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OBSERVATION OF A POMEAU-MANNEVILLE INTERMITTENT ROUTE TO CHAOS IN

- A NONLINEAR OSCILLATOR

Carson Jeffries and Jose Perez
Materials and Molecular Research Division, Lawrence Berkeley
Laboratory, and Department of Physics, University of

California, Berkeley, California 94720, U.S.A.

(Received : )

"~ For a driven nonlinear semiconductor oscillator which

~ shows a period-doubling pitchfork bifurcation route to chaos,

we report an additiona] route to chaos: the Pomeau-Manneville

intermittency route, characterized by a periodic (laminar)

bhase.interrupted by bursts of aperiodic behavior. This
occurs near a tangent bifurcation as the system driving
parameter is reduced by é from the threshold value for a
periodic window. Data are presénted for the dependence

of the avekagé}]aminar length (¢} on ¢, and also on additive
random'nqise vo]tage{v The résu]ts are in reasonable
agfeement with'thenintermittency theory of Hifsch, Huberman
andFScalapino, The distribution P(2) is also reportéd.

PACS numbers: 05.40.+j, 05.20.Dd, 47.25.-c
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For nonlinear dissipative syétems there are many routes to chaos,
1;e., patterns of behavior as the system is drivenvfrom stable smooth
laminar motion into seemingly erratic . or chaotic motion. In a recent
review,lEckmanﬁ.discuésed three routes, or "scenarios", that have recog-
nizable characterisfics,kare reésonably well defined, aﬁd méy, in fact,
be cdhsidered'universa1; no doubt 6ther universal routes will also be
discovered, both théoretica]]y and experimentally. In this paper we’
report detéf]ed measurementsvonbé fea] phyéica] system that appears to
follow one of thé routes, the intermittency route origina]]y prbéosed by
Pomeau ahdfManheViT]e (P-M).2 'Fu]inthéorética] treatments have been
gfven by Hirsch,rHubermén'ana Séa]apino,3 Eckﬁann,’Tthas and“WiftWer,“
| Hirsch, Nauenberg and Scalapino,® an'd.Hu.and-Rudni,ck.6 The P-M_intEr-
mittency ariseé when a tangent bifurcation occurs and is usqa]]y modelled
by;a dne-dimens%onal discrete dynamical equgtion.of the form X4l = f(xn),
where,‘e,g., f(X) is assumed to have avsing1g quadrat1c-maXimum, as in
" the logfsticvequation |

Xpyq = Axh(l - Xp)s 0< 2 <4 : (1)

n+]
As the driving parameter A.is increased from zero to Ae = 3.5699..., a
cascade of period doubling pitchfork bifurcations!»7~9 occurs with onset
of aperiodicity, i.e., chaos,yat‘the accumulation point Ac":

In -the chadtic regime kc < XA < 4, tangent bifufcations givé rfse to ’
periodic windows of finite width with definite sequence and pattern -
the‘U-séquence of Metropolis, Stein and Stein.10

For example, Fig. 1 is a plot.of the fifth iterate f3(x) vs x for
the logistic function f(x) = A(x - x2) computed for Ag = 3.73775, where

f3(x) just.bécomesrtangent to the 45 degree line, giving rise to five
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fixed points, x% = fs(xi,ls),and a period 5 window. Define e = Ag- 2.
For a small positive value of e, the neighborhood of a (attracting)
fixed point, Fig. 2, presents a small gap through which a trajectory must
traverse, as shown by a large number of successive iterates from poiht
A to point B, during which the system appears periodic, i.e., is in a
"Taminar" phase. At.point B the iterates move chaotically about the map,
corresponding to an intermittenf "burst" phase, then reenter at some
point A near some attracting fixed point, etc. To summarize, as & is
increased bj reducing the driving parameter one expects to experimenta]ly
observe‘a P-M transition to chaos characterized by periodic wave trains
increasingly 1n£ermittent1y interrunted by aperiodic bursts( The average
periodic length (2) decreases with e, with séaling behaviorZs3

(2) = 05 (@)

]']/Z-for the nonlinear

for Eq. (1), or more generally, as (&) = 1/e
function f(x) = 1 - élxlz assumed by Feigenbaum® [Z = 2»for Eq. (1)].
For ¢ = 0, fheﬁP-M scenario can be induced by additive random noise,
represented by adding a term ge(t) to the right side of Eq. (1) where
£(t) is a white noise source and g is the standard deviétion. The pre-

dicted3 scaling behavior is
-2(2-1)/(z41)

() =g
for Z =2, and more generally, (o) =« g The probability
distribution P(2) 1skalso predicted, with and without additive noise.:
Although onset of chaos via some kind of intermittenéy has been quali-
tatively observed in many nonlinear systems, detailed measurements
demonstrating Eqs; (2) and (3) have not beeh yet reported to our knowledge.

However, Pomeau et al.ll interpret an intermittency in a chemical oscil- .
et al, P

lator as belonging to this class.
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We report here the observation of a P-M intermittency route to chaos:
in reasonable agreement with Egs. (2) and (3) for a driven oscillator
whose non11near1ty is a p-n Junct1on diode, 51m11ar to that previously

reported 12 " We have .shown that th1s system. fo]]ows the universal period

(;_

doubling bifurcation route to chaos.7“9 Good agreement is found between
theory‘and measurements for five universal numbers:‘ eonvergenoe rate
§;12 pitchfork ratioio;13 power spectra]vratio;IZSW1de band noise scaling
'tabtor 8;13 and noise sensitivity factor «.1* Almost all observed
‘mindow periods and patterns agree with the U sequence.l5 The bifurcation
"diagramvis quiteiSfmilar to that of Eq. (1);12 These data characterize
- the system fairly well: to'a good approximation it is descr1bab]e by
Eq. (1). However, direct observat1on of the return map and the Po1ncare
section, wh1ch are more sens1t1ve probes of the system dynam1cs, revea]s
S a Henon 11ke two- d1mens1ona1 character,16 expected for the second order
d1fferent1a] equat1on for the LRC oscillator; this approaches the one-
~dimensional map as R > . To this approx1mat1on we cons1der the system
to,be a good candidate‘for'observation'of.the'P-M intermittency route,
tn addition to the period doubling route.

The system is a series connected inductance L, resistance R, ano‘
junction diode; driven by an oscillator Vésin(znt/T)? where the period
= (80 kHz)™1 = 12.5 usec, selected to be near the natural resonance
period of the-LRC'Circuit. The nonlinearity is provided by the diode
.which has nonlinear conductance -and capaCitance, both in forward and o 1
in reverse'Sias.17’ To take measurements on the system, werdo real time . |
ana1ysisvof the series current I(t) and the vo1tage‘V¢(t) across thev

diode. To a first approximation we assume that the system dynamical

4=



variable is the diode voltage Vc(t) and make the correspondences:

vV (t) « xn;,Vc(t+mT) @ X

c ; and [V01 “ X, to relate measured duantities

n-+m
with Xq and x of Eq. (1). ATternatively, we can also assume the series
current I(t) is the dynamical variabie.with the correspondences: I(t) +> xn;
I(t+mT) « Xpems and [V | ¢ A Both assumpﬁions are reasonable because

Vc and I each show essentially the same bifurcation diagram, both very

- similar to that compUted from Eq. (1). By using a sample -and hold circuit
and oscilloscope infensity strobing, we plot directly the first iterate,

or return map, I(t+T) vs I(t), Fig; 3, which corresponds to the map

Xop1 VS X, Although it is not the simple parabola of Eq. (1), to first

n
appfoximatfon it has a single quadratic maximum; the small splitting is
a consequence of higher dimensional character. |

 The period-three window has a measurable hysteresisl? (a consequence -
of higher diménsiona] character),vand}the P-M 1ntermittehcy is not
bbServab]e at this window. However, the first period-five window has no
observable hysteresis, and displays an intermittencyvas A 1s decreased
from the periodic to the chaotic state. Figure 4(b) shows thebobserved
fifth iterate for this window at » chosen very s1igh£1y less than
Ag = 3.737 at the start of intermittency, so that the five stable fixed
points of Fig. 1 are all visited and can be photographed. The points Tie
on the straight Tine I(t+5T) = I(t). Figure 4(a) shows thé observed fifth
iterate for 1 less than Ags well into the chaotic region,'where the |
comp]ete return map is sampled more uniformly. The points of tangency
to the diagonal correspond to the fixed points of Fig. 4(b) and Fig. 1.
The curve of Fig. 4(a) has a reasonable corréspbndence-with that of

Fig. 1, except for a sp]itting_dué to the higher diménsiona1 character.
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Since'this spiitting does not intersect the'dtagona1'1ine- and the systen

has exper1menta11y we]] defined fixed points and d1sp1ays tangent bifur-

cat1on we cons1der the per1od five window a suitable system for observa- .

tion of a P- M 1nterm1ttency -

| To take quant1tat1ve data to compare to Eqs (2) and (3) we do real

t1me ana1ys1s of the d1ode vo]taae v ( ), shown in F1g 5 for g = O. The

d1ode forward conductance c]amps the 0051t1ve vo]tage a110w1ng observat1on

of vo]tages pulses V correspond1ng to four of the five f1xed po1nts the

_pattern of_F1gg.5 1s:RLRR(R), as expected-.10 The largest pulse of Vc(t)

“is'sdmpled.by a;windowvcomparétor;-whﬁchuoutoutS»an "event”lpulsehP,

vaig. 5, if the pulse height is within‘i% of the periodic (ornlamtnar) pulse

heightf‘ The 1% window nas selected to facilitateAcompariSOnvwith;the 1% :

gete width used in the theory-of Hirsch, Huberman and Scaiapino{3 ‘This.

lis further i]]dstrated in Fig. 6 which shows Vc(t) for e > 0, i.e. for

,fnterm}ttency. The dots immediate]y.bejow the peaks are the eyent pulses

recorded simu1taneous1y with Vc(t)hon a dual beam oscilloscope;zthey are

ua]so represented schematica]]y by the pulse sequence P(t). Additional

logic circuitry detects the beginning of a periodic train‘and outputs'a

puise Bg and'itbdetects the end of the train'and outpots a pulse E.

TheSe pulses, P(t), B(t), and E(t), are drawn schemat1ca11y on Fig. 6,

ond are the signals used to quant1tat1ve1y character1ze the intermittency.
Figure 7 is a representati?e oroup of intermittency'signé]s Vc(t),

with event marker pulseS‘P, shown as dots just below the periodic mexima._ ¥

Hér‘e'e'"= 0 and'the Tnterﬁittency is induced by a random noise voltage V,

added to the dr1v1ng voltage V Figure 7(a) shows periodic trains of

1engths 2,1, 15 2, 2, 4, and 2 (in units of 5T = 62.5 ysec).



Figufes 7(b) and (c) show longer lengths for decreasing values of V-
We note the occurrence of some structure occasionally observed in the
bursts; e.g., at region S in Fig. 7(a) there are 14 oscii]ations of
approximately constant amplitude at périod 2T; bursts of period T and 4T
were also occasionally observed, with random amplitudes.

For a fast measurement of (2) we read with a two-channel frequency
counter the ratio of [f(P) = frequency of pulses P] to [f(B) = frequency

of pulses B]. Then, in units of 5T sec, the average periodic length is

frequency of periodic events _ f(P) (4)

‘2 = frequency of periodic trains - T(B)

The average length is measured as a function of e, defined experimentally by

e =g -, = (Vg - vo)(ﬁ—cﬂ | (5)
where V05 is the measured driving oscillator voltage for fhe period five
window threshbld; and Vo'is the.vo1tage just below threshold; a Fluke
8520A six-digitrrecdrding voltmeter was used. The scaling factor
(AA/AVO) is used to eétab1ish a measured 1oca1'corresbondence between V
and » in region of interest: the measurement AXx = A10 - Ag is computed
from Eq. (1) where Ajg s the threshold for bifurcation to period 10,
AV0 is the measured voltage increment between the same thresholds. For
our system.(AA/AVo) x 0.103 volt~l. We varied ¢ by varying Vo by a
three-stage he]ipof attenuator driven by a digitél]y controlled stepper
motor, with a resolution of 107%.in e. To:record (2>‘ste thstmethod
‘was used: The P- pulses were inputed into a multichannel scaler, which

was advanced by one channel for every 2048 B- pulses; the stepper motor

then advanced to e + Ac, etc. The result is a we]]-ayekaged plot of



><2> vs €. A very similar procedure was used to meaSUFe (2) Vs Vn,vWHere
_the noise voltage Vn was s]bw]y'varied,_vo being held fixed at é = 0.
Figuﬁe 8 is a representatfvedplot of Togy <2>vs-1d§10 €. After an
~initial steep S]ope,‘the data‘are fit by (z} c']/es, where g8 = 0.43 is
the‘;iope of the drawn line. From ofhek sfmi]ar runs an average value
‘ffo?xthé;slope is found to be B = 0.45 tl0.05_ The initial steép slope is
‘hot;be11eved”tdfbe an eXpefimenfal artifactv F1gure 9 is a representat1ve
plot of ]og]O (1) vs log]0 g,‘w1th e=0, where g is proportional to the
add1t1ve noise vo]tage V. The datd’ are fit by <) =.1/gY, where y = 0.65
jsﬁthe slope of the drawn dashed 1inef the. fit is fair]y good eXceptwdf

1arge'Va1ues of g. Other runs give.an average value ¥ = 0.65 + 0.05.

A plot of the probab1]1ty d1str1but1on P(2) was .directly measuréd gd
" this way: pulse B trigged a linear ramp Vg = K(t - tB) and pulse E

B sampled the rémp vo]taée VR = K(tE - tB); and gene?ated'a pulse with
hégnifdde just propbrtiona1 to the']éngth’z = tE - tB; pulse E a]éo reset
Vp to zero, ready'to'be trigged by the next vaulse, etc. This seguence
of 'pu1ses is inputed into a pulse height analyzer which displays directly
P(2) vs 2.  Figure 10 shows data for fhe undbrmafized probability P(2)

vs & (in units of 5T = 62.5 us) for e = 2.5 x 10°%. After an initial
steep decay there is a slight hump at & = 9 and thén a fast fall-off ‘to

: ve?y smad] values of P(Q) for 1drge-z. Although ¢ as large as 5000
océufred, the probabiiity is too small to appear on Fig. 10. This

figure is to be compared to the theoretical expectation (Fig. 7 of

Ref. 3) which shows P(z) peaked at small and large va]ues of 2, with a

dip at g = ]O T 4 however, if a sma]l random noise voltage is added



*

then the computed P(2) has a hump at 2 = 10 and the peak at large 2 is
washed out. This is qualitatively similar to our data of Fig. 10, which

therefore may be explained by the presence of noise or other

spurious signals in the nonlinear circuit. Data taken at ¢ = 8 x 10-5

show P(2) vs % extending to & = 5000, but with modulation at 60 Hz:

at such a small value of ¢, the intermittency is extremely sensitive to
spurious amplitude modulation of the driving voltage V0 at the power
line frequency, which could not be e]imihated.

The probability distribution was also measured for ¢ = 0 and an
additive random noise voltage of standard deviation g = 107% with results

shown in Fig. 11; there is a very slight hump at 2 = 10. For g = 3.5 x

107", P(2) falls off more rapidly with no hump.

“To summarize, we note the reasonable correspondence between the data
(2) o« e-(0045 + 0-05), (6)
and

(g) « g~(0-65 £ 0.05), - 7)

and the predictions of Egqs. (2) and (3). Furthermore, the observed dis-
tributionsP(2) vs e and P(2) vs g are qualitatively similar to theoretical
expectation. We have no ready explanation of the small consistent devi-

ation from 6-0.5

of the observed scaling of (&) with e¢.  The initial
steep decay of (&) with ¢ (Fig. 8) and the absence of a second peak at

large 2 in the probability distribution P(2) (Fig. 10) could be due to a

- very small spurious 60 Hz component of the signal V_(t); other possible

causes are an (unmeasurably) small hysteresis in the period-five window,

and higher dimensional effects. These intermittency measurements are
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the most detai]ed to be reported and, we believe, establish the existence
‘of a Pomeau-Manneville intermittency route to chaos in our driven non-
1inear oscillator. |
| We thank J. E. Hirséh, B. A. Huberman, D. J. Scalapino, Roger Koch,
and M. Nauenberg for he]pfu] discuésiOns.b This work was supported by
the'Dirécﬁor,'Office of Energy Researéh, Office of Basic Energy Sciences,
Materials Sciences Division of the U.S. Department of Energy under

" Contract Number DE-ACO3-76SF00098.
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FIGURE CAPTIONS

- Fig. 1.

"Fig. 2.

 Fig. 3.

Fig. 4.

The fifth iterate fé(x) vs x for the logistic function f(x)

= A(x - x2), c\dmputedvat’)\5 = 3.737 where five extrema of the

iterate just become téngent to the 45° line. This tangent ..

bifurcation gives rise to five stable fixed points X; and a

périodeS window.

An enlarged view of Fig. 1 in the neighborhobd of avfixed
pbint X3 for A slightly less than Ags showing a gap. The
staircase 1iné between thé iteratg:and-the 45° 1ine indicates
succéssive iteratibns of Eq. (1). A frajectory ehtering at A
will apoear to have approxihate]y 12 period-5 cycies of a

laminar phase before it exits at B, where it disp]ays'an

-aperiodic.bufst.'

Observed current I(t + T) vs I(t) for the nonlinear oscillator

at A slightly Tess than 1, = 3.828 (threshold for period-3
window), where T is the period of the driving oscillator. This
corresponds to 5 plot of the first iterate f(x) vs x and shows,
to a first approximation, a single maximum. The faint splitting

is due to some higher dimensional character.

Oscilloscope trace of the current I(t + 5T) vs I(t) corresponding
to the fifth iterate f3(x) vs x, for: (a) A less than Ag, in
the chaotic régime; (b) A very slightly less than Ag- The five

points Xs lie on the straight drawn dotted line, defined by

i

I(t+5T) = 1(t), and correspond to the five fixed points x; of

Fig. 1. .
‘ -12-



Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Dual beam oscilloscope trace of diode voltage Vc(t) (curve A)

for the period-5 window, and event pulses (curve P) that detect

‘the largest peak of Vc(t)‘ .The P-pulses are separated by a

time 5T = 62.5 usec.

Dual beam oscilloscope trace (curve A) of Vc(t) for e = 1073,

showing intermittency: periodic regions (and event dots P
jmmediately below) -and aperiodic bursts. The schematically
drawn pulse trains P(t), B(t), and E(t) show, respectively, the
pulses for laminar events, the beginning of a laminar region,

and the end of a laminar region.

A representative group of dual beam oscilloscope traces of
Vc(t) as in Fig. 6 showing intermittency in the period-5 window
(¢ = 0), induced by a random noise voltage V, added to the

driving voltage. Traces (a), (b), (c) correspond, respectively,

to reduced values of Vs and Tonger laminar lengths.

Points: plot of 10910‘(2> vs_]og]0 (g) for obsefved intermittency
near period-5 window. Dashed line through data has slope

-0.43.

Points: plot of 10910 (27 vs 10910 (noise voltage) for observed
intermittency in the period-5 window with € = 0. Dashed line

through. data has slope -0.65.
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Fig.

Fig.

10.

11.

Relative probabi]ity distribution P(2) vs 1aminar:1ength 2

(in units of 5T = 62.5 usec) for intermittency near the

" period-5 window; e = 2.5 x 10-%,

"Re1ative probability distribution P(2) vs 1amfnar length 2

(in units of 5T = 62.5 usec) for intermittency in the
period-5 window (e = 0), induced by an additive random noise

voltage with standard deviation g = 10-%.
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