cell-density, X, as a function of time, t, with the

following constant parameters (X0, the initial cell density, Xsat, the stationary phase

cell-density, and µ, the maximal specific growth rate). A non-linear least-squares re-

gression of the data with the logistic population model was undertaken in MATLAB

(using the ”nlinfit” function) to determine the X0, Xsat, and µ parameters. 95% confi-
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dence intervals were assessed for cell-density estimates, and the estimated parameters

were examined for accuracy. The maximal specific growth rate, µ, an indication of

the inherent photosynthetic capacity of the organism in question was then compared

across strains. Strain doubling time was calculated from maximal specific growth rate

as log(2)/µ.

Media Optimization

Media optimization was undertaken by varying the three major inorganic com-

ponents contributing to cell-viability: Nitrogen, Phosphorus, and Iron. Sodium nitrate

was varied between 1 and 20 g/l, monobasic potassium phosphate was varied between

50 and 250 mg/l, and iron (III) chloride hexahydrate was varied between 10 and 250

mg/l. The optimal concentrations of each component, as shown to optimize final cell-

density (OD730nm) at 168 hr (7 days), were 4 g/l sodium nitrate, 200 mg/l monobasic

potassium phosphate, and 20 mg/l iron (III) chloride hexahydrate. These three com-

ponent changes over A+ medium was named PB1.0. The effect of antifoam (BASF

Industrol 204) concentration (100, 10−01, 10−02, 10−03, 10−04, 10−05 %) was then ana-

lyzed on bubble formation and cell-density over the course of a standard growth exper-

iment. 0.001% v/v was determined to be the lowest concentration of antifoam shown

to decrease bubble formation without effecting cell-density. This component change

over PB1.0 medium was named PB1.1 and used for the protein production experiments

described henceforth. Medium optimization enabled the long term cultivation of Syne-

chococcus sp. PCC 7002 without the need for medium replenishment (Fig. 5.13). This

allowed the culture to reach higher cell-densities, and potentially improved production

efficiencies (as described by the FBA above).

Salinity Tolerance

To determine the effect of varying salinities of the medium on the growth and

robustness of PCC7002, we cultivated it in our 96DWB high-throughput platform with
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PB1.1 medium across a concentration gradient of sodium chloride (Fig. 5.14). The

robust growth under saline conditions confirms the strain as a viable photosynthetic

nutrient catalyst without the need for freshwater. This feature might enable a protein

production capacity in regions with typically poor agricultural productivities due to arid

conditions.
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Figure 5.14: PCC7002 Salt Tolerance. Cell-density of PCC7002 vs. sodium chloride
concentration. The cell-density at 24hr (blue bars), 65hr (green bars), and 90hr (red bars)
demonstrate cell viability across a range of medium salinity. Error bars represent ± one
standard deviation from four independent wells.

Promoter and Strain Construction

The expression constructs tested in Fig. 5.2c include the PpsbaII promoter that

drives expression of PpsbaII gene in Synechocystis elongatus PCC 7942, the Pcpc* pro-

moter that drives expression of the cpc operon in Thermosynechococcus sp. BP-1, the



102

Pcpc promoter that drives expression of the cpc operon in Synechocystis sp. PCC 6803,

the Pcro promoter that drives expression of the cro gene in Enterobacteria phage λ,

the Ptrc promoter that is hybrid promoter (ptrp-35+17bp+pLac-10), derived from Es-

cherichia coli, the Psuf promoter that drives expression of the sufB gene, and the Prbc

promoter that drives expression of the rbcL gene in Synechocystis elongatus PCC 7942.

All the promoters are amplified from their respective genome, inserting an EcoRI re-

striction site GAATTC at the 5’ end and NcoI restriction site CCATGG at the 3’ end.

The PCR products, along with a pAQ1-yfp backbone plasmid for PCC7002, were then

digested with EcoRI and NcoI restriction endonucleases. Each PCR product was ligated

with the backbone plasmid by T4 ligase, inserting the promoter sequence upstream of

the yfp gene (Fig. 5.15). Constructs were then transformed into Neb Turbo E.coli cells

and sequence verified. All construct sequences in this work are included in Supplemen-

tary Dataset S2.

For cyanbacterial transformation of plasmids, 1 µg of each construct was mixed

with 30 µl of Synechococcus sp. PCC 7002 that was grown in A+ medium to OD730nm

≈ 1.5. The mix was loaded on a grid agar plate with A+ medium supplemented with

spectinomycin 100 µg/mL. The transformants were incubated at 35◦C, 10 µE/m2/s and

atmospheric CO2 conditions. After 2 days, the growing bacteria were re-streaked on a

similar grid agar plate (A+ spectinomycin 100 µg/ml). Plasmid segregation was moni-

tored by colony PCR with primers flanking the integration regions.

Two highly expressing promoters on the pAQ1 plasmid system, (Pcpc* and

Pcro), were selected for construction of a cumate inducible promoter, implementing

the cymR and cymR operator (cymO) regulatory elements from the cym operon of Pseu-

domonas putida F1 (Choi et al., 2010). Sequences containing Pcro-cymO with Pkm-

cymR in cis on the reverse strand as well as Pcpc*-cymO were synthesized. In cymO

sequences, the cumO site was added at the +1 transcriptional site of the respective pro-

moters. For construction of Pkm-cymR-Pcro-cymO-yfp, a pAQ3-yfp backbone and the

synthesized promoter sequence were digested using SacII and NcoI restriction endonu-

cleases. The digested fragments were ligated togther by T4 ligase to construct the final
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NsiI (2893)
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SphI (6334)

XbaI (4936)

Figure 5.15: pAQ1 Pcpc*-yfp. pAQ1 plasmid map. The promoter upstream of yfp was
substituted to screen expression strength.
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plasmid. The Pkm-cymR-Pcpc*-cymO-yfp was constructed by amplifying Pcpc*-cymO

with a 5’ flanking MluI site and 3’ NcoI site. The PCR product and Pkm-cymR-Pcro-

cymO-yfp plasmid were digested using MluI and NcoI restriction endonucleases. The

digested fragments were ligated by T4 ligase, replacing Pcro-cymO with Pcpc*-cymO,

to construct the final plasmid (Fig. 5.16a).

Of the constructs, only Pcro exhibited inducible behavior. Testing whether Pcpc*

could be induced more strongly with a lower concentration of repressor, Pcpc* was also

constructed with the CymR repressor expressed in trans via chromosomal integration.

For construction of pAQ3-Pcpc*-cymO-yfp with cymR in trans chromosomally,

the Pcpc*-cumO promoter sequence was amplified with a 5’ flanking SacII and 3’ NcoI

site. The PCR product and pAQ3-yfp backbone were digested using SacII and NcoI re-

striction endonucleases. The digested fragments were ligated by T4 ligase to construct

the final plasmid (Fig. 5.16b). The Pkm-cymR component for chromosomal integration

was amplified from the Pkm-cymR-Pcro-cymO-yfp with a 5’ flanking EcoRI site and 3’

flanking BamHI site. The PCR product and pA1133int backbone were digested using

EcoRI and BamHI restriction endonucleases. The digested fragments were ligated by T4

ligase to construct the chromosomal construct. As this integrant would be co-selected

with the pAQ3-Pcpc*-cymO-yfp construct, the aad1 spectinomycin resistance gene was

replaced by the aacC1 gentomycin resistance gene. This was done using aacC1 am-

plification with 5’ and 3’ flanking AarI sites, for digestion and ligation into the final

plasmid. Transformation was done as described above, with 100 µg/ml spectinomycin

and 50 µg/ml gentomycin.

While this exhibited inducibility, the range of induction remained more nar-

row than Pcro/cymOP (Fig. 3). To explore the variability in promoter strength being

a product of the expression vector, we tested expression of constitutive Pcpc* and Pcpc

promoters on pAQ3 and chromosomal cassettes (Fig. 5.17). These were constructed

as described above, amplifying the Pcpc* and Pcpc promoters with restriction sites

for insertion into the pAQ3, pA1133int, and pA1580 backbones. While Pcpc* was a

stronger promoter than Pcpc in pAQ1, their relative expression levels reversed in pAQ3
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pAQ3-Pcpc*-cymO-yfp

6639 bp

yfp aadA

Ampr

His-Tag

MB1

5' pAQ3 insertion site

3' pAQ3
insertion site

Pcpc*

cymO

T7 term

pAQ3-Pkm-cymR-
Pcpc*-cymO-yfp

7304 bp

yfp aadA

Ampr

CymR

His-Tag

MB1

5' pAQ3 insertion site

Pkm promoter

3' pAQ3 
insertion site

Pcpc*

cymO

RBS
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Figure 5.16: pAQ3 Pcpc*-cymO-yfp. Cumate inducible plasmid map. (a) The Pcpc*-
cymO plasmid with Pkm-cymR in cis on the reverse strand. (b) The Pcpc*-cymO plasmid
with Pkm-cymR in trans.

(Fig. 5.18). This demonstrates the importance of characterizing promoters within the

intended vector, as their activity exhibits specificity to the expression construct in Syne-

chococcus sp. PCC 7002.

Promoter characterization was performed as described in Flask Experiments be-

low, using 50µM cumate for expression from inducible promoters. Promoter activity

was measured as fluorescence per OD730nm, with samples in duplicate.

Flask Experiments

Shake-flask expression studies were undertaken in a similar manner as described

above in the ”Strain Selection and Growth Rate Testing” section. The only difference

being all medium contained 100 mg/l spectinomycin to maintain selection of the inte-

grated plasmid, and the base medium used was PB1.1 and not A+. All strains were

then inoculated to OD730nm = 0.2 in 10 ml PB1.1 medium (in a 125ml glass, baffled

shake flask) and grown for 10 days at 35◦C, 150rpm, 2% CO2 (v/v), and ∼80 µE/m2/s

with fluorescent lights. Samples were taken intermittently to measure cell-density and

fluorescence measurements to quantify yellow fluorescent protein (YFP).
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YFP quantification was undertaken on a BioTek Synergy Mx plate reader. The

optimal excitation and emission spectra were determined to be 505nm and 550nm re-

spectively, and the detector sensitivity was set at 75. Recombinant YFP standard (MBL

International Corporation) was diluted in PB1.1 medium at concentrations of 5.0, 2.5,

1.25, 1.0, 0.5, 0.25, 0.125, and 0.0625 mg/l. A fixed concentration of 0.5 mg/L YFP

was then spiked into varying density cultures to determine its effect on quenching the

fluorescence emission (Fig. 5.19). All samples for YFP quantification were diluted to

OD730nm = 0.05 for measurement on the plate reader.
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Figure 5.19: YFP Standard Curve. (a) RFU emission linear fit to a range of recombi-
nant YFP concentrations. (b) A quenching experiment at 0.5 mg/L YFP to determine cell
density dependence on fluorescence emission shows an optimal OD730nm range ¡ 0.1.

Measurements of photosynthetic efficiency were taken within the linear growth

phase for flask experiments, each in triplicate. The rate of protein accumulation was

averaged over 24 hours, normalized to the culture’s OD730nm for calculation of effi-

ciency on a per-cell basis. Likewise, light intensity at each time point was normalized

to the OD730nm, and averaged over 24 hours to calculate photon-flux per cell. Protein

energy densities were taken as calculated for the model (23.32 kJ/g YFP and 23.645 kJ/g

Ovalbumin). Finally, areal production per m2 was calculated with 3184.7 mL/m2 flask

dimensions. A PAR photon energy of 2.26E+05 J/E was used as in the model Robertson

et al. (2011). Calculation of biomass efficiency was done similarly, using the conversion
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from OD to dry cell mass of .28 g/L*OD730nm for PCC7002. A biomass energy density

for PCC7002 of 26.5 kJ/g was used as in the model, in the upper range of the reported

literature for algae 20-26.9 kJ/g (Weyer et al., 2010).

Promoters characterized in pAQ1 expression constructs are shown in Fig. 5.2.

Cumate inducible promoters were tested in lower copy pAQ3 expression constructs.

High protein production levels from pAQ1 slows the growth rate within the PCC7002

standard linear growth range (Fig. 5.20), as the cell is limited by its photosynthetic

capacity for carbon metabolism (shown in Fig. 5.2). Promoters that more strongly ex-

press protein likewise reach a lower final OD730nm (Fig. 5.20b). To determine the direct

effect of cell-density on protein photosynthetic efficiency, we instead built expression

constructs on a lower-copy plasmid, pAQ3, to relieve the dependence between protein

and biomass efficiency (Fig. 5.21). Any variability in growth rate between the ODs of

induction did not correlate with the protein production efficiency (Fig. 5.21).
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Figure 5.20: pAQ1 Biomass Efficiency. Photosynthetic efficiency of biomass production
for PCC7002 producing protein from pAQ1. Strains expressing high-levels of protein ex-
hibit decreasing efficiencies of biomass production over time. (a) Growth rate shifts over
time as culture approaches carrying capacity. (b) Stronger promoters have lower growth
rates (i.e. Pcpc*,green triangles vs. Prbc, red squares) and reach lower final ODs.

For cumate inducible constructs, inoculum from the Pcro/cymOP PCC7002 strain

was prepared as described previously in the ”Strain Selection and Growth Rate Testing”

section. Here, PB1.1 was used as the production medium, and all flask cultures were
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inoculated to OD730nm = 0.15. Cultures were induced with various concentrations of

cumate (prepared at 50mM in molecular biology grade ethanol). Cultures were induced

at OD730nm of 1, 1.5, 2, and 6. Thereafter, samples were taken every 12 hours to monitor

the cell-density, YFP titer, and samples for mRNA quantification were taken.
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Figure 5.21: pAQ3 Carbon Metabolism. Photosynthetic efficiency of biomass and pro-
tein production for PCC7002. YFP expression levels from promoters integrated onto pAQ3
plasmids do not exhibit a growth dependence.

YFP mRNA was quantified across the experimental OD range to ensure con-

sistent promoter activity (at induction levels of both 10 µM and 100 µM). This allows

a comparison of the strain’s photosynthetic efficiency upon induction at different cell-

densities. Cell samples for mRNA extraction were taken upon the final YFP measure-

ment for photosynthetic efficiency.

The equivalent of 1 ml of OD 2.5 of cells were precipitated by centrifuging at
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1500g for 5 minutes and frozen at -20◦C overnight. Cells were resuspended in 4 ml

deionized water, thawed, lysed by adding 2 ml of lysis buffer (16 mM EDTA, 2% SDS),

and heated to 95◦C for 5 minutes. The total RNA was extracted by adding 4 ml phenol

(Sigma) at 65◦C and incubated at 65◦C for 10 minutes while shaking every 5 minutes.

The solution was centrifuged at 3000g for 10 minutes and the top aqueous layer was

transferred to new tubes. 4 ml phenol was added and vortexed for a second round of

phenol extraction followed by centrifugation in the same conditions. The top aque-

ous layer was transferred to new tubes and 4 ml phenol:chloroform:isoamyl alcohol =

25:24:1 (Sigma) was added and vortexed followed by centrifugation. This step was re-

peated once. The final aqueous layer was transferred to a new tube and the RNA was

precipitated by adding 2 ml isopropanol and frozen at -20◦C overnight. Following cen-

trifugation at 20,000g for 20 minutes at 4◦C, the precipitant was washed once with 70%

EtOH and centrifuged with the same conditions. The supernatant was poured out and

the precipitant air dried and resuspended in 100 µl RNase-free water. Residual DNA

was removed from the RNA by DNase I (Promega) digestion following the manufac-

turer’s protocol at 37◦C for 1 hour. The reaction was stopped by adding 2 µl of stop

solution and inactivated at 65◦C for 10 minutes.

First-strand cDNA was synthesized using the New England BioLabs ProtoScript

II First Strand cDNA Synthesis Kit. Standard protocols provided by the manufacturer

were followed, using 2 µl of 60 µM random hexamer primers reacted with 200-600 ng

of total RNA. The reaction was incubated at room temperature for 5 minutes before

incubating at 42◦C for 1 hour.

For real-time PCR quantification, cDNA was diluted by 2X, 20X, and 200X

and measured in triplicate. qRT-PCR were performed with the SYBR Green master

mix (Life Technologies SYBR Select Master Mix) by combining the cDNA templates

with 200 nM primers that amplifies either yfp or a housekeeping gene, 16S rRNA or

RuBisCo. Standard reaction conditions suggested by the manufacturer were followed.

The sequences of the primers for each gene are listed in Table 5.2

Differences in light-use efficiency for protein production is not due to increased
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Table 5.2: RT-PCR transcript quantification primers for YFP, 16S, and Rubisco.

Name Target Sequence
YFP-FW YFP AGAAGAACGGCATCAAGGTG
YFP-RV YFP GAACTCCAGCAGGACCATGT
16S rRNA-FW 16S rRNA AGAGATGCGAGAGTGCCTTC
16S rRNA-RV 16S rRNA AAGGGGCATGATGACTTGAC
RuBisCo-1-FW RuBisCo CACTTGCGAAGAAATGCTCA
RuBisCo-1-RV RuBisCo CGGAAGTGAATACCGTGGTT
RuBisCo-2-FW RuBisCo ACCCTCGGTTTCGTAGACCT
RuBisCo-2-RV RuBisCo AGGGTACCACCACCAAACTG

promoter activity at higher cell-densities (Fig. 5.22). Photosynthetic efficiency improves

as cell-density increases, as light is better distributed between cells to match their trans-

lation capacity.

Nutrient Production

Screening for Ovalbumin Production

In screening for Ovalbumin expression, we tested a range of expression con-

structs. As we found above while characterizing the cumate inducible promoters, the

copy number of the plasmid affects the performance of the promoter-protein pairing.

We tested Ovalbumin production on high copy (∼40) pAQ1, medium copy (∼20-30)

pAQ3, and low copy (∼5) pAQ6 plasmids, as well as in multiple integration sites within

the chromosome (Table 5.3). Construction of the plasmids was done as described above,

using restriction digestion to replace yfp with the codon-oprimized gene for Ovalbumin,

with N-terminal 8x His, in a number of expression constructs. 8xHis-ovalbumin with

flanking restriction sites was amplified from the synthesized sequence.

Ovalbumin production studies were undertaken as described in the ”Flask Ex-

periments” section, with samples in duplicate. Ovalbumin produced recombinantly was

quantified in lysate by chip electrophoresis. Samples were prepared by adding 2 µl of
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Figure 5.22: pAQ3 mRNA Levels. YFP mRNA is quantified relative to RuBisCo (primer
set 2), averaged in triplicate. Absolute levels of RuBisCo remained consistent across the
samples. YFP fold induction is the RuBisCo-normalized YFP mRNA levels over un-
induced control.

lysate, which was normalized to OD730nm 1.5, to 7 µl Protein Express sample buffer,

heating at 95◦C for 5 minutes, and then adding 35 µl of water. Analysis was completed

using HT Low MW Protein Express LabChip® Kit following the manufacturer’s pro-

tocol. A protein ladder ran every 12 samples for molecular weight determination (kDa)

and quantification (ng/µl).

Ovalbumin produced recombinantly was additionally quantified in lysate using a

dot blot method (Fig. 5.23). 110 µl of 0.2 µm filtered lysate was mixed with 110 µl 8.0M

Guanidine Hydrochloride, 0.1M Sodium Phosphate (Denaturing Buffer) to allow for

normalized protein binding and to ensure exposure of the binding epitope. A standard

curve of native Ovalbumin (Sigma) was prepared in the same matrix as the samples,

starting at 100 ng, diluting 2X serially to 1.56 ng. Invitrogen 0.45 µm nitrocellulose

membrane was pre-wet in 1X PBS buffer for 5 minutes and then loaded onto Bio-Rad

Dot Blot Apparatus. 300 µl of PBS was vacuumed through to further wet the membrane.

Next, 200 µl the 1:1 Sample:Denaturing Buffer mixture was loaded into each well and

allowed to drain through the dot blot apparatus by gravity for 30 minutes. Next, a
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Table 5.3: Ovalbumin expression constructs.

Plasmid Description POI Integration
pES665 pAQ1int-Pcpc*-[8xHis]ova-lox:Sp:lox Ovalbumin pAQ1
pES685 pAQ3int-Pcpc-[8xHis]ova-lox:Sp:lox Ovalbumin pAQ3
pES690 pAQ6int-Pcpc*-[8xHis]ova-lox:Sp:lox Ovalbumin pAQ6
pES673 pA1103int-Pcpc*-[8xHis]ova-lox:Sp:lox Ovalbumin Chrom
pES678 pEX1580-Pcpc*-[8xHis]ova-lox:Sp:lox Ovalbumin Chrom
PCC7002 PCC7002 WT - -

300 µl PBS wash was performed on all wells by vacuum followed by loading 300 µl

of Millipore Blok CH Noise Cancelling reagent and incubating for 60 minutes. After

blocking, the membrane was washed with 300 µl of 1X PBS + 0.1% Tween 20. Next,

antibody solution was prepared by adding 2.4 µl of Anti-Ovalbumin antibody (HRP)

(Abcam) to 12 ml of Millipore Blok CH Noise Cancelling reagent (1:5000 dilution).

100 µl of the resulting antibody solution was added to each well and allowed to incubate

for 30 minutes by gravity. After antibody incubation, three final washes are performed

with 300 µl 1X PBS + 0.1% Tween 20 by vacuum. After washes, the nitrocellulose

membrane was removed and placed into a reagent tray. 20 ml of Millipore Luminata

Classico Western HRP substrate was added and allowed to incubate for 1 minute. After

incubation, membrane was placed into imaging tray of Gel Doc™XR+ System (Bio-rad)

and imaged using a chemiluminescent protocol.

Ovalbumin production was successful on constitutive Pcpc with a pAQ3 inte-

gration vector (Fig. 5.24), achieving 6% of total protein with an average protein pro-

duction efficiency of 0.41% kJ protein/kJ photon (Fig. 5.25). This surpasses the agri-

cultural efficiency of egg protein production, which reaches 0.08% kJ protein/kJ photon

assuming current yields of corn feed, averaging 160 bushels/acre/yr across the United

States in 2013 (U.S. Department of Agriculture’s National Agricultural Statistics Ser-

vice, NASS).
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Figure 5.23: Ovalbumin Dot Plot Expression Screen. Detection of recombinant Oval-
bumin in PCC7002 cell-lysate with standard curve for quantification.
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Lysis and Purification

Chemical lysis (with detergents) and mechanical lysis (by sonication) was deter-

mined to be inefficient at disrupting the cell-membranes of PCC7002 and its derivatives.

Mechanical lysis by a microfluidizer has shown to be extremely efficient, but requires at

least 50ml total volume, and is not high-throughput. Bead milling is a common method

of cell disruption in which a large number of micron-scale beads are shaken vigorously

with a sample of cell culture to produce a crushing action that lyses the cells. The QIA-

GEN TissueLyser II bead mill was chosen and various variables (bead size, bead type,

duration of beat milling, frequency of oscillation, sample cell-density, and volume ratio

of beads to sample) were examined to define optimal operating conditions to maximize

lysis and minimize potential for proteolysis (by heat or protease activity). The optimal

parameters were using 0.1mm zirconium beads with 5 min duration at 30Hz and an

OD730nm between 5 and 15, and 1:1 volumetric ratio of beads to sample.

Cyanobacterial culture was centrifuged at 7,500g for 20 min at room temperature

and the centrate was decanted and removed. Cell-pellet was re-suspended in IMAC

equilibration buffer at a solids content of 20% v/v using a handheld mixer. Mechanical

lysis was undertaken using a Microfluidics (Westwood, MA) M-110P Microfluidizer

using 15,000 psi and three passes. This achieved >99.9% lysis as determined by plate

counts. The lysate was then clarified by centrifugation at 12,000g for approximately 12

hr at 4◦C. The centrate was then passed through a 0.22µm to further reduce the turbidity.

The digestibility of native and recombinant Ovalbumin was measured using an

modified protocol from Martos et. al (Martos et al., 2010). Ovalbumin samples were first

treated at a concentration of 2 g/L with simulated gastric fluid (0.03 M NaCl, titrated

with HCl to pH 1.5 with a final pepsin:OVA ratio of 1:20 w/w) at 37◦C. Time points

were sampled from the reaction and quenched by addition of 0.2 M Na2CO3. After 120

min in simulated gastric fluid, the remaining reaction was mixed 50:50 with simulated

intestinal fluid (15 mM sodium glycodeoxycholate, 15 mM taurocholic acid, 18.4 mM

CaCl2, 50 mM MES pH 6.5 with a final trypsin:chymotrypsin:OVA ratio of 1:4:400
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w/w) and neutralized with NaOH to pH 6.5. Time points were sampled from the reaction

and quenched by addition of Trypsin/Chymotrypsin Inhibitor solution until 120 min.

Sampled time points were then be analyzed by chip electrophoresis as described above.

In silico Prediction of Cyanobacteria Sec-type Leader Se-

quences

In-silico prediction model

The 48 Sec-type leaders examined in this study were selected using the Sig-

nalP prediction software (Nielsen et al., 1997; Bendtsen et al., 2004) as well as an in-

house set of neural networks trained on a subset of the training dataset provided in the

signalP 2.0 package. Using a combination of these two measures, the presence of an

N-terminal signal sequence within all previously identified proteins of Synechococcus

sp. PCC 7002 was determined computationally.

The networks developed in-house used an identical prediction strategy to that

described by Bendtsen et al. (Bendtsen et al., 2004), (i.e., they used two networks to

predict whether a given amino acid was part of an N-terminal Sec-type signal sequence

(S-score) and/or the cleavage site of the leader (C-score) and used the combined output

of both networks to assess the presence of a N-terminal Sec-type signal sequence (D-

score)), but differed in the training data used. Each network was trained using a 5 fold

cross validation strategy where the input data was randomly split into five sets, three of

these sets were used to actively train the network, the fourth was used during training as

a validation dataset to prevent over fitting, and the fifth was used after training to assess

model performance. Specifically, the networks each had two hidden layers, were trained

using the gram negative bacteria training dataset provided in the signal 2.0 package,

and implemented using the biopython v1.53 toolbox and python v2.6. Training was

performed using a momentum of 0.05, a learning rate of 0.1, and training stopped when
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the prediction error, assessed using the validation dataset, started to increase, which

indicated that the model was starting to over fit to the training data.

The S-score network was specifically trained using four pieces of data from each

position in each sequence in the training dataset: the amino acid distribution of a window

of 40 amino acids that included the 20 residues before and after each position, the amino

acid distribution of the first 60 amino acids, the position index, and its identity as a

signal sequence, cleavage, or normal residue. The C-score network was trained using

similar data but used a 22 amino acid window around each cleavage site that included 20

amino acids N-terminal to the cleavage site and 1 amino acid C-terminal to the cleavage

site. Given the disparity between the number of positions in the training set that were

members of a signal sequence relative to those that were not, the negative examples were

randomly sampled such than an equal number of positive and negative examples were

selected for training.

The prediction statistics obtained from the 5 fold cross validation of the trained

S and C networks used to predict the presence of an N-terminal signal sequence are

shown in table 5.4. The Matthews correlation coefficient (MCC) was maximized using

a D value cutoff of 0.32, yielding an MCC of 0.84, which indicates a high degree of cor-

relation between the observed and predicted signal sequences. Similarly, the accuracy,

sensitivity, and specificity are all approximately >0.9. Note that for signalP v4.0, the D

value cutoff used was 0.57.

Table 5.4: Prediction statistics for trained S and C networks.

MCC 0.84
Accuracy 0.92
Sensitivity 0.95
Specificity 0.89

In an effort to increase the likelihood of selecting active, N-terminal Sec-type

signal sequences from the synechococcal library, the maximal global homology of each

candidate protein to secreted proteins contained within the signalP 2.0 training dataset
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was determined in order to identify those proteins with high homology to other proteins

from gram-negative bacteria known to be secreted via the sec pathway. All alignments

were performed using the FASTA algorithm with the BLOSUM50 substitution matrix,

a gap open penalty of 10, and a gap extension penalty of 2 (Pearson and Lipman, 1988).

The tested set of protein sequences included all non-redundant sequences col-

lected from searching NCBI protein database (07/10/2012) using the taxon ID 32049.

Each sequence was processed using both signal 4.0 and the in-house model (Fig. 5.26),

and the maximal sequence homology of each protein to the training set was assessed us-

ing a global-global optimal alignment. The results of these scans are shown in Fig. 5.27

and listed in Supplementary Dataset S3.

Figure 5.26: Signal Peptide Neural Network Scoring. An example network score for a
Synechococcus sp. PCC 7002 alkaline phosphatase.

The 48 leader sequences tested in this study (Supplementary Dataset S4) were
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selected by ranking all the putative secretion leaders based upon their computed network

scores (i.e., the D-scores assigned to each sequence by both SignalP and the in-house

trained network) and their calculated homology to the training set. The calculated values

of each feature were each rescaled and mapped to the range [0,1] using the scaling

function

x′ =
x− xmin

xmax − x′min
(5.4)

where x is there original value, xmin is the minimum observed value, xmax is the

maximum observed value, and x′ is the scaled value, and an average of each scaled score

was calculated. Note that for sequence homology, the negative logarithm of the expecta-

tion value was used. The specific secretion leader sequence for secretion screening was

taken to be the SignalP v4.0 predicted leader sequence.

Screening predicted leader sequences

All 48 predicted secretion leaders were fused in N-terminal of lichenase and

assembled downstream of the pAQ3-Pcro-CumO promoter using an AarI site in the

flanking region of vector primers. The leaders were constructed by hybridizing forward

and reverse oligonucleotides that correspond to the gene leader sequence, with 4 bases

of overhang compatible with the vector AarI sites. A Flag tag was added to C-terminal

of lichenase for detection in Western Blot and DOT-BLOT. One of the leader sequences,

leader 10 didn’t transform in Synechococcus sp. PCC 7002.

1 µg of each construct was mixed with 30 µl of Synechococcus sp. PCC 7002 that

was grown in A+ medium to OD730nm ≈ 1.5. The mix was loaded on a grid agar

plate with A+ medium supplemented with spectinomycin 100 µg/mL. The transformants

were incubated at 35◦C, 10 µE/m2/s and atmospheric CO2 conditions. After 2 days, the

growing bacteria were re-streaked on a similar grid agar plate (A+ spectinomycin 100
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µg/ml). Three colonies were picked and resuspended in 1 ml of A+ spectinomycin 100

µg/ml medium in 2 ml 96 deep well block and incubated in a 900 rpm plate shaker at

100 µE/m2/s, 2% CO2 (v/v), and 35◦C. After 3 days, cells were diluted to 1 ml fresh A+

spectinomycin 100 µg/ml medium to final OD730nm ∼0.2 in 2 ml 96 deep well block

and incubated in similar conditions for 29 hrs when all the cultures reached OD730nm

1. All cultures were then induced with 50 µM cumate and grown for another 18 hours.

At this stage, the cells were harvested and centrifuged at 3000 rpm for 10 mins. The

supernatant was filtered with 0.22 µM PVDF filter and the filtered supernatant was used

for lichenase assay.

The filtered supernatant was incubated at 6◦C for 30 minutes with lichenan as

a substrate for release of glucose. The presence and quantity of the released glucose

was measured with a dinitrosalicylic acid assay (Miller, 1959): 3-5 dinitrosalicylic acid

reduces to 3-amino-5-nitrosalicylic acid in the presence of reducing sugars and has a

linear range of approximately 0.1 to 1.00 mg D-glucose per mL at 100◦C for 10 minutes.

3-amino-5-nitrosalicylic acid has an absorbance wavelength of 540 nm. For the purposes

of this experiment the specific activity of lichenase was taken to be 192 µmol/min/mg

for the native enzyme with substrate lichenan at pH 6.0 at 70◦C (Scheer et al., 2011).

The standard curve for dinitrosalicylic acid assay is shown in Fig. 5.28.

The results are summarized in Fig. 5.4e. Approximately 64% of the predicted

leaders yielded strain activities of Lichenase greater than 0.5 µg/mL/OD730nm, 52%

of the leaders yielded activities greater than 0.75 µg/mL/OD730nm, 37% of the leaders

yielded activities greater than 1 µg/mL/OD730nm, and 23% of the leaders yielded ac-

tivities greater than 1.25 µg/mL/OD730nm. The most effective leader sequences yielded

activities ≈80-fold higher than that of lichenase expressed with no N-terminal fused

signal peptide.
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Figure 5.28: Glucose Standard Curve. A540nm linear fit of 3-5 dinitrosalicylic acid
reduction across a range of glucose concentrations. Using the lichenase specific activity,
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Chapter 6

Summary and Conclusion

Synthetic biology offers the opportunity to interface with the natural function-

ality of microorganisms for therapeutic, industrial, and even computational pursuits.

Central to fully realizing this potential is the rigorous design of engineered gene net-

works, from the mathematical basis for functional dynamics through analysis of the

host-environment response at the point of application. In this thesis I have described the

host selection, design, construction, and characterization of scalable synthetic circuits

that robustly translate to commercially relevant bacteria. In coupling a synthetic oscil-

lator to native regulatory control, we also revealed the functional scalability of synthetic

networks that is unlocked by harnessing long-range bacterial communication. Finally,

we demonstrated the potential to apply a rational, bottom-up construction of a syn-

thetic circuit to enable autotrophic production of protein nutrients at superior efficien-

cies. These works reflect the capacity to integrate our rapid advancement in engineering

biological circuits towards transformational applications.
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