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ScienceDirect
Mass spectrometry has become a choice method for broad-

spectrum metabolite analysis in both fundamental and applied

research. This can range from comprehensive analysis

achieved through time-consuming chromatography to the

rapid analysis of a few target metabolites without

chromatography. In this review article, we highlight current

high-throughput MS-based platforms and their potential

application in metabolomics. Although current MS platforms

can reach throughputs up to 0.5 seconds per sample, the

metabolite coverage of these platforms are low compared to

low-throughput, separation-based MS methods. High-

throughput comes at a cost, as it’s a trade-off between sample

throughput and metabolite coverage. As we will discuss,

promising emerging technologies, including microfluidics and

miniaturization of separation techniques, have the potential to

achieve both rapid and more comprehensive metabolite

analysis.
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Introduction
Metabolomics is a relatively new and fast-growing re-

search field. Several different definitions of metabolomics

exist, such as ‘the analysis of set of small molecular mass

compounds in a given biological condition’ or ‘methods to

determine metabolite levels’ [1]. Metabolomics, whatev-

er its definition, is being broadly applied in fields such as

biotechnology, in pharmaceutical and medical research,

in synthetic biology, and environmental science. The

broad scope of the metabolomics field is comprised of

several distinct analytical approaches, including targeted

metabolomics, metabolic fingerprinting, metabolic profil-

ing and exometabolomics. Although major improvements

of NMR based metabolomics have been achieved, mass
www.sciencedirect.com 
spectrometry (MS) remains the most commonly used

metabolomic approach [2,3].

Increasing throughput is highly desirable in that it both

decreases costs and enables metabolomics to be applied

to large-scale studies. Typically in the field of high-

throughput screening (HTS), high-throughput is consid-

ered 10 000–100 000 samples per day [4]. In general, high-

throughput in mass spectrometry based methods in meta-

bolomics does not achieve this rate and hence the term

‘high-throughput’ in metabolomics is more a relative term

to describe systems with an improved throughput com-

pared to a standard of traditional liquid chromatography–
mass spectrometry (LC–MS) methods. For example,

where �750 samples per day is considered high-through-

put for LC–MS, desorption/ionization based MS methods

can achieve �10 000 samples/day [5�,6]. However, in MS

methodology higher throughput comes at the cost of

greatly reduced metabolite coverage, typically <10 me-

tabolites.

The aim of this review is to give an overview of all

developments to either improve the coverage or through-

put of high-throughput mass spectrometry-based meth-

ods with a focus on metabolomic analysis. We describe a

wide-range of MS techniques including those that we feel

have the potential to enable higher coverage and through-

put but do not attempt to comprehensively describe mass

spectrometry desorption/ionization approaches. The

reader is referred to several excellent recent reviews

describing recent developments in high resolution MS

and mass spectrometry imaging (MSI) approaches

[7��,8,9].

Separation-based platforms
Several factors, including experimental setup or complex

sample composition, could require separation of metab-

olites and/or sample matrix prior MS detection. For

example, interference from the sample matrix can result

in the decrease or absence of signals from metabolites

present in the sample. Liquid-chromatography and gas

chromatography are the most common separation tech-

niques used with mass spectrometry (LC–MS and GC–
MS, respectively). Capillary electrophoresis (CE) is an-

other powerful approach, but is not as widely used. Both

LC–MS and CE–MS most commonly use electrospray

ionization (ESI) to produce ions for mass spectrometry

analysis.

Although chromatographic-separation and electropho-

retic separations are powerful tools for separating mole-

cules in complex biological samples, they are time
Current Opinion in Chemical Biology 2016, 30:7–13
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8 Omics
consuming. Liquid handling is performed on a timescale

of seconds, typically many seconds, and chromatography

is an order of magnitude slower, typically requiring many

minutes. Developments in both column and instruments

technologies, including UHPLC (ultra-high performance

liquid chromatography), monolithic columns and core-

shell columns, have decreased analysis time and im-

proved throughput [10,11��,12]. Reduction of analysis

times to 1–5 min and �1 min have been reported for

LC–MS and GC–MS, respectively [13–17]. It should

be noted that an alternative for increasing throughput

is to use multiple columns in parallel or injecting multiple

samples in series [18,19]. However, these methods will

not decrease the actual analysis time.

Fast separation (millisecond timescale) of ionized ana-

lytes can be achieved using ion mobility separation (IMS)

[20]. IMS separates ions based on the difference in

mobility in an electric field in the gas phase, caused by

their mass, shape/size and charge. Integration of IMS with

MS (IMS-MS) can result in rapid analyte separation for

MS-based measurements. An increasing number of com-

mercial IMS-MS types from several different vendors are

available [21�]. IMS-MS has been applied to analysis a

wide variety of molecular classes, including secondary

metabolites, lipids, drug metabolites and carbohydrates,

and for the metabolic profiling of bacteria and blood [22–
27]. Also, IMS can also be integrated into LC–MS system

to allow faster chromatography and thus increase through-

put of LC-based systems [28]. In theory, separation can

be obtained on a timescale of �100 ms, which makes IMS

2–3 orders of magnitude faster than LC separations [29].

Although the millisecond timescale of separation, corre-

sponding sample throughputs of <1 second per sample

have not yet been reported for IMS-MS. Nevertheless,

IMS seems a promising separation technique for high-

throughput metabolomics.

Separation-free platforms
Since separation techniques are time consuming, a much

higher throughput can be achieved by simply omitting

the separation and directly introduce the sample into the

ionization source. This is known as direct infusion/injec-

tion (DI) or flow injection/infusion (FIE). In DI-MS a

static sample is continuously introduced into the mass

spectrometer using a syringe pump, or similar device. DI-

MS has been applied for e.g. the metabolic profiling of

fruit and human plasma, and detection of fatty acids in

serum [30–32]. With FIE-MS, the sample is injected into

a continuous stream of organic phase flowing to the

ionization interface. FIE-MS has been applied in, for

example, the detection of B vitamins in nutritional for-

mulations, pesticides in food, and the global metabolic

response to osmotic stress in Escherichia coli [33�,34,35].

Sample throughput of up to 2 samples/minute has been

reported for both DI-MS and FIE-MS [5�,30,36].
Current Opinion in Chemical Biology 2016, 30:7–13 
Desorption-based platforms
Another group of direct analysis techniques are desorp-

tion based. In the last decade, a large number of different

ionization techniques have emerged [9,37]. And although

these platforms have primarily been used for MSI, they

enable the comparison of spatially defined samples,

where the throughput is dependent on the sample size

and the scan rates.

ESI can be used for imaging of spatially defined samples

by, for example, scanning the sample with electrosprayed

solvent as in Desorption Electrospray Ionization (DESI)

or scanning a droplet of solvent prior to ESI as in nanos-

pray DESI (nanoDESI). Samples can also be desorbed

using laser ablation with subsequent ionization using ESI

(Laser Ablation ElectroSpray Ionization, LAESI) or sim-

ply extracted in situ and then electrosprayed (extractive

electrospray ionization, EESI). DESI and nanoDESI

have been used for lipid and metabolic profiling with a

throughput of 2 seconds per sample [38�,39,40]. EESI and

nanoEESI have been used to analyze small molecules in

urine, milk and polluted water and has a throughput of up

to 1.2 seconds per sample [38�,41]. LAESI has been

applied to analyze metabolites and lipids in body fluids

and tissue extracts with a sample throughput of 10 sec-

onds per sample [42,43]. Also, most platforms, except for

EESI, have already been commercialized for high-

throughput applications [38�,44,45]. Another important

technique, which is not based on ESI, is Direct Analysis

in Real Time (DART) and uses metastable species for

ionization. DART has been applied for metabolic finger-

printing of serum and can reach a throughput of 30 sec-

onds per sample [45–47].

Laser DI is another common direct analysis technique.

Since laser DI and ion extraction is very rapid (nanosec-

ond timescale) these techniques can be extremely high-

throughput. Matrix-Assisted Laser Desorption/Ionization

(MALDI) is the most widely used laser DI technique.

Here, analytes are co-crystallized with a matrix that

absorbs laser light and transfers the lasers energy to the

analyte [48��]. MALDI has primarily been used to ana-

lyze peptides, proteins and nucleic acids as abundant

matrix ions <1000 Da can obscure or interfere with small

molecule analysis. Due to advances in, for example, laser

beams and the application of novel matrices, matrix

interference can be minimized. MALDI has been applied

for e.g. the metabolic profiling of cancer cells, identifica-

tion of secondary metabolites in plant extracts, and dere-

plication of bacterial isolates [49–51]. Throughputs of

about 3 seconds per sample have been reported for

MALDI [52].

A wide-range of matrix-free, Surface Assisted Laser

Desorption/Ionization (SALDI) approaches have been

developed and have been reviewed in detail [53]. Many

of these can be performed using commercial MALDI
www.sciencedirect.com
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instruments. Major SALDI approaches include Desorp-

tion/Ionization on Silicon (DIOS), Nanostructure-Initia-

tor Mass Spectrometry (NIMS), and NanoPost Arrays

(NAPA). The majority of these approaches are based on

the direct laser desorption/ionization of analytes directly

from nanostructured substrates. DIOS has been used for

the analysis of metabolites in body fluids and enzyme

activity screenings [48��,54��]. NIMS is a unique ap-

proach based on using liquid initiators, which are coated

onto a nanostructured silicon surface [55]. An ionizing

laser heats the surface, which results in the explosive

vaporization of the trapped liquid coat as well as the

adsorbed analyte molecules from surface applied sam-

ples [48��]. NIMS has been used to analyze lipids and

xenobiotics in complex biological fluids, including saliva,

urine and blood, and for high-throughput enzyme activi-

ty screenings in cellular extracts [54��,55,56].
Figure 1
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Another matrix-free, desorption method is levitated drop-

let-MS [57]. This technique uses a laser for the ionization

and desorption of acoustically levitated droplets. Al-

though levitated droplet-MS has only been used to ana-

lyze small molecules in water, it seems a promising

technique for high-throughput metabolomics.

Since desorption/ionization is surface based and loading/

ejecting of plates takes several minutes, sample through-

put can be significantly increased by increasing the num-

ber of samples spotted onto the planar surface and on the

resolution and speed of the MALDI platform. By using

acoustic deposition, which is a contact-free liquid transfer

approach, we are able to spot 10 000 samples onto a NIMS

surface. Analysis using a standard MALDI platform at a

rate of �10 000 samples/day takes �13 h, and yields a

throughput of �5 seconds per sample [58��] (Figure 1).
(b)
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(a and b) and NIMS (c). (a) Schematic of the DESI source and (b) DESI

c of high-throughput NIMS screening (reprinted from [59]). Samples are
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Sample throughput vs metabolite coverage
High-throughput approaches usually improve sample

throughput at the expense of metabolite coverage. A

common drawback of high-throughput MS approaches,

for example, fast chromatography runs, direct infusion/

flow injection-based and SALDI-based methods is a

decrease in metabolite coverage (Figure 2). The coverage

of detected compounds in complex samples is decreased

due to sample matrix effects and incomplete resolution of

analytes with similar mass-to-charge ratios. As the me-

tabolites are co-ionized with the sample matrix, they

suffer from ion suppression due to competitive ionization

with the matrix components.

Ion suppression can be reduced by dilution of the sam-

ples, but this technique obviously lowers analyte concen-

trations and thus sensitivities [1]. Despite lower analyte

concentrations, Fuhrer et al. were able to detect hundreds

of metabolites in E. coli extracts using a high-throughput

FIE-MS method [36].

Removing sample matrix, using techniques such as solid-

phase extraction (SPE), liquid–liquid extraction (LLE)

and protein precipitation, can also reduce ion suppression.

Commercial platforms exist which couple DI/FIE-MS to

an online automated extraction. The Agilent RapidFire

platform couples SPE sample purification method with

FIE-MS in a single automated system, and is capable of

throughputs up to 5 seconds per sample [52]. The Rap-

idFire platform has mostly been used to analyze drug and

drug-like molecules in body fluids and in high-through-

put enzyme screenings [60,61]. Raterink et al. coupled an

automated LLE method with DI-MS and applied it to
Figure 2
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Schematic representation of sample throughput plotted against the

total number of metabolites detectable by each platform. Solid line

represents current throughputs of MS based platforms. Dashed line

represents future direction of ideal throughput vs. coverage. Bracketed

numbers indicate the respective references.
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detect drugs and lipids in human plasma [62]. However,

selectivity of the extraction method depends strongly on

the analyte. The wide range of polarities and chemical

diversity of metabolites poses a challenge for extracting

all metabolites or even all metabolites in a subset and

failure will provide a biased outcome and an incomplete

view of the present metabolites. As a consequence, ex-

traction methods are mainly applied when there is priori

knowledge of metabolite composition or when a specific

set of metabolites are targeted.

Microfluidics and MS
Microfluidics platforms provide a number of unique advan-

tages relative to conventional bench-top systems, includ-

ing reduced sample volumes, improved analysis speed and

better multiplexing [63,64��]. The coupling of microfluidic

devices to mass spectrometers is becoming more common

and will likely play an important role in the development of

high-throughput analysis systems. ESI has widely been

exploited as an ionization method for on-line microfluidic-

MS analysis, since it is compatible with low flow rates.

MALDI has also frequently been coupled to microfluidics,

as it allows for automated and high-throughput sample

preparation and deposition [63,64��]. Furthermore, sepa-

ration techniques can be miniaturized, enabling paralleli-

zation to increase analysis speed. Microchip-LC,

microchip-CE, microchip-IMS and micro-SPE have all

been coupled to MS and a commercial chip chromatogra-

phy-MS instrument is available [21�,65�,66�]. ESI based

approaches have been used for example, metabolomic

studies of E. coli and the analysis drug metabolites in urine

and MALDI based approaches have been used for exam-

ple, profiling hormone release from Islets of Langerhans

with sampling rates of 30 seconds (including deposition

onto MALDI plate) [67–70].

Besides the previously mentioned examples, most micro-

fluidic separation-technique and MS techniques have not

yet been applied to high-throughput metabolomics. With

the advantages of microfluidics, we anticipate that micro-

fluidic-based MS platforms will be able to analysis thou-

sands of metabolites at (ultra) high sample throughputs.
Figure 3
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Schematic drawing of a possible microfluidic devices for
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One could envision devices capable of massive parallel

sample separation using on-chip electrophoresis and/or

chromatography or devices with microscale cell culture

chambers and on-chip SPE for ultra high-throughput

(exo)metabolomics (Figure 3) [71,72�].

Conclusion
The growth of metabolomics as a field means that the

number of large-scale, multiplex and systems-wide stud-

ies will increase. This makes improving the throughput of

MS-based analytical methods highly desirable. Currently,

multiple MS-based platforms exist which are truly high-

throughput, capable of analyzing 1000–10 000 samples a

day, and which have been applied in a diverse range of

metabolomic studies. Due to the trade-off between me-

tabolite coverage and sample throughput, high-through-

put MS-based platforms are complementary to existing

high resolution, low-throughput separation-based MS

methods. Both methods will be needed to cover both

the metabolomic sample space and depth. With rapid

developments in microfluidic-MS, these platforms will be

able to bridge the gap between throughput and metabo-

lite coverage.
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