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Electrostatic interactions are shown to exert a significant effect on the buckling instability of a rod.
In particular, the threshold value of the compressional force needed to induce buckling is found to
be independent of rod length for long charged rods. In the case of rods of intermediate length, the
critical buckling force crosses over from the classic inverse-square length dependence to asymptotic
length-independent form with increasing rod length. It is suggested that this effect leads to the
possibility of electromechanical stiffening of nanotubes, which would allow relatively long
segments of them to be used as atomic force probes. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1757018#

When slender objects are subjected to external compres-
sional elastic forces, they are susceptible to bending defor-
mations. The onset of such a deformation is known generi-
cally as the buckling instability.1,2 An elastic rod of a given
material and length can resist compressional forces up to a
so-calledcritical buckling force Fc that increases with the
~effective! bending stiffness of the rod, and decreases with an
inverse-square law with its lengthL (Fc;1/L2). Because of
this length dependence, longer filaments possess much lower
critical buckling forces.1

The limitation on rod length imposed by the buckling
instability is a major structural issue in nano-scale mechanics
@atomic force microscopy~AFM!-tips, nanotubes3 and
nanorods,4 etc.# as well as the micro- and macro-scale. How-
ever, this limitation results from the local nature of elasticity,
and may in principle be overcome if long-ranged interactions
also exert a stiffening influence. Here we study the mechani-
cal response of an elastic charged rod to external compres-
sional forces, and in particular the onset of Euler buckling
instability, taking into account the nonlocal nature of electro-
static self-interactions.5 For a cylindrical charged rod of ra-
dius r and surface number charge densitys, we find that
long-ranged electrostatics leads, in the limit of a long rod, to
a nonvanishing critical buckling force

Fc~L→`!5D
p

«0
e2s2r 2, ~1!

in which «0 is the permittivity of free space,e is the electron
charge, andD5g1c(1/2)13/2>0.113 705 6 is a universal
numerical prefactor.6 In the case of rods with a finite length
L, we find that the above-mentioned result smoothly crosses
over to a local 1/L2 dependence asL decreases. Crossover to

this dependence occurs whenL is small enough that the ac-
cumulated electrostatic self-interaction has not yet over-
whelmed local elasticity. As will be shown, we are also able
to determine the shape of the rod at the onset of buckling,
and show that the buckling rod becomes considerably flatter
in the interior as a result of electrostatic self-repulsion.

The elastic charged rod is considered to be inextensible,
and its energy consists of two contributions. The first part
results from the elastic bending energyEb

5(K/2)*0
Lds H(s)2. This energy is controlled by the intrin-

sic bending modulusK of the elastic rod and contains no
electrostatic contributions. The curvatureH(s) is assumed to
be a function of the arclength parameters. For a homoge-
neous elastic rod of circular cross section that is made of a
material with a Young’s modulusE, we have K
5(p/4)r 4E.2 The second contribution to the energy arises
from electrostatic interactions, which can be written as

Eel5
Y

2 E
0

L

ds ds8
1

ur ~s!2r ~s8!u
,

for a rod whose conformation is represented by a space curve
r (s). The electrostatic coupling constant is defined asY
5e2/(4p«0a2), a being the average separation between
neighboring charges along the line~see Fig. 1!. Considering
the cylindrical geometry of the rod, one can express the lin-
ear number charge density 1/a in terms of the surface num-

a!Electronic mail: jrudnick@physics.ucla.edu
FIG. 1. The elastic charged rod is hinged at two ends and is subject to a
compressional forceF.
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ber charge densitys through a5(2prs)21, which yields
Y5(p/«0)e2s2r 2. Finally, to study the onset of buckling
upon applying a compressive forceF, we add a termEex

5F*0
L dscosu(s) to the total energy, whereu(s) is the angle

that the rod’s local unit tangent vector makes with its unper-
turbed orientation, and is related to the curvature viaH(s)
5du(s)/ds.

One can estimate the critical buckling force for a neutral
rod using a simple force balance argument. Imagine that the
rod is bent into an arc of a circle of radiusR with a corre-
sponding arc angleu, so thatL5Ru. Then we can calculate
the bending energyEb(u)5KL/2R25Ku2/2L, and the end-
to-end distancex(u)52R sin(u/2)5L sin(u/2)/(u/2) as a
function of the bending angleu. The elastic force that resist
bending at the onset of such arc formation can be found as
Fb52]Eb(u)/]x(u)uu50512K/L2, which slightly overesti-
mates the exact critical buckling forceFc05p2K/L2 ~Ref. 2!
due to the artificial assumption of constant curvature. A simi-
lar argument can be used to qualitatively account for Eq.~1!
in the case of a charged rod with negligible intrinsic rigidity.
Imagine that charges of unit magnitude are placed along the
rod in a regular pattern at a distancea from each other. The
electrostatic repulsive force that the first charge experiences
can then be calculated as the sum of the contributions from
all the neighbors, namely,Fel(1)5Y(111/2211/321¯)
5p2Y/6. If the charged rod is to undergo compressional
failure, the external force has to be greater than this Coulomb
repulsion, thus yielding the scaling form for the critical
buckling force as reported in Eq.~1!. To obtain the correct
numerical prefactor, however, one should look for collective
failure corresponding to the lowest threshold critical force.7

We study the spectrum of the total energy operator
numerically,8 and use it to find the critical buckling force and
the shape of a charged rod of arbitrary length at the onset of
compressive failure. In Fig. 2, the critical buckling force is
plotted as a function of the length of the rod, for various
values ofK andY. As shown in the plot, whenL is small, the
critical force is proportional to 1/L2. As L passes through a
crossover length scale,x}AK/Y, the force saturates at an
L-independent value.

The critical buckling forces corresponding to different
values of the parametersK, Y, andL can be collapsed onto a
universal curve as shown in Fig. 3, if normalized with the
critical buckling force of the neutral chainFc0 and plotted as
a function of the dimensionlesscharging parameterQ

5YL2/K. An interpolation formula of the form

Fc

Fc0
511

1

p2AQ
2

1
D

p2 Q, ~2!

is found to satisfactorily represent the universal curve as re-
vealed by the comparison in Fig. 3.

The shape of the charged rod at the onset of buckling is
also calculated, and shown in Fig. 4 for various values of the
charging parameterQ. It appears that charging leads to de-
viations in the shape of the buckling rod from the
sinus-profile2 in that there is enhanced flattening in the inte-
rior. This is to be expected because the interior of the
charged rod is subject to stronger electrostatic self-repulsion
than the end-segments where ‘‘half’’ of the repelling charges
are absent. A similar effect has also been observed in the
bending response of charged elastic rods.9

The familiar image of a long-haired girl touching the van
de Graaff machine suggests that a practical way of imposing
the required charging is by applying a voltage. For a con-
ducting cylinder of lengthL and radiusr that is kept at a
potential V relative to ‘‘infinity,’’ 10 one can calculate the
induced surface charge density, and deduce from it the cor-
responding asymptotic critical buckling force as

Fc~L→`,V!5
Dp«0V2

@ ln~L/r !#2 . ~3!

For a thread of human hair we haver .0.1 mm andKhair

;10211 N m2, which yields forL51 cm a critical force of
Fc.1026 N. Applying a voltage ofV550 kV ~typical of
van de Graaff generators! then results in a critical force of
Fc.1024 N for a 1-m-long piece of hair!

Perhaps the most interesting venue in which these results
find application will be in hardening of atomic force probes.
Carbon nanotubes have been found to be structurally quite

FIG. 2. The critical buckling force for a charged rod as a function of its
length ~log–log plot!. ~a! The solid line corresponds toK51
310219 N m2 and Y51 nN. ~b! The dashed line corresponds toK5100
310219 N m2 and Y51 nN. ~c! The dash-dotted line corresponds toK
51310219 N m2 andY5100 nN.

FIG. 3. The rescaled critical buckling force for a charged rod as a function
of the charging parameterQ5YL2/K. Note that three distinct series of data
~open circles, triangles, and dashed line!, corresponding to the different
curves in Fig. 2, have been collapsed on top of a universal curve. The solid
line represents the interpolation formula of Eq.~2! for comparison.

FIG. 4. The shape of a charged rod at the onset of Euler buckling instability.
The dashed line corresponds toQ50, the solid line corresponds toQ
5103, and the dash-dotted line corresponds toQ5106. The buckling
charged rod flattens in the interior as the charging is increased.
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robust and have exceptionally high Young’s modulus~in the
TPa range!.11 However, the fact that they can grow to mi-
crons in length while having nanometric diameters renders
them quite susceptible to buckling. The buckling of multi-
walled carbon nanotubes has been recently investigated ex-
perimentally by Donget al.12 In their experiment, a 6.9-mm-
long nanotube is subjected to compression, and its critical
buckling force~typically in the nN range for micron-sized
nanotubes! is determined. From this measurement the bend-
ing rigidity of the nanotube is found to beKnanotube58.641
310220 N m2.12 Using Eq.~3!, we can now estimate that a
carbon nanotube 30 nm in diameter can resist forces up to
;1 nN even when it is 1 mm long, provided it is kept at a
voltage of 200 V. This implies a remarkable ‘‘electrome-
chanical stiffness,’’ in contrast with the intrinsic mechanical
resistance to buckling which is diminished by a factor of 106

when the length of the nanotube is increased from a micron
to a millimeter.13,14 Stiffening due to charging may also be
useful in the nanometer-scale electromechanical actuator
based on a multiwalled carbon nanotube that has been re-
cently reported.15

The authors would like to acknowledge helpful discus-
sions with D. Chatenay, L. Dong, and T. B. Liverpool. R.Z.
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