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To stabilize the combined pulse energy for coherent temporal pulse stacking using interferometer cavities, we have
developed a direct cavity phase measurement method based on analysis of the response to modulated probe
pulses. An experiment has demonstrated optical phase control within 50 mrad for four cavities, resulting in
a combination of 25 pulses with 1.5% root mean square stability over 30 h. © 2018 Optical Society of America

OCIS codes: (140.3298) Laser beam combining; (140.3510) Lasers, fiber; (140.3538) Lasers, pulsed.
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1. INTRODUCTION

Fiber lasers have demonstrated advantages in many applications
due to their superior efficiency, stability, and beam quality.
However, in high-peak-power applications, nonlinear effects
and optical damage limit the extractable energy [1]. Spatial
and temporal pulse combination [2] can overcome these lim-
itations, potentially leading to joule-level ultrafast pulses cur-
rently only available from bulk amplifiers with low repetition
rates. Fiber amplifiers could operate at higher average power,
providing kilohertz (kHz) repetition rates and >20% wall plug
efficiency, leading to a practical driver for future plasma wake-
field accelerators [3,4].

The chirped-pulse amplification (CPA) architecture has en-
abled large-core-area fiber lasers to produce ultrafast pulses with
0.1–1 mJ energy by stretching the short pulse to ∼1 ns to re-
duce peak power [5,6]. This is still only a fraction of the stored
energy that could be extracted if the pulses were tens or
hundreds of nanoseconds long [7].

Temporal coherent combination further extends the pulse
duration by assembling many pulses in a train passed through
the amplifier into one output pulse, which can then be com-
pressed. The divided-pulse amplification technique splits an in-
itial pulse into a train of pulses, then combines them after the
amplifier using beam splitters and free-space delay lines [8].
While this has been demonstrated to work [9], the optical com-
plexity of the scheme makes it difficult to combine ∼100
pulses, which would be required for full energy extraction.

To reduce the optical complexity, a novel concept has been
proposed that coherently combines pulses from a train in an
optical cavity and then extracts the energy with a mechanical
switch [10]. While the scheme is optically simple, the switch is

a significant challenge. Another concept uses passive Gires–
Tournois interferometers (GTI) to combine pulses from a spe-
cially phase-coded train [11,12], not requiring a switch. Large
numbers of pulses can be added by actively controlling the
pulse train phases and the interferometer cavity phases
[13,14]. Recently, a train of 81 pulses has been used to extract
∼10 mJ from a large-core fiber amplifier [15].

The pulse energy output from this GTI-based coherent
pulse stacking (CPS) scheme is sensitive to perturbations of
the applied phase modulation, oscillator amplitude, amplifier
gain, and alignment stability, among others. One of the main
parameters affecting stacking efficiency and thus output energy
is the cavity round-trip phase [7], which we address here.

In this paper, we introduce a direct cavity phase detection and
control method applicable to the GTI-based CPS scheme, which
we call modulated impulse response (MIR). In Section 2 we de-
scribe the CPS concept, showing how ∼100 pulses can be added
using a few optical cavities. Numerical simulation shows the effect
of cavity phase errors on the output pulse, motivating the develop-
ment of an active phase lockingmethod. In Section 3we introduce
theMIRprinciple andhow it is applied in anactive locking scheme.
In Section 4, we demonstrate the MIR method in a CPS experi-
ment, in which 25 equal-amplitude pulses are stacked into one,
using four cavities, for an energy enhancement of 18.4.

2. COHERENT PULSE STACKING AND OPTICAL
ROUND-TRIP PHASE

A. Pulse Stacking Concept Overview

The GTI-based CPS scheme stacks a series of phase-modulated
pulses into one, using a series of concatenated cavities. Each
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cavity is comprised of one low-reflectivity input–output mirror
and other high-reflectivity mirrors to form a cavity with a
round-trip delay equal to the pulse interval (or a multiple
thereof ), as shown in Fig. 1. Characterizing each pulse by
the complex electric field amplitude, we write the input pulse
as in and the output pulse as on. At the low-reflective mirror, the
input pulse in and the pulse in the optical cavity cn interfere to
form two pulses on and c 0n, which go to the output and back
into the cavity, respectively.

Assuming the interference is lossless, the two pulses on
and c 0n are related to the cavity pulse cn and input pulse in
according to �

on
c 0n

�
�

�
r it
it r

��
in
cn

�
, (1)

where r and t are the mirror field reflection and transmission
coefficients (r2 � t2 � 1), and the reflectivity R � r2. Here,
the resonator operates as a delay line. A pulse in the cavity after
one round-trip can be written as

cn � αejΦcav · c 0n−1, (2)

where α is the amplitude loss per round-trip and Φcav is the
optical round-trip phase. The optical round-trip phase deter-
mines whether the interference is constructive or destructive.
Figure 1 gives an example showing that when Φcav � π

2
, an

amplitude- and phase-modulated burst of four pulses can be
stacked into one high-intensity pulse.

By combining Eqs. (1) and (2), the output pulse electric
field on can be expressed as a difference function of in,

on − rαejΦcav · on−1 � rin − αejΦcav · in−1: (3)

Using concepts from digital signal processing [16], we modeled
the optical cavity. Since stacking occurs on the nanosecond
scale, r and Φcav can be taken as constant during the process.
Another assumption is that initially there is no energy stored in
the cavity. Under these conditions, the interferometer can be
modeled as a linear, time-invariant (LTI) filter, defined
by Eq. (3).

In this paper we consider equal-amplitude pulse bursts as
input pulses, which minimize peak power (the analysis is also
valid for unequal-amplitude trains, which may be needed for
maximum energy extraction in a saturating amplifier). We
define the energy enhancement factor as the output pulse

intensity divided by the intensity in each pulse in the train,
κ � O0∕I 0. While the energy enhancement for a single cavity
is about 2.5, higher enhancement can be achieved using
sequences of optical cavities [11], as shown in Fig. 2.

Given a numberM of concatenated cavities of equal length,
the number of pulses N that can be stacked into one using
these cavities is

N � 2M � 1: (4)

In addition, the relative phases of the pulses in the train and the
round-trip phases of the cavities need to be specified and
controlled [7,11].

Table 1 lists a number of optimized equal-amplitude
stacking sets with different numbers of cavities.

To extract all the energy in a fiber amplifier while maintain-
ing low nonlinearity, about 100 pulses (each stretched to 1 ns)
will be needed. If the stacker were comprised of only one size of
cavity, Eq. (4) predicts that 50 cavities would be needed, which
is not practical.

Instead, we can cascade several sizes of sequences of cavities,
thereby multiplying the enhancement factor [7,11,12].
Figure 3 shows a cascaded, two-stage stacking scheme, with
two short cavities in stage one and two longer cavities in stage
two, in which 25 equal-amplitude pulses can be stacked into
one pulse. In the first stage, the cavity length is one pulse
period, and groups of five pulses are stacked, producing five
pulses from the 25, separated by five pulse periods. In stage
two, the cavities are five times longer, stacking the five pulses
from stage one into one final output pulse. We call this a 2� 2
stacker to identify the cavity arrangement. There are various
stacking schemes to combine about 100 pulses into one; three

Fig. 1. GTI optical cavity used for coherent pulse stacking. Four
pulses with appropriate phase modulation are stacked into one pulse
when Φcav � π

2.
Fig. 2. Sequence of M cascaded pulse stackers combining
N � 2M � 1 pulses into one high-intensity pulse.

Table 1. Energy Enhancement with an Increasing
Number of Optical Cavitiesa

M N Enhancement (κ) Reflectivity (R)

1 3 2.61 [0.39]
2 5 4.66 �0.42, 0.51�
3 7 6.62 �0.48, 0.55, 0.63�
4 9 8.72 �0.52, 0.54, 0.62, 0.68�
5 11 10.7 �0.53, 0.54, 0.57, 0.64, 0.72�

aThe optimized mirror reflectivity values R are also listed.
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examples are listed in Table 2. The two-stage, 4� 4 scheme
has been investigated at the University of Michigan [7,13],
while at Lawrence Berkeley National Laboratory (LBNL) we
explored a three-stage, 2� 2� 2 scheme. While efficiency and
pre-pulse suppression are worse with the latter scheme, it uses
fewer cavities to achieve a higher enhancement.

We can compare cascaded multi-stage CPS schemes with
the divided-pulse amplification (DPA) scheme [9,17,18], for
a combination of about 100 pulses. In DPA, the number of
delay lines k needed to stack, for instance, 128 pulses would
be log2 128 � 7. The longest delay line would be 2k−1 � 64
times the pulse period. By contrast, cascaded CPS can stack
125 pulses using six cavities, the longest of which is 25 pulse
periods, or stack 81 pulses with eight cavities no longer than
nine pulse periods. With smaller cavities, cascaded CPS has a
smaller footprint.

B. Pulse Stacking Stability versus Cavity Phase Error

Random variations of the cavity phases due to thermal or
mechanical perturbations will strongly impact the stacking per-
formance. As shown in Fig. 4, phase offset (error) of one cavity
in a cascaded-cavity stacking set will decrease the enhancement
factor, and the effect is worse for larger numbers of cavities as

the phase bandwidth narrows. A 0.3 radian phase error in an
optical cavity will drop the enhancement by about 20% in a
four-cavity stacking set, while the drop will be only 5% for
a single-cavity stacker. Thus, all the cavities need to be well
controlled in phase, with the requirements becoming more
stringent when using multi-cavity cascades.

The cavity phase control accuracy determines the phase
noise level during operation, affecting stacked output pulse en-
ergy stability, which we describe as an root mean square (RMS)
percentage.

We used numerical simulations to analyze the phase
dependence of the stacked pulse stability by corrupting the cav-
ity phase values with Gaussian-distributed noise and deriving
statistics from 2000 calculations. Both one-stage stacking and
cascaded multi-stage stacking were analyzed.

Figure 5(a) shows the energy stability versus cavity phase
error per cavity in single-stage stacking sets, which have differ-
ent numbers of optical cavities with the same optical length.
Output pulse energy stability deteriorates at a rate of σ2ϕ with
increasing phase error. In addition, this effect worsens as the
number of cavities increases, increasing as M 1.6, where M is
the number of cavities. Since the energy enhancement is linear
with M , the overall phase sensitivity increases faster than the
enhancement. A four-cavity stacking set will have about 1.9
times the enhancement of a two-cavity set, but almost 3 times
the stacked pulse instability, given the same phase noise level
per cavity. The increasing noise sensitivity as more cavities are
added is due to the narrowing phase bandwidth as shown
in Fig. 4.

For multi-stage, cascaded stacking arrangements with differ-
ent length cavities, simulations show that noise sensitivity
does not increase significantly when more stages are added.
Figure 5(b) shows the stacked pulse energy stability of a two-
stage scheme with two cavities per stage, versus cavity phase
noise in each stage. Stage one and stage two perform the same
function but on different sets of pulses (every pulse versus every
fifth pulse). So their phase bandwidths are independent, and
the noise sensitivity of one stage does not depend on the other.
Both stages need to be controlled but not more precisely than

Table 2. Comparison of Three Kinds of Optimized
Cascaded Multi-Sage Stacking Schemes

Cavity Set Cavity Length Pulse Number Enhancement

4� 4 �1× , 9×� 81 77.4 (18.9 dB)
2� 2� 2 �1× , 5× , 25×� 125 100.2 (20.0 dB)
4� 2� 1 �1× , 9× , 45×� 135 108.1 (20.2 dB)

Fig. 3. Multiplexed 2� 2 stacking schemes. The optical cavity in
stage two is 5× as long as in stage one; 25 pulses can be approximately
stacked into one pulse with enhancement over 20.

Fig. 4. Normalized enhancement versus single-cavity phase offset.
Stacking sets with different numbers of cavities are compared. Only
one optical cavity is offset from the exact value in this simulation.
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one stage by itself. For example, if the output energy stability
must be 1%, the RMS phase noise has to be controlled within
60 mrad in both stages, which is about the same for a single-
stage, two-cavity set with 1% output stability, as shown in
Fig. 5(a). At our wavelength of 1064 nm, 60 mrad corresponds
to 10 nm of cavity length or ∼2 nm of mirror position
drift. Thus, all cavity lengths must be controlled to nanometer
(nm)-level accuracy to achieve ∼1% stability.

3. MODULATED IMPULSE RESPONSE PHASE
DETECTION

A. Phase Control Method Overview

Several cavity phase locking schemes are possible and have been
implemented. The initial proof-of-principle coherent pulse
stacking demonstration [11] used Pound–Drever–Hall
(PDH) locking [19], which results in a simple control method
but added optical complexity. A less optically complex scheme
is based on the stochastic parallel gradient descent (SPDG)
algorithm [20], which uses a single peak power detector to

measure the output pulse energy, while adjusting the cavity
phases by the SPDG algorithm to maximize the stacked signal
energy [7,21]. However, the SPGD algorithm requires an
initial search procedure to find the approximate cavity phase
values from which the SPGD algorithm can converge to the
maximized stacked energy. Furthermore, since it maximizes
the actual stacked signal, the feedback rate cannot exceed
the stacking pulse burst repetition rate, which at high energy
operation is typically between 1 and 10 kHz.

We have explored a different scheme, which directly mea-
sures each cavity’s round-trip phase using modulated probe
pulses. In this scheme, one detector is added after each cavity,
capturing a small portion of light for optical phase detection.
For each cavity, a control loop is implemented to lock the cavity
phase to any prescribed value, and therefore there is no need for
an initial search. This control scheme is scalable to multiple
cavities, and modulated probe pulses can be interleaved with
the stacking pulse burst in the time domain. Because of this,
the feedback rate can be much higher than the stacking pulse
burst repetition rate. To derive the cavity phase from probe-
burst responses, we have developed a novel cavity phase detec-
tion method, which we call “modulated impulse response”
or MIR.

B. Modulated Impulse Response Principle

As described in Section A, the pulse stacker can be modeled as a
digital filter. Assuming a lossless cavity where α � 1, the
impulse response, using Eq. (3), can be written as

on � rn�1ejnϕu�n�, (5)

where u�n� is the unit step. The output pulse phase term ejnϕ is
related to the cavity phase, but this cannot be directly measured
from the impulse response. In order to transform the phase
term into an easily measured amplitude signal, we introduce
a probe pulse burst consisting of two equal amplitude pulses,

in � δ�n� 1� � δ�n�ejθ, (6)

where δ�n� is the unit impulse function, and θ is the phase dif-
ference between the two pulses. Using Eq. (3), we can derive
the resultant output pulses. The first output pulse is simply a
reflection, o−1 � r, which will remain constant asΦcav changes.
The second output pulse will be

o0 � rejθ − �1 − r2�ejϕ, (7)

which can be used to observe the cavity phase.
The intensity of the second pulse O0 � jo0j2 is

O0 � �1 − r2�2 � r2 − 2r�1 − r2� cos�ϕ − θ�, (8)

which is a cosine function of the cavity phase. If π
2 is added to

the relative phase between the two pulses in the probe pulse
burst,

in � δ�n� 1� � δ�n�ej�θ�π
2�, (9)

the second output pulse will be

o0 �
�
rej�θ�π

2� − �1 − r2�ejϕ
�
: (10)

The intensity can be written as

O0 � �1 − r2�2 � r2 − 2r�1 − r2� sin�ϕ − θ�, (11)

Fig. 5. Calculated stacked pulse energy stability versus cavity phase
noise level per cavity in (a) sequence of one-stage stackers and (b) con-
tour plot of stability percentage in a cascaded 2� 2 pulse stacking
scheme. The horizontal and vertical axes are the RMS cavity phase
error.
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which is a sine function of the cavity phase. As shown in
Fig. 6(a), one can define the first two-pulse burst as the
“in-phase” probe and the second two-pulse burst with π

2 phase
modulation as the “quadrature” probe, while their respective
second output pulses are the in-phase and quadrature response
pulses. Thus, we have in-phase and quadrature intensity signals
to reconstruct the optical phase angle.

Figure 6(b) relates the in-phase and quadrature response to
the cavity phase, describing a circle as these values co-vary, with
the angle with respect to the in-phase axis being ϕ − θ. Since
the phase is derived from a variation of the impulse response
using a modulated probe, the method can be called “modulated
impulse response.”

C. MIR Detection for Multi-Stage Cascaded
Coherent Pulse Stacking

One can extend the MIR concept to measure cavity phases in
multi-cavity systems. The first cavity in a stage can be measured
as described in the previous section. The second cavity can be
measured using the first two output pulses from the in-phase
and quadrature responses of the first cavity, as is shown in
Fig. 7. In this case, the pulses incident on the second cavity
will not have equal amplitude or the same set of relative phases
as the first probe pulse bursts. In general, we can write the two
incident probe pulses as

in � δ�n� 1� � kδ�n�ejθ: (12)

The intensity of the second response pulse from the cavity
will be

O0 � �1 − r2�2 � k2r2 − 2kr�1 − r2� cos�ϕ − θ�, (13)

where k and θ are functions of previous cavity phases.
Assuming that these previous cavities are constant because
the previous cavities are well-controlled sequentially, one can
write the intensity of the second response pulses OI and OQ as

OI � A� B cos�ϕ − θ1�, (14a)

OQ � C � D cos�ϕ − θ2�, (14b)

where θ1 and θ2 remain constant, and B and D are the range
values Max−Min

2
of OI and OQ as ϕ varies. One then derives the

cavity phase from

2 cos

�
θ1 − θ2

2

�
cos

�
ϕ −

θ1 � θ2
2

�
� DOI � BOQ − K 1

BD
,

(15a)

−2 sin

�
θ1 − θ2

2

�
sin

�
ϕ −

θ1 � θ2
2

�
� DOI − BOQ − K 2

BD
,

(15b)

where K 1 � AD� BC and K 2 � AD − BC . Thus, we still
can get the cos�ϕ − θ� and sin�ϕ − θ� values for the subsequent
cavities, extending the phase detection to all cavities in a stage,
by measuring the second response pulse in two cases.

In a multi-stage cascaded stacking scheme, there are
different cavity lengths associated with each stage. For example,
in the 2� 2 stacking scheme of Fig. 3, there are two one-pulse-
period-long cavities in stage one, and two five-pulse-period-
long cavities in stage two. For each stage, the MIR method re-
quires that the time interval between the pulses in the probe
pulse burst is equal to the cavity round-trip time. Thus, there
are two kinds of phase probe bursts, with either one pulse
period or five periods between pulses, and these probes are sent
at different times.

The accuracy of the MIR phase measurement depends on
the accuracies of determining OI and OQ . The cavity phase
error depends on the error in measuring these intensities to

δϕ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
pI
δOI

B

�
2

�
�
pQ

δOQ

D

�
2

s
, (16)

Fig. 6. In-phase response versus quadrature response at a single cav-
ity, and resultant phase plot.

Fig. 7. In-phase and quadrature responses at cascaded, multi-cavity
stackers.
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where pI and pQ are phase-dependent parameters. We have
pI � pq � 1 when θ1 and θ2 have a π

2
phase difference.

Better signal-to-noise ratios in the intensity measurements lead
to better phase measurement accuracies. In addition, a higher k
value in Eq. (12) will also improve the phase accuracy by in-
creasing the intensity range values B and D in Eq. (16). Higher
k values for subsequent cavities can be optimized by tuning the
θ values in Eqs. (6) and (9), allowing optimized accuracy for the
stage overall, preventing unfortunate values of θ from harming
the measurement accuracy for certain cavities.

D. MIR Implementation on a FPGA

The MIR phase detection method has been successfully imple-
mented on a field-programmable gate array (FPGA) [16].
These devices can process signals with much lower latency than
a computer and can therefore implement complex control al-
gorithms with more bandwidth and better noise suppression.
Since the pulse duration in the experiment is shorter than the
photodiode detector impulse response, we measure pulse
energy, integrating in both space and time. Calculations of
intensity are thus validated by measurements of energy with
photodiode detectors, since beam size and pulse duration on
the photodiode are constant during the experiment.

The measurement procedure involves three steps. First,
pulse energy values are acquired at a high repetition rate
and averaged to reduce wideband electronic amplifier noise.
Three pulses are measured: the first reflected pulse is O−1, used
as a reference, and the other two pulses are OI and OQ . The
second step is to calculate the I component cos ϕ and Q com-
ponent sin ϕ based on Eq. (15). In the third step, the cavity
phase is retrieved using these values. Using an FPGA, the phase
can be determined within one microsecond, enabling
high-speed control.

In principle, the coefficients A, B, C , and D in Eq. (15) can
be directly derived based on Eq. (11), but experimental
calibration of the pulse energy measurements can help improve
accuracy by correcting constant errors. Figure 8 shows an ex-
ample of calibration results. In this procedure, input and out-
put energies are monitored, while the cavity phase is swept by
continuously varying the voltage on the piezoelectric posi-
tioner. The A, B, C , and D values can be then corrected based
on these curves.

Figure 9 shows the measured phase of one cavity as the
phase is continuously varied by sweeping the piezo voltage.
Detection resolution is about 4 mrad, determined mainly by

the source laser amplitude noise and electronic noise in
amplified photodiodes.

An example of the usefulness of high-speed phase detection
is shown in Fig. 10, where a piezo-actuated cavity mirror is
“pinged” with a step function, and the step response is deter-
mined by measuring the cavity phase directly. With this data,
we can derive the complex response function of the mirror and
design the control loop to optimize gain. Currently, the
actuated mirror bandwidth is about 1.8 kHz, based on these
measurements.

4. EXPERIMENTAL DEMONSTRATION

A. Experimental Setup

We demonstrated our MIR control scheme using a two-stage,
2� 2 (25 pulse) arrangement of cavities, part of a planned 2�
2� 2 (125 pulse) stacker we are developing. The optical sys-
tem is shown in Fig. 11. A semiconductor saturable absorber
mirror (SESAM)-mode-locked Nd:Yag laser was the pulse
source, producing 1064 nm, 10 ps pulses at 400 MHz. The
output was coupled into fiber and modulated in amplitude and
phase using LiNbO3 waveguide modulators. The modulated

Fig. 8. Actual experimental calibration data of OI and OQ based on
Eq. (15).

Fig. 9. Phase readout data while sweeping the cavity phase using the
piezo controller.

Fig. 10. Time-resolved step response measurement of a cavity with
step applied to the piezo controlled mirror.
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light emerged into free space and was directed into Herriott
cell cavities consisting of concave mirrors, which exhibit phe-
nomenal stability due to their ability to relay a complex input
amplitude to the output [22]. For certain values of mirror radii
and spacing, an input laser beam was reproduced at the output,
with the same position, angle, beam size, and divergence, en-
abling efficient interference at the interferometer input mirror.
Furthermore, this relay function is insensitive to misalignment
of the mirrors, as long as the beam remains in the cavity.

The two lengths of cavity were designed differently. In the
short, one-pulse-period ( 1×) cavity, a 50% beam splitter cube,
acting as the input/output low-reflectivity mirror, was placed
between concave mirrors spaced by their radius, resulting in
two bounces on each mirror. For the longer, five-pulse-period
(5×) cavity, a similar optical design was effectively folded at a
flat mirror at the center of the cavity, so that the actual cavity
consisted of one curved mirror and one flat, with a quarter of
the flat mirror coated for 50% reflectivity (the input/output
surface), and the rest of it high-reflecting. There were four re-
flections of the beam per mirror, with the round-trip being 8
times the mirror spacing, resulting in a compact arrangement.
There is one photodiode for each cavity, detecting the optical
phase via the MIR method.

B. Time-Multiplexed Control With FPGA

An FPGA-based data-acquisition system was developed for the
stacking experiment, with two high-speed (1 GHz) analog to
digital converters (ADCs) and two digital to analog converters
(DACs) [16] with the data flow as shown in Fig. 12. The fast
DACs controlled the amplitude and phase of each pulse in the
train, while the resultant pulse energies sensed by photodiodes
were read by the two fast ADCs. We multiplexed six pulse
signals onto the two ADCs using analog switches controlled
by a set of slow DACs, which also controlled the piezo actuators
in the cavities. The FPGA was clocked at the mode-locked
oscillator repetition rate.

Probe pulse bursts to address the short and long cavities
were generated by the high-speed, electro-optic amplitude
and phase modulators. In a practical amplifier system, the out-
put pulse repetition rate is limited by the energy storage time in
the amplifier medium, if maximum energy is required, which

leads to 1–10 kHz repetition rates for Yb-doped fiber. Cavity
phase detection could be done at higher rates to fully suppress
acoustic noise, avoiding bandwidth limits otherwise imposed
by the main pulse repetition rate. In addition, test pulses were
used to sense the amplitude modulator bias point to maintain
maximum extinction. Thus, we multiplexed probe and stacking
pulse trains, in addition to other test pulses, as shown
in Fig. 13.

Multiple pulse bursts occupied different time segments,
occurring at different repetition rates. Some of the interleaving
was to allow time to switch different sensors into the two fast
ADCs. The stacking burst operated at 6.6 kHz, the stage-one I
and Q probe bursts operated at 20 kHz, and the stage-two
probe bursts operated at 80 kHz. With a typically 5 μs interval
between bursts, all optical energy from the previous burst was
gone before the next burst appeared.

C. Cavity Optical Phase Locking

All the cavity round-trip phases in our experiment were mea-
sured, and control loops were implemented to maintain stable
optimization of each cavity. The control loops were operating at
1.2 KHz. Figure 14(a) compares the noise spectrum of a 1×
short cavity when the control loop was open and when it
was closed (i.e., locked to a specified value). Figure 14(b) shows
the same comparison for a 5× cavity. Below 1 Hz, thermal drift
was dominant, while above 1 Hz, air turbulence and acoustic
noise were the main perturbations. Above 500 Hz, oscillator
amplitude noise and electronic amplifier noise were the primary
sources. Acoustic and thermal perturbations were larger for the
longer cavity.

The air turbulence was significantly reduced by enclosing
the optical cavities into either boxes or tubes, and the acoustic
noise was reduced somewhat by floating the optical table.
Measurements of oscillator amplitude/phase noise and adjust-
ments of the oscillator cavity indicated that some large noise
features, such as the peak at 140 Hz, were due to this source.
This interpretation was supported by the fact that this peak
contributed 5 times as much to the 5× cavity noise (25 mrad)

Fig. 11. 2� 2 stacking experiment setup, showing the pulse burst
source and two stacking stages.

Fig. 12. Data flow in the CPS controller.

Fig. 13. Time multiplexing of multiple pulse bursts, occurring at
different repetition rates.
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as it did to the 1× cavity noise (5 mrad), and we observed that
the 140 Hz noise peak magnitude changed when we tuned the
oscillator cavity mirror.

The control loops were operating at 1.3 kHz, which indi-
cated that the unity gain bandwidth should be around 130 Hz.
However, the oscillator intensity noise and photodiode ampli-
fier electronic noise led to a high noise floor, which intersected
the approximately 1∕f phase noise at low frequencies. Probe
pulses were produced and analyzed at a repetition rate of as high
as 80 kHz, allowing high-frequency noise to be averaged down
with digital filters in the FPGA firmware. While the noise floor
was reduced, it was still large enough to intersect the phase
noise at around 10 Hz. Even with this bandwidth limitation,
we were able to control the 1× cavity to within 15 mrad and the
5× cavity to within 35 mrad. If these were the only sources of
noise on the stacked pulse energy, this would be enough to
guarantee far less than 1% stability, according to Fig. 5(b).

D. Stacking Result and Stability

The MIR phase control method was used to demonstrate stack-
ing of 25 pulses in the 2� 2 arrangement. The initial target
values for cavity phase were based on numerical simulation, but
an optimization loop was also operating at 0.05 Hz to adjust
these set-point values to maximize output pulse amplitude. A
16-bit sampling scope (Keysight 86100D) was used to monitor
the stacked output pulses and input pulses, as shown in Fig. 15.
In that figure, ringing in the photodiode contributes to
post-pulse amplitude after the main pulse.

Energy enhancement of 18.4 was achieved, compared with a
theoretical value of 21.5. Stage one operated best, generating
five pulses cleanly, but the second stage exhibited large pre-
and post-pulse amplitudes, decreasing the stacking efficiency.
We had observed during alignment that the intra-cavity pulses
in the long cavities were not superimposed, preventing efficient
interference, and subsequent measurements confirmed that the
mirror radii were off by about 3% from their optimum value.
This, we believe, is the main limitation to efficiency in the
second stage.

The short-term output stability was measured to be 1.1%
over 1 Hz to 3.3 kHz, as shown in Fig. 16, reading the blue
curve and its integral. As mentioned previously, the cavity phase
noise performance implied that the stacked pulse stability
should be better than this, as indicated by the green curve
and its integral, where the phase noise data was used to numeri-
cally predict the stacked pulse amplitude. When we superim-
posed the laser power noise spectrum, it appears that most of
the observed stacked pulse energy noise was due to that. The
main contribution of the phase noise was at 140 Hz, where
oscillator phase noise dominated both measurement and final

Fig. 14. Phase noise spectrum comparison of (a) 1× cavity and
(b) 5× cavity between open-loop and closed-loop cases.

Fig. 15. The 25-pulse stacking experimental result. The output
(blue curve), stage-two input (green curve), and stage-one input
(red curve) are compared.

Fig. 16. Stacked pulse energy noise spectrum (blue curve) is com-
pared with the laser pulse energy stability (red curve) and the spectrum
derived from cavity phase errors (green curve). The integrals based on
the blue curve and green curve are also shown.
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output processes. We can say that the cavity phase noise has
been reduced to a point where it is not the main issue.

Long-term stability is shown in Fig. 17, where the output
stability was maintained to 1.5% for 30 h, and the phase noises
of the four cavities were kept well below 50 mrad during this
time. The RMS phase noise of the second cavities in each stage
was stronger than the noise of the first cavities. This was be-
cause within each stage, the second-cavity phase probe pulse
measurement was slightly modified by the noise in the previous
cavity, making the second-cavity RMS phase noise larger than
the first. In addition, the 5× cavities were noisier than the 1×
cavities because 5× cavities were more easily affected by envi-
ronmental perturbations and they were more sensitive to oscil-
lator phase noise. As interferometers, the longer cavities are a
more stringent measurement of the oscillator coherence length.

5. CONCLUSIONS

We have described a novel method of interrogating optical
cavities used for temporal pulse addition, using a sophisticated
variation of impulse response measurement. Because measure-
ments are made of each cavity in parallel, the data acquisition
time does not increase with the number of cavities, enabling
high bandwidth control of complex temporal stacking systems
as well as individual characterization of the noise from each
cavity. The method can be implemented in an FPGA, provid-
ing high-speed detection and correction, resulting in megahertz
(MHz) measurement rates. This method can be extended to
any number of cavities by increasing the number of channels
of data processing hardware.

A demonstration of the MIR cavity phase measurement
method has shown that it can be used to measure and control
four stacking cavities and can provide much less than 1–1.5%
short- and long-term stability of the resultant stacked pulse.

This method is an effective way to control temporal
combination in high-intensity ultrafast fiber.

Funding. U.S. Department of Energy (DOE) (DE-AC02-
05CH11231).
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