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Controlling the spectral shape of nonlinear Thomson scattering with proper laser
chirping

S.G. Rykovanov,1, ∗ C.G.R. Geddes,1 C.B. Schroeder,1 E. Esarey,1 and W.P. Leemans1

1Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract
Effects of nonlinearity in Thomson scattering of a high intensity laser pulse from electrons are analyzed. Analytic expressions

for laser pulse shaping in amplitude and frequency are obtained which control spectrum broadening for arbitrarily high laser
pulse intensities. These analytic solutions allow prediction of the spectral form and required laser parameters to avoid broad-
ening. The predictions are validated by numerical calculations. This control over the scattered radiation bandwidth allows of
narrow bandwidth sources to be produced using high scattering intensities, which in turn greatly improves scattering yield for
future x- and gamma-ray sources.

∗ S.Rykovanov@gsi.de; Presently at Helmholtz-Institut Jena, Fröbelstieg 3, 07743, Jena, Germany
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I. INTRODUCTION

Scattering of laser light from fast moving electrons (in this paper referred to as Thomson scattering or TS) is a
widely used source of X- and gamma-ray photons [1–6, 8, 11, 13, 19, 23, 24, 26–29, 33, 34, 38]. Applications include
photon sources of percent-level bandwidth for Nuclear Resonance Fluorescence or photofission ([7, 9, 31, 32] and
references therein), for radiography [30, 37] and for medical applications [12, 39]. Thomson sources’ monochromaticity,
wide-range tunability (depending on the energy of the electrons in the beam) and directionality provide important
advantages over Bremsstrahlung sources.

Applications of Thomson sources require high photon fluxes, which is challenging due to the small Thomson cross
section. The total number of electrons that can be accelerated in a bunch is limited for the high quality bunches
required to produce narrow bandwidth sources. For example, Laser Plasma Accelerator are typically near Ne ∼
108 [15], and conventional linacs are typically in the same range for low emittances [14]. Scattering laser performance
and geometry are then principal tools for achieving the required fluxes. The produced photon yield is proportional
to the product of Ne with the scattering laser intensity and pulse length. The need to match the laser diffraction
range to its pulse length (to keep intensity constant over the scattering volume), has meant that increasing yield
by increasing laser pulse length costs quadratically in laser energy. For example, to double yield, pulse length must
double and diffraction range must also double, requiring the spot size to increase by

√
2. This makes it desirable to

scatter at high laser intensity in order to maximize yield at reasonable laser energy cost.
Scattering laser intensity is strongly limited by the fact that the generated spectrum can be broadened and band-like

structure can appear in the fundamental frequency as well as its harmonics [10, 16–18, 20, 21, 35] even for rather low
values of laser pulse amplitude a0 = eAL/mec

2 on the order of a0 > 0.1, where e and me are charge and mass of
the positron respectively, c is the speed of light in vacuum and AL is the laser vector potential amplitude. This is a
detrimental and limiting effect in the cases when a narrow bandwidth gamma or x-ray sources is essential, especially
in the case of Nuclear Resonance Fluorescence for active nuclear interrogation. It puts a limit on the maximum laser
intensity and thus maximum laser pulse amplitude a0 that can be used for obtaining a certain FWHM bandwidth of
the photon source. For example, such moderate laser pulse amplitude as a0 = 0.2 already leads to broadening on the
order of 4%. The limit on intensity is an important driver of the laser energy and hence cost of a Thomson source:
producing one photon per electron costs 1.6 Joules of laser energy at a0 = 0.15, but only 0.4 J at a0 = 0.3.

Limited sets of parameters have been found to minimize the nonlinear effects have been suggested based on shaping
of the laser pulse temporal envelope. Hartemann et al [20]

showed that a flat top longitudinal intensity profile could reduce the effects of nonlinearity, but this approach is
typically limited by the diffraction range of the laser pulse.

In fact, FELs work using undulator strength parameters a0 on the order of unity for the optimal photon yield.
Three-dimensional effects that appear due to tight laser pulse focusing can be also detrimental in TS as discussed
by Hartemann et al [17]. Ideally one would need laser pulses having near flat-top distribution in all dimensions.
Ghebregziabher et al [16] have proposed controlling the shape of the photon spectrum using laser pulse chirping and
demonstrated it using a single set of numerical simulations, and such simulations have been extended by Terzic et
al [36] and the latter results were published while this manuscript was being prepared. There is however need for an
analytical framework and solutions for nonlinear broadening, spectral shape, and compensation of these effects using
laser pulse shaping in amplitude and frequency to obtain narrow bandwidth.

In this manuscript we derive analytical expressions for the spectrum of the nonlinear Thomson scattering for both
the case of the unchirped and chirped pulses and compare them to the results of numerical integration. We demonstrate
that proper laser pulse chirping leads to bandwidth narrowing for arbitrarily large laser pulse amplitudes. This allows
design of sources for narrow bandwidth together with high efficiency, without scanning of numerical parameters. The
paper is organized as follows. In Sec. II a physical explanation of the spectrum broadening and appearance of the
sub-structures in the spectrum is provided. Analytical expressions for the nonlinear Thomson scattering spectrum are
derived and compared with the results of the numerical integration. In Sec. III this analysis is extended to show that
the laser frequency-versus-time dependence, or chirp, can be used to compensate for nonlinear effects and to narrow
the spectrum even for high intensity lasers. Finally, discussions and conclusions are presented in Sec. IV.

II. NONLINEAR BROADENING AND SPECTRAL SHAPE

Spectral broadening and appearance of sub-structures due to the nonlinear effects in Thomson scattering has been
reported in several previous works [10, 16, 18, 20, 21, 35, 36]. Of note is that this process is also alternately referred
to as Compton Scattering in the literature, but as we neglect the recoil on electrons in this analysis we use the
term Thomson Scattering herein. The appearance of substructures was identified to be due to constructive and
destructive interference of radiation emitted from different electron positions within the scattering laser pulse. Here
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we begin by reviewing this physical explanation of the shape of the spectrum, then derive the shape of the spectrum
analytically and compare it to that obtained via numerical integration. In addition to providing analytic derivation
of the spectrum, this will serve as the basis for the derivation of compensation techniques required to produce narrow
bandwidth at high intensity.

As is common practice, we work here in the frame of reference where an electron is initially at rest and the
electromagnetic laser wave impinges it. Results presented can be immediately applied to the case of scattering from
the electron moving with arbitrary speed (e.g. a relativistic electron beam) by using Lorentz transform. Similarly,
we use a circularly polarized scattering laser as it allows us to obtain analytical expressions for the spectrum similar
to solutions derived by Hartemann et al [20]. In terms of number of generated photons there is no difference for the
case of pulses with different polarizations with same energy. The case of linear polarization can be modeled in the
straightforward way using numerical integration [16, 21].

The spectrum produced is considerably broadened in the case of the strong laser pulse, and a band-like structure
appears as shown in Fig. 1 (left) for a0 = 0.4, as compared with the linear case a0 � 1 (in this case a0 = 0.05). This
can be understood qualitatively from the equation describing the frequency of the photon reflected from an electron
which for the case of on-axis scattering and assuming circular laser polarization is given by

ω =
1

1 + a2
0

, (1)

where ω = ω′/ωL with ω′ and ωL being the generated and laser frequencies respectively both in CGS units. The
convention used in this paper is that circular polarized laser pulse has twice the energy of the linearly polarized laser
pulse with same a0, so that in the case of linear polarization the frequency is given by ω = 1

1+a20/2
. Note also that

eq. (1) can also be used for the case of the electron moving with relativistic speed with the only difference that ωL
must be replaced with 4γ2ωL, where γ is the relativistic gamma factor of the electron. The a2

0 term in the denominator
comes from the fact that an electron is pushed by the electromagnetic wave in the direction of its propagation, and
thus moves away from the laser red shifting the reflected light. Movement of the electron through the focus of the
laser and/or pulsing of the laser beam result in a0 being a function of time representing the laser envelope. This in
turn means that during the laser pulse interaction with an electron, different frequencies are generated at different
times and different electron positions within the envelope, broadening the emitted spectrum. This is illustrated by
Fig. 1 (right). One can also see that certain frequencies are generated twice during the interaction. For example, the
frequency ω1 is generated at two different longitudinal positions of the electron z1 and z2 as shown. Depending on the
value of ω1 and the separation between the emission points this leads to either constructive or destructive interference
in the generated spectrum. These interference patterns lead the appearance of bands in the spectrum.
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FIG. 1. Left: An example of the normalized spectra of reflected radiation calculated for low a0 = 0.05 (blue line) and high
a0 = 0.4 (red color) scattering lasers, demonstrating the appearance of band-like structure in the spectrum. Right: Qualitative
illustration of the broadening and band formation mechanism in the nonlinear response of an electron to a strong electromagnetic
wave. A laser impinges the electron from the left side (from z → −∞). As functions of time, the blue line and shaded area
represent the laser pulse envelope, the green line shows the frequency of the reflected wave in accordance with eq. (1), and the
red dashed line shows the longitudinal coordinate of the electron.

The number of oscillations in the spectrum can be approximately established as a ratio of maximum frequency
broadening due to laser intensity derived from eq. (1) and given by ∆ω = ωL − ωL

1+a20
and the bandwidth of the laser

3



pulse. Thus, the number of oscillations is roughly given by

Nosc = ωL
a2

0

1 + a2
0

1

∆ωL
, (2)

where ∆ωL is the FWHM bandwidth of the laser. One can see that the number of interference fringes in the spectrum
grows with increase of both the laser amplitude and laser pulse duration (as laser bandwidth is back proportional to
laser duration).

The exact shape of the spectrum depends on the laser pulse duration and on its envelope shape and intensity,
and can be calculated from the well known motion of a free electron in the plane electromagnetic wave [22, 25, 33].
Here, we neglect the radiation reaction so that the electron dynamics is governed by the standard Lorentz force.
For an electron initially at rest and for an electromagnetic wave impinging the electron from the z → −∞, one can
immediately write two integrals of motion for the electron:

u⊥ = a⊥ (3)

γ − uz = 1. (4)

The latter equation can be also be written in the following form:

uz =
a2
⊥
2
. (5)

Here u⊥ = p⊥
mec

is any perpendicular to z-axis electron momentum component, a⊥ - any perpendicular component of
the vector potential, uz is the electron longitudinal momentum component. It is easy to show that for the observer
looking exactly on-axis, the retarded time that goes into expressions for calculating the spectrum [22, 25] doesn’t
depend on x and y coordinates. Hence, to derive the on-axis spectrum one only needs to know the z coordinate of
the electron, which can be found from the following equation:

dz

dη
= uz (6)

or, equivalently

z(η) =

η∫
−∞

uz(η′)dη′ =
η∫

−∞

a⊥(η′)2

2
dη′. (7)

Here, η = ωL(t− z̃) is the electron proper time and z = ωL
c z̃ with t and z̃ being time and longitudinal coordinate in

CGS units respectively.
Since the trajectory of the electron in plane electromagnetic wave is completely known, the on-axis reflected radiation

produced by the electron moving in such a wave can be found using the well known formula [22, 25]:

d2I

dωdΩ

∣∣∣∣
θ=0

= κ
ω2

4π2

∣∣∣∣∣∣
+∞∫
−∞

n× (n× u⊥(η)) eiω[η+2z(η)]dη

∣∣∣∣∣∣
2

, (8)

where Ω is the solid angle and the whole formula is evaluated for the on-axis case (θ = 0), κ =
e2ω2

L

c is the normalization
coefficient (such that energy spectrum given by eq. 8 is given in CGS units) and u⊥ is the vector of perpendicular
momentum components. Using eqns. (3) and (7) one can rewrite eq. (8) in terms of the laser amplitude:

d2I

dωdΩ

∣∣∣∣
θ=0

= κ
ω2

4π2

∣∣∣∣∣∣
+∞∫
−∞

n× (n× a⊥(η)) e
iω

[
η+

η∫
−∞

a2⊥(η′)dη′
]
dη

∣∣∣∣∣∣
2

. (9)

For a circularly polarized laser pulse with frequency ω0 the laser amplitude function can then be expressed as:

a⊥(η) =
1

2
a(η) · ε · eiφ(η) + c.c., (10)

where a(η) is the envelope function of the pulse and ε = ex+iey is introduced to take into account circular polarization

and φ(η) = ω0(η)η. We will call ω0 = φ(η)/η - frequency of the laser pulse and ωi(η) = dφ
dη - instantaneous frequency
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of the pulse. In the case of a laser pulse with constant frequency ω0 = 1 due to our choice of units, but we keep it in
these equations to facilitate consideration of cases with chirped laser pulses.

Expressions for the on-axis spectrum can be obtained in the fully nonlinear case for a laser having an envelope in
time described by a half-sine profile:

a(η) = a0 · sin
[
πη

τL

]
, 0 < η < τL, (11)

with τL being the duration of the laser pulse. For such a pulse, the z coordinate of the electron can be analytically
found from eq. (7)

z(η) =
a2

0

4

(
η − τL

2π
sin

2πη

τL

)
. (12)

The on-axis spectrum of reflected radiation can then be rewritten in the following form

d2I

dωdΩ

∣∣∣∣
θ=0

= κω2 a2
0

2ω2
0

N2
0

∣∣∣∣∣∣
2π∫
0

sin

(
ξ

2

)
sin (N0ξ) e

iω̃N0ξ−iχ sin ξdξ

∣∣∣∣∣∣
2

, (13)

where

N0 =
ω0τL
2π

, χ =
ωa2

0τL
4π

, ω̃ =
ω

ω0

(
1 +

a2
0

2

)
. (14)

Numerical integration of these equations can be used to show the dependence of the spectrum on a0, as illustrated
by a color-coded image of the on-axis spectrum in Fig. 2(left). The spectra are obtained from numerical integration
of eq. (13) for different a0 (vertical axis) and for laser pulse with duration τL = 600. One can see that for low values
of a0 the spectrum is narrow and is limited by the bandwidth of the incoming electromagnetic wave, whereas for large
values of a0 the spectrum is broad and band sub-structure is visible. The main peak of the spectrum is red-shifted
and its position is given by eq. (1) (shown with dashed line on the Fig. 2 (left)).

While numerical integration of the nonlinear spectrum has been conducted previously, analytic solutions are im-
portant to allow understanding of the mechanisms of broadening and to allow design of techniques to compensate for
broadening. Opening the sine functions using the Euler’s formula one can analytically evaluate the integral to obtain
directly the nonlinear spectrum. Doing so yields:

d2I

dωdΩ

∣∣∣∣
θ=0

= κ

(
ω

ω0

)2
a2

0

8
N2

0 · |Jn(χ)− Jn−1(χ)|2 , (15)

where Jn is the Bessel function and

n = N0(ω̃ − 1) +
1

2
. (16)

Here we have neglected two small terms that are given by Bessel functions with orders N0(ω̃+ 1)± 1
2 because N0 � 1

typically for τL � 2π/ω0 and Bessel function with such orders is very small in the frequency range of interest. It is
important to note that the solution is valid only for a subset of all ω where the order n is integer. For other values
of ω, numerical integration of eq. (13) is required. Fig. 2(right) displays the spectrum for a0 = 1 and laser pulse
with duration τL = 600 . Black dots show the analytical solution from eq. (15) for the frequencies ω that make the
order of the Bessel function an integer. One can see that analytical solution fits the numerical integration (blue line)
very well. Although the analytical solution provides only a discrete set of points, it well outlines the shape of the
spectrum and gives its peak value and width which are the most important parameters for many applications. This is
especially true because in many Thomson scattering photon source applications the fine-scale oscillations observable
for a single electron will be washed out by the nonzero energy spread of the electron beam. In the example shown here,
the oscillations have frequency spacing of '2%ω0 which will be washed out by electron energy spread of '1%. The
analytic expressions then allow us to analytically evaluate broadening, and give us a tool to calculate compensating
terms which can be used to control and narrow the spectrum.

5



0.5 0.6 0.7 0.8 0.9 1.0 1.1
ω

0.2

0.4

0.6

0.8

1.0

a
0

0.5 0.6 0.7 0.8 0.9 1.0

ω

0

10

20

30

40

d
I ·d
ω

FIG. 2. Left: On-axis radiation spectra plotted as a function of laser pulse amplitude a0 (vertical axis). The spectra are in
arbitrary units, from numerical integrationof eq. (13). Laser pulse duration is τL = 600. The dashed black line represents the
red-shift of the peak of the spectrum according to eq. (1). Right: On-axis radiation spectrum for a0 = 1 from the analytical
expression of eq. (15) (black circles) for such frequencies as make the order of the Bessel function given by eq. (16) an integer,
overplotted with the full spectrum from numerical integration (blue line).

III. CONTROLLING THE SHAPE OF THE SPECTRUM BY LASER PULSE CHIRPING

Nonlinear broadening of the spectrum is a result of red-shifting of the Thomson scattered frequency during the
interaction due to the longitudinal motion of the electron, as given by eq. (1) with a0 being a function of time
representing the laser pulse envelope. This indicates that by compensating the laser frequency by chirping the laser
pulse, one can diminish broadening of the generated spectrum. This was proposed, and simulation based on a single
set of numerical parameters was provided in [16], and further examples were provided by [36]. Here we extend the
analytical expressions obtained above to derive analytical expressions for the radiation spectrum in the case of proper
laser pulse chirping. Using appropriate laser chirp, spectrum narrowing can be obtained for arbitrary values of laser
pulse amplitude a0. The analytical results are compared with numerical integration.

We consider again the circularly polarized laser pulse with the envelope given by eq. (11). If the frequency of
the laser pulse is constant the generated frequency is given by eq. (1), and the resulting spectra are those of Fig. 2.
However, if the instantaneous frequency of the laser pulse is given by

ωi(η) =
[
1 + a(η)2

]
, (17)

one can expect that the generated frequency will be constant and equal to one independent of the value of a0. This
can be derived from the following considerations. Substituting eq. (10) into eq. (9) and looking at the oscillatory term
of the integral eiΦ(η), one can write for the Φ(η)

Φ(η) = −ω0(η)η + ωη + ω

∫ η

−∞
a2
⊥(η′)dη′. (18)

We are looking for such frequency function ω0(η) that will compensate the red-shifting and force the maximum of the
integral to be at ω = 1. In order to do that Φ(η) for ω = 1 must be constant, i.e. C, so that the integral has the
maximum value. Thus,

− ω0(η)η + η +

∫ η

−∞
a2
⊥(η′)dη′ = C (19)

Writing ω0(η) = 1 + f(η), one can find that f(η)η =
∫ η
−∞ a2

⊥(η′)dη′ − C. For the phase of the properly chirped laser
pulse one can thus write

φ(η) = η +

∫ η

−∞
a2
⊥(η′)dη′ − C, (20)

and for the instantaneous laser pulse frequency one obtains the following expression

ωi(η) =
dφ(η)

dη
= 1 + a2

⊥(η). (21)
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For the laser pulse with envelope given by eq. (11) and instantaneous frequency given by eq. (21) one can get analytical
solution. Note, that the longitudinal coordinate of the electron is still given by eq. (12) as the laser pulse is chosen
to be circular. The result of the spectrum calculation using eq. (8) yields the same formula as in eq. (15), but with n
and χ given by

n = (ω − 1)N0 ·
(

1 +
a2

0

2

)
+

1

2
(22)

χ =
1− ω

2
N0. (23)

The analytical solutions for the nonlinear spectral bandwidth using a laser pulse with the envelope given by eq. (11)
and instantaneous frequency changing under the law of eq. (17) are shown in Fig. 3 (left), where normalized spectra
are presented for different values of a0. Markers of different colors show the analytical solutions using eqns. (15), (22)
and (23), while solid lines of corresponding colors show the numerical integration results. In the case of a0 = 0.1
(blue color) the spectrum width is approximately given by the unchirped (i.e. with constant frequency, shown on
the figure with black dash-dot line) laser pulse width, which is back proportional to laser pulse duration τL. In the
case of a0 = 10 (black color) the spectrum width is approximately a2

0 = 100 times narrower. Analytical solutions
fit with numerical integration well and predict spectrum narrowing for properly chirped laser pulses with arbitrarily
high a0. The generated frequency stays centered at ω = 1 and the broadening disappears. One can see that the
spectrum is actually getting narrower with the increase of a0. This is due to the choice of the laser pulse function.
Indeed, changing (increasing compared to ω = 1) the frequency while keeping the duration τL constant leads to more
sign changes of the vector potential of the laser pulse or, in other words, to more periods. This can be seen from
Fig. 4 (left) where normalized laser pulse vector potential is plotted for the case when the laser pulse is unchirped
(blue color) and for the case of chirped laser pulse with a0 = 0.5 (green color). In this figure the duration of the laser
pulse was set to τL = 60 for illustrative reasons. Because at each period an electron is forced (by appropriate chirp)
to radiate the same frequency, it effectively radiates pulses with the same frequency ω = 1 but with longer duration
for higher a0 leading to narrower spectrum. Numerical integration of the generated spectra using eq. (8) is presented
in Fig. 3 (right). The color-coded image is the normalized on-axis spectrum (in logarithmic scale) as a function of
both the frequency (longitudinal axis) and normalized laser amplitude a0 (vertical axis) similar to Fig. 2 (left).

It is worth noting that the spectrum of the incident chirped pulse extends approximately up to the frequency
ωmax =

(
1 + a2

0

)
, quadratically with a0. Figure 4 (right) shows the normalized spectra of laser pulses properly

chirped according to eq. (17) (red color corresponds to a0 = 0.2 and green color corresponds to a0 = 0.5) compared
to the case of the unchirped laser pulse. For low values of a0 < 1 the introduced chirp can be on the order of 10-20
percent and is achievable with current technology. This already allows production of narrow bandwidth sources using
significantly higher laser intensity than is conventionally possible, which in turn reduces the required laser energy.
As noted above, even operation at a0=0.3 can save a factor of four in scattering laser energy. While in principle the
technique can be used up to even higher intensities, practical implementation is limited by the obtainable bandwidth
in the scattering laser. For example, at a0 = 10 the laser pulse contains the range of wavelengths from x-rays to the
laser wavelength, which is beyond currently foreseeable laser technology.
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FIG. 3. Left: On-axis radiation spectra for the laser pulse that is properly chirped according to eq. (17), and with other
parameters as in Fig. 2. The results are plotted in the logarithmic scale. Right: On-axis spectra for different values of a0
obtained from numerical integration (solid lines) and analytical expression (markers of corresponding color) using eqns. (15),
(22) and (23).

7



0 2 4 6 8 10
Time, periods

1

0

1

N
o
rm

a
liz

e
d
 v

e
ct

o
r 

p
o
te

n
ti

a
l

no chirp

a0 =0.5, chirp

0.9 1.0 1.1 1.2 1.3
ω

0.0

0.5

1.0

N
o
rm

a
liz

e
d
 s

p
e
ct

ru
m

no chirp

a0 =0.2, chirp

a0 =0.5, chirp

FIG. 4. Left: Normalized vector potential as a function of time in periods for the case of the unchirped laser pulse (blue color)
and chirped laser pulse with a0 = 0.5 for laser pulse with duration τL = 60. Right: Laser pulse spectra (normalized to the peak
value of the unchirped pulse spectrum) for the case of unchirped laser pulse (blue color) and chirped laser pulses with a0 = 0.2
(red color) and a0 = 0.5 (green color) for laser pulse with duration τL = 600.

IV. CONCLUSIONS

In this paper we have presented analytical solutions for the spectrum of radiation generated by a free electron
interacting with a circularly polarized laser pulse of nonlinear intensity. The results are derived for an electron
initially at rest for computational clarity. They apply also, using a straightforward Lorentz transform into the beam
frame, to Thomson scattering sources of x-rays and gamma rays which scatter laser pulses from relativistic electron
beams. The analytical results agree very well with results of numerical integration and provide useful insights and
scalings for nonlinear Thomson scattering. We have shown analytically and numerically that by proper chirping of
the laser pulse the broadening of the radiation spectrum can be avoided for arbitrarily laser laser pulse amplitude a0.
The results predict successfully laser amplitude and pulse shape parameters to compensate nonlinear broadening and
produce narrow bandwidth sources at high intensity. This result is important for generation of high flux Thomson
scattering sources of x-rays and gamma rays, as it allows generation of a given photon flux using greatly reduced
laser energy. Moreover, the results presented in this paper can be used for optimization of experiments as well as
benchmarking of the numerical tools.
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[21] T. Heinzl, D. Seipt, and B. Kämpfer. Beam-shape effects in nonlinear Compton and Thomson scattering. Physical Review
A, 81(2):022125, February 2010.

[22] J.D. Jackson. Classical Electrodynamics. John Wiley & Sons, Inc., 1975.
[23] K. Kawase and M. Kando. Sub-MeV tunably polarized X-ray production with laser Thomson backscattering. Review of

Scientific Instruments, 79(5):053302, May 2008.
[24] O.F. Kulikov, Y.Y. Telnov, E.I. Filippov, and M.N. Yakimenko. Compton effect on moving electrons. Physics Letters,

13(4):344–346, December 1964.
[25] L.D. Landau and E.M. Lifshitz. The Classical Theory of Fields, Fourth Edition: Volume 2 (Course of Theoretical Physics

Series). Butterworth-Heinemann, 4th edition, 1980.
[26] V.N Litvinenko and J.M.J Madey. Intense Compton γ-ray source from the Duke storage ring FEL. Nuclear Instruments

and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 375(1-
3):580–583, June 1996.

[27] Vladimir G. Nedorezov, Andrei A. Turinge, and Yurii M. Shatunov. Photonuclear experiments with Compton-backscattered
gamma beams. Physics-Uspekhi, 47(4):341–358, April 2004.

[28] H. Ohgaki, T. Noguchi, and S. Sugiyama. Linearly polarized photons from Compton backscattering of laser light for
nuclear resonance fluorescence experiments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 353:384–388, 1994.

[29] I.V. Pogorelsky, I. Ben-Zvi, X.J. Wang, and T. Hirose. Femtosecond laser synchrotron sources based on Compton scat-
tering in plasma channels. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 455(1):176–180, November 2000.

[30] B. J. Quiter, S. G. Prussin, B. Pohl, J. Hall, J. Trebes, G. Stone, and M.-A. Descalle. A method for high-resolution x-ray
imaging of intermodal cargo containers for fissionable materials. Journal of Applied Physics, 103(6):064910, 2008.

[31] B.J. Quiter, B.A. Ludewigt, V.V. Mozin, C. Wilson, and S. Korbly. Transmission nuclear resonance fluorescence measure-
ments of 238U in thick targets. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with
Materials and Atoms, 269(10):1130–1139, May 2011.

9



[32] S. G. Rykovanov, C. G. R. Geddes, J. L. Vay, C. B. Schroeder, E. Esarey, and W. P. Leemans. Quasi-monoenergetic
femtosecond photon sources from Thomson Scattering using laser plasma accelerators and plasma channels. Journal of
Physics B: Atomic, Molecular and Optical Physics, 47, 234013, June 2014.

[33] E.S. Sarachik and G.T. Schappert. Classical Theory of the Scattering of Intense Laser Radiation by Free Electrons. Physical
Review D, 1(10), 1970.

[34] H. Schwoerer, B. Liesfeld, H.-P. Schlenvoigt, K.-U. Amthor, and R. Sauerbrey. Thomson-Backscattered X Rays From
Laser-Accelerated Electrons. Physical Review Letters, 96(1):014802, January 2006.
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