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University of California, Los Angeles
Jhummel@cognet.ucla.edu

Abstract

A single view of an unfamiliar object
typically provides enough information about the
object's shape to permit recognition from a wide
range of new viewpoints. A recent model by
Hummel and Biederman (1990, 1992) provides a
partial account of this ability in terms of the
activation of viewpoint invariant structural
descriptions of (even unfamiliar) objects. We
describe the Structural Description Encoder (SDE),
a self-organizing feed-forward neural network that
learns such descriptions in one or at most two
exposures. Rapid, reliable leaming results from the
interactions among recruited and unrecruited units,
whose response characteristics are differentiated
through the use of dynamic thresholds and learning
rates.

Introduction

For many objects, a single view provides
enough information about the object's shape to
permit recognition from a wide range of new
viewpoints (e.g., Biederman & Gerhardstein, in
press). This capacity, unremarkable from the
standpoint of everyday experience, is mysterious
from the perspective of theories of object
recognition based on storing and matching multiple
object views (e.g., Edelman & Weinshall, 1991;
Intrator & Gold, 1993; Poggio & Edelman, 1990;
Ullman & Basri, 1991, among many others). Such
theories constitute the majority of computational
models of object recognition.

Hummel and Biederman (1990, 1992) have
proposed a neural network model of object
recognition (based on Biederman's, 1987, theory of
Recognition by Components) that accounts for part
of this capacity. This model, JIM, recognizes
objects in terms of structural descriptions specifying
the objects’ parts (simple volumetric primitives
called geons) and the relations among them. Such
descriptions are invariant under a wide range of
viewpoints: they do not change with the size or
position of the object's image on the retina, or the
orientation in depth from which the object is
depicted. Biederman and Cooper (1991; 1992a,b)
have gathered a substantial amount of evidence
supporting viewpoint invariant parts-based

representations in human object recognition. JIM
provides an explicit account of how a viewpoint
invariant structural description can be derived from a
line drawing of an object, but it does not address
how these descriptions are encoded into memory for
later use. This paper presents a neural network
model of rapid, unsupervised learning of structural
descriptions. The point of departure for this effort
is Hummel and Biederman's JIM, so we briefly
review that model.
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Figure 1. A thumbnail sketch of JIM's architecture.
Layers 3a, 5, 6 and 7 are of primary interest here.

JIM is a seven layer feed forward neural
network (Figure 1). Its first two layers represent a
line drawing in terms of 2D image features (line
segments, vertices, etc). Local computations in
these layers segment line drawings into their parts
by establishing synchrony of firing among units
representing features of the same part. Units in
layer 3 represent the geons in an image. A geon's
categorical proerties (e.g., whether the cross section
is straight or curved) and metric properties (e.g.,
size and location) are coded separately (layers 3a and
3b, respectively). Layers 4 and 5 use the geons'
metric properties to calculate their relative
positions, sizes, and orientations. Like the inputs
to layer 3, the outputs of layers 3a and 5 are
synchronized into sets: on a single time slice, the
output of layers 3a and 5 form a Geon Feature
Assembly (or GFA), an activation vector describing
one geon in terms of its contrastive shape properties
and its relations to the other geons in the image.
The complete set of GFAs activated in response to
an object is JIM's structural description of that
object. Units in layer 6 (GFA units) respond to
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specific GFAs. Units in layer 7 sum the outputs of
GFA units over time, combining two or more
GFAs to recognize a whole object.

The structural descriptions generated by
JIM's first five layers suggest a natural account of
how people can rapidly learn unfamiliar objects and
later recognize them under a range of new views.
JIM activates viewpoint invariant descriptions even
for unfamiliar objects (i.e.. for which no units are
dedicated in layers 6 and 7), so encoding such a
description -- by recruiting new units in layers 6 and
7 -- will naturally permit subsequent recognition
from a variety of viewpoints.

The purpose of the model described here is
to learn structural descriptions of the type generated
by JIM. We have four specific goals in this effort.
First, solve the old/new category problem: given a
representation of an object, decide whether it is the
first instance of a new category or an instance of a
familiar category. Second. leamn new descriptions
rapidly (preferably, in one exposure) without
catastrophically forgetting objects leamned in the
past. Third, leaming must be unsupervised. And
fourth, we wish to keep the model's architecture and
operation simple, minimizing its reliance on top-
down feedback and global control processes (e.g.,
gain control signals) as used for example in
Adaptive Resonance Theory (Carpenter &
Grossberg, 1987).

The Structural Description Encoder

Architecture The model (called SDE,
for Structural Description Encoder) is sketched in
Figure 2. SDE is a three layer, feed forward neural
network designed closely after the upper three layers
of JIM. SDE's first (input) layer consists of 18
units representing geon attributes and 7 units
representing the relations among the geons. SDE
takes GFAs as input; it is assumed that they are
generated by a mechanism such as JIM's first five
layers. Each object is represented by one GFA per
geon. SDE's second layer consists of GFA units
that self-organize in response to specific GFAs.
The model's third layer consists of Object units that
self-organize in response to conjunctions of active
GFA units, that is, to complete objects.
Connections between layers are feed-forward and
excitatory, and within layers 2 and 3, units compete
via lateral inhibition.

Learning Task Encoding a new object
entails recruiting a small number of GFA units
(perhaps only one) in response to each of an object's
geons and one Object unit in response to the
complete set of GFA units. This task is eased by
the GFAs' invariance with viewpoint, which frees
SDE to rapidly encode each new object without

needing to maintain flexibility for generalization
over viewpoints. Nonetheless, SDE's learning task
is challenging, and must satisfy three constraints.
First, the GFA-based representation is very dense,
meaning that GFAs tend to be highly similar (as
claborated in the Simulations section), and some
GFAs may even be subsets of others. Cohen and
Grossberg (1987) and Marshall (1990) discuss the
problem of learning embedded patterns in
unsupervisded neural networks. The second
constraint concerns the mechanics of deciding
whether a pattern (GFA or whole object) is new or
familiar. Unrecruited units must have an advantage
over recruited units in responding to unfamiliar
pattemns, but recruited units must have the advantage
in response to familiar pattems. And third, learning
must occur in a single exposure, so unrecruited
units must be capable of making large
modifications to their incoming weights; but once
recruited, units must remain stable to avoid
catastrophic forgetting.

Layer1 Layer2 Layer3
Geon £ )
Units
(N=18)
(JIM'sL 3a)
e GFA  Object
(N=7) Units Units
M L 5) (N=100)  (N=100)
(JIM'sL6) (JIMsL7)

Figure 2. The architecture of SDE is designed
closely after JIM's upper three layers.

Operation SDE is exposed to objects
one at a time. The GFAs of each object are
presented one at a time as patterns of activation (in
the range 0..1) in layer 1. In response to each
GFA, the GFA units compete via shunting
inhibition, after which, those units whose
activations exceed a threshold update their
connections from the layer 1 units and pass
activation to the Object units (layer 3). Object
units sum their inputs over time and compete in a
winner-take-all fashion. Only the winner updates
its connections. As a simplifying assumption,
Object units update their activations and
connections only after all an object's GFAs have
been presented. Initially, bottom-up weights are
randomized (0..1 for GFA units, 0..0.05 for Object
units), and all GFA and Object units start in an
unrecruited state (described shortly).

The GFA Layer: The net input to GFA
unit i is
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where n is the number of units in layer 1 (n = 25),
wij is the connection weight from unit j to unit /,
and /; is the activation of unit j in layer 1. If N; <
6; (unit #'s threshold) then unit / 's activation, A;, is
set to 0; all other GFA units compete via shunting
inhibition:

A= 0,.N,.3/291.Nf,je (N;>6),
= @

where m is the number of GFA units (m = 100).
Eq. 2 is applied for four iterations; after each, all
activations below threshold are set to zero. Units
update their weights by:

Aw,.l. = A,.a,. (lj = W,-j), 3)

where ; is unit i 's learning rate.

Each unit changes its leamning rate (¢;) and
threshold (6;) as a function of learning. In its
initial unrecruited state, a unit's threshold is low and
its learning rate is high (6; = 6p = 0.55, and @; =
ap = 0.9). Each time a unit updates its weights, its
leaming rate decays:

1 _ 1 t
ai - ai (ai &4[ ), (4)

where € is a scaling parameter (¢ = 0.8).
Recruitedness is not all-or-none for GFA units. A
unit's degree of recruitedness, is

p;=(, — o)/ a. )

As unit is recruited in response to a GFA (or an
object), its thresholds rises:

73.P;
9‘. = 00 +ﬁe i 1+ ea(p,-o.S)). -

B (= 0.35) and y (= -0.01) are scaling parameters,
and o (=-8) determines the steepness of the logistic
function (the deominator is the recriprocal of the
logistic function). The term in the numerator
describes the threshold penalty for a fully recruited
unit (i.e., p; = 1.0) as a function of the sum of all
pi in the GFA layer: the greater the number of
recruited units, the less the penalty on any single
recruited unit. This convention serves to prevent
units recruited early from responding to all patterns.

The denominator of Eq. 6 determines the proportion
of the threshold penalty applied to a unit as a
function of its own degree of recruitedness.

The variable threshold plays a particularly
important function in the competition between
recruited and unrecruited units. Because @ is higher
for recruited than unrecruited units, the former are
more sensitive to deviations from their preferred
inputs (as represented by their weights), and are
therefore less likely to be activated above threshold
by an unfamiliar pattern. However, given that it
gets above threshold, a recruited unit has an
advantage relative to the unrecruited units in the
inhibitory competition (Eq. 2). This use of the
threshold helps to ensure that only recruited units
will respond to familiar patterns, and that at least
some unrecruited units will respond to any
unfamiliar pattern. Foldiak (1990) also uses
variable thresholds in an unsupervised neural
network, but the motivation and implementation of
the variable threshold in his nework are very
different from those described here.

The Object Layer: Object units are similar
to GFA units except that Object units: (a) sum their
inputs over time, (b) compete in a strictly winner-
take-all fashion, and (c) become recruited in an all-
or-none fashion. Object units sum their inputs by
accumulating the activations of the GFA units in a
vector, v¥*, over all iterations in which GFAs of the
same object are presented as input:

k* k1 k2 ke
Vi =NV +v7+.vY), )

where vK#* is the accumulated layer 2 activation
vector for object k, vki is the layer 2 activation
vector produced in response to the i/ th GFA in
object k (GFAKP), z is the number of GFAs
belonging to object k, and N is a linear
normalization. Object units compute their net
inputs by Eq. 1, with vjk* (i.e., the j th element of
vk*) substituted for / j. Object unit thresholds are

Y(Zp,-l)
6, =6, +pPe ' ) ®)
where p; is 1 for recruited units and O for unrecruited
units. All other equations are the same as for GFA
units. For Object units, 8g = 0.0275, ap = 0.9,
and B, % and € are 0.8, -0.01, and 0.8, respectively.

Simulations

SDE was trained to recognize the ten
objects used by Hummel and Biederman (1992) to
test JIM (illustrated graphically in Figure 3).
Despite their dissimilarity in terms of pictorial
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overlap, these objects are quite similar in terms of
their GFA-based representations: the mean
correlation between GFAs in the training set is
0.544, the maximum is 0.787, and the minimum is
0.356. Ideal performance would be as follows:
upon the first exposure to an object, SDE would
recruit a new and unique set of GFA and Object
units; on subsequent presentations of the object, the
same units would respond, and no new units would
be recruited. Thus, SDE's performance should be
independent of the order in which it is exposed to
the objects. Objects were presented in four different
learning schedules to assess SDE's speed of learning
and robustness to presentation order.

3”8
Sz

Figure 3. The objects in SDE's training set.

Simulation results are presented in terms
of two types of errors: split errors and merge errors.
A split error is when the model recruits different
Object units in response to separate exposures to
the same object, and reflects a failure to recognize a
familiar object as familiar. Merge errors are when
the same Object unit responds to two or more
objects, reflecting the model's failure to treat
different objects as different. Except where noted
otherwise, all results are averages over 100
simulation runs. Error bars are shown on all
graphs, but they are very small.

Random Order Within Blocks In the
Random Order Within Blocks schedule, objects were
presented in blocks of ten trials (one object per
trial). In each block, objects were presented in a
different random order. Trials proceeded as described
previously. Each simulation was run for 24 blocks
(240 trials). Figure 4 shows SDE's performance
under this learning schedule.

SDE averaged about 50% split errors on
block 2, indicating that it typically failed to
recognize about half the objects to which it was
exposed on the first block. (No split errors are
shown for block 1 because they cannot occur until
block 2 under this schedule.) For the other objects,
learning occured in a single trial. By block 3, split
errors are near zero, indicating that SDE typically
learned all its objects within two exposures. SDE
committed very few merge errors.

Completely Random Order In the
Completely Random Order schedule, simulations
were again run in 24 blocks of ten trials, but on
each trial, every object had a 10% chance of being
presented. Thus, a block is simply a series of ten
trials, with no guarantee that all ten objects will
appear within any given block. As shown in
Figure 5, performance is very similar to
performance under the previous schedule in that
SDE leanred almost all its objects within two
exposures (the difference in the shapes of the curves
is attributable simply to when an object is expected
to appear for the second time; the areas under the
split error curve for this and the previous schedules
are nearly the same). Once again, SDE almost
never committed a merge error.

Num. errors

Block

Figure 4. SDE's performance under the Random
Order Within Blocks schedule, expressed as the
mean number of errors produced per block (out ot
10 possible). The graph is truncated because the
trend does not change between blocks 8 and 24.

3 -
@ — Spht
£ —e— Merge
L8]
E
=
Z
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1 8 24
Block
Figure 5. Performance under the Completely

Random Order schedule. Under this schedule, split
errors are possible on the first block.
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Massed Trials Under the previous
schedules, SDE received only one learning iteration
per object before moving on to the next object, and
although learning was rapid, it may improve with
more time to encode an object on each exposure
(anlogous to attending to a new object the first
time one sees it). To test this hypothesis, SDE
was tested under two Massed Trials schedules. In
these schedules, SDE was given four uninterrupted
learning trials (iterations) during each exposure to
each object. Each block under this schedule thus
reflects 40 trials (4 presentations of each object), so
simulations were run for six blocks (240 trials). In
the Random Order Massed schedule, objects were
presented in a random order within each block. In
the Fixed Order Massed schedule, objects appeared
in the same order in every block within a 6-block
run; this order was independently randomized on
each of the 100 runs. The results of these
simulations are shown in Figure 6. Both split and
merge errors were nearly zero by the second block,
indicating that SDE learned almost all its objects in
a single four-iteration exposure. The random vs.
fixed presentation order made virtually no difference
in SDE's performance.

—a— Spiit
—— Merge

_qﬂﬂ"[ﬂq I
| Random Order

Num. errors

Figure 6. Performance under the Massed Trials
learning schedules. Data are plotted in 4-trial (one
object) increments.

Two-Phase The final learning schedule
was designed as a strong test of SDE's ability to
avoid catastrophic forgetting. In this Two-Phase
schedule, five of the objects in the training sct were
randomly selected and presented for 12 learning
blocks (first learning phase). In the second phase,
the remainder of the objects were presented for
leamning. The critical question is whether objects
learned in the first phase will have been forgotten
after the second phase. Objects were assigned to
phases randomly and independently on each
simulation. Within phases, the schedule was
Random Order Within Blocks. After the second
phase of each run, SDE was tested for its ability to
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recognize that run's phase-1 objects. Figure 7
shows SDE's learning cruves under this schedule,
averaged over 500 simulation runs,

Once again, SDE made virtually no merge
errors. Interestingly, initial split errors were lower
in the second phase of this schedule than in the
first, suggesting that SDE learns objects faster
when it already has experience with other objects.
Most importantly, SDE made only 3 errors in 500
runs (0.6%) recognizing phase-1 objects after
having learned the phase-2 objects.

571 Phasel +  Phase 2
;- —a— Splt
4 1 —e— Merge
5 | E
B :
=) ]
e :
1 12 5
Block

Figure 7. Performance under the Two-Phase
schedule.

Noise Tolerance SDE does not require
much capacity for generalization. Indeed, given the
similarity of its input patterns, it needs to be
sensitive to even a small number of large changes
in GFAs, such as when a geon changes from
having a straight cross section to having a curved
one. However, high sensitivity to random noise is
undesirable. We ran a series of transfer simulations
in which noise was randomly added to or subtracted
from the activation values in the training patterns.
The likelihood of a change in a unit's activation
was 0.8 and the magnitude of the change was
normally distributed with a mean of 0.25. SDE
made less than 1% errors recognizing the noisy
objects, indicating that it readily generalizes over
even a large number of small changes in its input
vectors.

Scaling SDE performed very well on
its 10 object training set, but it is important to
know how it scales to larger training sets. To test
this capacity, we ran it with a 20-object training set
on the Random Order Within Blocks schedule. All
parameters were exactly the same as in the previous
simulations.

As shown in Figure 8, SDE made about
the same absolute number of initial split errors as
on the same schedule with only 10 objects (Figure
4). Therefore, in terms of its error rate, SDEs



initial performance was about twice as good with
the 20-object training set as with the 10-object
training set. This result strongly suggests that
SDE's arcitecture and learning algorithm scale well
with the number of objects it is required to learn.

8
! - Spllt
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Figure 8. Performance under the Random Order
Within Blocks schedule with 20 objects. 20 errors
are possible on each block.

Discussion

SDE rapidly learns structural descriptions
of the type generated by Hummel and Biederman's
JIM model, and it's behavior is qualitatively robust
across the various learning schedules investigated.
Moreover, it tolerates noisy input patterns and
scales well to larger training sets. SDE thus seems
satisfactory as a first attempt to model rapid
learning of object structural descriptions. It is
worth emphasizing that SDE's success speaks to
the efficiency of its GFA-based representation,
which make rapid learning feasible by obviating the
need for generalization over different viewpoints.
As a neural network model of learning, SDE's most
important contribution lies in the variable
threshold, and in the distinction between recruited
and unrecruited units. The intricacies of SDE's
performance have yet to be investigated in detail,
and systematic tests of human object learning will
be important for evaluating the details of its
behavior.
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