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Abstract

A computational  model  of  children's  semantic  memory  is
built  from  the  Latent  Semantic  Analysis  (LSA)  of  a
multisource  child  corpus.  Three  tests  of  the  model  are
described,  simulating a  vocabulary  test,  an  association  test
and a recall task. For each one, results from experiments with
children  are  presented  and  compared  to  the  model  data.
Adequacy  is  correct,  which  means  that  this  simulation  of
children's semantic memory can be used to simulate a variety
of children's cognitive processes.

Introduction
Models of human language processing are usually based on
a layer of basic semantic representations on top of which
cognitive  processes  are  described.  For  instance,  the
construction-integration  model  (Kintsch,  1998)  describes
processes that operate on a network of propositions. These
basic  representations can just be descriptions  of  what  the
human memory looks like, in order for the upper models to
be explicitly stated, but they can also be operationalized so
that the model can be tested on a computer. In the first case,
these representations are usually designed by hand, but this
method prevents large-scale simulations. 

This was the case with Kintsch's construction-integration
model  until  1998.  Before  that,  researchers  had  to  code
propositions by hand and guess relevant values to code the
strength of links between nodes. Then Kintsch (1998) used
the Latent Semantic Analysis (LSA) model (Deerwester et
al., 1990; Landauer et al., 1998) which provides a way to
automatically build these basic representations. This was a
major  step  since  the  construction-integration  processes
could then be tested on a large variety of inputs, while being
less dependent on idiosyncratic codings. Such a mechanism
for  automatically  constructing  basic  semantic  represen-
tations should be carefully designed and tested in order to
simulate as good as possible human semantic memory.

LSA is  nowadays  considered  as  a  good  candidate  for
modeling  an  adult  semantic  memory  based  on  a  large
corpora  of  representative  texts:  Bellissens  et  al.  (2002),
Kintsch (2000) and Lemaire & Bianco (2003) used it for
modeling metaphor comprehension; Pariollaud et al. (2002)
used  it  for  modeling  the  comprehension  of  idiomatic
expressions; Howard & Kahana (2002) relied on it to model
free recall and episodic memory retrieval; Laham (1997) did
the same for  modeling  categorization processes; Landauer

&  Dumais  (1997)  designed  a  model  of  vocabulary
acquisition  based  on  LSA;  Lemaire  &  Dessus  (2001),
Rehder et al.  (1998)  and Wolfe  et  al.  (1998) used it  for
modeling  knowledge  assessment;  Quesada  et  al.  (2001)
modeled complex problem solving by means of LSA basic
representations;  Wolfe  &  Goldman  (2003)  worked  on  a
model of reasoning about historical accounts based on LSA.
However,  to  our  knowledge,  no  computational  basic
representations  were  made  that  mimic  full  children's
semantic memory.

This  paper  aims  at  presenting such  a  model.  First,  we
present  LSA.  We  then  describe  our  corpus,  which  is
supposed to mimic the kind of texts children are exposed to.
Finally,  we  present  three  experiments  which  aim  at
validating the model. 

Latent Semantic Analysis

Basic semantic representations
There  are  many  ways  of  constructing  basic  semantic
representations that can be processed by a computer. The
first one is to build them by hand. Powerful formalisms like
description  logic  (Borgida,  1996)  or  semantic  networks
(Sowa, 1991) have been designed to accurately represent
concepts,  properties  and  relations.  However,  in  spite  of
huge efforts (Lenat, 1995), no full set of symbolic represen-
tations has been made that can be considered a reasonable
model of human semantic memory. Hand-coding semantic
information is tedious and, as we mention later,  symbolic
representations might not be the best formalism for that.

Another strategy is to rely on corpora to get the semantic
information.  Artificial  intelligence  researchers  have
designed  sophisticated  syntactic  processing  tools  for
automatically describing the  knowledge using the kind of
symbolic formalisms mentioned earlier. They usually refer
to them as ontologies or knowledge bases (Vossen, 2003).
However, in spite of great strides, this approach still cannot
be the means to form the basic semantic representations that
cognitive  researchers  need.  First,  it  cannot  be  fully
automatized,  except  for specific domains,  thus  preventing
complete  descriptions  of  the  language.  Second  and  quite
paradoxically, since the descriptions are quite elaborated, it
is very hard to design reasoning processes on top of them.
For instance, a simple process like estimating the degree of
semantic  association  is  very  hard  to  operationalize  on
complex structures like semantic networks. 
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Instead  of  relying  on  symbolic  representations,  a  third
approach  consists  in  (1)  analyzing  the  co-occurrence  of
words in large corpora in order to draw semantic similarities
and  (2)  relying  on  very  simple  structures,  namely  high-
dimensional  vectors,  to  represent  meanings.  In  this
approach, the unit is the word. The meaning of a word is not
defined per  se,  but  rather  determined by its relationships
with  all  others.  For  instance,  instead  of  defining  the
meaning of bicycle in an absolute manner (by its properties,
function, role, etc.), it is defined by its degree of association
to other words (i.e., very close to bike, close to pedals, ride,
wheel,  but  far  from  duck,  eat,  etc.).  This  semantic
information can be established from raw texts, provided that
enough  input  is  available.  This  is  exactly  what  human
people do: it seems that most of the words we know, we
learn by reading (Landauer & Dumais, 1997). The reason is
that most words appear almost only in written form and that
direct instruction seems to play a limited role. Therefore, we
would learn the meaning of words mainly from raw texts,
by  mentally  constructing  their  meaning  through  repeated
exposure to appropriate contexts.

Relying on direct co-occurrence
One way to mimic this powerful mechanism would be to
rely on direct co-occurrences within a given context unit. A
usual unit is the paragraph which is both computationally
easy to identify and of reasonable size. We would say that:

R1: words are similar if they occur in the same paragraphs.

Therefore, we would count the  number of occurrences of
each  word  in  each  paragraph.  Suppose  we  use  a  5,000-
paragraph  corpus.  Each  word  would  be  represented  by
5,000  values,  that  is  by  a  5,000  dimension  vector.  For
instance:

avalanche: (0,1,0,0,0,0,1,0,2,0,0,0,0,0,0,1,1,0,1,0,1,0,0,0,0,0,0…)
snow:    (0,2,0,0,0,0,0,0,1,1,0,0,0,0,0,0,2,1,1,0,1,0,0,0,0,0,0…)

This means that the word avalanche appears once in the 2nd

paragraph, once in 7th, twice in the 9th, etc. One could see
that, given the previous rule, both words are quite similar:
they co-occur quite often. A simple cosine between the two
vectors can measure the degree of similarity. However, this
rule does not work well (Perfetti,  1998; Landauer, 2002):
two words should be considered similar even if they do not
co-occur.  French  & Labiouse  (2002)  think  that  this  rule
might still work for synonyms because writers tend not to
repeat words, but use synonyms instead. However, defining
semantic  similarity  only  from  direct  co-occurrence  is
probably a serious restriction.

Relying on higher-order co-occurrence
Therefore, another rule would be:

R1*: words are similar if they occur in similar paragraphs.

This  is  a  much  better  rule.  Consider  the  following  two
paragraphs:

Bicycling is a very pleasant sport. It helps keeping a good
health.

For your fitness, you can practice bike. It is very nice and
good to your body.

Bicycling and  bike appear in similar paragraphs. If this is
repeated  over  a  large  corpus,  it  would  be  reasonable  to
consider  them similar, even if they never co-occur within
the  same  paragraph.  Now  we  need  to  define  paragraph
similarity.  We  could  say  that  two  paragraphs  would  be
similar if they share words, but that would be restrictive: as
illustrated in the previous example, two paragraphs should
be considered similar although they do not have words in
common  (functional  words  are  usually  not  taken  into
account). Therefore, the rule is:

R2: paragraphs are similar if they contain similar words.

Rules  1*  and  2  constitute  a  circularity,  but  this  can  be
solved by a specific mathematical procedure called singular
value  decomposition,  which  is  applied  to  the  occurrence
matrix. This is exactly what LSA does. To state it in other
words, LSA is not only based on direct co-occurrence, but
rather  on  higher-order  co-occurrence.  Kontostahis  &
Pottenger  (2002)  have  shown that  these  higher-order  co-
occurrences do appear in large corpora.

LSA  consists  in  reducing  the  huge  dimensionality  of
direct  word  co-occurrences to its  best  N dimensions.  All
words  are  then  represented  as  N-dimensional  vectors.
Empirical tests have shown that performance is maximal for
N  around  300  for  the  whole  general  English  language
(Landauer et al., 1998; Bellegarda, 2000) but this value can
be smaller  for  specific domains (Dumais, 2003).  We will
not describe the mathematical procedure which is presented
in  details  elsewhere  (Deerwester,  1990;  Landauer  et
al., 1998). The fact that word meanings are represented as
vectors  leads  to  two  consequences.  First,  it  is  straight-
forward to compute the semantic similarity between words,
which  is  usually  the  cosine  between  the  corresponding
vectors, although others similarity measures can  be  used.
Examples  of  semantic  similarities between  words  from a
12.6 million word corpus are (Landauer, 2002): 

cosine(doctor, physician) = .61
cosine(red, orange) = .64

Second, sentences or  texts can be assigned a vector, by a
simple weighted linear combination of their word vectors.
This is a powerful feature of a semantic representation to be
able  to  go  easily  from  words  to  texts.  An  example  of
semantic similarity between sentences is:

 cosine(the cat was lost in the forest, my little feline
disappeared in the trees) = .66

Modeling children's semantic memory

Semantic space
As we mentioned before, our goal was to rely on LSA to
define  a  reasonable  approximation  of  children's  semantic
memory. This is a necessary step for simulating a variety of
children cognitive processes.

LSA itself obviously cannot form such a model: it needs
to be  applied to a corpus. We gathered French texts that
approximately correspond to  what  a  child is  exposed  to:
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stories and tales for children (~1,6 million words), children's
productions (~800,000 words), reading textbooks (~400,000
words) and children's encyclopedia (~400,000 words). This
corpus is composed of 57,878 paragraphs for a total of 3.2
million word occurrences. All punctuation signs were ruled
out, capital letters were transformed to lower cases, dashes
were ruled out except when forming a composed word (like
tire-bouchon). This corpus was analyzed by means of LSA
and  the  occurrence  matrix  reduced  to  400  dimensions,
which appears to be an optimal value as we will see later.
The  resulting  semantic  space  contains  40,588  different
words. This step took 15 minutes on a 2.4 Ghz computer
with 2 Gb RAM. 

Tests
In  order  to  test  whether  this  semantic  space  can  be  an
acceptable  approximation  of  the  semantic  memory  of
children, we tested three features: its extent, its organization
and its  use. For each one, we relied on a specific task and
compared the data from the simulation of the task to data
obtained from children on the exact same task.

The  extent feature  has  to  do  with  the  size  of  lexical
knowledge.  Does  our  semantic  space  knows the  kind  of
words that a child knows? We used a vocabulary task for
that: given a word, the goal is to find the correct definition
from  four  of  them.  By  comparing  the  model  data  with
children's data at various ages, our goal is to approximately
identify the kind of children we are mimicking.

The  organization feature  concerns  the  way  words  are
associated to others in memory. Do we correctly mimic the
semantic  neighborhood  of  words?  The  task  we used  for
testing that feature is an association task :given a word, the
goal is to provide the most associated one. We will compare
children's association norms to association measures in the
semantic space. 

The use feature has to do with the way semantic memory
is used. Is our semantic space adequate enough so that it can
account for a process that uses it? We used a recall task for
studying the text  comprehension process which obviously
largely relies on semantic representations. 

These  three  experiments  cover  different  tasks  and
different  grain  sizes  of  language  entities,  from  words  to
texts: the first one consists of word comparisons, the second
one  compares  a  word  and  a  sentence  and  the  third  one
compares texts. We expect a good match between human
data and model data. In addition, we hypothesize that results
will  be  higher  with  our  children  corpus  than  with  adult
corpora.

Experiment 1
The first experiment, which aims at validating the model,
involves a vocabulary task. The design of  the material  as
well  as  the  experiments  with  children  were  realized  by
Denhière  et  al.  (in  preparation).  Material  consists of  120
questions,  each  one  composed  of  a  word  and  four
definitions:  the  correct  one,  a  close  definition,  a  far
definition and an unrelated definition. For instance, given
the  word  nourriture (food),  translations  of  the  four
definitions are:

- what is used to feed the body (correct);
- what can be eaten (close);
- matter which is being spoiled (far);
- letter exchange (unrelated).

Participants were asked to select what they thought was the
correct definition. This task was performed by four groups
of  children:  2nd grade,  3rd grade,  4th grade and  5th grade.
These  data  were  compared  with the  cosines  between  the
given word and each of the four definitions. For instance,
the  four  cosines  on  the  previous  examples  were:  .38
(correct),  .24  (close),  .16  (far)  and  .04  (unrelated).  116
questions  were  used  because  the  semantic  space  did  not
contain four rare words.

The first measure we used was the percentage of correct
answers.  Figure  1 displays  the  results.  The percentage of
correct answers is .53 for the model, which is exactly the
same value as the 2nd grade children. Except for unrelated
answers, the model data globally follow the same pattern as
the children's data. 

Figure 1: Percentage of answers for different types of
definitions

In order to compare our semantic spaces with adult semantic
spaces,  we  defined  a  measure  which  integrates  the  four
values.  We  used  a  d  measure,  which  is  a  normalized
difference  between  the  cosines  for  correct  and  close
definitions  together  and the  cosines for  far  and unrelated
definitions together. The higher this measure, the better the
result. Given a word W, four definitions (correct, close, far
and  unrelated)  and  a  global  standard  deviation  S,  the
formula is the following:

We also compared these results with several adult corpora,
in order to test whether our semantic space was specific to
children.  We  used  five  corpora:  a  literature  corpus,
composed of novels from the XIXth and XXth centuries and
four corpora from the French daily newspaper Le Monde, of
the years 1993, 1995, 1997 and 1999. Table 1 shows the
results.
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Table 1: Comparison between children's semantic space
and adult semantic spaces

Semantic space Size (in
million words)

Percentage of
correct answers

d

Children 3.2 .53 .69
Literature 14.1 .38 .52
Le Monde 1993 19.3 .44 .23
Le Monde 1995 20.6 .37 .21
Le Monde 1997 24.7 .40 .28
Le Monde 1999 24.2 .34 .25

In accordance with the previous experiment, the children's
semantic  space has the  better  results,  although  its size  is
much smaller.  Student  tests have shown that the  children
semantic  space  is  significantly  different  from  others
(p < .05) except for the percentage of correct answers when
compared to the Le Monde 1993 corpus (p < .1).

Experiment 2
This  second  experiment  is  based  on  verbal  association
norms  published  by  de  La  Haye  (2003).  Two-hundred
inducing  words  (144  nouns,  28  verbs  and  28  adjectives)
were proposed to 9 to 11-year-old children. For each word,
participants had to provide the first word that came to their
mind. This resulted in a list of words, ranked by frequency.
For instance, given the word cartable (satchel), results are
the following for 9-year-old children:

- école (school): 51%
- sac (bag): 12%
- affaires (stuff): 6%
...
- classe (class): 1%
- sacoche (satchel): 1%
- vieux (old): 1%

This  means  that  51% of the children answered the  word
école (school) when given the word cartable (satchel). The
two words are therefore strongly associated for 9-year-old
children. These association values were compared with the
LSA cosine  between word vectors:  we selected  the  three
best-ranked words as well as the three worst-ranked (like in
the  previous  example).  We  then  measured  the  cosines
between the inducing word and the best ranked, the 2nd best-
ranked, the 3rd best ranked, and the mean cosine between the
inducing  word  and  the  three  worst-ranked.  Results  are
presented in Table 2.

Table 2: Mean cosine between inducing word and various
associated words for 9-years-old children

Words Mean cosine with inducing word
Best-ranked words .26
2nd best-ranked words .23
3rd best ranked-words .19
3 worst-ranked words .11

Student  tests  show  that  all  differences  are  significant
(p < .03). This means that  our semantic space is not only

able to distinguish between the strong and weak associates,
but can also discriminate the first-ranked from the second-
ranked and the latter from the third-ranked.

Measure of correlation with human data is also significant
(r(1184 =.39,  p<.001).  Actually,  two  factors  might  have
lowered this result. First, although we tried to mimic what a
child has been exposed to, we could not control all word
frequencies within the corpus. Therefore, some words might
have occurred with a low frequency in the corpus, leading
to an inaccurate semantic representation. When the previous
comparison  was  performed  on  the  20%  most  frequent
words,  the  correlation  was  much  higher  (r(234 =.57,
p<.001).

The  second  factor  is  the  participant  agreement:  when
most children provide the same answer to an inducing word,
there is a high agreement, which means that both words are
very  strongly  associated.  However,  there  are  cases  when
there  is  almost  no agreement:  for  instance the  three  first
answers to the word bruit (noise) are crier (to shout) (9%),
entendre (to hear) (7%) and silence (silence) (6%). It is not
surprising that the model corresponds better to the children
data in case of a high agreement, since this denotes a strong
association that should be reflected in the corpus. In order to
select answers whose agreement was higher, we measured
their entropy. The formula is the following:

A low entropy corresponds to a high agreement and vice
versa.  When  we  selected  the  20% items with the  lowest
entropy, the correlation also raises (r(234)=.48, p<.001).

All these results show that the association degree between
words defined by the cosine measure  within the semantic
space  seems  to  correspond  quite  well  to  children's
judgement of association.

We also compared these results with the previous adult
semantic spaces. Results are presented in Table 3.

Table 3: Correlations between participant child data and
different kinds of semantic spaces

Semantic space Size (in million
words)

Correlation with
child data

Children 3.2 .39
Literature 14.1 .34
Le Monde 1993 19.3 .31
Le Monde 1995 20.6 .26
Le Monde 1997 24.7 .26
Le Monde 1999 24.2 .24

In  spite  of  much  larger  sizes,  all  adult  semantic  spaces
correlate worse than the children's semantic space with the
data of the participants in the study. Statistical tests show
that all differences between the child model and the other
semantic spaces are significant (p<.03). 

Experiment 3
The third experiment is based on recall or summary tasks.
Children were asked to read a text and write out as much as
they could recall, immediately after reading or after a fixed

entropy � item �����
answer

freq � answer � . log � 1
freq � answer � �
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delay. We used 7 texts. We tested the ability of the semantic
representations  to  estimate  the  amount  of  knowledge
recalled. This amount is classically estimated by means of a
propositional  analysis:  first,  the  text  as  well  as  the
participant production are coded as propositions. Then, the
number of text propositions that occur in the production is
calculated.  This  measure  is  a  good  estimate  of  the
knowledge  recalled.  Using  our  semantic  memory  model,
this  is  accounted  for  by  the  cosine  between  the  vector
representing  the  text  and  the  vector  representing  the
participant production.

Table  4  displays  all  correlations  between  these  two
measures. They range from .45 to .92, which means that the
LSA cosine applied to  our children's  semantic space is a
good estimate of the knowledge recalled.

Table 4: Correlations between LSA cosines and number
of propositions recalled for different texts.

Story Task Number of
participants

Correlations

Poule Immediate recall 52 .45
Dragon Delayed recall 44 .55
Dragon Summary 56 .71
Araignée Immediate recall 41 .65
Clown Immediate recall 56 .67
Clown Summary 24 .92
Ourson Immediate recall 44 .62
Taureau Delayed recall 23 .69
Géant Summary 105 .58

In an experiment with adults, Foltz et al. (1996) have shown
that LSA measures can be used to predict comprehension.
Besides  validating  our  model  of  semantic  memory,  this
experiment shows that an appropriate semantic space can be
used to assess text comprehension in a much faster way than
propositional analysis, which is a very tedious task.

Conclusion

A model of the development of children's semantic
memory
Our model is not only a computational model of children's
semantic  memory,  but  of  its  development.  Other
computational  models  of  human  memory  have  been
developed but some of them are based on inputs that do not
correspond to what humans are exposed to. They are good
models  of  the  memory  itself,  but  not  of  the  way  it  is
mentally constructed. In order to be cognitively plausible,
models of the construction of semantic memory need to be
approximately based on the kind of input to humans. 

LSA is such model. Its performance is similar to those of
human people. It  needs an input of  a  few million words,
which  is  comparable  to  what  humans  are  exposed  to
(Landauer  &  Dumais,  1997).  On  the  contrary,  PMI-IR
(Turney,  2001)  is  a  good model  of  semantic  similarities,
even  better  than  LSA in  modeling  human  judgement  of
synonymy,  but  it  is  based  on  an  input  of  thousands  of
millions of words, since it relies on all the texts published
on the web. This is of course cognitively unplausible. HAL

(Burgess, 1998) is another model of human memory. It is
quite  similar  to  LSA  except  that  it  does  not  rely  on  a
dimension reduction step. It is currently based on a corpus
of 300 million words, which is closer to the human inputs
than  PMI-IR,  although  this  could  be  considered  quite
overestimated.

Further investigations
Our  semantic  space  provides  a  means  for  researchers
studying  children's  cognitive  processes  to  design  and
simulate  computational  models  on  top  of  these  basic
representations. In particular, computational models of text
comprehension  could  be  tested  using  the  basic  semantic
similarities that the space provides. It would also be possible
to  investigate  the  development  of  semantic  memory  by
looking  at  the  evolution  of  various  semantic  similarities
according to the size of the corpus in detail. In particular,
Landauer & Dumais (1997) claim that we learn the meaning
of a word through the exposition to texts that do not contain
it.  Our  semantic  space  gives  the  opportunity  to  test  this
assertion by checking the kind of paragraphs that cause an
increase of similarity through incremental exposure to the
corpus. 

Improvements
Our semantic space could be improved in many ways. Its
composition (50% stories, 25% production, 12.5% reading
textbooks, 12.5% encyclopedia) is very rough and work has
to be done to better know the amount and nature of texts
that children are exposed to. Several studies led us to think
that lemmatization could significantly improve the results,
especially for the French language that has so many forms
for some verbs. We did perform the previous experiments
on  a  lemmatized  version  of  the  corpus  (using  the  Brill
tagger on the  French  files  developed  by ATILF,  and  the
Flemm  lemmatizer  written  by  Fiametta  Namer).  Results
were worse than with the non-lemmatized version. In order
to know more about this surprising result, we distinguished
between  verbs  and  nouns.  We  found  that  the  overall
decrease  is mainly due to a  decrease  for  the  nouns.  One
reason could be that the singular and plural forms of a noun
are not arguments of the same predicates. For instance, the
word vague (wave) is generally used in its plural form in the
context of the sea, but more frequently in the singular form
in its metaphorical meaning (a wave of success). Therefore,
if both forms are grouped into the same one, this affects the
co-occurrence  relations  and  modifies  the  semantic
representations.

Another way of  improvement  would have to  deal  with
syntax. LSA does not take any syntactic information into
account:  all  paragraphs  are  just  bags  of  words.  A slight
improvement would consist in considering a more precise
unit of context than a whole paragraph. A sliding context
window (like  in the HAL model for  instance) would take
into  account  the  local  context  of  each  word.  This  might
improve  the  semantic  representations,  while  being
cognitively  more  plausible.  We  are  working  in  that
direction.
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For  the  moment,  our  model  is  an  estimation.  We cannot
precisely identify to which age it corresponds. Our goal is to
stratify  it  so  that  we would  have a  model  for  each  age.
Developmental models would then be able to be simulated.
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