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Genetics

DNA Copy Number Variants of Known Glaucoma Genes in
Relation to Primary Open-Angle Glaucoma
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PURPOSE. We examined the role of DNA copy number variants (CNVs) of known glaucoma
genes in relation to primary open angle glaucoma (POAG).

METHODS. Our study included DNA samples from two studies (NEIGHBOR and GLAUGEN). All
the samples were genotyped with the Illumina Human660W_Quad_v1 BeadChip. After
removing non–blood-derived and amplified DNA samples, we applied quality control steps
based on the mean Log R Ratio and the mean B allele frequency. Subsequently, data from 3057
DNA samples (1599 cases and 1458 controls) were analyzed with PennCNV software. We
defined CNVs as those ‡5 kilobases (kb) in size and interrogated by ‡5 consecutive probes.
We further limited our investigation to CNVs in known POAG-related genes, including
CDKN2B-AS1, TMCO1, SIX1/SIX6, CAV1/CAV2, the LRP12-ZFPM2 region, GAS7, ATOH7,
FNDC3B, CYP1B1, MYOC, OPTN, WDR36, SRBD1, TBK1, and GALC.

RESULTS. Genomic duplications of CDKN2B-AS1 and TMCO1 were each found in a single case.
Two cases carried duplications in the GAS7 region. Genomic deletions of SIX6 and ATOH7 were
each identified in one case. One case carried a TBK1 deletion and another case carried a TBK1

duplication. No controls had duplications or deletions in these six genes. A single control had a
duplication in the MYOC region. Deletions of GALC were observed in five cases and two controls.

CONCLUSIONS. The CNV analysis of a large set of cases and controls revealed the presence of
rare CNVs in known POAG susceptibility genes. Our data suggest that these rare CNVs may
contribute to POAG pathogenesis and merit functional evaluation.
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Glaucoma is the second leading cause of irreversible
blindness, affecting more than 60 million individuals

worldwide, and it is considered to be a heterogeneous group
of disorders.1–4 Primary open-angle glaucoma (POAG) is the
most common type and is inherited as a complex trait.2

Clinically, POAG is characterized by progressive retinal
ganglion cell death, optic nerve head excavation, and visual
field loss.5,6 Risk factors for POAG include increased age,
elevated IOP, family history, and African ancestry.2,4,6 Genetic
factors have an important role in the pathogenesis of POAG.
Family-based linkage studies have identified numerous genomic
loci and several genes with varying contribution to POAG,
including myocilin (MYOC), cytochrome P450 family 1
subfamily B polypeptide 1 (CYP1B1), optineurin (OPTN),
TANK-binding kinase 1 (TBK1), and WD repeat domain 36
(WDR36).2,4,6–13 Recently, genome-wide association studies
(GWAS) of POAG in Iceland, Australia, Japan, and the United
States have successfully identified and confirmed a number of
genome-wide significant genetic associations in multiple genes,
including caveolin 1/caveolin 2 (CAV1/CAV2), CDKN2B

antisense RNA 1 (CDKN2B-AS1), transmembrane and coiled-
coil domains 1 (TMCO1), SIX homeobox 1/SIX homeobox 6
(SIX1/SIX6), fibronectin type III domain containing 3B
(FNDC3B), S1 RNA binding domain 1 (SRBD1), atonal
homolog 7 (Drosophila) (ATOH7), and the chr8q22 region
between zinc finger protein FOG family member 2 (ZFPM2),
and low density lipoprotein receptor-related protein 12
(LRP12).14–27 The IOP has been associated with variants in
several genes, including TMCO1, ATP-binding cassette subfam-
ily A (ABC1) member 1 (ABCA1) and growth arrest–specific 7
(GAS7).28,29

In addition, DNA copy number variants (i.e., genomic
deletions and duplications) have been shown to have
important roles in POAG.30–32 Genomic deletions of galacto-
sylceramidase (GALC) and duplications of TBK1 have been
reported to contribute to POAG pathogenesis.9,30,31,33,34 A
more comprehensive analysis of DNA deletions and duplica-
tions of known glaucoma-associated genes is needed to
evaluate their possible contribution to the pathogenesis of
POAG. To this end, we have studied DNA copy number
variants in more than 1599 POAG cases and 1458 eye-
examined controls, based on genotype data from the Illumina
Human660W_Quad BeadChip (Illumina, San Diego, CA, USA).
Here, we report genomic deletions and duplications in a
number of known glaucoma-associated genes and their relative
contribution to POAG.

MATERIALS AND METHODS

Study Population

This study adhered to the tenets of the Declaration of Helsinki.
Written informed consent was obtained from all study
participants. We used POAG cases and controls from two
separate glaucoma cohorts: the Glaucoma Genes and Environ-
ment (GLAUGEN) study (dbGaP Study Accession:
phs000308.v1.p1, available in the public domain at http://
www.ncbi.nlm.nih.gov/gap), which is part of the Gene,
Environment Association Study consortium, and the National
Eye Institute Glaucoma Human Genetics Collaboration (NEIGH-
BOR) study (dbGAP Study Accession: phs000238.v1.p1, avail-
able in the public domain at http://www.ncbi.nlm.nih.gov/gap).
Both datasets have been described previously.20,22,35–42 Briefly,
the GLAUGEN study included 976 cases and 1140 controls from
two population-based cohorts: the Nurses’ Health Study (NHS)
and the Health Professionals Follow-up Study (HPFS), as well as a
clinic-based dataset, the Genetic Etiologies of POAG (GEP). The

Institutional Review boards of the Massachusetts Eye and Ear
Infirmary, Harvard School of Public Health, and Brigham and
Women’s Hospital approved this study. The NEIGHBOR study
consists of 2132 cases and 2290 controls from 12 sites. The
institutional review boards of the University of Pittsburgh, Johns
Hopkins University, Duke University, University of West Virginia,
University of Miami, University of Michigan, Stanford University,
Marshfield Clinic, and the University of California, San Diego
approved the NEIGHBOR study.

Eligibility for POAG cases and controls has been described
previously.20,35 Briefly, POAG cases had reliable visual field
tests showing characteristic visual field defects consistent with
glaucomatous optic neuropathy. Elevation of IOP was not a
criterion for inclusion. Patients with a diagnosis or history of a
secondary glaucoma or ocular trauma were not considered as
POAG cases. Trained glaucoma subspecialists reviewed the
medical records for all POAG cases and controls to ensure they
met inclusion criteria for the study. The examined control
individuals were required to have normal optic nerves (cup–
disc ratio �0.6) and normal IOP (�21 mm Hg).

DNA Genotyping and DNA Copy Number Calling

All DNA samples were genotyped using the Illumina Hu-
man660W_Quad_v1 BeadChip at the Broad Institute (GLAU-
GEN), and the Center for Inherited Disease Research (CIDR)
(NEIGHBOR).20,35 To minimize batch effects, DNA samples
were organized for equal representation of POAG cases and
controls per 96-well plate from each study site. The details for
DNA collection, extraction and plating, genotype calling, single
nucleotide polymorpism (SNP) quality control, and the
preliminary analyses in GLAUGEN and NEIGHBOR have been
described previously.20,35 After quality control, Illumina’s
GenomeStudio software was used to generate genotype calls,
Log R ratio (LRR), and B allele frequency (BAF) using our
established procedure.31 To have a uniform comparison
between cases and controls, we removed DNA samples that
were whole genome amplified in vitro or were derived from
buccal cells or nonblood samples due to their inconsistent
copy number variance (CNV) performance compared to blood
DNA sample.43 Based on our previous experience in CNV
analysis,31 we selected PennCNV software (available in the
public domain at www.openbioinformatics.org) to call the
CNVs.44,45 PennCNV software combines multiple sources of
information, including LRR and BAF at each SNP marker, the
distance between neighboring SNPs, and the allele frequency
of SNPs. We applied PennCNV to genotyping data generated
from Illumina arrays. During the analysis, we further eliminated
DNA samples with a SD of the mean LRR > 0.4 or with SD of
the mean BAF > 0.1. We also removed DNA samples for which
the total number of CNVs was 2 SDs higher than the mean
number of CNVs across the entire dataset. After applying these
rigorous quality control measures, 1156 POAG cases and 1079
controls from the NEIGHBOR dataset and 443 POAG cases and
379 controls from the GLAUGEN dataset remained for further
analysis. To reduce false positives, we also required the CNVs
to be at least 5 kilobases (kb) in size and interrogated by a
minimum of five consecutive genotyping probes. We restricted
our analysis to genomic regions containing glaucoma-associat-
ed genes, including MYOC, OPTN, WDR36, CYP1B1, CDKN2B-

AS1, TMCO1, SIX1/SIX6, CAV1/CAV2, SRBD1, and the
intergenic chr8q22 LRP12-ZFPM2 region.

RESULTS

The demographic characteristics of the NEIGHBOR and
GLAUGEN participants included in the study are listed in
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Table 1. In the NEIGHBOR study, the mean age was 58.0 6

12.7 years for the cases and 68.0 6 11.4 for the controls.
Similar proportions of female individuals were observed in
cases (50.7%) and controls (60.4%). Approximately 40.4% of
POAG cases and 8% of controls had a family history of
glaucoma in first-degree relatives (i.e., biological parents,
siblings, or children). The average number of CNVs (deletions
and duplications) in NEIGBHOR was 104 for POAG cases and
103 for the controls. The average size of each CNV was
approximately 32 kb for POAG cases and 31 kb for controls.
For GLAUGEN samples, the mean age was 65.3 6 8.3 years for
the cases and 64.6 6 9.5 years for the controls. The proportion
of female individuals was similar between cases (56.9%) and
controls (52.0%). Of the POAG cases and controls, 52.8% and
12.1%, respectively, had a family history of glaucoma in their
first-degree relatives. The average number of CNVs in
GLAUGEN was 150 for POAG cases and 163 for the controls.
The average size of each CNV in GLAUGEN was approximately
66 kb for POAG cases and 66 kb for the controls.

We examined the genomic deletions and duplications in
known POAG-associated genes, including CAV1/CAV2,
CDKN2B-AS1, TMCO1, SIX1/SIX6, FNDC3B, SRBD1, chr8q22
region (LRP12-ZFPM2), GAS7, CYP1B1, OPTN, MYOC,
WDR36, TBK1, GALC, and ATOH7 (Table 2). No deletions or
duplications were detected in the CAV1/CAV2, CYP1B1, or
OPTN genomic regions in our cohorts. As shown in the Figure,
we identified one case with a genomic duplication that spans

the CDKN2B gene and an intronic region of CDKN2B-AS1 as
well as another case with a duplication that spans a majority of
the TMCO1 genomic region. Both cases with these duplica-
tions were diagnosed in their late 40s with elevated IOPs (>21
mm Hg) and a large vertical cup-to-disc ratio (vCDR) of 0.9 in
both eyes. Additionally, in both cases, there was a history of
glaucoma in first-degree relatives. A genomic deletion spanning
the SIX6 gene and the 50-end of C14ORF39 gene was identified
in one POAG case. This patient had an elevated IOP (>21 mm
Hg) and a large vCDR (0.8 in the affected eye) with a positive
family history of glaucoma in the first-degree relatives. Two
POAG cases with elevated IOPs (>21 mm Hg) carried
duplications that span MYH13, MYH8, MYH4, MYH1, and
the 50 end or upstream of the GAS7 gene, which overlaps with
the genomic region associated with IOP.28,46 One of these
patients had a family history of glaucoma, while the other did
not. One POAG case carried a 184 kb TBK1 deletion and
another case carried an 886 kb TBK1 duplication, which are
CNVs of novel extent. These cases had normal tension
glaucoma without a documented history of elevated IOPs
(<21 mm Hg). Deletions in the GALC region were found in two
controls (one with family history of glaucoma and another
without family history) and five POAG cases all of which had
elevated IOP (>21 mm Hg) and a positive family history of
glaucoma. Deletions of the chr8q22 region (LRP12-ZFPM2)
were identified in three cases and two controls (one with and
another without family history of glaucoma). Duplications and

TABLE 1. Demographics of POAG Cases and Controls in the NEIGHBOR (1156 Cases and 1079 Controls) and GLAUGEN Datasets (443 Cases and
379 Controls)

NEIGHBOR, n ¼ 2235 GLAUGEN, n ¼ 822

% Female Mean Age 6 SD

Family History

of POAG, % % Female Mean Age 6 SD

Family History

of POAG, %

POAG Case 50.7 58.0 6 12.7 40.4 56.9 65.3 6 8.3 52.8

Control 60.4 68.0 6 11.4 8.0 52.0 64.6 6 9.5 12.1

TABLE 2. Number of Individuals With DNA Copy Number Variants Within Known POAG-Associated Genes in NEIGHBOR (1156 Cases and 1079
Controls) and GLAUGEN (443 Cases and 379 Controls) Datasets

NEIGHBOR GLAUGEN Total Combined

Genomic Deletion Genomic Duplication Genomic Deletion Genomic Duplication Deletion Duplication

Case Control Case Control Case Control Case Control Case Control Case Control

CAV1/CAV2 0 0 0 0 0 0 0 0 0 0 0 0

CDKN2B-AS1 0 0 1 0 0 0 0 0 0 0 1 0

TMCO1 0 0 1 0 0 0 0 0 0 0 1 0

SIX1/SIX6 1 0 0 0 0 0 0 0 1 0 0 0

FNDC3B 3 7 0 0 9 7 0 0 12 14 0 0

SRBD1 6 5 0 0 3 3 14 7 9 8 14 7

LRP12-ZFPM2 2 2 0 0 1 0 0 0 3 2 0 0

GAS7 0 0 1 0 0 0 1 0 0 0 2 0

CYP1B1 0 0 0 0 0 0 0 0 0 0 0 0

OPTN 0 0 0 0 0 0 0 0 0 0 0 0

MYOC 0 0 0 0 0 0 0 1 0 0 0 1

WDR36 0 1 5 3 0 1 3 2 0 2 8 5

TBK1 1 0 1 0 0 0 0 0 1 0 1 0

GALC 4 1 0 0 1 1 0 0 5 2 0 0

ATOH7 0 0 0 0 1 0 0 0 1 0 0 0

CAV1/CAV2, caveolin 1/caveolin 2; CDKN2B-AS1, CDKN2B antisense RNA 1; TMCO1, transmembrane and coiled-coil domains 1; SIX1/SIX6,
SIX homeobox 1/SIX homeobox 6; FNDC3B, fibronectin type III domain containing 3B; LRP12-ZFPM2, low density lipoprotein receptor-related
protein 12–zinc finger protein FOG family member 2; GAS7, growth arrest–specific 7; CYP1B1, cytochrome P450 family 1 subfamily B polypeptide
1; OPTN: optineurin; MYOC, myocilin; WDR36, WD repeat domain 36; TBK1, TANK-binding kinase 1; GALC, galactosylceramidase; ATOH7, atonal
homolog 7 (Drosophila).
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FIGURE. Representation of rare genetic duplications and deletions in known glaucoma-associated genes in UCSC human genome browser. Green

represents genomic duplication and red represents genomic deletion. The boundary of these deletions and duplications is indicated by the edge of
these bars.
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deletions in the regions of FNDC3B, SRBD1, and WDR36, were
equally distributed among POAG cases and controls (Table 2).
A deletion in the ATOH7 region was found in one POAG case.
This case, with a cup-disc ratio of 0.6 in the left eye and 0.4 in
the right eye, had an elevated IOP (>21 mm Hg), reproducible
visual field loss, and a positive family history of glaucoma. A
duplication in the MYOC region was identified in one control
without a family history of glaucoma.

DISCUSSION

To our knowledge, our study is the largest case-control analysis
of CNVs in POAG, including over 3000 participants, and
focusing on known POAG-associated genes. We identified a
number of rare CNVs in known glaucoma genes, including
CDKN2B-AS1, TMCO1, SIX1/SIX6, GAS7, TBK1, GALC, and
ATOH7. Many CNVs were observed only in POAG patients.
However, we also found that the CNVs in three genomic
regions (WDR36, FNDC3B, and SRBD1) were relatively
common with a frequency greater than 1% in our study.
However, the frequencies were not significantly different
between POAG cases and controls. The frequencies of these
CNVs have not been reported previously to our knowledge.

Genomic duplications of TBK1 have been specifically
associated with POAG in normal tension glaucoma pa-
tients.9,33,34 We also identified a genomic duplication of novel
extent that spans TBK1 in a POAG case with normal pressure.
Our finding provided further support for the genetic contri-
bution of TBK1 duplication in normal tension glaucoma (NTG)
pathogenesis. Additionally, for the first time we have identified
a genomic deletion of TBK1 in an NTG patient. These results
suggested that duplication and deletion of TBK1 contribute to
glaucoma. The TBK1 gene encodes a kinase that phosphory-
lates optineurin, which also is known to cause NTG.10,47,48

Both TBK1 and OPTN participate in autophagy and NF-kB
signaling,4,8,49 suggesting that TBK1 CNVs may cause disease
by dysregulating these pathways. However, further work is
necessary to determine the responsible molecular events.

Variants in TMCO1 and GAS7 genes recently have been
associated with IOP and POAG.28,29,50,51 However, it remains
unclear how the protein products from these two genes
regulate IOP and affect POAG development. Mutations in
TMCO1 have been associated with craniofacial dysmorphism,
skeletal anomalies, mental retardation (OMIM *614123) and
cerebro-facio-thoracic dysplasia (OMIM #614132).52–55 Ocular
phenotypes, including IOP elevation or glaucoma, have not
been reported previously in patients carrying TMCO1 muta-
tions.52–54 However, most of these patients, aged from 3 to 39
years, have macrocephaly, fusion of cervical or thoracic spine,
and prominent cerebrospinal fluid (CSF) space,54 which might
affect CSF pressure. Decreased CSF pressure has been proposed
as a risk factor for glaucoma by increasing the translaminar
pressure difference.56–58 The GAS7 gene, as part of the growth
arrest–specific gene family, is involved in neurite outgrowth and
motor neuron function associated with muscle strength
maintenance.59,60 The GAS7 regulates the expression of RUNX2
and its dependent transcriptional expression. Mutations in GAS7

increase body fat levels and decrease bone density in mouse
models.61 Although variants in the GAS7 genomic region have
been associated with IOP level and POAG risk,28,62 the
mechanism remains unknown. In addition, ocular phenotypes,
including altered IOP, have not been described in the GAS7-
deficient mouse.59 The presence of duplications of GAS7

overlapping with IOP-associated regions in two glaucoma
patients, but not controls, supports the potential involvement
of GAS7 in POAG. However, this does not exclude the possible
role of other genes contained within the duplicated region.

We also identified a rare duplication of CDKN2B/CDKN2B-

AS1 in a POAG case. Variants in this genomic region have been
associated with POAG, especially with normal-tension glauco-
ma and advanced glaucoma.16,17,20,50,63 Elevated levels of
CDKN2B-AS164 suppress the expression of cell cycle regula-
tors CDKN2A and CDKN2B. Thus, duplication of CDKN2B-

AS1 intronic region might increase risk of POAG by elevating
gene expression to suppress the expression of CDKN2A and
CDKN2B. Of course the actual mechanism remains unknown
at this time. Recently, two groups reported that SIX6 is the
gene associated with POAG in the SIX1/SIX6 genomic
region.38,65 We identified a heterozygous deletion in the SIX6

region. The homozygous loss of SIX6 function in human
patients, including homozygous deletion of a large genomic
region containing SIX6 gene, has been reported to be
associated with variable degrees of retinal hypoplasia, absence
of the optic chiasm and optic nerve, and bilateral anophthal-
mia.66–68 However, the individual we have identified with a
heterozygous deletion in SIX6 has a much less severe
phenotype. It has been proposed that the level of SIX6
expression is associated with POAG although the exact
mechanism remains unknown.38,65 Deletions of the GALC

genomic region also have been associated with POAG risk.31 In
this study we identified more GALC deletions in cases
compared to controls. Although the distribution of deletions
between cases and controls was not significantly different, it
provides further support on the potential contribution of this
gene to POAG.4 Variants in ATOH7 have been associated with
optic disc size and vertical cup-to-disc ratio14,69,70 as well as
POAG.16,25,71 The ATOH7 knockout mouse lacks retinal
ganglion cells and optic nerves.72 Deletion of a remote
enhancer of ATOH7 disrupts retinal neurogenesis and causes
nonsyndromic congenital retinal nonattachment.73 Homozy-
gous ATOH7 mutations were reported in patients with global
eye developmental defects, including microphthalmia.74 The
POAG case with a heterozygous deletion of ATOH7 represents
an intermediate phenotype, suggesting the dosage effect of
ATOH7. This is the first report of ATOH7 deletion in a POAG
patient.

We acknowledge that this study had several limitations.
First, the detection of CNVs in our samples was based on an
Illumina SNP-genotyping array and computational algorithm.
Even though this array was designed with the ability to detect
CNVs, there are nonetheless limitations to the number of SNP/
CNV probes and their ability to detect CNVs. Second, our study
focused on genes and loci that have a known or suspected
association with POAG and, as such, does not provide
information on novel associations, which would have been
unlikely due to the uncommon occurrence of CNVs in general.
Due to the small number of CNVs in cases and controls, the
statistically significant association could not be demonstrated.
The frequency of these CNVs in these known glaucoma genes
have not yet been reported. This study was designed to lend
support to known genes and examine the potential role of
gene dosage mechanisms in POAG. Recently, three new studies
identified several new genes associated with POAG.26,27,29

However, these results were not available in time to be
included in our analysis. Third, these CNVs have not been
confirmed by other technologies, such as comparative genomic
hybridization array or probe-based real time PCR. Fourth, in
this set of unrelated cases and controls, we are not able to
demonstrate that interesting CNVs associated with POAG
exhibited familial segregation.

In summary, we reported the analysis of DNA copy number
variants of known glaucoma-associated genes in two large
POAG case-control sets—NEIGHBOR and GLAUGEN. We
identified DNA duplications or deletions in the CDKN2B-AS1,
TMCO1, SIX1/SIX6, GAS7, ATOH7, TBK1, and GALC genomic
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regions in POAG cases. These data suggested that rare CNVs in
known glaucoma-associated genes may contribute to POAG
pathogenesis potentially through gene dosage effects, and
merit further analysis and functional evaluation.
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