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ABSTRACT OF THE DISSERTATION
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Professor Donatello Telesca, Chair

Many modern biomedical studies record vast amounts of data on individual subjects. The

observed data may often be conceptualized as arising from an underlying smooth stochastic

process after discretization and contimation with noise. Data in this form may exhibit

multidimensionality and complex structural features. For example, electroencephalography

(EEG) records electrical activity in the brain over continuous time. Repeated trials of

cognitive tasks in EEG experiments induce longitudinal and and functional dimensions,

complicating estimation and inference.

Regularized estimation and rigorous uncertainty quantification is highly sought after in

these settings. In this dissertation I leverage techniques from factor analysis, probabilistic

principal components analysis, and Gaussian processes (GPs) in the Bayesian paradigm.

These techniques are crucial to achieve simultaneous flexible estimation and adaptive regu-

larization. Model performance and calibration is assessed through a series of numerical ex-

periments. The proposed methods are applied to analyze a wide variety of biomedical data,

including cognitive EEG experiments, global age-specific fertility rates, and sleep EEG.
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CHAPTER 1

Introduction

High-dimensional data is commonly measured over continuous domains such as time or space

in fields such as public health, medicine, environmental science, and biomechanics. These

data may be conceptualized as realizations from an latent smooth stochastic process, after

discretization and noise contamination. The simplest examples of functional are random

curves defined over a one-dimensional compact interval. More generally, functional data

may be (1) multidimensional, so that each latent function is a member of Rp, and (2) highly

structured, where correlated functional data arises from individual sampling units. One

such example is longitudinal functional data, where units have repeated functional responses

over longitudinal time. Interpretation, regularization, and uncertainty quantification become

challenging in this setting. A related problem in functional data analysis (FDA) is the notion

of covariance regression. The covariance function is a central object in many applications

with functional data. However, most applications assume the covariance function does not

depend on exogenous covariates. Covariance regression allows exogenous covariates to impact

second order dynamics, quantifying heterogeneity of functional responses. A third challenge

in functional data is assessing model adequacy in structured settings. The ensuing chapters

address these challenges in FDA. To guide the reader through the statistical aspects of this

work, I will review five key areas: FDA, Gaussian processes, multidimensional and structured

functional data, covariance regression, and pivotal discrepancy measures.
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1.1 Functional Data Analysis

Consider a collection of real-valued functions, X1(t), . . ., Xn(t) defined on a compact in-

terval t ∈ T with Xi(t) ∈ l2. These random functions have an overall population mean,

µ(t) = E(Xi(t)), and within-function dependency quantified by c(t, t′) = Cov(Xi(t), Xi(t
′)).

Functional data is similar to longitudinal data, where t could index longitudinal time. How-

ever, in contrast to longitudinal data analysis, FDA treats each entire random function as

a single unit of information. Furthermore, estimation of quantities such as µ(t) or c(t, t′)

often is completed in a nonparametric framework, taking advantage of the rich information

embedded in each Xi(t).

In the real world, one only observes discrete realizations of Xi(t), potentially contam-

inated with noise. One such data-generating process is Yi(t) = Xi(t) + εi(t), where t ∈

{t1, . . . , tn}, εi(t) represents noise, and Yi(t) is the actual observed data. Various techniques

have been proposed to bridge this gap between Xi(t) and Yi(t) [Wang et al., 2016, Yao

et al., 2005]. One particularly effective strategy is hierarchical modeling through functional

principal components analysis (FPCA). Similar to principal components analysis (PCA),

FPCA serves to (1) reduce the instrinsic dimension of the data and (2) extract interpretable

features. Much of the work in this dissertation has strong connections with FPCA, so we

review it here.

1.1.1 Functional Principal Components Analysis

FPCA is the most popular core technique in FDA [Wang et al., 2016]. FPCA expresses the

random functions Xi(t) as linear combinations of orthogonal basis functions. This orhogonal

basis is considered optimal because it explains more variation than any other basis for a fixed

number of basis functions. FPCA is owed to Mercer’s theorem [Mercer] and the Karhunen-

Loève theorem [Karhunen, 1946, Loève, 1946]. Mercer’s theorem states that c(t, t′) may be

written as
∑∞

j=1 λjψj(t)ψj(t
′), where λj and ψj(t) are the eigenvalues and eigenfunctions of

2



ψj(t) respectively. With these quantities defined, the Karhunen-Loève theorem states

Xi(t) =
∞∑
j=1

ψj(t)ηij

where ηij =
∫
T Xi(t)ψj(t)], dt are the subject-specific coefficients.

1.2 Gaussian Processes for Functional Data

Gaussian processes are flexible approaches to nonparametric function estimation; see for

example O’Hagan [1978], Williams [1998], Neal [1999], and Rasmussen and Williams [2006].

Shi et al. [2005] propose a Gaussian process (GP) mixture model to analyze standing-up

manoeuvres of paraplegia patients. The authors are mainly focused on predicting center of

mass at a later time or predicting the center of mass trajectory for a new patient. Each

standing-up has a few hundred training data points (involving output and input variables).

Let N represent the number of time points recorded in a standing-up, y = (y1, . . . , yN)>

represent the response, and xi = (x1i, . . . , xQi)
>, i = 1, . . . , N . Then the proposed model is

y ∼ N(0, C) (1.1)

where C is an N ×N covariance matrix. The (i, j) entry is denoted Cij = C(xi,xj;θ). An

example of a covariance function is

C(xi,xj;θ) = ν0 exp

{
− 1

2

Q∑
q=1

wq(xiq − xjq)2
}

+ a0 + a1

Q∑
q=1

xiqxjq + σ0δij (1.2)

where δij is the kronecker delta. Based on this setup, prediction of response y∗ at test

input x∗ follows from fundamental multivariate normal properties. Specifically, the posterior

3



distribution at y∗ given the training data D is also a Gaussian distribution, with

E(y∗|D) = ψ>(x∗)C−1y (1.3)

Var(y∗|D) = C(x∗,x∗)− ψ>(x∗)C−1ψ(x∗) (1.4)

where ψ(x∗) = (C(x∗,x1), . . . , C(x∗,xN)>. The authors embed this model within a mixture

model to capture hierarchical effects. Shi et al. [2007] extends this model to incorporate a

mean structure to improve predictive performance. See Shi and Choi [2011], Shi et al.

[2012], and Wang and Shi [2014] for further extensions. Despite the model’s flexibility

incorporating functional and time-stable covariates, these models assume a pre-specified

covariance structure, such as squared exponential (equation 1.2) or Matérn. Pre-specifying a

covariance structure limits flexibility for covariance estimation, since the marginal covariance

surface is completely determined by a set of hyper-parameters.

With the goal of mean-covariance estimation in mind, Yang et al. [2016b] considers

an appropriately defined Inverse-Wishart process prior. Suppose that the functional data

contain n independent trajectories, denoted by {Yi(·); i = 1. . . . , n} and the ith trajectory

has pi measurements ti = {ti1, . . . , tipi}. Their model is

Yi(tij) = Zi(tij) + εij (1.5)

Zi ∼ GP (µ,Σ) (1.6)

µ | Σ ∼ GP (µ0,
1

c
Σ) (1.7)

Σ ∼ IWP(δ,Ψ) (1.8)

IWP(δ,Ψ) denotes an Inverse-Wishart process, with shape parameter δ and scale parameter

Ψ. An Inverse-Wishart process is defined such that for any finite grid t = {t1, . . . , tp}, Σ

evaluated at this grid is Inverse-Wishart distributed, i.e., Σ(t, t) ∼ IW (δ,Ψ(t, t)). This

method automatically induces mean-covariance estimation and smooths all functional obser-

vations simultaneously. However, similar to the Inverse-Wishart distribution, the IWP has

issues: the uncertainty for all variances is controlled by a single degree of freedom parameter
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δ Gelman et al. [2013], the marginal distribution for the variances has low density in a region

near zero Gelman et al. [2006], and there is an a priori dependence between correlations and

variances Tokuda et al. [2011].

Another approach for FDA using GPs is from Suarez and Ghosal [2017]. The goal in

this paper is to estimate functional principal components and their number to retain. The

following is a brief summary of their low rank model. Assume functional responses Yi are

measured on a common grid of points {t1, . . . , tT}. Let HJ be a T × J basis matrix whose

columns consist of basis functions evaluated at all grid points. Let Ξ = ULU> be a prior

guess for the covariance surface projected on HJ , where U is orthogonal and L is the diagonal

matrix of ordered eigenvalues. Let ΞK = UKLKU
>
K , where UK is the J ×K matrix formed

by the first K columns of U , and LK is the K ×K matrix formed by the first K rows and

K columns of L. The basic low rank model is as follows:

Yi ∼ N(HJUKβi,K , σ
2I) (1.9)

βi,K ∼ N(θ,Σ) (1.10)

θ ∼ N(θ0, τΣ) (1.11)

σ2 ∼ inv-Gamma(a, b) (1.12)

Σ−1 ∼Wishart(ν, L−1K ) (1.13)

The authors sample from the posterior for fixed (J,K). To perform model selection, the

authors compute estimates of the marginal likelihood using results from Chib [1995]. The

authors state asymptotic results, compare their approach with FACE Xiao et al. [2016], and

apply their method to Canadian weather data, which is freely available in the fda package

in R. One drawback of this procedure is the limitations induced by the Inverse-Wishart

distribution, as discussed previously.

Montagna et al. [2012] developed a Bayesian latent factor model for function on scalar

regression, which has connections with FPCA. Let Yi(t) denote the response at time t. An
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abbreviated version of their model is as follows

Yi(t) = fi(t) + εi(t), εi(t) ∼ N(0, ϕ2) (1.14)

fi(t) =
K∑
k=1

φ̃k(t)ηik + ri(t), ηik ∼ N(x>i β, 1) (1.15)

φ̃k(t) =
P∑
p=1

λpkbp(t), ri(t) =
P∑
p=1

ζipbp(t) (1.16)

When ri(t) = 0, β = 0, φ̃k(t) are eigenfunctions, and ηik are scores, the model is equivalent

to conventional FPCA. However, unlike FPCA, the authors induce sparsity on the loading

coefficients λpk through a multiplicative gamma process shrinkage prior Bhattacharya and

Dunson [2011]. The implied marginal covariance function from this model is B(t)ΛΛ>B(t)>,

where B(t) is a matrix of basis functions and Λ is a P ×K loading matrix with entry (p, k)

equal to λpk. This covariance function is quite flexible and hence this model serves as the

building block in our proposed methods.

1.3 Multidimensional and Structured Functional Data Analysis

The literature surrounding FDA has shifted to consider more complex dependency structures

than independent and identically distributed curves. Functional mixed models have been

investigated in Guo [2002], Morris et al. [2003a], and Morris and Carroll [2006]. Functional

mixed effects models inhereit the flexiblity of the linear mixed model in handling complex

designs and correlation structures, and include nested curves as a special case. The model

in Guo [2002] has

yij(t) = Xijβ(t) + Zijαi(t) + εij(t), εij(t) ∼ N(0, σ2
e) (1.17)

where yij(t) is the response from the ith unit for the jth repetition at time t, Xij is a 1× p

fixed effects design matrix, Zij is a 1× q random effects design matrix, β(t) is a p× 1 vector

of fixed effect functions, αi(t) is a q×1 vector of random effect functions, and εij(t) captures
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measurement error. Smoothing splines are used to estimate β(t) and αi(t), ensuring that

the fixed effects and random effects have the same smoothness property. Morris and Carroll

[2006] has a similar model to Guo [2002] with more flexible covariance assumptions and

uses wavelets to model irregular functions to account for non-stationarities such as different

variances and different degrees of smoothness at different locations in the curve-to-curve

deviations.

Di et al. [2009] develops Multilevel Functional Principal Components Analysis (MFPCA)

for repeatedly observed functional data. The MFPCA model starts from the two-way func-

tional ANOVA model

Xij(t) = µ(t) + ηj(t) + Zi(t) +Wij(t) (1.18)

where Xij(t) is the signal for the ith unit, jth repetition, µ is a fixed overall mean function,

ηj is a fixed jth repetition shift from the mean µ, Zi is a random unit-specific shift from µ,

and Wij is a random unit-repetition shift from µ+ ηj. The random functions Zi and Wij are

expanded as a KL decomposition

Zi(t) =
∞∑
k=1

ξikφ
(1)
k (t), Wij(t) =

∞∑
l=1

ζijlφ
(2)
l (t) (1.19)

Estimation is carried out in several steps. First, the mean functions µ̂, η̂j, and the rele-

vant covariance functions are estimated by method of moments (in principle, any consistent

estimator can be used). Then estimate functional principal components and scores φ̂
(1)
k (t),

φ̂
(2)
l (t), and ξik, ζijl respectively. See Di et al. [2009] for more details. Interestingly, many

methodological developments over the years for more complex dependency structures seem

to follow the same pattern of estimating mean and covariance functions consistently, and

then estimating eigenfunctions and scores in a multi-step algorithm. Additional references

for repeatedly observed functional data include Kundu et al. [2016], Crainiceanu et al. [2009],

Zipunnikov et al. [2014], and Shou et al. [2015].

Longitudinal functional data analysis Greven et al. [2010], Chen and Müller [2012], Park

and Staicu [2015b], Lynch and Chen [2018a], is an extension of multilevel FDA, whereby

longitudinal ordering of curves is taken into account. An example of a longitudinal functional
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model particularly relevant for Chapter 2 background material is the marginal and product

decompositions of Lynch and Chen [2018a]. For a function observed with longitudinal argu-

ment s, functional argument t, and functional response Yi(s, t) for the ith unit, the marginal

decomposition has

Yi(s, t) = µ(s, t) +
∞∑
j=1

ξij(t)ψj(s), ξij(t) =
∞∑
k=1

χijkφjk(t) (1.20)

where ψj(s) are eigenfunctions of a certain margin covariance function (Park and Staicu

[2015b], Lynch and Chen [2018a]), ξj(t) are random coefficient functions in ψj(s), and ξj(t) =∑∞
k=1 χjkφjk(t) is the KL expansion of the random coefficient functions ξj(t). The marginal

decomposition is a flexible nonparametric model for longitudinal functional data. A more

parsimonious model than equation 1.20 yields the product decomposition

Yi(s, t) = µ(s, t) +
∞∑
j=1

∞∑
k=1

χijkφk(t)ψj(s) (1.21)

The validity of the product decomposition depends on the assumption of weak-separability

Lynch and Chen [2018b]. Both the marginal and product decompositions yield parsimonious

models with interpretable functions ψj(s), φjk(t) and φk(t). These appealling properties are

explored in a Bayesian context in Chapter 2.

Over the years, the literature has seen contributions to multivariate functional data

analysis (Berrendero et al. [2011], Jacques and Preda [2014], Chiou et al. [2014], Chiou et al.

[2016], Happ and Greven [2018]), multilevel multivariate functional data analysis Zhang et al.

[2019], and region-referenced longitudinal functional data analysis Hasenstab et al. [2017],

Scheffler et al. [2020a].

1.4 Covariance Regression

Regression models are often synonymous with estimating a mean function depending on co-

variates, i.e., a linear regression where µx = E(y|x) = x>β. Statistical models in multivariate
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analysis often make homogenous assumptions on covariance-covariate relationships such as

Σx = Cov(y|x) = Cov(y) = Σ, where y ∈ Rp. Flury [1984] develops a likelihood ratio test for

detecting equal principal components across groups. Mathematically, the common principal

components assumptions is

BΣiB
> = Λi, i = 1, . . . , K (1.22)

where Λi is diagonal, B is an orthonormal p×p matrix, and Σi is the covariance matrix for the

ith group. Flury [1987], Schott [1991], Schott [1999] generalized this concept to test if only

q out of p eigenvectors are common to all groups. Boik [2002] extended this idea to test if q

eigenvectors are common to only some of the groups. More recently, Hoff [2009] developed a

hierarchical model to pool eigenvector information across groups. Group-specific eigenvectors

are similar, but not necessarily equal due to the hierarchical nature of the model. Franks

and Hoff [2019] developed a shared subspace model, where groups share a common subspace.

Each individual group has a latent group-specific subspace. Estimating and choosing the

dimension of the shared subspace is discussed in their work. Although the literature has

expanded since Flury [1984], the literature surrounding pooled covariance estimation with

continuous covariates has remained sparse. One method for handling continuous covariates is

given in Zhao et al. [2018]. Their model embeds principal components analysis (PCA) within

a generalized linear model (GLM) framework. However, interpretation of relevant covariance

matrices and eigenvectors is not straightforward, which is crucial in exploratory FDA. We

modify the model in Hoff and Niu [2012] to accommodate functional data. The model in

Hoff and Niu [2012] is similar to factor analysis (FA), with some important differences. Let

yi be a p-dimensional outcome with d-dimensional covariate xi and µxi be the conditional

mean. The random effects representation has the form

yi = µxi + γiBxi + εi (1.23)

E(εi) = 0, Cov(εi) = Ψ (1.24)

E(γi) = 0, Var(γi) = 1, εi ⊥⊥ γi (1.25)
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where B is a p × d loading matrix, γi is a subject specific random effect, and εi captures

residual covariance with baseline covariance Ψ. Marginalizing over the random effects,

Cov(yi) = Bxix
>
i B
> + Ψ, which is a rank-1 update to Ψ. Hoff and Niu [2012] discusses

extensions to a rank-k update in which B will be indexed from 1 to k. Estimation is com-

pleted through either the expectation-maximization (EM) algorithm or Gibbs sampling. Our

approach in Chapter 3 uses Gibbs sampling for full probabilistic inference.

1.5 Contributions and Dissertation Outline

Chapter 2 develops a Bayesian model for multidimensional and longitudinal functional

data analysis. We propose a computationally efficient nonparametric Bayesian method to

simultaneously smooth observed data, estimate conditional functional means and functional

covariance surfaces. Statistical inference is based on Monte Carlo samples from the pos-

terior measure through adaptive blocked Gibbs sampling. Several operative characteristics

associated with the proposed modeling framework are assessed comparatively in a simulated

environment. We illustrate the application of our work in two case studies. The first case

study involves age-specific fertility collected over time for various countries. The second case

study is an implicit learning experiment in children with Autism Spectrum Disorder (ASD).

Chapter 3 proposes a Bayesian covariance regression model for functional data, providing

joint inference for both the conditional mean and covariance functions. Our work hinges

on basis expansions of both the functional evaluation domain and covariate space, to de-

fine flexible non-parametric forms of dependence. To aid interpretation, we develop novel

low-dimensional summaries, which indicate the degree of covariate-dependent heteroschedas-

ticity. For illustration, our modeling framework is applied to two case studies, aiming to

provide novel insight in brain imaging. The first case study evaluates a functional biomarker

of neural development in children with autism spectrum disorder, and the second case study

explores the relationship between sleep patterns, age, and hypertension.

Chapter 4 explores Bayesian approaches to model region-referenced functional data - mul-

tivariate functional data observed over regional subunits. The proposed methods identify
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data-driven interpretable marginal functional and regional basis functions. Prior structure

is imposed to encourage smoothness in the functional domain and weaken the influence of

superfluous basis functions. The proposed methods incorporate scalar covariates, enabling

joint mean and covariance estimation. In addition, we show how pivotal discrepancy mea-

sures can be used to assess structural covariance assumptions and aid in model selection.

The proposed methods are applied to study electroencephalography data from children with

autism spectrum disorder in a resting-state experiment.

In summary, the three chapters describe approaches to rigorously quantify uncertainty

and perform adaptive regularization in functional data settings. Chapter 2 develops a prob-

abilistic extension to a recently proposed methods for structured functional data, ensuring

interpretable summaries for age-specific fertility rates and EEG data in an implicit learn-

ing study of children with autism spectrum disorder. Chapter 3 proposes nonparametric

Bayesian methods for quantifying heterogeneity, accounting for vector-valued exogenous co-

variates. Chapter 4 develops two probabilistic extensions of recently proposed models for

analyzing region-referenced functional data. Particular emphasis is placed on assessing im-

plicit structural assumptions and model adequacy. Chapter 5 concludes with a discussion

of the proposed methods and outlines future methodological developments that could follow

this work.
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CHAPTER 2

Bayesian Analysis of Longitudinal and

Multidimensional Functional Data

Multi-dimensional functional data arises in numerous modern scientific experimental and

observational studies. In this article, we focus on longitudinal functional data, a struc-

tured form of multidimensional functional data. Operating within a longitudinal functional

framework we aim to capture low dimensional interpretable features. We propose a compu-

tationally efficient nonparametric Bayesian method to simultaneously smooth observed data,

estimate conditional functional means and functional covariance surfaces. Statistical infer-

ence is based on Monte Carlo samples from the posterior measure through adaptive blocked

Gibbs sampling. Several operative characteristics associated with the proposed modeling

framework are assessed comparatively in a simulated environment. We illustrate the appli-

cation of our work in two case studies. The first case study involves age-specific fertility

collected over time for various countries. The second case study is an implicit learning

experiment in children with autism spectrum disorder.

2.1 Introduction

We investigate Bayesian modeling and inference for longitudinal functional data, conceptu-

alized as functional data observed repeatedly over a dense set of longitudinal time-points.

A typical dataset would contain n patients observed over the course of multiple visit times,

with each visit contributing a functional datum. Thus, for patient i we would record the

outcome yi(s, t), where s is the visit time and t is the functional argument. In this setting

it is reasonable to expect non-trivial correlations between functions from one visit time to
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another. Therefore, appropriate modeling of this dependence pattern would be critical for

the validity of statistical inference. This manuscript outlines a flexible Bayesian framework

for the estimation of the functional mean structure, possibly dependent on a set of time-

stable covariates, as well as an adaptive regularization framework for the estimation of the

covariance operator of yi(s, t) and its eigenstructure.

The frequentist analysis of longitudinal functional data is a mature field. In particular,

semiparametric modeling strategies, depending on the mixed effects modeling framework,

have been proposed by Di et al. [2009] in the context of hierarchical functional data, and

Greven et al. [2010] for longitudinal functional data. Important generalizations have been

introduced by Chen and Müller [2012], through use structured functional principal com-

ponents analysis (FPCA), with more parsimonious representations introduced by Park and

Staicu [2015a], and Chen et al. [2017] in the more general context of function-valued stochas-

tic processes. The appealing nature and flexibility of structured FPCA modeling strategies

has seen the application and extension of these methods to challenging scientific problems

ranging from functional brain imaging (Hasenstab et al. 2017, Scheffler et al. 2020a), to the

exploration of complex data from wearable devices (Goldsmith et al. 2016).

The vast majority of approaches based on FPCA, generally focus on point estimation

from a frequentist perspective, and do not provide reliable uncertainty quantification with-

out bootstrapping. The very application of the bootstrap methodology to structured func-

tional data has not been the subject of rigorous investigation. The literature, in fact, is

ambiguous on the handling of the many tuning parameters, typical of structured FPCA

models. Although there are some consistency results regarding the bootstrap for functional

data (Cuevas et al. 2006, Ferraty et al. 2010), the procedure is relatively underdeveloped for

hierarchical data (Ren et al. 2010).

Bayesian methods in functional data analysis define a straightforward mechanism for

uncertainty quantification. This appealing inferential structure comes, however, at the cost of

having to specify a full probability model, and priors with broad support on high dimensional

spaces (Shi and Choi [2011], Yang et al. [2016a], Yang et al. [2017]). In hierarchical and multi-

dimensional functional data settings, starting from the seminal work of Morris et al. [2003b],
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and recent extensions in Lee et al. [2019b], the prevalent strategy has been to work within

the framework of basis function transforms, defining flexible mixed effect models at the level

of the basis coefficients ( Morris et al. [2003b], Baladandayuthapani et al. [2008], Zhang

et al. [2016]). The resulting functional mixed effects models, like their finite dimensional

counterpart, require a certain degree of subject matter expertise in the definition of random

effects and their covariance structure [Morris et al., 2011, Morris and Carroll, 2006].

This manuscript aims to merge the appealing characterization of longitudinal functional

data through FPCA decompositions (Chen and Müller 2012, Park and Staicu 2015a, Chen

et al. 2017), with flexible probabilistic representations of the classical Karhunen-Loéve ex-

pansion of square integrable random functions. Our work builds on the ideas of Suarez

and Ghosal [2017] and Montagna et al. [2012], who adapted the regularized product Gamma

prior for infinite factor models of Bhattacharya and Dunson [2011], to the analysis of random

functions. Extensions of this framework to the longitudinal functional setting are discussed

in Section 2.2. In Section 2.3 we discuss prior distributions and ensuing implications for

the covariance operator. A comprehensive framework for posterior inference is discussed in

Section 2.4. Section 2.5 contains a comparative simulation study. Finally, in Section 2.6

we discuss the application of our proposed methodology to two case studies. The first case

study explores age-specific fertility dynamics in the global demographic study conducted by

the Max Plank Institute and the Vienna Institute of Demography (HFD 2019). While purely

illustrative, this data allows for a direct comparison with the original analysis of Chen et al.

[2017]. The second case study, involves the analysis of electroencephalogram (EEG) data

from an investigation of implicit learning in children with autism spectrum disorder (ASD)

(Jeste et al. 2015). The main interest in both case studies is modeling and interpreting the

longitudinal component.

2.2 A Probability Model for Longitudinal Functional Data

Let yi(s, t) denote the response for subject i, (i = 1, . . . , n), at longitudinal time s ∈ S

and functional time t ∈ T , where S and T are compact subspaces of R. Furthermore,
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for each subject, assume we observe a time-stable d-dimensional covariate xi ∈ Rd. In

practice, we only obtain observations yi(sj, tk) at discrete sampling locations (sj, tk) ∈ S×T ,

j = 1, . . . , nsi , k = 1, . . . , nti. However, in subsequent developments, we maintain the lighter

notation yi(s, t) without loss of generality.

Let fi(s, t) be a Gaussian Process (GP) with mean E{fi(s, t)} = µ(xi, s, t) and covari-

ance kernel Cov{fi(s, t), fi(s′, t′)} = K{(s, t), (s′, t′)}. A familiar sampling model for yi(s, t)

assumes:

yi(s, t) = fi(s, t) + εi(s, t), εi(s, t)
iid∼ N(0, ϕ2); (2.1)

where ϕ2 > 0 is the overall residual variance. Given a set of suitable basis functions b
(1)
m (s) :

S → R, (m = 1, 2, . . . p1), and b
(2)
` (t) : T → R, (` = 1, 2, . . . p2), and a set of random

coefficients θiml, the prior for the underlying signal fi(s, t) is constructed through a random

tensor product expansion, so that

fi(s, t) =
∑p1

m=1

∑p2
l=1 b

(1)
m (s)b

(2)
l (t)θiml. (2.2)

Since the truncation values p1 and p2 may be large to ensure small bias in the estimation of

the true fi(s, t), we follow Bhattacharya and Dunson [2011] and project the basis coefficients

on a lower dimensional space.

Let Θi = {θim`} ∈ Rp1×p2 be the matrix of basis coefficients for subject i. After defining

loading matrices Λ ∈ Rp1×q1 , (q1 � p1), and Γ ∈ Rp2×q2 , (q2 � p2), and a latent matrix of

random scores ηi ∈ Rq1×q2 , we assume

Θi = ΛηiΓ
> + ζi, vec(ζi) ∼ N (0,Σ); (2.3)

where Σ is taken to be diagonal. The foregoing construction has connections with factor

analysis. In fact, vectorizing Θi we obtain

vec(Θi) = (Γ⊗ Λ)vec(ηi) + vec(ζi);
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which resembles the familiar (q1 × q2) latent factor model, with loading matrix Γ ⊗ Λ and

latent factors vec(ηi). Differently from standard latent factor models, our use of a Kronecker

product representation for the loading matrix introduces additional structural assumptions

about Cov(Θi), and the ensuing form of the covariance kernel K{(s, t), (s′, t′)}.

More precisely, assuming Cov(ηi) = H, the marginal covariance of Θi takes the form

Cov(Θi) = (Γ⊗ Λ)H(Γ⊗ Λ)> + Σ = Ω. (2.4)

Furthermore, defining B1(s) = {b(1)1 (s), . . . , b
(1)
p1 (s)}> and B2(t) = {b(2)1 (t), . . . , b

(2)
p2 (t)}>, the

model in (2.3) induces the following representation for the covariance kernel K{(s, t), (s′, t′)},

s.t.

K{(s, t), (s′, t′)} = {B1(s)⊗B2(t)}Ω {B1(s
′)⊗B2(t

′)}>. (2.5)

The low-rank structure of Ω in (2.4), depends on the number of latent factors q1 and q2 in

the quadratic form (Γ⊗Λ)>H (Γ⊗Λ). Rather than selecting the number of factors a priori,

in Section 2.3 we introduce prior distributions encoding rank restrictions through continuous

stochastic regularization of the loading coefficient’s magnitude. Additional structural restric-

tions may ensue from specific assumptions about the latent factors’ covariance H. Specifi-

cally, setting H = Iq1q2 leads to strong covariance separability of the longitudinal and func-

tional dimensions. A more flexible covariance model hinges on the notion of weak-separability

(Lynch and Chen 2018a). This is achieved by evaluating H = diag(h1, . . . , hq1q2) > 0.

Finally, let xi be a d-dimensional time-stable covariate for subject i. Dependence of the

longitudinal functional outcome yi(s, t) on this set of predictors is conveniently introduced

through the prior expectation of ηi. More precisely, let β be a d× q1q2 matrix of regression

coefficients, we assume

vec(ηi) ∼ N(β>xi, H),
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which implies the following marginal mean structure for yi(s, t),

E{yi(s, t)} = µ(xi, s, t) = {B1(s)Γ⊗B2(t)Λ}β>xi. (2.6)

The model in (2.1), together with the sandwich factor construction in (2.3) defines a proba-

bilistic representation of the product FPCA decomposition in Chen et al. [2017]. An intuitive

parallel is introduced in Section 2.3, and a technical discussion is provided in the accompany-

ing web-based supplementary document (Appendix 2A). Differently from Chen et al. [2017],

we propose model-based inference through regularized estimation based on the posterior

measure.

2.3 Rank Regularization and Prior Distributions

The selection of prior distributions for all parameters introduced in Section 2.2 is guided by

the following considerations. Let γlj and λmk be specific entries in the loading matrices Γ

and Λ in (2.3) respectively. Defining ψj(s) =
∑p1

l=1 γljb
(1)
l (s) and φk(t) =

∑p2
m=1 λmkb

(2)
m (t),

we may expand fi(s, t) as follows:

fi(s, t) =

q1∑
j=1

q2∑
k=1

ψj(s)φk(t)ηijk + ri(s, t),

ri(s, t) =

p1∑
j=1

p2∑
k=1

b
(1)
j (s)b

(2)
k (t)ζijk.

The first component in the expression for fi(s, t) describes a mechanism of random func-

tional variability which depends on the tensor combination of q1 and q2 data-adaptive basis

functions ψj(s) and φk(t) respectively, and q1×q2 basis coefficients ηijk. Given q1 and q2, any

residual variability is represented in the random function ri(s, t). When ψj(s) and φk(t) are

chosen to be eigenfunctions of the marginal covariance kernels in s and t, this representation

is essentially equivalent to the product FPCA construction of Chen et al. [2017].

Statistical inference for FPCA constructions, commonly selects a small number of eigen-

functions on the basis of empirical considerations. Here we take an adaptive regularization
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approach, choose q1 and q2 relatively large, and assume the variance components in the priors

for Λ and Γ to follow a modified multiplicative gamma process prior (MGPP) Bhattacharya

and Dunson [2011] Montagna et al. [2012].

Let λmk denote the (m, k) entry of Λ. The modified MGPP is defined by setting

λmk ∼ N(0, ρ−11mkτ
−1
1k ), ρ−11mk ∼ Gamma(ν1/2, ν1/2),

τ1k =
∏k

υ=1 δ1υ, δ11 ∼ Gamma(a11, 1),

δ1υ ∼ Gamma(a12, 1)1(δ1υ > 1), for υ ≥ 2; k = 1, 2, . . . , q1.

(2.7)

Using the “rate” parameterization for Gamma distributions (i.e., if a ∼ Gamma(b, c), then

E(a) = bc), this prior is designed to encourage small loadings in Λ as the column index

increases. In the original formulation of Bhattacharya and Dunson [2011] and Montagna

et al. [2012], choosing a12 > 1, insures stochastic ordering of the prior precision, in the sense

that E(τ1k) < E(τ1(k+1)), for any k = 1, 2, . . . , (q1 − 1). In our setting, we require the more

stringent probabilistic ordering Pr(τ1k < τ1(k+1)) = 1, by assuming δ1υ > 1, which results

in a more stable and efficient Gibbs sampling scheme. Analogous regularization over the

columns of Γ is achieved by setting:

γlj ∼ N(0, ρ−12ljτ
−1
2l ), ρ−12lj ∼ Gamma(ν2/2, ν2/2)

τ2l =
∏l

υ=1 δ2υ, δ21 ∼ Gamma(a21, 1),

δ2υ ∼ Gamma(a22, 1)1(δ2υ > 1), for υ ≥ 2; l = 1, 2, . . . , q2.

(2.8)

Adaptive shrinkage is induced by placing hyper-priors on a11, a12, a21, and a22, such that

a11, a21
ind∼ Gamma(r1, 1), a12, a22

ind∼ Gamma(r2, 1).

The model is completed with priors on residual variance components and regression coeffi-
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cients. Specifically, conditionally conjugate priors are placed on the diagonal elements of Σ

and H, respectively, as well as the residual variance ϕ, such that:

σ−1j ∼ Gamma(aσ, bσ), h−1j ∼ Gamma(ah, bh), ϕ−1 ∼ Gamma(aϕ, bϕ).

Finally, we induce a Cauchy prior for the regression coefficients matrix β as in Montagna

et al. [2012]. Denoting with βj` the (j, `) entry of β, we assume

βj` ∼ N(0, ωj`), ω−1j` ∼ Gamma(1/2, 1/2); ` = 1, . . . , q1q2, j = 1, . . . , d.

In summary, our approach starts with the projection of the observed data onto a set of

known basis functions in (2.2). This initial projection is similar to the interpolation or

smoothing step commonly used in functional data analysis (Chen et al. [2017], Morris and

Carroll [2006]). The basis coefficients Θi are assumed to arise from the latent factor model

in (2.3), resulting in the weakly separable covariance model in (2.4) and (2.5). Finally, the

MGPP priors in (2.7) and (2.8), alllow for adaptive regularization of the covariance operator.

The mean structure is made dependent on a set of time stable covariates through a varying

coefficient model in (2.6).

2.4 Posterior Inference

Posterior simulation through Markov chain Monte Carlo is relatively straightforward, after

selection of an appropriate basis transform and truncation of Γ and Λ to include q1 � p1

and q2 � p2 columns respectively. The use of conditionally conjugate priors allows for

simple Gibbs transitions for all parameters, with the exception of the shrinkage parameters

a11, a12, a21, and a22, which are updated via a Metropolis-Hastings step. A detailed descrip-

tion of the proposed algorithm is reported in Appendix 2B. We note that the decomposition

of Cov(Θi) in (2.4) may not be unique. However, from a Bayesian perspective, one does

not require identifiability of the loading elements for the purpose of covariance estimation.
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Direct inference for K{(s, t), (s′, t′)} and its functionals may be achieved by post-processing

Monte Carlo draws from the posterior p(Ω | y) and evaluating the covariance function over

arbitrarily dense points t∗ := (t∗1, . . . , t
∗
w1)
> ∈ T and s∗ := (s∗1, . . . , s

∗
w2)
> ∈ S using (2.5).

Analogously, given samples from p(β | y), inference about the mean structure is achieved

by evaluating µ(xi, s, t) over s∗ and t∗ using the expansion in (2.6).

Some useful posterior summaries may be obtained through marginalization. We define

marginal covariance functions KT (t, t′) and KS(s, s′) as follows:

KT (t, t′) =

∫
S
K{(s, t)(s, t′)}ds, KS(s, s′) =

∫
T
K{(s, t)(s′, t)}dt. (2.9)

Intuitively, KS(·) and KT (·) summarize patterns of functional co-variation along a specific

coordinate, and their lower-dimensional posterior summaries may be obtained through func-

tional eigenanalysis as in Chen et al. [2017]. We outline details on extracting lower dimen-

sional summaries of the marginal covariance functions without computing K{(s, t), (s′, t′)},

KT (t, t′), or KS(s, s′) in Supplemental Appendix 2F. Simultaneous credible intervals for all

functions of interest are easily obtained from Monte Carlo samples, by applying the method-

ology discussed in Crainiceanu et al. [2007] and Baladandayuthapani et al. [2005].

Specifically, M Monte Carlo draws from a posterior function of interest, say g(τ), are

used to estimate the posterior mean ĝ(τ), and standard deviation
√
v̂ar{ĝ(τ)}. Assuming

approximate normality of the posterior distribution, we derive the (1−α) quantile cα of the

pivotal quantity

max
τ

∣∣∣∣∣g(i)(τ)− ĝ(τ)√
v̂ar{ĝ(τ)}

∣∣∣∣∣ , i = 1, . . . ,M.

An approximate simultaneous (1 − α) posterior band can then be constructed as a hyper-

rectangular region over τ :
[
ĝ(τ)± cα ·

√
v̂ar{ĝ(τ)}

]
. More general simultaneous bands have

been proposed by Krivobokova et al. [2010], but are not implemented in this manuscript.

The proposed modeling framework relies on a specific basis transform strategy. While the

literature has suggested the use of zero-loss transforms as a default option (Morris et al.

2003b, Lee et al. 2019a), we find that it is not uncommon to observe some sensitivity to the
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number of basis functions used in the initial projection. Furthermore, the choice of more

parsimonious designs, when warranted by the application, may lead to important gains in

computational and estimation efficiency. Model flexibility is governed by choice of (p1, p2),

as the number of smoothing basis functions, and (q1, q2) as the number of latent facors. Due

to the adaptive rank regularizing prior, q1 and q2 should be chosen as large as possible. In

practice (q1, q2) are chosen as fraction of (p1, p2).

Our simulation studies, (supplementary material, Appendix 2C), demonstrate that point

estimates and uncertainty of mean and covariance functions are generally insensitive to

choice of p1 and p2, provided q1 and q2 are large. Some sensitivity is, however, observed in

the posterior estimate of the residual error ϕ2. An alternative method is to simply rely on

the minimization of information criteria. In this paper we consider simple versions of the

deviance information criterion (DIC), and two versions of the Bayesian information criteria

(BIC & BICh Delattre et al. [2014]). Our simulations studies, (supplementary material,

Appendix 2C), indicate that the proposed information criteria perform well in selecting an

adequate number of basis functions.

From a computational perspective, the most time consuming steps in the Gibbs sampling

algorithm are the Cholesky decompositions used in updating Θi and ηi, requiring O (p31 p
3
2)

and O (q31q
3
2) floating point operations respectively. Therefore, scalability of näıve Gibbs

sampling is a potential issue for very large samples and/or very long longitudinal or functional

evaluation domains. In these cases, adapting the estimation approach of Morris and Carroll

[2006], is easily implemented, by treating the estimation of Θi as a pre-processing step,

and considering 2.3 as the sampling model. For big data applications, other analytical

approximations to the posterior measure are also accessible, e.g. INLA (Rue et al. [2009]).

2.5 A Monte Carlo Study of Operating Characteristics

We performed a series of numerical experiments aimed at evaluating the estimation perfor-

mance for both the functional mean and covariance. We study three simulation scenarios,

including two weakly separable kernels (cases 1 and 2) and one non-separable covariance
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function (case 3). Specifically, for s ∈ [0, 1] and t ∈ [0, 1], we take:

1. KS(s, s′) =
∑2

j=1 λjψj(s)ψj(s
′), with eigenvalues λj = 1

j2π2 and eigenfunctions

ψj(s) =
√

2 sin(jπs), KT (t, t′) = σ2

(
1 +

√
3|t−t′|
ρ

)
exp

(
−
√
3|t−t′|
ρ

)
, in the Matèrn

class, and mean µ(s, t) =
√

1
5
√
s+1

sin(5t).

2. KS(s, s′) =
∑2

j=1 λjψj(s)ψj(s
′), with eigenvalues λj = 1

(j−1/2)2π2 and eigenfunctions

ψj(s) =
√

2 sin((j − 1/2)πs), KT (t, t′) =
∑50

k=1 λkφk(t)φk(t
′), with λk = k−2α and

φk(t) = cos(kπt), and mean µ(s, t) = 5
√

1− (s− .5)2 − (t− .5)2.

3. K((s, t), (s′, t′)) =
1

(t− t′)2 + 1
exp

{
− (s− s′)2

(t− t′)2 + 1

}
, stationary non-separable (Gneit-

ing 2002), and mean µ(s, t) =
√

1 + sin(πs) + cos(πt).

Scenario 1 combines a simple Matèrn class pattern on the time-domain t with a more complex

oscillatory dependence pattern for the functional domain s. Scenario 2 includes an oscillatory

pattern in both s and t. Finally, scenario 3, while defining simple parametric dependence in

both longitudinal and functional times, is not weakly separable, allowing for comparisons on

misspecified models.

We consider estimation of the mean, covariance, marginal covariance functions, and the

associated two principal eigenfunctions. Each simulation includes 1,000 Monte Carlo ex-

periments. For each experiment, posterior estimates are based on 10,000 iterations of 4

independent Markov chains, after discarding 2,500 draws for burn-in. We compare estima-

tion of covariance, marginal covariance functions, and associated two principal eigenfunctions

to the respective estimates provided by the product FPCA (Chen et al. 2017), as well as

finite-dimensional empirical estimates of the mean and covariance defined as by their vector-

ized sample counterparts. Estimates obtained with the product FPCA have data-type set

to sparse and fraction of variance explained (FVE) threshold set to .9999.

All comparisons are based on the relative mean integrated squared error. For a function

f with domain D and estimator f̂ , we define RE(f̂ , f) =
∫
D
{f̂(u)− f(u)}2du/

∫
D
f(u)2du.

Note that D can be multi-dimensional and in practice the integral is replaced with a sum.

Table 2.1 compares mean µ(s, t) and covariance K{(s, t), (s′, t′)} estimation under the three

22



Table 2.1: Mean and covariance relative errors under the three simulation cases described in
section 2.5. Bayes refers to the proposed method in this paper, product refers to the product
decomposition Chen et al. [2017], and empirical refers to point-wise empirical estimation.
Each case is repeated 1,000 times for sample sizes of n = 30 and n = 60. We report the 50th
percentile of the relative error, with the numbers in the parantheses denoting the 10th and
90th percentiles of the relative error.

Case 1 Bayes Product Empirical

n = 30
µ(s, t) .014 (.005, .038) .019 (.010, .044) .019 (.010, .044)

K{(s, t), (s′, t′)} .062 (.023, .224) .085 (.047, .200) .151 (.097, .297)

n = 60
µ(s, t) .007 (.003, .019) .010 (.005, .021) .010 (.005, .021)

K{(s, t), (s′, t′)} .030 (.010, .097) .057 (.038, .128) .076 (.050, .151)
Case 2

n = 30
µ(s, t) .024 (.007, .101) .031 (.013, .118) .031 (.013, .118)

K{(s, t), (s′, t′)} .039 (.011, .184) .050 (.012, .202) .067 (.030, .228)

n = 60
µ(s, t) .014 (.004, .054) .017 (.007, .062) .017 (.007, .062)

K{(s, t), (s′, t′)} .019 (.005, .091) .024 (.007, .093) .032 (.014, .106)
Case 3

n = 30
µ(s, t) .155 (.046, .389) .160 (.051, .393) .160 (.051, .393)

K{(s, t), (s′, t′)} .051 (.016, .187) .051 (.014, .183) .067 (.023, .200)

n = 60
µ(s, t) .073 (.019, .216) .076 (.021, .219) .076 (.021, .219)

K{(s, t), (s′, t′)} .028 (.008, .091) .027 (.007, .089) .034 (.011, .099)

settings listed above. We find that estimates from each method improve in accuracy with

increasing sample size (n = 30, 60), with the posterior and product FPCA showing greater

accuracy than empirical approach in terms of covariance estimation. Similar findings char-

acterize the estimation performance of all marginal covariance functions (KS , KT ), and the

associated two principal eigenfunctions (ψi(s), i = 1, 2), and (φi(t), i = 1, 2). Detailed

numerical results and extended simulations are reported in the web-based supplement, Ap-

pendix 2C.

In summary, we observe that posterior estimates are associated with similar, and po-

tentially improved accuracy in the estimation of the mean and covariance functions, when

compared with product FPCA. This similarity in estimation performance, provides some

empirical assurances that the chosen probabilistic representation of structured covariance

functions, and estimation based on adaptive shrinkage, maintains a data-adaptive behavior

with good operating characteristics.
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2.6 Case Studies

We illustrate the application of the proposed modeling frameworks in two case studies. The

first dataset concerns fertility rate and age of mothers by country. The second case study

focuses on functional brain imaging through EEG in the context of implicit learning in

children with ASD.

2.6.1 Fertility rates

The Human Fertility Database (HFD 2019) compiles vital statistics to facilitate research

on fertility in the past twentieth century and in the modern era. Age-specific fertility rates

are available for 32 countries over different time periods. The age-specific fertility rate

ASFR(s, t) is defined as

ASFR(s, t) =
births during year s given by women aged t

person-years lived during year s by women aged t
.

The dataset was previously analyzed and interpreted in a longitudinal functional framework

using the product FPCA (Chen et al. 2017). This section focuses on a comparative analysis

of product FPCA and the proposed probability model.

We follow Chen et al. 2017, and consider n = 17 countries, with complete data for the

time period 1951 to 2006, 44 functional time points (ages 12-55), and 56 longitudinal time

points (years 1951 to 2006). Since these rates are population measurements, we expect the

data to contain very little noise. We use cubic b-splines as our basis functions since the data

look smooth with no sharp changes in fertility rate over year or age of mother (Supplemental

Fig. 1) and consider (p1, p2) = (22, 28) splines and (q1, q2) = (11, 10) latent factors, selected

by minimizing the DIC.

Longitudinal and aging dynamics are largely determined by their associated marginal

covariance functions KS(s, s′) and KT (t, t′). Figure 2.1 displays the first three marginal

eigenfunctions for age and calendar year. We include the 95% simultaneous credible bands

(Crainiceanu et al. 2007) as well as estimates obtained via product FPCA. We note that
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Figure 2.1: Age and calendar year marginal eigenfunctions. The above plots include the
Bayesian posterior means, 95% credible bands, and the product FPCA marginal eigenfunc-
tions.

Bayesian posterior mean eigenfunctions are qualitatively similar to the inferred product

FPCA estimates, therefore warranting similar interpretations to the one originally offered

by Chen et al. 2017.

In particular, the first marginal eigenfunction for age (Figure 2.1, left panel) can be

interpreted as the indexing variability in young fertility before the age of 25, with the second

marginal eigenfunction for age (Figure 2.1, central panel) indexing variability in fertility for

mature age, between the ages of 20 and 40. As our modeling framework allows for rigorous

uncertainty quantification in these posterior summaries, we note that the credible bands for

the first and second eigenfunction are relatively wide, indicating that specific patterns should

be interpreted with care. Examining directions of variance in fertility through the years,

we note that the first marginal eigenfunction for year (Figure 2.1, left panel) is relatively
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constant and can be interpreted as representing an overall “size-component” of fertility from

1951-2006. The second eigenfunction (Figure 2.1, central panel) defines a contrast of fertility

in countries before and after 1975. For both the year and age coordinates the third marginal

eigenfunctions capture a smaller fraction of the total variance and index higher patterns of

dispersion at and around age 25 and at or around the year 1975.

We investigate sensitivity to the number of basis and latent factors considering four

different models: model 1: (p1, p2) = (44, 50), (q1, q2) = (20, 20); model 2 (p1, p2) = (44, 50),

(q1, q2) = (6, 6); model 3: (p1, p2) = (16, 20), (q1, q2) = (12, 12); and model 4: (p1, p2) =

(16, 20), (q1, q2) = (6, 6). We also estimate the marginal covariance function with product

FPCA using both the dense and sparse settings. Point estimate for KT (t, t′) are reported in

Figure 2.2. Comparing estimates within column (left and center panels), we assess sensitivity

to a drastic reduction in the number of latent factors. Comparing estimates within row (left

and center panels), we instead assess sensitivity to a drastic reduction in the number of

basis functions. We note that the marginal age covariance function is relatively stable in

all four settings. We contrast this relative robustness with estimates based on the product

FPCA. In particular, sparse estimation using 10-fold cross-validation results in meaningfully

diminished local features. A possible reason for the instability is due to the small sample size

(n=17). In this example, Bayesian estimation is perhaps preferable, as adaptive penalization

allows for stable estimates within a broad class of model specifications.

2.6.2 An EEG Study on Implicit Learning in Children with ASD

This analysis is motivated by a functional brain imaging study of implicit learning in young

children with autism spectrum disorder (ASD), a developmental condition that affects an

individual’s communication and social interactions (Lord et al. 2000). Implicit learning is

defined as learning without the intention to learn or without the conscious awareness of the

knowledge that has been acquired. We consider functional brain imaging through EEG, an

important and highly prevalent imaging paradigm aimed at studying macroscopic neural

oscillations projected onto the scalp in the form of electrophysiological signals.
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Figure 2.2: Sensitivity analysis for the marginal covariance function KT (t, t′) (HFD study).
Panels (1,2,3,4) refer to posterior mean estimates obtained under different projections and
numbers of latent factors (Specific details are provided in Section 2.6.1). Panels (5, 6) refer
to product FPCA estimates obtained under dense (5) or sparse (6) settings.
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This study, carried out by our collaborators in the Jeste laboratory at UCLA, targets

the neural correlates of implicit learning in the setting of an event-related shape learning

paradigm (Jeste et al. 2015). Children aged 2-6 years old with ASD were recruited through

the UCLA Early Childhood Partial Hospitalization Program (ECPHP). Each participant

had an official diagnosis of ASD prior to enrollment. Age-matched typically developing

(TD) children from the greater Los Angeles area were recruited as controls. Six colored

shapes (turquoise diamond, blue cross, yellow circle, pink square, green triangle, and red

octagon) were presented one at a time in a continuous “stream” in the center of a computer

monitor. There were three shape pairings randomized to each child. For instance, a pink

square may always be followed by a blue cross. After the blue cross would come a new

shape pair. Within a shape pair would constitute an “expected” transition and between

shape pairs would constitute an “unexpected” transition. Each child would wear a 128-

electrode Geodesic Sensor Net and observe the stream of shapes on the computer monitor.

Each stimulus, or presentation of a single shape, is referred to as a trial, and can result in

frequency-specific changes to ongoing EEG oscillations, which are measured as Event Related

Potentials (ERPs).

Each waveform contains a phasic component called the P300 peak which represents atten-

tion to salient information. This phasic component is typically studied in EEG experiments

and is thought to be related to cognitive processes and early category recognition (Jeste

et al. 2015). We use the same post-processed data as in Hasenstab et al. [2017]. Namely,

we consider 37 ASD patients and 34 TD patients using data from trials 5 through 60 and

averaging ERPs in a 30 trial sliding window (Hasenstab et al. 2015). The sliding window

enhances the signal to noise ratio at which the P300 peak locations can be identified for each

waveform. Each waveform is sampled at 250 Hz resulting in 250 within-trial time points over

1000ms. Following Hasenstab et al. [2017], we reduce each waveform to a 140ms window

around each P300 peak. This 140ms window results in 37 within-trial time points. We do not

apply warping techniques because each within-trial curve is centered about the P300 peak.

Our analysis focuses on condition differentiation, formally defined as the difference between

the expected and subsequent unexpected condition. Modeling condition differentiation for
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waveforms within a narrow window about the P300 peak over trials may give insights into

learning rates for the ASD and TD groups. Thus, the main interest in this study is changes

in condition differentiation over trials, and a longitudinal functional framework is required

for statistical inference in this setting. Our analysis is based on the condition differentiation,

averaged within subject over the four electrodes in the right frontal region of the brain. In

summary, for each subject we consider ns = 56 observations within trial, and nt = 37 total

trials.

We model the ASD and TD data cohorts separately, in order to estimate ERP time and

trial covariance functions within group. All inference is based on a model with p1 = 20,

p2 = 56, q1 = 10, q2 = 28, selected minimizing DIC. A comprehensive analysis is reported

in the web-based supplement. Statistical inference is based on 50K MCMC posterior draws,

after 20K burn-in. We considered relatively diffuse priors: aσ = bσ = 0.5, ah = bh = 1,

ν1 = ν2 = 1, r1 = r2 = 1, and aϕ = bϕ = 0.0001. Results are relatively insensitive to these

hyperparameter settings. The estimated mean surfaces for the two groups are plotted in

Figure 2.3. The ASD group tends to have positive condition differentiation between trials

30 and 55, whereas the TD group tends to have positive condition differentiation in earlier

trials. Positive condition differentiation is thought to be indicative of learning, so these

results suggest that the TD group is learning at a faster rate than the ASD group. However,

even though qualitatively the surfaces look very different, there is a substantial amount of

heterogeneity in the subject-level data, resulting in broad confidence bands around the mean,

and perhaps suggesting that differential patterns of condition differentiation between ASD

and TD groups are best explored considering both the mean and the covariance structure.

Next we conduct an eigen-analysis of the covariance structure for both cohorts sepa-

rately. Figure 2.4 plots eigenfunctions of the marginal covariances over ERP time and trials.

Credible intervals are calculated following Crainiceanu et al. [2007]. We start by analyz-

ing summaries indexing variability in ERP time. For both the TD and ASD cohorts, the

first eigenfunction explains the vast majority of the marginal covariance (84%-88% in ASD,

and 86%-90% in TD). In both groups this first eigenfunction is relatively flat and can be

interpreted as representing variability in the overall level of condition differentiation within
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Figure 2.3: Posterior expected mean condition differentiation along trial and ERP time for
the ASD (a) and the TD (b) cohorts.

a trial. The magnitude and shape of variation is comparable between TD and ASD chil-

dren. Finer differences may be detected in the second and third eigenfunction, which further

characterize variability in the shape of the ERP waveforms about the P300 peak. For both

cohorts, however, these summaries represent only a small percentage of the variance in ERP

waveform within trial.

Perhaps more interesting is an analysis of the marginal covariance across trial, as proba-

bilistic learning patterns are likely to unfold with prolonged exposure to expected vs. unex-

pected shape pairings. For the ASD group, the first eigenfunction dips in an approximately

quadratic fashion, suggesting enhanced variability in condition differentiation at around trial

35. Similarly, for the TD group, the first trial eigenfunction has a slight peak around trial

25. A possible interpretation of these covariance components relates to implicit learning,

with higher variance in differentiation occurring earlier for TD than for ASD children. For

both TD and ASD, the second eigenfunction across trials is interpreted as a contrast be-

tween high condition differentiation at early trials and low condition differentiation at later

trials. Finally for the ASD cohort, the third eigenfunction exhibits a peak around trial 30.

A possible interpretation would identify heterogeneity in the timing of learning, with some

of the trajectories inducing variation in condition differentiation around trial 30, as opposed
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ASD

TD

Figure 2.4: Marginal eigenfunctions with associated uncertainty for the ASD and TD groups.
Solid black lines represent posterior means and dotted lines represent 95% simultaneous
credible bands.
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to the first eigenfunction identifying increased variance at around trial 35. Similarly for the

TD group, the third trial eigenfunction has a dip around trial 35, indexing delayed increased

variability in condition differentiation around trial 35.

2.7 Discussion

In this paper we provide a probabilistic characterization of longitudinal-functional data.

As part of our work we propose a joint framework for the estimation of the mean or the

regression function, and a flexible prior for covariance operators. Regularized estimation

relies crucially on the projection of a set of basis coefficients onto a latent subspace, with

adaptive shrinkage achieved via a broadly supported class of product Gamma priors. While

we have not established theoretical results on posterior consistency, we have shown that

the proposed framework exhibits competitive operating characteristics, when compared with

alternative modeling strategies.

Importantly, uncertainty quantification, is achieved without having to rely on the asymp-

totic performance of bootstrap methods. From an applied perspective, analysts are charged

with choosing the appropriate projection space. However, we see this as a feature rather than

a problem, as different data scenarios may require and motivate the use of alternative basis

systems. Because regularization is achieved jointly with estimation, inference is straightfor-

ward and does not need to account separately for the estimation of nuisance parameters or

the choice of a finite number of eigenfunctions to use in a truncated version of the model, as

is the case for FPCA-based methods.

Crucially, the level of flexibility afforded by the proposed method is most important when

inference centers on both the mean and covariance structure. Simpler modeling strategies,

e.g. the LFPCA approach of Greven et al. [2010], are likely to be more appropriate when

the number of longitudinal observations is small, or if inference centers mostly on the mean

structure. In a small simulation study (Appendix 2C) we found that the proposed approach

performs similarly to LFPCA, even when data are generated from the latter scheme.

We have shown that posterior inference using MCMC is implemented in a relatively
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straightforward fashion and need not rely on complicated posterior sampling strategies.

When dealing with large data-sets, this näıve inferential strategy may not be appropriate.

For example, in updating the basis coefficients Θi, the number of floating point operations

grow at a cubic rate with respect to the dimensions of the spline bases. When näıve Gibbs is

not scalable, (e.g .for very large samples or long evaluation domains), potentially promising

acceleration strategies include the zero-loss projection approach of Morris and Carroll [2006],

and adaptations of the INLA framework for approximate inference (Rue et al. [2009]).

From a modeling perspective, our probabilistic characterization of the longitudinal-functional

covariance function is essentially equivalent to the weakly-separable model of Chen et al.

[2017]. While more general than a strictly separable model, this strategy makes strong as-

sumptions about the structure of a high-dimensional covariance operator. Testing strategies

have been developed in the literature (Lynch and Chen 2018a). However, we find that a

more natural approach to the problem is one of regularized estimation. In this setting, a

possible extension of our modeling framework could include an embedding strategy for the

regularization of a non-separable covariance operator towards a weakly separable one.

Software

Software in the form of an R package including complete documentation and a sample data

set is available from https://github.com/jshamsho/LFBayes

Supplementary Material

Supplementary material is available online at [http://biostatistics.oxfordjournals.org].
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CHAPTER 3

Bayesian Covariance Regression in Functional Data

Function on scalar regression models relate functional outcomes to scalar predictors through

the conditional mean function. These analytical techniques find many uses in diverse applied

domains ranging from medicine, to environmental science. With the exception of some recent

contributions, many functional regression frameworks operate under the assumption of that

covariate information does not affect patterns of covariation. In this article, we address this

disparity, and develop a Bayesian functional regression model, providing joint inference for

both the conditional mean and covariance functions. Our work hinges on basis expansions of

both the functional evaluation domain and covariate space, to define flexible non-parametric

forms of dependence. To aid interpretation, we develop novel low-dimensional summaries,

which indicate the degree of covariate-dependent heteroschedasticity. For illustration, our

modeling framework is applied to two case studies, aiming to provide novel insight in brain

imaging. The first case study evaluates a functional biomarker of neural development in

children with autism spectrum disorder, and the second case study explores the relationship

between sleep patterns, age, and hypertension.

3.1 Introduction

Functional data analysis (FDA) is a broad collection of theory and methods designed to

analyze conceptually infinite-dimensional data with smoothness assumptions. Functional

principal components analysis (FPCA) [Wang et al., 2016] is ubiquitous in FDA, with ap-

plications ranging from biomedicine, gene expression data, environmental science, and many

other scientific disciplines. Although the FPCA literature is growing rapidly to accommo-
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date data arising from complex designs [Baladandayuthapani et al., 2008, Staicu et al., 2010,

Greven et al., 2010, Zipunnikov et al., 2011, Park and Staicu, 2015b, Scheffler et al., 2020a],

only a handful of methods allow incorporating exogenous covariate information in the co-

variance estimation or resulting FPCA. Cardot [2007] developed a nonparametric technique

based on kernel smoothers to smooth covariance surfaces over a covariate in dense functional

data settings. Jiang et al. [2010] extended the kernel smoothing technique to accommodate

sparse functional data by employing conditional expectation Yao et al. [2005]. Xiao et al.

[2015] use sandwich smoothing [Xiao et al., 2013] to extract age-adjusted patterns of variation

in a repeated measures circadian rhythm study. Scheffler et al. [2020b] extend the concept

of weak-separability to incorporate exogenous covariate information in a multidimensional

functional setting.

In this paper we develop a Bayesian method to adjust covariances based on exogenous

covariate information. We focus on the independent functional response case for simplic-

ity although extensions to more general dependency structures are possible. Our proposed

method makes several novel contributions to the existing literature of covariate-adjusted

covariance modelling. The Bayesian paradigm offers a straightforward mechanism for quan-

tifying uncertainty through posterior sampling. The alternative empirical methods must

rely on the bootstrap, which has some issues in the context of functional data. Paramet-

ric bootstrapping does not account for uncertainty in selecting various tuning parameters

or data-adaptive basis functions [Goldsmith et al., 2013]. Theoretical guarantees surround-

ing nonparametric bootstrapping are underdeveloped in the context of functional covariance

regression.

Unlike previous research incorporating exogenous covariate information in the covariance

function, the proposed method is based on an additive structure which comes with several

advantages. The additive structure allows one to incorporate discrete covariates such as

diagnostic status directly into the analysis without the need for stratification. Retaining

the entire original sample is important for the data (as opposed to prior assumptions) to

guide the analysis. For example, Suarez and Ghosal [2017] note that prior specification for

within-subject random error is a sensitive choice since it partially determines the amount of
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smoothing performed on the data. Stratifying the analysis by levels of a discrete covariate

would limit the model’s ability to learn posterior within-subject random error magnitudes

and thus obscure the amount of smoothing to perform on the data. The additive struc-

ture also allows for implicit regularization assumptions. For example, deliberately removing

interactions could induce meaningful regularization in high dimensional covariate settings.

Model-based estimation also allows for the calculation of low dimensional summaries which

aid in describted the amount of heterogeneity to a particular covariate. It’s not clear how

to quantify this quantity using existing methods.

The proposed method is classified in the fifth general approach from Greven and Scheipl

[2017], which directly models the observed data and expands all model terms in suitable

basis expansions. Methods in this general approach account for all error sources in subse-

quent inferences and accommodate sparse or irregularly sampled curves. We focus on dense

functional data in this article but extension to more complicated grids is straightforward

with basis expansions. We are aware of several other Bayesian methods in the fifth general

approach including but not limited to Van Der Linde [2009], Thompson and Rosen [2008],

Montagna et al. [2012], Goldsmith et al. [2015], Suarez and Ghosal [2017], and Kowal and

Bourgeois [2020]. However, we note that the proposed method is the first to go beyond

varying coefficient flexibility and model covariance functions in a regression setup.

The proposed method is closely related to the notion of regularized covariance estima-

tion. As an early reference for regularized covariance estimation, Flury [1984] developed a

method to estimate a common set of principal components across k groups. This concept

was generalized by Franks and Hoff [2019], who use partial pooling to estimate a set of

principal components across k groups. Fox and Dunson [2015] developed a Bayesian non-

parametric method for estimating a time-varying covariance matrix through factor matrix

products, where the loading of the factor matrix depends on predictors. However it’s unclear

how to extend this method in the context of independent functional observations or include

discrete covariates such as group indicators. Moreover, this particular method requires high

dimensional Gibbs updates, which limits its computational feasibility. In contrast, the mul-

tivariate covariance regression model of Hoff and Niu [2012] can incorporate continuous as
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well as discrete covariates and only requires low dimensional Gibbs updates. However, this

flexibility is at the cost of some linear assumptions, making the method not as flexible as

Fox and Dunson [2015] in some aspects. See Li et al. [2014] and Quintero and Lesaffre [2017]

for extensions of this model to the multivariate multilevel case. The model presented in

Section 3.2 can be viewed as a functional extension of Hoff and Niu [2012] with some added

flexibility, and we will highlight the similarities and differences as we go along.

The methodological development of the proposed model is motivated by two case studies.

The first case study involves electroencephalography (EEG) brain signals recorded on chil-

dren with autism spectrum disorder (ASD). ASD is a complex neurodevelopmental disorder

that affects about 1 in 54 children. ASD is characterized by difficulty in communication,

restricted repetitive behaviors, and stereotypical behavior. Low functioning children may

have limited behavioral repertoire, necessitating specialized assessment methods. Electroen-

cephalography (EEG) provides a direct measure of postsynaptic brain activity and does

not rely on behavioral output from young children with ASD, making EEG based biomark-

ers appealling for diagnosis, prognosis, and intervention purposes [Jeste, Kirkham, Senturk,

Hasenstab, Sugar, Kupelian, Baker, Sanders, Shimizu, Norona, Paparella, Freeman, and

Johnson, 2015]. In this study 59 heterogenous children with ASD and 38 age matched typi-

cally developing (TD) children had resting-state EEG signals recorded [Dickinson, DiStefano,

Senturk, and Jeste, 2018]. This study focused on oscillations in the alpha rhythm, which

play a role in neural coordination and communication between distributed brain regions. We

describe how random patterns of variation differ between children with ASD and their TD

peers, providing novel insights into their neurodevelopmental differences.

The second case study analyzes EEG data collected as part of an in-home polysomnog-

raphy for the Sleep Heart Health Study (SHHS). This large study was designed to identify

factors for sleep-disordered breathing, such as age, blood pressure, or sleep patterns. In

this article we treat delta spectral power as a functional response and explore how simply

quantify sleep as a functional response and explore how heteroschedasticity depends on age

and hypertension status.

The rest of this paper is organized as follows: Section 3.2 gives the generating model for
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functional data, Section 3.3 lists prior choices and discusses the reasoning behind them, Sec-

tion 3.4 briefly discusses computations involved for posterior calculations, Section 3.5 gives a

thorough simulation study assessing errors and coverage properties, Section 3.6 showcases the

model on the two motivating case studies, and Section 3.7 concludes with a brief discussion.

The sampling algorithm and additional simulation details are given in the supplement.

3.2 A Modeling Framework for Covariance Regression

In this section we present a modeling framework for relating patterns of co-variation and

time-stable covariates. Let yi(t) ∈ R denote the outcome for subject i at point t ∈ T for

some real compact interval T . Let x = (x1, . . . , xd1)
> ∈ X denote a d1-dimensional time-

stable covariate for subject i, with the dependence on i removed for ease of presentation.

The k-dimensional data-generating model is

yi(t) = µ(t,x) + ri(t,x) + εi(t) (3.1)

ri(t,x) =
k∑
j=1

ψj(t,x)ηij (3.2)

ηij ∼ N(0, 1), εi(t) ∼ N(0, ϕ2) (3.3)

where µ(t,x) is the conditional mean, ψj(t,x) form conditional latent functional bases,

ηij ∼ N(0, 1) are subject-specific scores, and εi(t) ∼ N(0, ϕ2) represents measurement error.

Using Equations (3.1, 3.2, 3.3) the conditional covariance function c(t, t′,x) is

c(t, t′,x) =
k∑
j=1

ψj(t,x)ψj(t
′,x) + ϕ2δt (3.4)

Various approaches exist for specifying the form of µ(·) and ψj(·), including local polyno-

mial smoothers [Fan and Gijbels, 1996], kernel smoothers [Ferraty and Vieu, 2006], Gaussian

process methods [Yang et al., 2016b, Fox and Dunson, 2015], and spline procedures [Ramsay,
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2004]. Lending toward conceptually straight-forward prior assumptions, we build µ(·) and

ψj(·) as linear combinations of spline bases. Grouping d1 covariates into R subsets, so that

∪{xr}Rr=1 = x, with |r| denoting the number of covariates in group r, and defining compo-

nent functions fr(t,xr) : T × Xr → R, we borrow notation from Scheipl et al. [2015], and

assume µ(t,x) can be written as

µ(t,x) =
R∑
r=1

fr(t,xr). (3.5)

This grouping framework leads to flexible specification of basis expansions. For example,

when xr = xr ∈ R is a single scalar covariate, fr(t, xr) can be modeled as a functional linear

effect xrf(t) or, more generally, as a smooth function of t and x, say f(t, xr). Similarly, if

xr = (xr1 , xr2) is a vector of covariates, fr(t,xr) could be written as f(t, xr1 , xr2), xr1f(t, xr2),

or xr1xr2f(t), by diminishing degree of generality. These terms are approximated by a set of

basis functions with corresponding priors to encourage smooth effects. For the general case,

we maintain that xr ∈ Rpr admits a basis expansion br(xr) = (br1(xr), . . . , b
r
|r|(xr)) ∈ Rpr ,

and assume

fr(t,xr) = b(t)>βr b
r(xr), (3.6)

µ(t,x) = b(t)>β bx(x), (3.7)

where β =
(
β1 | · · · | βR

)
and bx(x) =

(
b1(xr) | · · · | bR(xr)

)>
. Keeping track of dimensions,

β is a p× r(d1) coefficient matrix and bx(x) is a r(d1)× 1 vector, where r(d1) =
∑R

r=1 pr.

We follow a similar strategy for the representation of ψj(t,x). Speficically, we define

latent basis functions lrj(t,xr) : T × Xr → R, and assume

ψj(t,x) =
R∑
r=1

lrj(t,xr) (3.8)
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As done previously, given a basis expansion of the covariate space, we write

lrj(t, xr) = b(t)>Λrj b
r(xr),

ψj(t,x) = b(t)> Λjb
x(xr),

where Λrj is a p × |r| loading matrix and Λj =
(
Λ1j | · · · |ΛRj

)
. The additivity on ψj(t,x)

implies that the covariance function in Equation (3.4) is

c(t, t′,x) =
k∑
j=1

( R∑
r=1

R∑
r′=1

lrj(t,xr)lrj′(t
′,xr′)

)
+ ϕ2δt.

This convolution structure makes interpretation of the latent functions lrj(t,xr), somewhat

difficult as an index of covariate dependence. To aid interpretation, we define low dimensional

summaries of covariate influence on the covariance function directly. More precisely, let

gr(t,xr) =
1

|Xr|
∑
Xr

k∑
j=1

lrj(t,xr)
2 (3.9)

summarize the effect of xr across ψj, j = 1, . . . , k. Here Xr represents a set of covariate

values for the rth group of covariates and | · | denotes cardinatly. If the impact of xr on

ψj, j = 1, . . . , k is negligible, then gr(t,xr) will be near zero. Consequently if gr(t,xr)

is near zero, c(t, t′,x) will not be sensitive to changes in xr. Crucially, the definition of

these covariate influence functions, quantifying the effect of exogenous predictors on co-

variance operators, is independent of assumptions of strict additivity, resulting in a truly

non-parametric measure of influence on patterns of covariation. Unlike previous work on

functional covariance regression [Cardot, 2007, Jiang et al., 2010], Equations (3.1, 3.2, 3.3)

specify a generative model for functional covariance regression. Complete with priors de-

tailed in Section 3.3, posterior inference is completed through Markov-Chain Monte Carlo

(MCMC).

Given a finite observation grid, the structure of the likelihood is similar to that of Hoff and

40



Niu [2012] who considered covariance regression with multivariate response data. However,

as Fox and Dunson [2015] note, their mapping from predictors to covariance assumes a

parametric form, thus limiting the model’s expressivity. In particular, Hoff and Niu [2012]

assumes increasing heteroschedasticity as covariate magnitude becomes large. To overcome

this parametric limitation, Fox and Dunson [2015] develop a factor matrix process which

involves many nonparametric Gaussian processes. This approach is flexible but (1) each

gibbs sample iteration requires many cholesky decompositions of n× n matrices where n is

the number of subjects and (2) cannot incorporate discrete covariates. The basis expansion

approach taken in this article would only require a cholesky decomposition of a p · r(d1) by

p · r(d1) matrix for each iteration and accommodate discrete covariates. The basis expansion

approach is likely to scale better for large data sets such as the SHHS.

3.3 Prior Distributions

In this section we place priors on all unknown quantities of interest. We begin by placing

prior on µ(t,x). As we have seen in Equations 3.6 and 3.7, this amounts to placing a

prior on each βr submatrix. The rows of βr are associated with a p × p penalty matrix K,

and the columns of βr are associated with a |r| × |r| penalty matrix Kr. These penalties are

designed to encourage smoothness and can target magnitude penalization, squared derivative

shrinkage, or local changes in βr through a differencing penalty. In this paper we penalize

the second order difference of βr coefficients in both directions, but other penalties could be

used as well. A prior for βr respecting the tensor structure is constructed as follows [Wood,

2017]. Let K̃ = I|r|×|r| ⊗K and K̃r = Kr ⊗ Ip×p. The prior for the vectorized form of βr is

vec(βr) | τ1xr, τ1tr ∼

exp{−0.5vec(βr)
>(τ1xrK̃r + τ1trK̃)vec(βr)}
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where τ1xr, τ1tr are smoothing parameters. If |r| = 1 then βr is a p × 1 vector and K̃r = 0.

In this case the prior simplifies to

βr |τ1tr ∼ exp{−0.5τ1trβ
>
r Kβr}

This prior is improperm, but provided that proper priors are set for τ1tr, τ1xr, the posterior

of βr will be proper [Lang and Brezger, 2004].

As we define priors for ψj(t,x), we take into consideration their interpretation as pseudo

eigen-components of conditional covariance functions, therefore we require that for for larger

values of the index j, ψj(t, ,x) contributes an increasingly smaller amount to the overall

magniture of covariance. Therefore, the prior for ψj(t,x) should encourage both smoothing

and shrinkage aspects. Let Λrj be the analogous component to βr. Re-using the same penalty

matrices as above, the prior for Λrj is

vec(Λrj) | τ2jxr, τ2jtr, τ ∗rj, φrj ∼

exp{−0.5vec(Λrj)
>(τ2jxrK̃r + τ2jtrK̃ + τ ∗rjφrj)vec(Λrj)},

where τ2jxr, τ2jtr are smoothing parameters and φrj, τ
∗
rj are shrinkage parameters. Here φrj

is a diagonal matrix with dimension p · |r| by p · |r|. If |r| = 1 (so that Λrj is a column

vector), then the prior becomes

Λrj |τ2jtr, τ ∗rj, φrj ∼ exp{−0.5Λ>rj(τ2jtrK̃ + φrjτ
∗
rj)Λrj},

similar to the case when βr is a column vector. In summary, these priors for µ(t,x) and

ψj(t,x) are design to reflect our assumptions of smoothness in the functional data outcomes.

All smoothing parameters are given independent gamma prior distributions,

τ1xr, τ1tr ∼ Gamma(aτ , bτ )

τ2jxr, τ2jtr ∼ Gamma(aτ , bτ )
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where we use the ‘rate’ parameterization of the Gamma distribution (i.e., if x ∼ Gamma(a, b),

then E[x] = a/b). In our implementation we follow Kowal and Bourgeois [2020], Gelman

et al. [2006] and place uniform priors on all smoothing parameters, so that aτ = −0.5 and

bτ = 0. In our experience, model fitting can be poor for some choices of aτ and bτ but uniform

priors tend to have favorable results. We borrow the Gamma Multiplicative Process Prior

(GMPP) from Bhattacharya and Dunson [2011], Montagna et al. [2012] to assign priors to

τ ∗rj and φrj. Let φirj denote the ith diagonal element of φrj.

φirj ∼ Gamma(aφ, bφ) (3.10)

τ ∗rj =

j∏
l=1

δrl (3.11)

δr1 ∼ Gamma(ar0, 1) (3.12)

δrl ∼ Gamma(ar1, 1), l > 1 (3.13)

ar0, ar1 ∼ Gamma(2, 1) (3.14)

so that the τrj are stochastically increasing in j. This shrinkage is data-adaptive so that

later entries of Λrj may or may not be shrunk toward zero depending on the model fit. The

φirj parameters are local shrinkage parameters, and removing these will tend to result in

over-shrinkage [Bhattacharya and Dunson, 2011]. Critically, specifying a conservative choice

of k (number of latent functional factors) should not change results too much compared to

setting k to some “optimal” choice. Finally, we place an Inverse-Gamma prior on random

noise variability ϕ2. Although Suarez and Ghosal [2017] notes that results may be sensitive

to this prior, this has not been the case in our experience. This may be because in our prior

specification smoothing comes from the the prior on β and Λj, whereas smoothing comes

from the prior on ϕ2 in the model from Suarez and Ghosal [2017]. Regardless, empirical

choices of hyperparameters are available [Wang et al., 2016, Suarez and Ghosal, 2017].
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3.4 Posterior inference

We use Gibbs sampling to draw parameter realizations from the joint posterior distribution.

In particular, we sample β, Λj, φrj, τ1tr, τ1xr, τ2jtr, τ2jxr, δrl, φirj, ϕ
2, and ηij through their

respective conditional conjugate distributions and sample ar0, ar1 through a Metropolis-

Hastings step. The most computationally intensive part of the sampling algorithm requires

approximately 1/3 · p · r(d1) number of floating point operations used to calculate a cholesky

decomposition involved in updating β and Λj. Detailed steps of the sampling algorithm are

provided in Appendix 3A.

We discuss posterior inference for subject-specific latent trajectories, mean functions, and

principal directions of variation. In this paper we use the posterior mean as a point estimate

and symmetric pointwise credible intervals for uncertainty quantification. Let β̂m, Λ̂jm, and

η̂ijm be the mth posterior draw of β, Λj, and ηij. The point estimate for the ith subject-

specific latent trajectory, ỹi(t), is 1
M

∑M
m=1{b(t)>β̂mbx(xi) +

∑k
j=1 b(t)

>Λ̂jmb
x(xi)}. Simi-

larly, the point estimate for the covariate-adjusted mean, µ(t,x), is 1
M

∑M
m=1 b(t)β̂mb

x(xi).

Let Cm(x) be the matrix given by evaluating the mth posterior draw of c(t, t′,x) on a

subset of T × T . Performing a spectral decomposition on Cm(x) yields the mth draw of

ordered orthonormal posterior principal directions of variation (eigenfunctions) ψ̃jm(t,x),

j = 1, . . . , k.

However, this method can be computational expensive due to the spectral decomposi-

tion of arbitrarily high-dimensional matrix Cm(x) due to the nature of functional data. To

alleviate this intensive procedure, we follow Aguilera and Aguilera-Morillo [2013] and only

perform a spectral decomposition on a low-dimensional matrix,
∑k

j=1 Λ̂jmb
x(xi)b

x(xi)
>Λ̂>jm,

so that we never actually form Cm(x) in our implementation. Since ψ̃jm(t,x) is only iden-

tifiable up to sign change, each ψjm(t,x) may be potentially multiplied by −1 to orient all

eigenfunctions correctly. More details on extracting and orienting posterior eigenfunctions

are provided in Appendix 3B. Once all posterior eigenfunctions are oriented correctly, a

point-estimate is obtained by simply taking the posterior pointwise mean.

Credible intervals are computed in the following manner. Let µf (t) and σf (t) be the
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posterior mean and standard deviation of some functional f(·) evaluated at t. A (1−α) ·100

credible interval for f(t) is [f̂(t)− z∗1−α/2σf (t), f̂(t) + z∗1−α/2σf (t)] where z∗1−α/2 is the 1−α/2

quantile of the standard normal distribution. Pointwise intervals have nominal average cover-

age when the model is correctly calibrated. However, pointwise intervals are anti-conservative

when performing inference for an entire function f(·). In this case we recommend comput-

ing simultaneous credbile bands. Our implementation includes this option and we give more

details in Appendix 3B.

3.5 Simulations

We assess the performance of the proposed method in terms of mean, covariance, and latent

response point estimation and coverage. We generate data under two scenarios. The first

scenario has heteroscedasticity depending on a covariate x scaled within the unit interval,

and the second scenario imposes no such relationship between heteroscedasticity and covari-

ates. Both scenarios include a covariate-dependent mean surface. We fit data generated in

both scenarios by (1) the proposed method, adjusting for covariate-dependent heteroscedas-

ticity and (2) foregoing this adjustment and assuming the covariate only impacts the mean

structure. We generate data in both scenarios by simulating from the model. We generate

300 datasets per scenario and true model parameters are kept fixed over each dataset. We

include two sample sizes N = 100 and N = 400 to numerically verify mean and covariance

point estimation convergence.

We begin by using a p-spline of dimension 10 to expand the functional arguement t and

a p-spline of dimension 5 (not including an intercept) to expand the covariate argument x.

According to notation from section 3.2, b(t) = (b1(t), . . . , b10(t))
>, b2(x) = (b21(t), . . . , b

2
5(t))

>,

and µ(t, x) = f1(t) + f2(t, x) = b(t) β1 + b(t) β2 b
2(x). The model parameters β1 and vec(β2)

have prior mean zero and precision Ω1 + ε · I10×10 and Ω2 + ε · I50×50 respectively. The nugget

term ε · I is used to simulate from a full-rank multivariate normal and in our experiments we

set ε = .1. To ensure smoothness of the resulting response functions yi(t), we set Ω1 = τ1t1K

and Ω2 = τ1x2(K2 ⊗ I10×10) + τ1t2(I6×6 ⊗ K), where K and K2 are second order discrete
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penalty matrices associated with p-splines. We use k = 4 latent functional factors for the

random component ri(t, x), so ri(t, x) =
∑4

j=1 ψj(t, x). Under data-generating scenario 1,

we set ψj(t, x) = l1j(t) + l2j(t, x). Under data-generating scenario 2, we set ψj(t, x) =

l1j(t). Expanding out the terms, l1j(t) = b(t)> Λ1j and l2j(t, x) = b(t) Λ2j b
2(x). The model

parameters Λ1j and Λ2j prior mean zero and prior precision Γj1 and Γj2 respectively. We

set Γj1 = τ2t1K + τ ∗1j and Γj2 = τ2x2(K2 ⊗ I10×10) + τ2t2(I6×6 ⊗ K) + τ ∗2j. Smoothing and

shrinkage parameters are τ1t1 = τ1t2 = τ2t1 = τ2t2 = 10, τ1x2 = τ2x2 = 100, τ ∗1j = 2j, and

τ ∗2j = 4j. Measurement error is ϕ2 = .202 and functional data yi(t) is generated according to

Equation 3.1. The functional argument t is evaluated at 100 equally spaced locations within

the unit interval and xi is equal to (i− 1)/(N − 1).

It will be convenient to divide data-generating scenarios and fitting procedures into four

separate cases. Case 1 has data generated from scenario 1, fit with a model that adjusts

for heteroscedasticity due to the covariate. Case 2 has data generated from scenario 2, fit

with a model that does not adjust for heteroscedasticity due to the covariate. Case 3 has

data generated from scenario 2, fit with a model that adjusts for heteroscedasticity due to

the covariate. Case 4 has data generated from scenario 2, fit with a model that does not

adjust for heteroscedasticity due to the covariate. We fit each dataset with with k = 6 latent

functional factors and expand the functional argument into a p-spline basis of dimension

10. We expand the covariate argument into a p-spline basis of dimension 7. In doing

so, we simply enlarge the model space and test its ability to regularize unnecessary latent

dimensions and basis expansions. We place uniform priors on all smoothing parameters and

a Gamma(0.0001, 0.0001) prior on the inverse measurement error, ϕ−2. We fit each model

with 50,000 samples, discarding 25,000 as burn-in and keeping every 5th observation to save

computer memory. We keep track of coverage, average credible interval width, and relative

integrated squared error (RISE). The coverage performance assess a model’s calibration and

goodness of fit, whereas RISE assesses a model’s performance in terms of point estimation.

Let t1, . . . , t100 be 100 uniformly placed points along the domain of the functional argu-

ment, x∗1, . . . , x
∗
10 be uniformly placed points along the interval [0.1, 0.9], and ỹi(t) denote

the latent response of yi(t) uncontaminated with random error. Let 1(·) be the indica-
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tor function that returns 1 when the argument is true and 0 otherwise. The coverage of

µ(t, x) is 1
1000

∑10
i=1

∑100
m=1 1{µ(tm, x

∗
i ) ∈ Îmi}, the coverage of c(t, t′, x) is 1

50500

∑10
i=1

∑100
m=1∑m

m′=1 1{c(tm, tm′ , x∗i ) ∈ Îmm′i}, and the coverage of ỹi(t) is 1
N×100

∑N
i=1

∑100
m=1 1{ỹi(tm) ∈

Îy,mi}. Here Îmi is the nominal 95% posterior interval about µ(tm, xi) and Îmm′i is the

nominal 95% posterior interval about c(tm, tm′ , xi), and Îy,mi is the nominal 95% posterior

interval about ỹi(t). The RISE of µ(t, x) is 100·
∑10
i=1

∫
T {µ̂(t,x

∗
i )−µ(t,x∗i )}2 dt∑10

i=1

∫
T µ(t,x

∗
i )

2 dt
, the RISE of c(t, t′, x)

is 100 ·
∑10
i=1

∫
T
∫
T {ĉ(t,t

′,x∗i )−c(t,t′,x∗i )}2 dt dt′∫
T
∫
T
∑10
i=1 c(t,t

′,x∗i )
2 dt dt′

, and the RISE of ỹi(t) is 100 ·
∑N
i=1

∫
T {ŷi(t)−ỹi(t)}

2 dt∑N
i=1

∫
T ỹi(t)

2 dt
. In

practice we use the trapezoidal rule to evaluate all integrals. We also compute average credi-

ble band width for µ(t, x), c(t, t′, x) and ỹi(t). All coverage, RISE, and interval width results

are reported in Table 3.1.

3.6 Case Studies

3.6.1 Application to ASD study

Peak alpha frequency (PAF), the frequency at which oscillations in the alpha range demon-

strate maximal power, shows well-characterised increases with chronological age during child-

hood in typically developing children [Somsen et al., 1997, Dustman et al., 1999, Stroganova

et al., 1999, Chiang et al., 2011, Cragg et al., 2011, Miskovic et al., 2015]. PAF has been

shown to index neural development in TD children [Valdés-Hernández et al., 2010, Sega-

lowitz et al., 2010, Rodŕıguez-Mart́ınez et al., 2017]. However, a recent study by Dickinson

et al. [2018] found that children with ASD did not show the typical increase in PAF with

age. In the present study, we investigate the relationship between diagnostic status, age,

and alpha spectral density. Treating alpha spectral density as a functional response avoids

complicated PAF identification procedures [Dickinson et al., 2018] and retains more infor-

mation as opposed to collapsing the entire alpha spectral band to a single point [Scheffler

et al., 2019, 2020b]. In this study we wish to characterize functional mean and covariance

dependence of alpha spectral density in terms of age and diagnostic status.

In the Dickinson et al. [2018] study, resting-state EEG was collected on 39 TD children
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Table 3.1: Simulation results over 300 data sets for each sample size and case combination.
Coverage, error (RISE), and interval width are averaged over all data sets. Refer to Section
3.5 for details on how coverage, error, and interval width are calculated.

Sample size Quantity Case Coverage Error Interval width

N = 100

µ(t, x)

1 .98 .84 .30
2 .98 .91 .32
3 .98 .78 .30
4 .98 .79 .30

c(t, t′, x)

1 .89 7.00 .14
2 .72 9.76 .11
3 .98 4.31 .13
4 .97 3.29 .11

yi(t)

1 .97 .25 .17
2 .97 .29 .19
3 .98 .21 .17
4 .98 .20 .16

N = 400

µ(t, x)

1 .99 .19 .18
2 .98 .21 .19
3 .99 .18 .18
4 .98 .18 .18

c(t, t′, x)

1 .88 3.10 .09
2 .46 7.23 .06
3 .98 1.01 .06
4 .97 .84 .05

yi(t)

1 .97 .13 .16
2 .97 .18 .18
3 .98 .12 .16
4 .98 .12 .16
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and 58 children with ASD aged 2 to 12 years old. EEG signals were sampled at 500 Hz for

two minutes and interpolated to a 10-20 25 channel montage [Jasper, 1958, Perrin et al.,

1989]. Alpha spectral density Ω ∈ [6 Hz, 14 Hz] were obtained for each electrode. To fa-

cilitate comparisons across regions and subjects, alpha spectral density was normalized to

unit area. See Scheffler et al. [2019] for more details on data acquisition and pre-processing.

The resulting data structure is region-referenced functional data, which induces correlated

functional responses within subjects. Unfortunately, the proposed method can not accom-

modate correlated functional data. Instead, for demonstration purposes, we only examine

one region at a time. We also acknowledge that Scheffler et al. [2020b] already successfully

applied a covariate-adjusted hybrid principal components analysis, which can accommodate

correlated functional responses within subject. While the case study of Scheffler et al. [2020b]

is similar to the one in this article, we note that the two methods are very different in their

methodological work. In addition, the low dimensional summary in Equation 3.9 provides

some insight into how the variability of normalized alpha spectral density as a function of

age and diagnostic status.

We consider EEG data arising from the T8 region while adjusting mean and and covari-

ance functions by diagnostic status, age, and a diagnostic status by age interaction. This

interaction is scientifically motivated because as previously mentioned, PAF tends to increase

with age for TD children but not so for children with ASD. For the frequency dimension,

we use a p-spline basis with 12 degrees of freedom using a second order differencing penalty.

We expand age via p-splines with 6 degrees of freedom, again with a second order difference

penalty. We run a markov chain monte carlo algorithm for 200,000 iterations. To keep mem-

ory management light, we only save every 20 iterations. Of the leftover 10,000 iterations, we

discard the first 5,000 as burn-in and keep the subsequent 5,000 for inference.

Figure 3.1 plots normalized alpha spectral density over several ages of child and diag-

nostic group with associated 95% pointwise credible bands. The means curves drift apart as

the cross-sectional age increases, which supports the notion that differences in alpha spectral

band dynamics between ASD and TD children at similar ages can successfully predict diag-

nostic status Scheffler et al. [2019]. Figure 3.2 displays the leading age and group adjusted
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Figure 3.1: Posterior mean alpha spectral power for ASD and TD groups at age 50, 70, 90,
and 110 months. The shaded area represents 95% pointwise credible intervals.

Figure 3.2: Posterior mean of the leading eigenfunction adjusted by age and diagnostic status
for the resting state ASD experiment. The TD group has a clear shift in shape over age, but
this shift is obscured in the ASD group.

eigenfunction. The general shape for a particular age is a unimodal curve peaked around

8-10 Hz. Notice that the peak of this curve tends to shift from lower to higher frequencies as

age increases for the TD group, whereas the peak frequency is relatively constant over age

for the ASD group, which is supported by the analysis in Scheffler et al. [2020b]. Posterior

summaries g(ω,x) indicate heterogeneity is similar between ASD and TD groups. Moreover,

heterogeneity does not depend on either group. See Appendix 3C for further discussion.

3.6.2 Application to Sleep Heart Health Study

The Sleep Heart Health Study (SHHS) was a prospective cohort study designed to inves-

tigate obstructive sleep apnea (OSA) and other sleep-disordered breathing (SDB) as risk

factors for the development of cardiovascular disease [Quan et al., 1997]. Parent cohort
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studies and recruitment targets for these cohorts are the following: Atherosclerosis Risk in

Communities Study (1,750 participants), Cardiovascular Health Study (1,350 participants),

Framingham Heart Study (1,000 participants), Strong Heart Study (600 participants), New

York Hy- pertension Cohorts (1,000 participants), and Tucson Epidemiologic Study of Air-

ways Obstructive Diseases and the Health and Environment Study (900 participants). An

unattended in-home polysomnography was completed by participants between November 1,

1995 and January 31, 1998. Between January 2001 and June 2003, a second polysomnogram

was obtained in 3295 of the participants.

The American Academy of Sleep recognizes four sleep stages: stage N1 (light sleep), stage

N2 (relaxation), stage N3 (slow-wave sleep), and stage R (rapid-eye movement). Importantly,

N3 sleep, or slow-wave sleep (SWS) consists of high amplitude (≥ 75 µV) and low-frequency

(0.5 − 4.0) delta waves. SWS is considered to be most restorative sleep stage and to be

associated with sleep quality, sleep maintenance, and functions toward memory consolidation

[Bonnet, 1987, Akerstedt et al., 1997, Walker, 2009]. Mander et al. [2017] reports that

advancing into the fifth decade of age comes with (1) reduced SWS time and (2) increased

time spent in lighter sleep stages (N1, N2). In addition, Javaheri et al. [2018] reports that

lower levels of percent SWS sleep are associated with increased odds of incident hypertension

in both men and women, independent of confounders such as sleep apnea, age, and sex.

Most clinical studies (including the papers referenced above) quantify sleep by classifying

time-varying electrical phenoma into discrete sleep stages. Subsequently, amount of SWS is

represented by a single number, which is commonly percentage of sleep time in stage N3.

However, this approach comes with several limitations [Crainiceanu et al., 2009] including

low intraclass correlation coefficient, no biological basis, and loss of temporal information.

In this paper follow Crainiceanu et al. [2009], Di et al. [2009] and use power spectral density

analysis to quantify sleep EEG. Our present goal is to characterize age-related changes in

sleep between hypertension and non-hypertension groups.

We use the discrete fast Fourier transform to analyze the sleep EEG data in the frequency

domain. The entire night of sleep is broken into 30-second adjacent sleep epochs to account

for temporal effects. These 30-second windows are processed using Welch’s method of 50%
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overlapping windows (4 second windows with 2 seconds overlap), where the intervals are

windowed using a tapered Tukey window. The epoch-level power spectral density estimate

is the average of the windowed power spectra. We use a band-pass filter to attenuate signals

less than .3 Hz and greater than 35 Hz with a .5 Hz transition width. We mask epochs

where artifacts detected using the method described in Buckelmüller et al. [2006]. We also

mask epochs that are statistical outliers using (2, 2) Hjorth parameters Hjorth [1970]. We

compute delta spectral power by summing power spectra from 0.5 Hz to 4.0 Hz in .25 Hz

increments on an epoch-by-epoch basis. To facilitate comparisons across participants, we

compute epoch-level relative delta power spectral density (RDPSD) by dividing this power

density by a summation of spectral density from .5 Hz to 35 Hz in .25 Hz increments. All

filtering and power spectral density computations were performed in Luna [Purcell, 2020],

which is an open-source software package for manipulating and analyzing polysomnographic

readings.

We restrict our attention to EEG data collected on the first visit. We also filter partici-

pants to only include those who scored at least four hours of artifact-free signal. We analyze

the first two hours of sleep, resulting in a dense grid of length 240 epochs for each partici-

pant. The 10th and 90th percentiles of age are 47 and 77 years-old, respectively. There are

2177 participants with hypertension and 3081 participants without hypertension. We use a

p-spline of dimension 24 for the marginal basis for epoch and a p-spline of dimension 8 for

the marginal basis for age. Each basis is associated with a second order differencing penalty

matrix. We also include a hypertension dummy variable and a hypertension-age interaction.

Exploratory analysis from Castro et al. [1986], Carroll et al. [2020] shows 9 principal compo-

nents are needed to explain 99% of variability (unadjusted for age and hypertension group).

We fit our model with k = 12 latent factors since unneeded latent factors will be set close to

zero due to the prior shrinkage process in Equations 3.11-3.14. We ran the MCMC algorithm

described in the supplement for 200,000 iterations with a burn-in of 100,000, saving every

20th iteration for memory requirements.

Figure 3.3 displays mean RDPSD with associated 95% point-wise credible intervals for

ages 50, 60, 70, and years old for both hyertension and non-hypertension groups. Rela-
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Figure 3.3: Relative delta power spectral density for the first two hours of sleep adjusted by
age at 50, 60, 70, and 80 years and hypertension diagnostic group.

tive power spectral density decreases in N3 (around epoch 60) with age for both groups.

The seemingly little decrease of SWS from midlife to late life is supported by Van Cauter

et al. [2000], who found that percent SWS predominantly decreases from early adulthood to

midlife, with no further decrease into late life. Their study included 149 healthy men aged

16 to 83 years. Our methods support their finding after considering a much richer metric

than percent SWS in the context of a much larger observational study. There is considerable

overlap in the credible intervals between the hypertension and non-hypertension RDPSD,

which does not support the hypothesis that hypertension is associated with increased levels

of RDPSD.

We conducted an eigen-analysis on the model-based covariance surfaces. The estimated

leading eigenfunction for a 50 year old with no hypertension accounts for 31% of total vari-

ability and is positive over the entire epoch grid, suggesting that this component represents

an overall RDPSD size construct. This eigenfunction, nor subsequent eigenfunctions vary

much over age or group. Heterogeneity of RDPSD is similar between hypertensive and non-

hypertensive groups. In addition, heterogeneity does not depend on age of the subject for

either group. See Appendix 3C for further discussion.

3.7 Discussion

We developed a probabilistic model suitable for functional data with covariate-dependent

heteroscedasticity. We carefully designed adaptive smoothing and shrinkage priors for co-
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variance regularization purposes. In particular, we note that the smoothing prior reflects

smoothness assumptions and the shrinkage prior makes the latent structure robust to mis-

specified number of latent functional factors. We reiterate that the proposed approach

enables joint mean/covariance estimation, straightforward inference, incorporating group in-

dicators, and the calculation of key low dimensional summaries. The simulation experiment

illustrated attractive qualities such as calibrated coverage and decreasing error/interval width

as the sample size increases. The proposed apprach is computationally feasible for moder-

ately large datasets such as the sleep study, which has N = 5258 subjects, 240 timepoints,

and 16 basis functions for the covariate dimension. This feasibility is owed to tractible lower

dimensional gibbs sampling updates. We applied our methodology to better understand the

neural mechanisms surrounding ASD and distinguishing slow-wave sleep patterns over age

by hyptertension status.

Several promising extensions are possible to the existing methodology. The framework

can be extended to accommodate multilevel functional data for nested, longitudinal, and

repeated measures applications by incorporating a latent structure in addition to ri(t,x).

Variable selection in the latent structure is largely unexplored. Employing variable selection

techniques in the flavor of Kowal and Bourgeois [2020] in the context of functional covariance

regression requires would require intricate design considerations for computational feasbility.

Along those lines, it would be interesting to adjust only a small number of adaptively chosen

latent functional factors instead of every latent functional factor as we have done in this

article. It would also be interesting to adaptively choose the number of latent functional

factors as in Montagna et al. [2012].

Data Availability Statement

Data used in the resting state EEG experiment is not publicly available. Please contact

Shafali Jeste at sjeste@mednet.ucla.edu. Access to Sleep Heart Health Study annotated

sleep waveform data requires registering an account at sleepdata.org and requesting dataset

access.
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Supporting Information

Software in the form of an R package including complete documentation and sample data

set is publicly available at github.com/jshamsho/bfcr.
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CHAPTER 4

Bayesian Analysis of Region-Referenced Functional

Data

We develop Bayesian approaches to model region-referenced functional data - multivariate

functional data observed over regional subunits. The proposed methods identify data-driven

interpretable marginal functional and regional basis functions. Prior structure is imposed to

encourage smoothness in the functional domain and weaken the influence of superfluous ba-

sis functions. The proposed methods incorporate scalar covariates, enabling joint mean and

covariance estimation. In addition, we show how pivotal discrepancy measures can be used

to assess covariance structural assumptions and aid in model selection. The proposed meth-

ods are applied to study electroencephalography data from children with autism spectrum

disorder in a resting-state experiment. Supplementary materials, including a documented

Rcpp package with a tutorial, are available online.

4.1 Introduction

Functional principal components analysis (FPCA) and the associated Karhunen-Loéve (KL)

decomposition [Karhunen, 1946, Loève, 1946] is the most prevalent tool in univariate func-

tional data analysis, appearing in regression, classification, dimension reduction, and ex-

ploratory applications. Owing to the versatility of the KL decomposition, this idea has been

extended to accommodate multivariate functional data [Jacques and Preda, 2014, Chiou

et al., 2014, Happ and Greven, 2018]. Region-referenced functional data - multivariate func-

tional data observed over regional subunits - usually possess a structured dependency pattern

that allows one to analyze marginal patterns of covariation along the functional domain and
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the spatial domain separately. For example, Scheffler et al. [2020b] considered repeated oscil-

latory measurements along a number of electrodes on the scalp from electroencephalography

(EEG) recordings. The authors proposed hybrid principal components analysis (HPCA),

which involves a tensor basis of one-dimensional marginal eigenvectors and eigenfunctions

consisting of regional, longitudinal, and functional bases. The use of marginal eigenvectors

and eigenfunctions has advantages for interpretability. In a related longitudinal -functional

data setting, functional data repeated over longitudinal time, Park and Staicu [2015b], Lynch

and Chen [2018a] propose decomposed random longitudinal-functional effects in terms of a

tensor of marginal eigenfunctions along the longitudinal and functional dimension. As noted

by Li et al. [2020], these marginal eigenvector/eigenfunction decompositions are special cases

of the general multivariate KL factorization [Happ and Greven, 2018].

In this article we direct our attention to region-referenced functional data. This data

structure is distinct from spatially indexed functional data [Morris and Carroll, 2006, Bal-

adandayuthapani et al., 2008, Staicu et al., 2010]. Contrary to spatial functional data

analyses, region-referenced functional data analyses do not explictly account for distance

between regions in the modeling process. This is an important point because in many phys-

ical processes close proximity between regions does not imply high functional correlation.

Brain imaging applications are typically analyzed with the aforementioned modified KL ap-

proaches, letting the data learn important patterns of spatial or functional dynamics instead

of optimizing hyper-parameters in a mixed model fashion appropriate for spatially indexed

functional data. To that end, we develop Bayesian analogues of weak separability Lynch

and Chen [2018a,b], Shamshoian et al. [2020] and partial separability [Zapata et al., 2019].

The Bayesian framework offers straightforward inference for all model quantities of interest

through the posterior distribution. In addition, we develop informal Bayesian hierarchical

goodness of fit tests for assessing the adequacy of the modified probabilistic KL expansions

and mean structure.

This article is structured as follows. Section 4.2 presents a probabilistic model as an

alternative to weak and partial separability. Section 4.3 discusses choice of priors and good-

ness of fit assessments. Section 4.4 conducts numerical experiments to evaluate the proposed
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methodology in finite samples with comparisons to other pertinent techniques. Section 4.5

applies the proposed methodology to analyze hierarchical EEG data from children with

autism spectrum disorder. Section 4.6 summarizes the work and suggests future research

directions.

4.2 Probabilistic Models for Region-Referenced Functional Data

Suppose we observe discrete realizations of a stochastic process Yij(t) : T → R, Yij ∈ L2(T ),

over a compact subset T ⊂ R, at points t ∈ {t1, . . . , tn}, over regions j ∈ {1, . . . , R}, for

subjects i = 1, . . . , n. Let xi be a D−dimensional covariate vector representing exogenous

information often assumed to affect the mean structure. Let Yi(t) = (Yi1(t), . . . , YiR(t))> be

an R−dimensional vector containing measurements from all regions at t. We refer to the

following decomposition as the partially separable functional linear model (PSFLM):

Yi(t) =
∞∑
l=1

θilψl(t) + εi(t), εi(t) ∼ N(0,Σε) (4.1)

θil =
R∑
j=1

φljηilj = φlηil, ηilj ∼ tν(x
>
i βlj, σ

2
lj) (4.2)

Here εi(t) represents normally distributed measurement error with mean zero constant di-

agonal variance matrix Σε = diag(σ2
ε1, . . . , σ

2
εR). The functions ψl(t) : T → R, ψl ∈ L2(T ),

are latent basis functions to be estimated from the data, and θil = (θil1, . . . , θilR)> is an

R−dimensional vector of random effects for the ith subject. We use Bayesian factor analysis

to model the θil terms, with φlj ∈ RR, j = 1, . . . , R forming the loading components and

ηilj being the subject-specific factors with a tν(x
>
i βlj, σ

2
lj) distribution. The scaled student’s

t distribution is favored over the normal distribution for robustness to outliers in the la-

tent space [Lee and Lee, 2020, Kowal and Bourgeois, 2020]. This model is a probabilistic

extension to the partially separable KL decomposition from Zapata et al. [2019].

A special case of PSFLM occurs when φlj ≡ φj up to sign changes. That is, when the

loadings do not depend on l, we recover a probabilistic extension to the weakly separable
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KL decomposition [Lynch and Chen, 2018a,b]. We refer to this special case the weakly sep-

arable functional linear model (WSFLM) and explore its properties in this article. We note

that ideas similar to PSFLM have appeared in the literature in the context of longitudinal-

functional data analysis [Park and Staicu, 2015b, Lynch and Chen, 2018a]. We also note

that Shamshoian et al. [2020] developed a probabilistic model for longitudinal functional

data using weak separability. These modifications of the general multivariate KL decompo-

sition of stochastic processes is are pervasive in the literature on structured functional data

analysis. However, to the best of our knowledge, this article is the first to complete Bayesian

analysis with these models in the context of region-referenced data. Within the Bayesian

framework, we discuss crucial aspects of regularized estimation through ordered shrinkage

priors, obtain exact posterior inference, and conduct informal goodness of fit assessments for

the covariance structure as shown in Section 4.3.

Let bp(t), b = 1, . . . , P , be a set of basis functions spanning a function space on T , e.g.

B-splines, we assume ψl(t) is represented as:

ψl(t) =
P∑
p=1

bp(t)λpl = b(t)λl. (4.3)

Let t = (t1, . . . , tN)> be the sampling design at which we observe realizations of our region-

referenced process. We follow Kowal and Bourgeois [2020], Kowal [2021] and constrain λpl

so that ψl(t)
>ψl′(t) = δll′ and φ>l φl = IR where δ is the kronecker delta and IR is the R×R

identity matrix. These constraints lead to substantially reduced computational burden via

likelihood simplifications, which is particularly convenient in the Markov-Chain Monte-Carlo

(MCMC) algorithm used for estimation.

These restriction to orthonormal basis functions aid likelihood identifiability and inter-

pretation, and can be implemented efficiently in numerical analysis settings. Implementation

details are provided in Appendix 4A.

We compare the above models to existing models in the structured functional data liter-

ature. Let θilj be the jth component of θil. If θil has a compound symmetric variance-

covariance matrix, the above models are similar to the multilevel FPCA of Di et al.
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[2009]. To see this, suppose Yij(t) follows the multilevel FPCA. Then Cov(Yij(s), Yik(t)) =

KB(s, t) for some covariance function KB(s, t). In contrast, if Yij(t) follows PSFLM, then

Cov(Yij(s), Yik(t)) =
∑∞

l=1 Cov(θilj, θilk)ψl(s)ψl(t). These covariance functions are struc-

turally equivalent if and only if Cov(θilj, θilk) = ρl for some positive sequence {ρl}∞l=1. In

general, under PSFLM Cov(θilj, θilk) depends on j and k, yielding a more flexible model than

the multilevel FPCA. Now suppose the variance-covariance matrix of θil does not depend on

l. Then Cov(Yi(s),Yi(t)) =
∑∞

l=1 Var(θil)ψl(s)ψl(t) = Qψl(s)ψl(t). This covariance function

has a separable form, so clearly WSFLM is a generalization of separability. However, PSFLM

and WSFLM are parsimonious special cases of the non-separable model of Li et al. [2020]

and the previously mentioned MFPCA decomposition. However, PSFLM and WSFLM pro-

vide low dimensional interpretable information on regional and functional dynamics, making

them appealing for analyzing variability among marginal dimensions separately.

4.3 Prior Distributions and Assessment of Model Adequacy

4.3.1 Priors Distributions

Priors must be placed on all unknown model parameters. There will typically be enough data

so that the posterior for σ2
εj will be insensitive to the choice of prior, so we set p(log σεj) ∝

1 as a default choice. We follow Kowal and Bourgeois [2020], Kowal [2021] and place a

uniform(2, 128) prior on the t degrees of freedom for ηilj. We place independent t4(0, 1)

priors on each element of βlj. We placea Gaussian Markov Random Field prior on λl by

λl ∼ exp(−.5ζlλ>l Ωλl) (4.4)

where Ω is a P × P known singular roughness penalty matrix and ζl controls the smooth-

ness of ψl(t). Typically, P will be of moderate size justifying independent uniform priors

for ζ
1/2
l [Gelman et al., 2006, Kowal and Bourgeois, 2020]. To ensure adaptive regulariza-

tion of covariance components across dimensions, we place a Gamma Multiplicative Process

Prior [Baladandayuthapani et al., 2008] on the σ2
lj terms from Equation 4.2, so that σ2

lj is
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stochastically decreasing in both l and j. Under PSFLM, the prior for σlj is

σ−2l1 =
l∏

l′=1

δl′ δ1 ∼ Gamma(a1, 1), δl ∼ Gamma(a2, 1) for l > 1 (4.5)

σ−2lj =
l∏

l′=1

j∏
j′=2

δl′δlj′ δlj ∼ Gamma(a3, 1) for j ≥ 2 (4.6)

ak ∼ Gamma(2, 1), k = 1, 2, 3 (4.7)

Under WSFLM, the prior for σ2
lj is

σ−2lj =
V∑
v=1

dvavjbvl (4.8)

av1 ∼ Gamma(1, 1), avj ∼ Gamma(1, 1)1(avj > av(j−1)) for j > 1 (4.9)

bv1 ∼ Gamma(1, 1), bvl ∼ Gamma(1, 1)1(bvl > bv(l−1)) for l > 1 (4.10)

d1 = 1, dv ∼ Gamma(1, 1)1(dv > dv−1) for v > 1 (4.11)

In practice, the sum in Equation 4.1 cannot have an infinite amount of terms. By truncation,

after L terms, the data-generating model for Yi(t) becomes Yi(t) =
∑L

l=1 θilψl(t)+εi(t). As L

increases, the above models become more flexible but tend to overfit for large L. In general,

the shrinkage priors shown above reduce overfitting by encouraging the variances of ηilr to

be small when ηilr is not needed to model Yi(t). The shrinkage priors strike a good balance

between model flexibility and complexity, which is an important aspect in factor models

Bhattacharya and Dunson [2011] and functional regression models [Montagna et al., 2012].

In turn, these priors help make posterior inferences insensitive to the choice of L, provided

that L is large enough [Bhattacharya and Dunson, 2011, Kowal and Bourgeois, 2020, Kowal,

2021, Shamshoian et al., 2020, Li et al., 2020].

The PSFLM shrinkage prior in equations (4.5)-(4.7) encourages smaller variances of ηilr

with increasing l and j. The structure of the prior is commensurate with the partial sep-

arability decomposition [Zapata et al., 2019]. The WSFLM shrinkage prior in equations

(4.8)-(4.11) encourages smaller variances of ηilr with increasing l and j. In addition, the dv
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terms limit the constribution of the avj and bvl terms as v increases. This prior has been

carefully constructed to be commensurate with weak separability [Lynch and Chen, 2018a].

Finally, we place independent N(0, 1) priors on the elements of φl. The N(0, 1) is a vague

prior in this case because the magnitude of any particular entry of φl (or φ) cannot be greater

than 1 due to the imposed orthonormality constraint.

We use a Markov-Chain Monte Carlo (MCMC) to simulate samples from the posterior

p(θ | {Yi(t), xi}Ni=1), where θ is any model quantity of interest. We use a combination of Gibbs

and Metropolis-Hastings algorithms to sample model parameters from their full conditional

distributions. A detailed description of the posterior simulation strategy is summarized

in Appendix 4B. After posterior simulation, inference on model quantities of interest is

straightforward via post-processing of Monte Carlo samples.

4.3.2 Assessment of Model Adequacy

In this article we are mainly concerned with the goodness of fit in the covariance structure as

opposed to the mean structure. Yuan and Johnson [2012] provides theoretical justification

to assess the goodness of fit of hierarchical Bayesian models through pivotal discrepancy

measures (PDMs). PDMs are functions of model parameters that have an invariant distri-

bution when evaluated at the data-generating (true) model parameter. The key result in the

aforementioned article is that PDMs constructed with parameters sampled from the poste-

rior distribution maintain the same invariant distribution. Alternatively, posterior predictive

checks [Gelman et al., 1996] are limited to assessing goodness of fit at the data-generating

level, and hence have limited use as a diagnostic check for multilevel models [Yuan and

Johnson, 2012].

Valid inference of the covariance structure under partial separability assumes

Cov(θil,θil′) = 0R×R when l 6= l′. [Zapata et al., 2019]. Jiang and Qi [2015] developed

a likelihood ratio test to infer whether or not this assumption holds in a frequentist setting
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as follows. Construct a matrix

A =


A11 A12 · · · A1L

A21 A22 · · · A2L

... · · · · · · ...

AL1 AL2 · · · ALL


such that Ajk =

∑n
i=1(θij − θij)(θik − θik)> and θij =

∑n
i=1 θij. Define

Wn =
|A|∏L
l=1 |All|

Then (logWn − µn)/σn converges in distribution to N(0, 1) when Cov(θil,θil′) = 0R×R for

r 6= k for some sequence of (µn, σn) under some regularity conditions (see Jiang and Qi

[2015] Theorem 2). The test rejects the null hypothesis (Cov(θil,θil′) = 0R×R) at type I

error rate α when (logWn−µn)/σn ≤ zα, where zα is the α quantile of the standard normal

distribution.. In the language of Yuan and Johnson [2012], (logWn−µn)/σn is a PDM with

a N(0, 1) reference distribution. Weak separability assumes Cov(ηijk, ηij′k′) = δjj′δkk′ where

δ is the kronecker delta. In other words, Cov{vec(ηi)} = D, where D is a diagonal matrix.

Let R̂n be the sample correlation coefficient matrix of vec(ηi). Then (log |R̂n| − µn)/σn,

(µn, σn) appropriately defined, converges in distribution to N(0, 1) when Cov(ηijk, ηij′k′) = 0

by Corollary 1 of Jiang and Qi [2015]. The rejection region is (log |R̂n| − µn)/σn ≤ −zα,

where zα is the same as defined above.

We assess the joint distribution of PDMs using two methods. The first method follows the

proposal by Yuan and Johnson [2012] which identifies a quantity pmin based on theoretical

properties of order statistics. The authors suggest that a pmin less than 0.25 implies lack of

fit. The second method computes the p-value at the posterior average of PDMs. We call this

method pmean and lack of fit is determined when pmean < α for some α type I error. Care

must be taken in interpreting pmin and pmean since these quantities are not uniform under

the null hypothesis. Both methods are computationally trivial to implement with posterior

samples, in contrast to the simulation intensive prior predictive method of Dey et al. [1998].
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The above methods are simple criteria for determining model adequacy. These choices

are not unique, and other criteria, such as the proportion of posterior PDMs exceeding the

.95 quantile of the reference distribution, may be adopted to aid in the determination of

model adequacy. We discuss operating characteristics of pmin and pmean in Section 4.4 and

further interpretation of PDMs in Section 4.5. We note that these procedures detect lack

of fit in the covariance as a whole. Departures from the hypothesized covariance implied

by partial separability or weak separability may still yield useful inferences on some model

components. For example, if the data is partially separable, eigenfunction estimates ψ̂(t)

assuming weak separability are still valid. It would be interesting to examine exactly how the

data departs from a hypothesized model. We defer this nuanced aspect to future research.

4.4 Numerical Experiments

We perform an extensive simulation study to investigate operating characteristics of the

proposed models and diagnostic measures of model adequacy in several synthetic scenar-

ios. Region-referenced functional data is generated according to 3 scenarios: (1) weak

separability, (2) partial separability, and (3) a structure that violates partial separability,

denoted as nonseparable. The first L fourier basis functions constitute the eigenfunctions

ψl(t), l = 1 . . . , L and region means are set to zero. Under partial and weak separability,

σ2
lj = 20j−1 exp(−.5l), ηilj ∼ N(0, σ2

lj), and Σε = .01IR. When data is generated from weak

separability, the regional eigenvectors φ are eigenvectors of the compound symmetric matrix

ρ111>+ (1− ρ1)IR. When data is generated from partial separability, the regional eigenvec-

tors φl are randomly generated orthogonal matrices using techniques from Mezzadri [2006].

In the third scenario we generate data as follows:

1. Let Σθ be an RL×RL matrix.

2. Denote the l, l′ R×R submatrix of Σθ as Σθ,ll′ .

3. Set Σθ,ll = (L− l + 1)2 · (ρ211> + (1− ρ2)IR) for l = 1, . . . , L.

4. Set Σll′ = (L− l + 1)(L− l′ + 1)ρ311> for l 6= l′, l, l′ = 1, . . . L and ρ3 < ρ2.
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5. Simulate θi ∼ N(0,Σθ).

Clearly, when ρ3 = 0, Σθ is block-diagonal so that the covariance structure of the simulated

data reduces to partial separability. When ρ3 > 0, the covariance structure of θi is not

block-diagonal, which is the core assumption of partial separability. Therefore ρ3 acts as a

continuous lack of fit parameter, with large values indicating large departures from partial

separability and vice versa. We evaluate the fourier eigenfunctions on an equally spaced

dense grid in [0, 1] containing tn points. In the above settings we set L = 4, R = 6,

ρ1 = 0.35, ρ2 = 0.6, ρ3 = 0.2, and tn = 60. We fit the simulated data with a p-spline basis of

dimension P = 15 and a second order differencing penalty. We use an initialization procedure

described in Appendix 4C to obtain initial estimates for ψ, φl, σ
2
lj, Σε, and ηilj. Here we

focus on covariance structures, and include no covariate information in the simulation, e.g.

xi = 1.

We fit weakly and partially separable models to data generated from each scenario (1) -

(3). The sample size is set to n = 50 and n = 200 to examine how estimates and goodness of

fit assessments change with sample size. We simulate 300 data sets for each scenario, fitting

method, and sample size, resulting in 3,600 total simulated data sets. For each simulated

data set, we record the integrated squared error (ISE) of the posterior mean of the regional

mean functions and marginal eigenfunctions. Let ISEµ and ISEψl denote the ISE of the

regional mean functions and the lth eigenfunction. ISEµ and ISEψl are computed by

ISEµ =
1

R

R∑
j=1

∫
[0,1]

µ̂j(t)
2 dt, ISEψl =

∫
[0,1]

[ψ̂l(t)− ψl(t)]2 dt

where µ̂j(t) and ψ̂l(t) are the posterior means of µj(t) and ψl(t) respectively. Both integrals

are numerically approximated with the ‘trapezoid’ rule.

We also record the widely applicable information criterion (WAIC; Watanabe and Opper

[2010]) for each fitted model, which is broadly used for model selection purposes as in Vehtari

et al. [2017]. We will investigate model selection operating characteristics on the basis of

WAIC and PDMs. When data is simulated from a weakly or partially separable model, we
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tabulate how many times WAIC and PDMs favor fitting with a weakly or partially separable

model. WAIC for PSFLM and WSFLM is computed for each simulated data set. In addition,

we compute the standard error of the difference of WAIC between PSFLM and WSFLM.

Vehtari et al. [2017] compared models by examining whether or not the difference of WAIC

exceed twice the standard error of WAIC difference. We follow the same approach and use

this criteria to designate when PSFLM or WSFLM is preferred according to WAIC. When

no model is preferred by this criteria, model preferance is inconclusive. In this article, WAIC

is calculated pointwise as

WAIC = −2( ˆlppd− p̂WAIC)

ˆlppd =
n∑
i=1

n∑
j=1

log

(
1

S

S∑
s=1

p(Yi(tj) | θs)
)
, p̂WAIC =

n∑
i=1

n∑
j=1

V S
s=1

(
log p(Yi(tj) | θs)

)
where S is the posterior sample size, θs denotes the sth posterior sample of all level one

parameters, and V S
s=1 represents sample variance. The quantities ˆlppd and p̂WAIC are known

as the log posterior predictive density and the effective number of parameters, respectively.

Table 4.1 lists mean rejection rates, ISEµ, and ISEψl for l = 1, 2, 3 on the 10−3 scale.

The fourth column of the table, headlined H0,α=.05 gives empirical rejection rates at the 5%

significance level. For example, the first row has H0,α=.05 = 34% which means of the 300

simulated data sets 34% resulted in pmean < .05 for the test of partial separability. Ideally

we would like to see empirical rejection rates around the nominal significance level when

the simulated data is fit with the assumed model structure. As expected, partial and weak

separability rejection rates increase as the sample size grows and the data fitting procedure

does not match the data generating process. Using pmean as a decision rule for assessing

partial separaility results in very close rejection rates to the nominal type I error. Using

pmean as a decision rule for assessing weak separability results in deflated type I error rates,

even when n = 200. On the other hand, using pmin < .25 as a decision rule results in

higher power and type I error rates across every simulated scenario. These tests are not

exact because the N(0, 1) reference distribution is only an approximation because the PDMs

are based on asymptotic likelihood ratio tests assuming normality. Nevertheless, the pmean
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Table 4.1: Empirical rejection rates using pmean at the α = 0.05 and α = 0.10 levels under
various data-generating truths and fitting with partial and weak separable models. Empirical
rejection rates using the pmin < .25 decision rule are also shown. Estimation errors for ISEµ,
ISEψl , l = 1, 2, 3 on the 10−3 scale are shown as well.
n Truth Fit H0, α=.05 H0, α=.10 H0, pmin µ(t) ψ1(t) ψ2(t) ψ3(t)
50 Nonseparable Partial 34.00% 48.33% 57.33% 3.33 2.23 25.08 26.56

Weak 16% 27% 32% 3.08 0.36 12.52 15.57
Partial Partial 7% 14.33% 18.67% 2.37 0.17 6.05 8.19

Weak 92.98% 94.65% 96.66% 2.26 0.18 9.42 13.94
Weak Partial 6.67% 10.33% 15% 2.4 0.21 12.19 17.67

Weak 2.33% 5.33% 7% 2.24 0.19 11.81 16.35
200 Nonseparable Partial 100% 100% 100% 1.2 13.68 23.22 19.93

Weak 99% 99.67% 99.67% 1.16 6.82 14.79 15.24
Partial Partial 5% 9.67% 13% 0.66 0.04 1.24 2.51

Weak 100% 100% 100% 0.58 0.06 2.93 5.30
Weak Partial 4.67% 8% 11% 0.69 0.06 3.07 5.13

Weak 2.34% 4.01% 7.69% 0.65 0.06 2.78 4.97

and pmin decision rules high power and acceptable type I error rate according to simulation

results in Table 4.1.

Table 4.2 compares model selection procedures on the basis of PDMs and WAIC as

described previously. Clearly WAIC is unable to distinguish between partially and weakly

separable models. This is because WAIC, as defined in this paper, is asymptotically equal

to pointwise leave-one-out cross-validation. From a pointwise perspective, weak and partial

separable models yield very similar predictions at the data generating level, so WAIC has

difficulty distinguishing between the two. In contrast, PDMs targetting hierarchical model

structure allow for model selection in this setting. When partially separable data is simulated,

PDMs consistently select fitting a partially separable model. When weakly separable data

is simulated, PDMs either select fitting with a weakly separable model or give inconclusive

results. Inconclusive results are not surprising in this setting because partial separability is

a generalization of weak separability, and if results are inconclusive then would likely choose

a weakly separable model for easier interpretations.
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Table 4.2: Using WAIC and PDMs to perform model selection under partial and weak
separability truths. The percentages shown represent the proportion of simulations that
select a partially or weakly separable model according to criteria outlined in Section 4.4

n Truth Method Partial Weak Inconclusive
50 Partial WAIC 0% 0% 100%

PDM 100% 0% 0%
Weak WAIC 0% 0.33% 99.67%

PDM 0.33% 37.67% 62%
200 Partial WAIC 0.33% 0% 99.67%

PDM 100% 0% 0%
Weak WAIC 0% 0.33% 99.67%

PDM 1.33% 26.33% 72.33%

4.5 Case Study

Peak alpha frequency (PAF), the frequency at which oscillations in the alpha range demon-

strate maximal power, shows well-characterised increases with chronological age during child-

hood in typically developing children [Somsen et al., 1997, Dustman et al., 1999, Stroganova

et al., 1999, Chiang et al., 2011, Cragg et al., 2011, Miskovic et al., 2015]. PAF has been

shown to index neural development in TD children [Valdés-Hernández et al., 2010, Sega-

lowitz et al., 2010, Rodŕıguez-Mart́ınez et al., 2017]. However, a recent study by Dickinson

et al. [2018] found that children with ASD did not show the typical increase in PAF with

age. Unfortunately, identifying a single PAF induces loss of important spectral information.

Furthermore, identifying a single PAF from a noisy spectrogram can be difficult, and Dick-

inson et al. [2018] used Gaussian curve fitting procedures to circumvent this issue. Treating

alpha spectral density as functional data avoids complicated PAF identification procedures

and retains more information as opposed to collapsing the entire alpha spectral band to a

single point. In this article we aim to quantify the association between age and alpha spec-

tral density, identify principal patterns of variation within group, and validate our analysis

with model adequacy checks. Children aged 2-12 years old were recruited throughout Los

Angeles by the UCLA Center for Autism Research and Treatment (CART) via community

flyers, the CART website, and ongoing CART studies. In this experiment, children had rest-

ing state electroencephalography (EEG) recorded while observing bubbles on a computer
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screen for two minutes in a dark, sound attenuated room. We follow the data preparation of

Scheffler et al. [2019] to extract alpha spectral densities in the frequency domain (6-14 Hz),

interpolated over 25 electrodes in the standard 10-20 system.

We average the log spectral density within five (R = 5) anatomical brain regions. The

brain regions and corresponding electrode label are frontal (Fp1, Fp2, F3, F4, F7, F8, F9,

F10), central (C3, Cz, C4), left temporal (T7, T9), right temporal (T8, T10), and occiptal-

parietal (O1, O2, Pz, P3, P4, P7, P8, P9, P10). This regional partition is meant to enhance

EEG signals and interpretability. We show results from fitting two weakly separable models,

one for each group (ASD and TD). We include age of child as a covariate, normalized to

have mean zero and standard deviation one. We use a basis of p-splines of dimension 12 and

encourage smoothness by a second order differencing penalty. We choose L to explain 95% of

variability as described in the initialization procedure in Appendix 4C. The models require

L = 5 to explain 95% of variability. We run both models for 100,000 iterations, discard the

first 25,000 iterations, and keep every 10th iteration for monte-carlo estimation.

Figure 4.1 displays six trajectories overlaid with posterior means for the underlying (de-

noised) signal. Model fit seems flexible enough to capture salient dynamics of the signal at the

data-generating levels. The fitted underlying signals according to PSFLM and WSFLM are

virtually identical. This supports the notion that reconstructions of individual trajectories

are not sensitive to model specification between PSFLM and WSFLM. Figure 4.2 displays

the posterior mean and 95% pointwise posterior bands for the marginal effect of aging one

standard deviation on the mean function for each region. Age does not seem associated with

log spectral density in expectation for the ASD group. However, age is clearly associated

with log spectral density in expectation for the TD group. In the TD group, aging is

associated with deflated log spectral density at lower frequencies and inflated log spectral

density at higher frequencies. Moreover, this relationship between age and log spectral

density is consistent across regions. Essentially, the dominant functional peak shifts to

higher frequencies as TD children age, which is corroborated by previous literature. Similar

to individual trajectories, the mean function estimates are insensitive to model specification

between PSFLM and WSFLM.
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TD subject 7, frontal TD subject 15, central TD subject 30, occiptal−parietal

ASD subject 12, left temporal ASD subject 24, right temporal ASD subject 36, central
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Figure 4.1: Six example log spectral densities for ASD and TD children. Posterior means for
the underlying (de-noised) signal are superimposed on top of the observed spectral densities,
showing adequate fit at the data generating level.
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Figure 4.2: Association between aging one standard deviation and log spectral density.
Posterior means and 95% pointwise credible intervals are displayed, which show that age
does not seem to have a relationship with log spectral density. However, there’s clearly a
relationship between age and log spectral density for the TD group.
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Marginal eigenfunctions for the frequency dimension are shown in Figure 4.3. The first

eigenfunction accounts for 36.8% to 45.8% of heterogeneity for the ASD group and 35.4%

to 49.8% of heterogeneity for the TD group. The second eigenfunction accounts for 33.2%

to 40.1% of heterogeneity for the ASD group and 24.2% to 36.2% of heterogeneity for the

TD group. All interval intervals capture 95% of posterior proportion of variability. ASD

subjects loading high on the first eigenfunction will tend to have inflated log spectral density

at lower frequencies (6 - 8 Hz) and deflated log spectral density at higher frequencies (8

- 14 Hz). The first eigenfunction for the ASD group represents a contrast between low

frequencies (6 - 8 Hz) and high frequencies (12 - 14 Hz). TD subjects loading high on the

first eigenfunction will have below-average alpha spectral density for higher frequencies (10

- 14 Hz). ASD subjects loading high on the second eigenfunction will tend to have a peaked

alpha spectral density around 9 Hz. TD subjects loading high on the second eigenfunction

will tend to have a peaked spectral density at 10.5 Hz. This shift in heterogeneity frequency

tracks with the overall mean log spectral density across the two groups, indicating a bias-

variance relationship. In other words, even though the TD group has inflated log spectral

density at higher frequencies, there’s still a considerable amount of variability surrounding

this inflation at the individual level. The third eigenfunction for both groups contrasts log

spectral density at 8-10 Hz and 10-12 Hz.

Under PSFLM, the prinicpal three eigenfunctions account for the ASD group account

for 40.7%, 39.6%, and 10.7% of total variability respectively. Under WSFLM, the prinicpal

three eigenfunctions account for the ASD group account for 41.5%, 37.7%, and 12.2% of total

variability respectively. The discrepancy in the functional form of the first two eigenfunctions

according to PSFLM and WSFLM is most likely due to identification issues: the top two

eigenfunctions explain nearly the same amount of variability under PSFLM. Repeating the

same procedure for the TD group, the top three eigenfunctions explain 40.3%, 33.8%, 13%

(PSFLM) and 42.4%, 30.5%, 14.7% (WSFLM) of variability. The proportions of variability

explained are more distinguished, resulting in more agreement between the PSFLM and

WSFLM eigenfunction estimates.

Principal regional eigenvectors under WSFLM are displayed in Figure 4.4. The principal
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Figure 4.3: Marginal eigenfunctions for the frequency dimension under PSFLM and WSFLM.
In the ASD group the first three eigenfunctions explain 40.7%, 39.6%, 10.7% (PSFLM)
and 41.5%, 37.7%, 12.2% (WSFLM) of total variability. In the TD group the first three
eigenfunctions explain 40.3%, 33.8%, 13.8% (PSFLM) and 42.4%, 30.5%, 14.7% (WSFLM)
of total variability. All percent variability explained estimates are monte carlo posterior
medians.
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regional eigenvector explains about 90% of variability in both groups. Since this eigenvector

is nearly constant over each region, it represents an overall magnitude shift in log spectral

density. In other words, 90% of the variability can be explained by simple magnitude shifts

away from the mean, marginalizing over the frequency dimension. The second principal

accounts for approximately 5% of the total variability. This eigenvector is a contrast between

the left temporal and right temporal region, which indicates there may be some negative

correlation between these regions. However, since the percent variability is so small, it’s

difficult to assess the validity of this interpretation in a practical sense. The third eigenvector

explains approximately 3% of total variability. We omit the interpretation for this eigenvector

since it explains such a relatively low amount of variability. Figure 4.4 also displays posterior

averaged θil under PSFLM. Interpreting regional dynamics from the θil is challenging in this

setting. This is not too surprising, as PSFLM sacrifices regional interpretability for more

flexible covariance estimation compared to WSFLM.

We assess model adequacy using PDMs as explained in Section 4.3.2. Under weak sep-

arability, the ASD group has pmean = .02 and pmin = .12. The TD group has pmean = .038

and pmin = .27. Under partial separability, the ASD has pmean = .01 and pmin = .08. The

TD group has pmean = .001 and pmin = .02. Based on these small p-values, the assumption

of weak or partial separability may not apply to either the ASD or TD data set. In this

case, it may be to inaccurate to interpret marginal eigenfunctions as independent sources of

heterogeneity. In particular, this analysis may be followed up with more flexible methods,

including MPFCA [Happ and Greven, 2018] or vectorizing over regions [Li et al., 2020].

Interpretations will be more difficult but more appropriate with the covariance structure of

the data. We note that simply examining the goodness of fit at the data level (e.g., Figure

4.1) is not a valid tool to assess model adequacy in the covariance structure.

4.6 Discussion

We presented Bayesian methods to model region-referenced functional data. The methods

differ in the decomposition of the region-referenced covariance function. In particular, we
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Figure 4.4: Top: Regional eigenvectors under WSFLM. The three eigenvectors explain 90%,
5%, and 3% of variability in both groups. Bottom: posterior averaged θil estimates for
l = 1, 2, 3.
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Figure 4.5: Histogram of pivotal discrepancy measures under PSFLM and WSFLM for both
groups. The reference distribution is N(0, 1) in all cases.

explored Bayesian models adhering to partial separability and weak separability, where par-

tial separability is a generalization of weak separability. We showed how to construct priors

which help prevent overfitting by smoothing functional latent factors and regularizing the

influence of superfluous functional and regional latent factors. In our implementation we

orthonormalize functional and regional latent factors, leading to greatly reduced computa-

tional burden and straightforward interpretations. We also developed pivotal discrepancy

measures to assess model adequacy in the covariance structure for both weak and partial

separability. We conducted numerical experiments to show that model adequacy decisions

based on PDMs have calibrated operating characteristics with respect to false positives and

power. We also showed how information criteria, such as WAIC, cannot be used as a model

selection tool between partial and weak separability. We applied our methods to analyze

alpha spectral density data from children with ASD from a resting state EEG experiment

performed at the UCLA CART. In particular, the methods presented in this paper identified

age-varying mean functions and a mean-variance relationship between ASD and TD children.
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Assessing covariance assumptions validates the interpretation of marginal eigenfunctions

and eigenvectors. In this article we showed how PDMs offer a simple solution to assess

covariance assumptions based on likelihood ratio tests. We suspect this methodology may

be extended other various KL decompositions for hierarchical functional data. For example,

assessing covariance structure under the multievel FPCA [Di et al., 2009] using PDMs may

allow the level one and level two eigenfunctions to be interpreted as independent sources

of variability, rather than solely low dimensional features. Another open problem in the

hierarchical functional data literature is selecting a suitable KL decomposition. Choosing

a suitable KL decomposition is a non-trivial problem due to inherent complex dependency

patterns in hierarchical functional data.
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CHAPTER 5

Conclusions

The proposed methods provide effective Bayesian aproaches for modeling functional data in

complex settings. We highlight the following advantages of modeling functional data in the

Bayesian framework:

1. Adaptive regularization through prior assumptions. All chapters in this dissertation

used some form of adaptive regularization. Chapters 2 and 3 modified the Gamma

Multiplicative Process prior (GMPP) [Bhattacharya and Dunson, 2011]. Chapter 4

used a combination of GMPP and truncated gamma distributions. Both approaches

have shown stable operating characteristics in high dimensional settings with small

sample sizes.

2. Straightforward uncertainty quantification. As is typical of Bayesian analyses, inference

for key model summaries is conceptually straightforward in all settings considered in

this dissertation. To extract Bayesian functional principle components in Chapters 2

and 3, we modified the method of Aguilera and Aguilera-Morillo [2013] to post-process

MCMC samples.

3. Joint mean covariance estimation. Empirical approaches typically estimate the mean

function under working independence. Then a covariance surface approximation is

made based off this mean function. One can iterate between mean and covariance esti-

mations, but the Bayesian framework provides a natural solution to this issue through

joint inference.

4. Model adequacy checks and model selection. Model adequacy checks run deep in the

Bayesian paradigm. In Chapter 4 we showed how structural covariance assumptions
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may be assessed using pivotal discrepancy measures, which serve as diagnostic checks

for arbitrary levels in hierarchical models. We also demonstrated how pivotal dis-

crepancy measures may be used as a model selection tool for covariance structure in

correlated functional data settings.

The chapters in this dissertation pave the way for further research. Chapter 3 explored

Bayesian covariance regression in a very simple setting: dense, one-dimensional, and inde-

pendent functions. Bayesian covariance regression may be extended to the multivariate or

structured functional data setting as in Scheffler et al. [2020b]. Modeling multivariate func-

tions jointly, would yield better performance through Bayesian partial pooling compared to

analyzing one functional outcome at a time, as performed in Chapter 3.

More and more strategies for modeling structured functional data are appearing in the

FDA literature. Pivotal discrepancy measures may be easily extended to assess covariance

assumptions in these complex settings, potentially providing a means to model selection.

Using data-level model selection tools (e.g., WAIC) were not effective in assessing covariance

assumptions or comparing between models with different covariances. Comparing covariance

assumptions between models is a crucial step because covariance assumptions are directly

related to interpretable components and inference.

The vast majority of Bayesian FDA methods rely on Gibbs and Metropolis-Hastings sam-

pling, which is a limiting factor for both large evaluation domains and multilevel structure.

In addition, implementing these custom algorithms takes up valuable time. Bayesian FDA

needs more general purpose MCMC software, perhaps using Variational Hamiltonian Monte

Carlo and surrogate functions for likelihood evaluations [Zhang et al., 2018]. It would be

particularly interesting to move away from Gibbs and Metropolis-Hastings algorithms, while

still retaining the orthonormality constraints used in Chapter 4 for likelihood simplifications.
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APPENDICES

Appendix 2A: Relationship to Weak Separability

From the main text, we have

yi(s, t) = fi(s, t) + εi(s, t)

=

q2∑
j=1

q1∑
k=1

ψj(s)φk(t)ηijk + ri(s, t) + εi(s, t)

Let f̃i(s, t) =
∑q2

j=1

∑q1
k=1 ψj(s)φk(t)ηijk. Marginalizing over ηi, the covariance for f̃i(s, t) is

Cov{f̃i(s, t), f̃i(s′, t′)} =

q2∑
j=1

q2∑
j′=1

q1∑
k=1

q1∑
k′=1

ψj(s)ψj′(s
′)φk(t)φk′(t

′)Cov(ηijk, ηij′k′)

Our model has Cov(ηijk, ηij′k′) = 0 unless j = j′ and k = k′. Let hjk = V ar(ηijk). The above

expression simplifies to

Cov{f̃i(s, t), f̃i(s′, t′)} =

q2∑
j=1

q1∑
k=1

ψj(s)ψj(s
′)φk(t)φk(t

′)hjk

When ψj(s) and φk(t) are chosen to be marginal eigenfunctions of KS(s, s′) and KT (t, t′)

respectively, this expression matches the form of a weakly separable covariance (equation 3

Lynch and Chen [2018a]). However, instead of setting ψj(s) and φk(t) as marginal eigen-

functions we choose to expand these terms through b-spline expansions. The resulting ψj(s)

and φk(t) will not be mutually orthogonal, but this is not a primary concern because one

can orthogonalize these basis functions through post-processing posterior samples.

Appendix 2B: Gibbs Sampling

In what follows, let A·j and Ak· denote the jth column and kth row of matrix A respectively.

Let Σ∗ a p1 × p2 matrix, obtained by extracting the diagonal of Σ. Entries of Σ∗ are filled
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in column-wise. Let Φ(·) denote the standard normal cumulative density function and let

Gamma∗ denote the Gamma probability density function (rate parameterization).

• Step 1 Update of Λ:

1. Update Λ each row at a time by

π(Λj·|−) ∼ Nq1(µn,Λ−1j )

µj = Λ−1j

N∑
i=1

ηiΓ
>diag{(Σ∗j·)−1}Θj·i

Λj =
N∑
i=1

ηiΓ
>diag{(Σ∗j·)−1}Γη>i +D−1j

D−1j = diag(ρ1j1τ11, . . . , ρ1jq1τ1q1)

for j = 1, . . . , p1

2. Sample ρ1jh from

π(ρjh|−) ∼ Gamma

(
ν1 + 1

2
,
ν1
2

+
τ1hλ

2
jh

2

)

3. Sample δ11 from

π(δ11|−) ∼ Gamma

(
a11 +

p1q1
2
, 1 +

1

2

q1∑
l=1

τ
(1)
1l

p1∑
j=1

ρ1jlλ
2
jl

)

4. Sample δ1h from

π(δ1h|−) ∼ Gamma

(
a12 +

p1
2

(q1 − h+ 1), 1 +
1

2

q1∑
l=h

τ
(h)
1l

p1∑
j=1

ρ1jlλ
2
jl

)
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for h = 2, . . . , q1, where τ
(h)
1l =

∏l
t=1,t6=h δt.

5. Sample a11: Draw a uniform random variable u from U(0, 1). Draw a random

variable x fromN(0, 1)1(x+a11 > 0). Set the proposal of a11 equal to a∗11 = x+a11.

Compute

A =
Gamma∗(δ11, a

∗
11, 1)Gamma∗(a∗11, r1, 1)Φ(a11)

Gamma∗(δ11, a11, 1)Gamma∗(a11, r1, 1)Φ(a∗11)

where Gamma∗ denotes the Gamma probability density function (rate parame-

terization). Accept a∗11 when A > u.

6. Sample a12: Draw a uniform random variable u from U(0, 1) Draw a random

variable x fromN(0, 1)1(x+a12 > 0). Set the proposal of a12 equal to a∗12 = a12+x.

Compute

A =
Gamma∗(a∗12, r2, 1)

∏q1
h=2 Gamma∗(δ1h, a

∗
12, 1)Φ(a12)

Gamma∗(a12, r2, 1)
∏q1

h=2 Gamma∗(δ2h, a12, 1)Φ(a∗12)

where Gamma∗ denotes the Gamma probability density function (rate parame-

terization). Accept a∗12 when A > u.

• Step 2 Update of Γ. This is analogous to the update of Λ.

1. Update Γ each row at a time by

π(Γj·|−) ∼ Nq2(µj,Λ
−1
j )

µj = Λ−1j

N∑
i=1

η>i Λ>diag{(Σ∗·j)−1}Θ·ji

Λj =
N∑
i=1

η>i Λ>diag{(Σ∗·j)−1}Ληi + (D∗j )
−1

(D∗j )
−1 = diag(ρ2j1τ21, . . . , ρ2jq2τ2q2)

for j = 1, . . . , p2
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2. Sample ρ2jh from

π(ρ2jh|−) ∼ Gamma

(
ν2 + 1

2
,
ν2
2

+
τ2hγ

2
jh

2

)

3. Sample δ21 from

π(δ21|−) ∼ Gamma

(
a21 +

p2q2
2
, 1 +

1

2

q2∑
l=1

τ
(1)
2l

p1∑
j=1

ρ2jlγ
2
jl

)

4. Sample δ2h from

π(δ2h|−) ∼ Gamma

{
a22 +

p2

2
(q2 − h+ 1), 1 +

1

2

q1∑
l=h

τ
(h)
2l

p1∑
j=1

ρ2jlγ
2
jl

}

for h = 2, . . . , q2, where τ
(h)
2l =

∏l
t=1,t6=h δ2t

5. Sample a21: Draw a uniform random variable u from U(0, 1). Draw a random

variable x fromN(0, 1)1(x+a21 > 0). Set the proposal of a21 equal to a∗21 = x+a21.

Compute

A =
Gamma∗(δ21, a

∗
21, 1)Gamma∗(a∗21, r1, 1)Φ(a21)

Gamma∗(δ21, a21, 1)Gamma∗(a21, r1, 1)Φ(a∗21)

where Gamma∗ denotes the Gamma probability density function (rate parame-

terization). Accept a∗21 when A > u.

6. Sample a22: Draw a uniform random variable u from U(0, 1) Draw a random

variable x fromN(0, 1)1(x+a22 > 0). Set the proposal of a22 equal to a∗22 = a22+x.

Compute

A =
Gamma∗(a∗22, r2, 1)

∏q2
h=2 Gamma∗(δ2h, a

∗
22, 1)Φ(a22)

Gamma∗(a22, r2, 1)
∏q1

h=2 Gamma∗(δ2h, a22, 1)Φ(a∗22)

where Gamma∗ denotes the Gamma probability density function (rate parame-

terization). Accept a∗22 when A > u.
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• Step 3 Update of Σ∗:

π{(Σ∗kj)−1|−} ∼ Gamma

{
aσ +

N

2
, bσ +

1

2

N∑
i=1

(Θkji − Λk·ηiΓ
>
j·)

}

• Step 4 Update of ϕ−2: Let ntot denote the total number of observations.

π(ϕ−2|−) ∼ Gamma(aϕ +
ntot
2
, bϕ+

1

2

N∑
i=1

[yi{s, t} − {B1(s)⊗B2(t)}vec{Θi}]>[yi{s, t} − {B1(s)⊗B2(t)}vec{Θi}]

• Step 5 Update of ηi:

π{vec(ηi)|−} ∼ Nq1·q2(µi,Λ
−1
i )

µi = Λ−1i (Γ> ⊗ Λ>)Σ−1vec(Θi)

Λi = (Γ> ⊗ Λ>)Σ−1(Γ⊗ Λ)

• Step 6 Update of Θi:

π{vec(Θi)|−} ∼ N(µi,Λ
−1
i )

µi = Λ−1n [ϕ−2{B1(s)⊗B2(t)}yi{s, t}+ Σ−1{Γ⊗ Λ}vec{ηi}]

Λi = ϕ−2{B1s)>B1(s)⊗B2(t)
>B2(t)}+ Σ−1

• Step 7 Update of H: Treat H as a matrix with dimensions q1 × q2 and treat β as a

3-dimensional array with dimensions q1, q2 d.

π(h−1jk |−) ∼ Gamma

{
ah +

N

2
, bh +

1

2

N∑
i=1

(ηijk − βjk·xi)2
}

• Step 8: Update of β: Let νjk = (η1jk, . . . , ηNjk)
>. Let X be of dimension N × d
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obtained by row-stacking xi.

βjk· ∼ Nd[h
−1
jk X

>νjk, {h−1jk X
>X + diag(ωjk·)

−1}−1]

where ωjk· is the corresponding d-dimensional vector of entries in E, the prior variance

entries for β.

• Step 9 Update of E: Treat E as an array with dimensions q1, q2, d.

π(Ejkd|−) ∼ Gamma{1, 1/2 · (1 + β2
jkd)}

Appendix 2C: Simulation Details and Additional Results

In this section we remind the reader of the simulation scheme and provide additional details.

We performed a numerical experiment to asses mean and covariance estimation. We use an

equally spaced dense grid of 10 longitudinal time points and 20 functional time points with

s ∈ [0, 1] and t ∈ [0, 1]. We study three cases. The three cases are

1. KS(s, s′) =
∑2

j=1 λjψj(s)ψj(s
′) with eigenvalues λj = 1

j2π2 and eigenfunctions

ψj(s) =
√

2 sin(jπs)

KT (t, t′) = σ2

(
1 +

√
3|t−t′|
ρ

)
exp

(
−
√
3|t−t′|
ρ

)
.

µ(s, t) =
√

1
5
√
s+1

sin(5t).

Note: KT (t, t′) has the form of a Matèrn covariance function.

2. KS(s, s′) =
∑2

j=1 λjψj(s)ψj(s
′) with eigenvalues λj = 1

(j−1/2)2π2 and eigenfunctions

ψj(s) =
√

2 sin{(j − 1/2)πs}.

KT (t, t′) =
∑50

k=1 λkφk(t)φk(t
′) where λk = k−2α and φk(t) = cos(kπt).

µ(s, t) = 5
√

1− (s− .5)2 − (t− .5)2.

Note: KS(s, s′) is the Brownian motion covariance function used in Xiao et al. [2016].

3. K{(s, t), (s′, t′)} =
1

(t− t′)2 + 1
exp

{
− (s− s′)2

(t− t′)2 + 1

}
.

µ(s, t) =
√

1 + sin(πs) + cos(πt).
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Note: this covariance function is a special case of a stationary non-separable covariance

function Gneiting [2002].

The data generating truth for cases 1 and 2 can be described by the following manner.

Let B(1)(s) be a 10 × p2 matrix, where each column contains a b-spline evaluated at 10

equally spaced points from 0 to 1. Let e1(s), e2(s), . . . , eq2(s) be the first q2 eigenfunctions

of KS and let ξ1, ξ2, . . . , ξq2 be the first q2 eigenvalues of KS(s, s′) evaluated over a 10×10

grid of equally spaced points. Set the jth column (Γ·j) as the least squares solution to√
ξjej(t) = B1(s)Γ·j. Once Γ is generated, it will hold that KS(s, s′) ≈ B(1)(s)ΓΓ>B(1)(s′)>

where Γ is p2 × q2. A similar method is used to generate Λ so that Λ is of dimension

p1 × q1. Next, we set hjk = exp(−
√
.01j + .1k) and let h = (h11, h12, . . . , hq1,q2)

′. Then

H = diag(vec(h)). Finally, the data generating covariance function is K{(s, t), (s′, t′)} =

{B(1)(s)Γ ⊗ B(2)ΛB(1)(t)}H{B(1)(s′)Γ ⊗ B(2)(t′)Λ}>. The mean and covariance functions

µ(s, t) and K{(s, t), (s′, t′)} in case 3 are not projected on b-splines and are simply evaluated

on the longitudinal functional domain. In our simulations we set σ2 = 1, ρ = 0.5, and α =

0.5. B(1)(s) is chosen to be a cubic b-spline with knots at s = (1/3, 2/3), resulting in a 10×6

basis matrix. B(2)(t) is also chosen to be a b-spline with knots at t = (1/3, 2/3), resulting in

a 20× 6 basis matrix. The simulations have (q1, q2) = (3, 3) as the generating truth, and we

fit using (q1, q2) = (6, 6) and (p1, p2) = (8, 9). In doing so, we simply enlarge the model space

and assess the model’s ability to regularize a misspecified model. Hyper-parameters are set

as follows: ν1 = 5, ν2 = 5, r1 = 1, r2 = 2, aσ = .5, bσ = .5, ah = 1, bh = 1, aϕ = .0001,

and bϕ = .0001. For each simulation, we compute the mean, covariance surace, marginal

covariance surfaces, and two eigenfunctions associated with the marginal covariances with

the two largest eigenvalues. We use sample sizes n = 30 and n = 60 to compare finite

sample properties. For all quantities of interest we report relative mean integrated squared

error. For a function f with domain D and estimator f̂ , this means RE(f̂ , f) =
∫
D
{f̂(u)−

f(u)}2du/
∫
D
f 2(u)du. We run 1000 simulations for each sample size for each case and report

the 50%, 10%, and 90% quantiles of RE(f̂ , f). In addition to the metrics reported in the main

paper, we also compare the Bayesian method to the product FPCA in estimating marginal

covariance functions (KS(s, s′), KT (t, t′)), two principal longitudinal eigenfunctions (ψj(s),
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Table A2.1: Numerical experiment comparing the proposed method to the Product FPCA for
estimating functionals of the covariance structure for case 1. We report the 50th percentile of
the relative error, with the numbers in the parantheses denoting the 10th and 90th percentiles
of the relative error.

Bayes Product

n = 30

KS(s, s′) .032 (.009, .149) .052 (.031, .126)
KT (t, t′) .044 (.013, .170) .039 (.012, .132)
ψ1(s) .003 (.001, .013) .006 (.004, .014)
ψ2(s) .012 (.003, .034) .013 (.004, .042)
φ1(t) .006 (.001, .030) .010 (.001, .043)
φ2(t) .017 (.005, .051) .022 (.006, .063)

n = 60

KS(s, s′) .015 (.004, .061) .040 (.028, .086)
KT (t, t′) .020 (.006, .074) .023 (.008, .076)
ψ1(s) .002 (.000, .005) .005 (.003, .009)
ψ2(s) .005 (.002, .017) .006 (.006, .018)
φ1(t) .003 (.001, .014) .005 (.001, .022)
φ2(t) .008 (.002, .021) .014 (.005, .034)

j = 1, 2) and two principal functional eigenfunctions (φk(t), k = 1, 2). Results are listed in

Tables A2.1, A2.2, A2.3 for cases 1, 2, and 3 respectively. Across all three cases the Bayesian

method and product FPCA have similar relative errors with no clear preferred method for

point estimates.

We conduct a small simulation aimed at assessing the performance of the proposed in-

formation criteria in Appendix D. We considered the following data-generating mechanism:

covariance case 2, 20 longitudinal points, 20 functional points, N = 30, (p1, p2) = (10, 10),

(q1, q2) = (4, 4), and ϕ2 = .025. We fit candidate models with (p1, p2) = (5, 5), (10, 10), and

(15, 15). We keep the number of latent factors as (4, 4) in estimation, as the model is robust

to the number of latent factors, due to adaptive penalization. Table A2.4 displays averaged

information criteria over 1,000 simulations. The (p1, p2) = (10, 10) row contains the smallest

information criteria across all three metrics, giving strong indication that several alternative

criteria tend to select an appropriate number of basis functions.

We perform a simulation to assess sensitivity to p1, p2, q1, and q2 in the context of mean

and covariance point estimation and coverage rates. In this experiment, we use 20 longitudi-

nal and 20 functional points with a sample size of 60. The true model has (p1, p2) = (12, 12)

and (q1, q2) = (3, 3). We fit using (p1, p2) = (10, 10), (12, 12), (14, 14) and (16, 16). We denote
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Table A2.2: Numerical experiment comparing the proposed method to the Product FPCA for
estimating functionals of the covariance structure for case 2. We report the 50th percentile of
the relative error, with the numbers in the parantheses denoting the 10th and 90th percentiles
of the relative error.

Bayes Product

n = 30

KS(s, s′) .032 (.007, .164) .040 (.006, .167)
KT (t, t′) .028 (.005, .145) .035 (.005, .155)
ψ1(s) .002 (.000, .008) .006 (.004, .014)
ψ2(s) .015 (.004, .057) .026 (.010, .070)
φ1(t) .001 (.000, .004) .005 (.004, .009)
φ2(t) .015 (.006, .040) .040 (.025, .063)

n = 60

KS(s, s′) .016 (.003, .080) .019 (.003, .078)
KT (t, t′) .015 (.002, .071) .017 (.004, .069)
ψ1(s) .001 (.000, .003) .005 (.003, .009)
ψ2(s) .007 (.002, .030) .019 (.010, .049)
φ1(t) .000 (.000, .002) .005 (.004, .007)
φ2(t) .006 (.002, .014) .037 (.027, .049)

Table A2.3: Numerical experiment comparing the proposed method to the Product FPCA for
estimating functionals of the covariance structure for case 3. We report the 50th percentile of
the relative error, with the numbers in the parantheses denoting the 10th and 90th percentiles
of the relative error.

Bayes Product

n = 30

KS(s, s′) .036 (.008, .146) .035 (.007, .141)
KT (t, t′) .030 (.005, .138) .032 (.006, .127)
ψ1(s) .003 (.000, .016) .005 (.002, .020)
ψ2(s) .005 (.001, .018) .024 (.019, .041)
φ1(t) .002 (.000, .010) .003 (.001, .011)
φ2(t) .005 (.001, .015) .010 (.005, .021)

n = 60

KS(s, s′) .020 (.004, .073) .019 (.004, .070)
KT (t, t′) .017 (.003, .067) .016 (.003, .065)
ψ1(s) .002 (.000, .008) .003 (.002, .011)
ψ2(s) .003 (.000, .009) .021 (.019, .029)
φ1(t) .001 (.000, .005) .002 (.001, .006)
φ2(t) .002 (.001, .008) .007 (.005, .013)

Table A2.4: Information criteria for case 2. Each (p1, p2) combination is repeated 1000 times.
The table reports the .5, .1, and .9 quantiles of the information criteria over 1000 simulations.
Each number is on the 104 scale.

p1, p2 DIC BIC 1 BIC 2
(5, 5) 1.29 (1.20, 1.37) 1.49 (1.40, 1.57) 1.59 (1.51, 1.67)
(10, 10) 1.22 (1.14, 1.29) 1.40 (1.32, 1.47) 1.50 (1.43, 1.57)
(15, 15) 1.24 (1.16, 1.31) 1.41 (1.33, 1.48) 1.52 (1.43, 1.59)
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Table A2.5: Mean integrated squared errors for q1, q2 = (3, 3)
Model µ(s, t) ψ1(s) ψ2(s) φ1(t) φ2(t)
50% .014 .006 .064 .006 .021
60% .015 .006 .030 .006 .019
70% .016 .006 .021 .006 .019
80% .016 .007 .017 .006 .019

these models as 50%, 60%, 70%, and 80% respectively. We also fit using (q1, q2) = (3, 3) and

(q1, q2) = (6, 6). Measurement error variance is set to .025 and we simulate from case 1 (see

above). We obtain relative mean squared errors and coverage rates (using a 95% nominal

value) for µ(s, t) and the first two marginal eigenfunctions of KS(s, s′) and KT (t, t′). When

fit with (q1, q2) = (3, 3), Table A2.5 shows the relative mean squared errors do not seem

overly sensitive to choice of p1 and p2. However, coverage rates from Table A2.6 do not ob-

tain the nominal 95% rate, with coverage rate for the first marginal eigenfunction of KS(s, s′)

at .450. In contrast, when fit with (q1, q2) = (6, 6), all coverage rates are above the nominal

95%, indicating valid probabilistic inference. Furthermore, the relative mean squared errors

in Table A2.7 do not depend on choice of p1 or p2. The message of this simulation is that

the choice of p1 or p2 will not have a big impact on mean and covariance recovery, provided

a sufficiently rich set of basis functions is selected, and that that q1 and q2 are sufficiently

large. In this experiment, each (p1, p2) and (q1, q2) combination were repeated 500 times.

Hyper-parameters are the kept the same from above.

We also designed a simulation study to compare to a related procedure, Longitudinal Func-

tional Principal Components (LFPCA) Greven et al. [2010], in estimation and inference in

the global mean µ(s, t). LFPCA adds a random a random intercept function and random

slope function for each longitudinal object, thereby accounting for random variability over

repeated visits in a semiparametric fashion. To estimate the global mean, the authors use bi-

variate penalized smoothing with restricted maximum likelihood (REML). Maximizing this

criterion is appealing because it has been found to be relatively robust to misspecification of

the working correlation structure Krivobokova and Kauermann [2007]. In this experiment,

the design grid is common over n = 50 subjects, with 20 equally spaced s ∈ [0, 1] and 20
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equally spaced t ∈ [0, 1], making for 1000 separate curves. The mean function is set to

µ(s, t) = 0.5(s/4 − t/20)2. We generate simulated data from two scenarios: (1) Bayesian

data generating model and (2) LFPCA data generating model. The Bayesian data generating

model (1) is

KS(s, s′) =
3∑
j=1

λjψj(s)ψj(s
′)

λj = 1/(j2π2)

ψ1(s) =
√

2 cos(2πs)

ψ2(s) =
√

2 sin(2πs)

ψ3(s) =
√

2 cos(4πs)

KT (t, t′) =

(
1 +

√
3|t− t′|

0.5

)
exp

(
−
√

3|t− t′|
0.5

)

The rest of the Bayesian data generating is specified as in the previous simulations for cases

1, 2, and 3. The LFPCA data generating model is

Yi(s, t) = µ(s, t) +Xi,0(t) + s ·Xi,1(t) + Ui(s, t) + εi(s, t)

LFPCA induces dimension reduction by setting Xi,0(t) =
∑NX

k=1 ξikφ
0
k(t), Xi,1(t) =∑NX

k=1 ξikφ
1
k(t), and Ui(s, t) =

∑NU
k=1 ζiskφ

U
k (t). We set NX = NU = 4, ξik ∼ N(0, λk),

ζisk ∼ N(0, νk) for all i, s, and k, where λk = νk = 0.5k−1 The eigenfunctions are

φ0
1(t) = sin(2πt) φ1

1(t) = 1/
√

2 φU1 (t) = 1

φ0
2(t) = cos(2πt) φ1

2(t) = sin(6πt) φU2 (t) =
√

3(2t− 1)

φ0
3(t) = sin(4πt) φ1

3(t) = cos(6πt) φU3 (t) =
√

5(6t2 − 6t+ 1)

φ0
4(t) = cos(4πt) φ1

4(t) = sin(8πt) φU4 (t) =
√

7(20t3 − 30t2 + 12t− 1)

For both data generating schemes εi(s, t) is normally distributed with mean zero and standard

deviation .05. There are six scenarios in this experiment:

89



1. B-B: Data generated from Bayes model, fit by Bayes model.

2. B-R: Data generated from Bayes model, fit by REML. Inference performed by asymp-

totic standard errors given from the R package mgcv Wood [2006].

3. B-R-Boot: Data generated from Bayes model, fit by REML. Inference performed by

100 bootstrap replicates.

4. LFPCA-B: Data generated from LFPCA, estimation and inference performed by Bayes

model.

5. LFPCA-R: Data generated from LFPCA, fit by REML. Inference performed as in

scenario 2.

6. LFPCA-R-Boot: Data generated from LFPCA, fit by REML. Inference performed by

100 bootstrap replicates.

REML fitting is performed via the gamm function in the R package mgcv. Both the Bayesian

method and REML use 12 cubic b-splines for nonparametric estimation. To evaluate esti-

mation accuracy, we compute
∫
S

∫
T
{µ̂(s, t) − µ(s, t)}2 dtds/

∫
S

∫
T
µ(s, t)2 dtds. To evaluate

inference, we examine pointwise coverage at the nominal 5% type I error rate. Due to the

symmetric nature of the mean function function, we use symmetric bounds computed by

µ̂(s, t) ± α∗SD{µ̂(s, t)}, where SD{µ̂(s, t)} is estimated by sampling the posterior distribu-

tion (5000 iterations with 500 burnin), asymptotic standard errors as in mgcv, or 100 boot-

strap replicates. Each scenario is completed 1000 times. Table A2.9 reports the associated

estimation errors and coverage rates.

The Bayesian method has comparable relative error compared to the REML fit whether

the data is generated from the Bayesian data generating model or the LFPCA data generating

model. Clearly relying on mgcv standard errors will yield pointwise confidence intervals which

are too narrow. Either using a bootstrap or MCMC will correct this issue. Since mean

estimation is largely unaffected by choice of fitting method, users should decide between the

proposed method or LFPCA depending on their analytic goals. For example, the proposed
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Table A2.6: Coverage for q1, q2 = (3, 3)
Model µ(s, t) ψ1(s) ψ2(s) φ1(t) φ2(t)
50% .960 .620 .238 .974 .720
60% .928 .562 .494 .984 .742
70% .902 .526 .632 .982 .750
80% .834 .450 .698 .980 .756

Table A2.7: Mean integrated squared errors for q1, q2 = (6, 6)
Model µ(s, t) ψ1(s) ψ2(s) φ1(t) φ2(t)
50% .015 .004 .013 .005 .009
60% .015 .004 .013 .005 .010
70% .015 .004 .013 .005 .010
80% .015 .004 .014 .006 .010

Table A2.8: Coverage for q1, q2 = (6, 6)
Model µ(s, t) ψ1(s) ψ2(s) φ1(t) φ2(t)
50% .992 .982 .972 .982 .970
60% .996 .976 .974 .972 .970
70% .994 .976 .978 .978 .964
80% .988 .980 .972 .980 .962

Table A2.9: Comparing mean estimation and coverage over different data generating mecha-
nisms and fitting methods. B-B refers to data generated from the model in this paper, fit by
Bayes. B-R refers to data generated from the model in this paper, fit by REML. B-R-Boot
refers to data generated from the model in this paper, fit by REML (bootstrap pointwise
confidence intervals). LFPCA-B refers to data generated from LFPCA, fit by the proposed
method. LFPCA-R refers to data generated from LFPCA, fit by REML. LFPCA-R-Boot
refers to data generated from LFPCA, fit by REML (bootstrap pointwise confidence inter-
vals). The table reports the 50%, 10%, and 90% percentiles over 1000 simulations.

B-B B-R B-R-Boot
µ(s, t) .039 (.015, .097) .036 (.011, .096) .036 (.011, .096)

Coverage .992 (.835, 1.00) .418 (.212, .660) .995 (.818, 1.00)
LFPCA-B LFPCA-R LFPCA-R-Boot

µ(s, t) .063 (.032, .130) .043 (.015, .112) .043 (.032, .112)
Coverage .978 (.870, 1.00) .442 (.215, .720) .998 (.870, 1.00)
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method can yield inference on the longitudinal patterns of variation, while LFPCA cannot.

Conversely, LFPCA decomposes variation into a random intercept function, random slope

function, and a subject-visit random function. Eigen-analyses of these random functions are

interpretable but are not obtainable in the framework of the proposed method.

Appendix 2D: Model Selection for Case Studies

In this paper we select an appropriate number of splines by minimizing information criteria.

We consider the deviance information criterion (DIC) and two variations of the Bayesian

information criterion, BIC and BICh Delattre et al. [2014]. The information criteria are

calculated as follows. Obtain the posterior-averaged mean function µ̂(s, t) and the posterior-

averaged covariance function K̂{(s, t), (s′, t′)}. Evaluate these functions on a grid s∗ × t∗ ∈

S × T common to all subjects in the study. Let the vector µ̂(s∗, t∗)i = µ(xi, s
∗, t∗) denote

the conditional mean function for subject i and let K̂{(s∗, t∗), (s∗′, t∗′)} be the common

covariance function over all subjects. Marginalizing over ηi and ζi, the log-likelihood for

subject i is

li =− Ni

2
log(2π)− 1

2
|K̂{(s∗, t∗), (s∗′, t∗′)}|

− 1

2
{yi(s∗, t∗)− µ̂(s∗, t∗)i}>K̂{(s∗, t∗), (s∗′, t∗′)}−1{yi(s∗, t∗)− µ̂(s∗, t∗)i}

where Ni denotes the total number of functional longitudinal observations for subject i.

Let µ̂(r)(s∗, t∗)i be the rth sample of the posterior mean function evaluated at observed s∗

and t∗ for subject i. Analogously, let K̂(r){(s∗, t∗), (s∗′, t∗′)} be the rth posterior draw of

K{(s∗, t∗), (s∗′, t∗′)}. Let

g
(r)
i =− Ni

2
log(2π)− 1

2
|K̂(r){(s∗, t∗), (s∗′, t∗′)}|

− 1

2
(yi(s

∗, t∗)− µ̂(r)(s∗, t∗)i)
>K̂(r){(s∗, t∗), (s∗′, t∗′)}−1{yi(s∗, t∗)− µ̂(r)(s∗, t∗)i}
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Then DIC is equal to

DIC = −2

{ N∑
i=1

li − 2 ·
( N∑

i=1

li −
1

R

R∑
r=1

N∑
i=1

g
(r)
i

)}
= −2(L− P )

where L =
∑N

i=1 li and P = 2 · (
∑N

i=1 li −
1
R

∑R
r=1

∑N
i=1 g

(r)
i ). The quantity L represents

a goodness of fit and the quantity P represents the effective number of parameters. BIC

is conceptually similar to DIC, except BIC explicitly counts the number of parameters in

a model to penalize model complexity. We use two versions of BIC. The first version does

not distinguish between random or fixed parameters for counting purposes. The parameters

used in this calculation are Γ, Λ, H, β, Σ, and ϕ2. The number of paramaters is npar =

p2 · q2 + p1 · q1 + q1 · q2 + q1 · q2 + p1 · p2 + 1. BIC is calculated as

BIC = −2L+ npar log(N)

BICh is a hybrid information criteria which distinguishes between fixed and random param-

eters. BICh is computed as

BICh = −2L+ npar−random log(N) + npar−fixed log(ntot)

where npar−fixed counts the number of fixed parameters, npar−random counts the number of

random parameters, and ntot counts the total number of observed longitudinal functional

data over all subjects. In the proposed probabilistic model, it’s unclear whether Γ and Λ

should be counted as fixed parameters or random parameters since both appear in the mean

and covariance processes. We choose to count them as fixed parameters. Therefore the

random parameters include H, Σ, andϕ2 and the fixed parameters include Γ, Λ, and β. The

number of random parameters is q1 · q2 + p1 · p2 + 1 and the number of fixed parameters is

p2 · q2 + p1 · q1 + q1 · q2.

We now discuss choosing the number of b-spline bases used in estimation for the fertility
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and EEG case studies. Recall that fi(s, t) =
∑q2

j=1

∑q1
k=1 ψj(s)φk(t)ηikj+ri(s, t), with ψj(s) =∑p2

l=1 γljb
(1)(s) and φk(t) =

∑p1
m=1 λmkb

(2)(t). The prior on Γ and Λ encourages near-zero

loadings for basis coefficients of ψj(s) and φk(t), while simultaneously able to drop out entire

ψj(s) and φk(t). Hence, this prior is robust against specifying q1 and q2 too large. However,

we noticed sensitivity in smoothness of fi(s, t) by varying p1 and p2, which are the degrees

of freedom for b(2)(t) and b(1)(s) respectively. Selecting degrees of freedom for b-splines can

be accomplished via reversible jump MCMC Green [1995], latent indicators Thompson and

Rosen [2008], among many other methods. In this paper we choose to select the degrees

of freedoms by minimizing information criteria. We use the deviance information criterion

(DIC), and two versions of the Bayesian information criterion (BIC & BICh).

Model selection for the fertility data is as follows. We vary p1 and p2 from (p1, p2)
> =

(11, 14)> to (p1, p2)
> = (44, 56)>. We also let q1 and q2 grow with p1 and q2. In total

we compute information criteria for six models. Information criteria values are based on

5,000 iterations of 4 independent Markov chains, after discarding 1,000 draws for burn-in.

The model with (p1, p2, q1, q2)
> = (22, 28, 11, 10)> minimizes all three information criteria,

giving strong indication that this model balances the goodness of fit and model complexity

moreso than the other five models. This model has a moderate number of degrees of freedom,

indicating that setting p1 and p2 too high can lead to overfitting. This is not suprising because

the fertility rate varies as a smooth function as a function of age and calendar year.

Model selection for the EEG case study uses the same number of iterations, chains, and

burn-in. We let p1 and p2 vary from (p1, p2)
> = (10, 14)> to fourteen more complex models.

The model with (p1, p2, q1, q2)
> = (20, 56, 10, 28)> minimized all three information criteria in

both TD and ASD groups, giving evidence that this model seems to balance goodness of fit

and model complexity. The high degrees of freedom for trial time indicates that condition

differentiation varies rapidly from trial to trial. However, the moderate number of degrees of

freedom for within trial time indicates that the within trial condition differentiation changes

more smoothly. This is expected because this data is preprocessed with a 30 trial sliding

window as described in the main text.
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Table A2.10: Model description and information criteria for fertility data. The black box
highlights the model with the smallest information criteria.

Model (p1, p2) (q1, q2) DIC BIC BICh
1 (11, 14) (6,5) -79584 -70976 -66485
2 (15, 19) (8,8) -125732 -116136 -109381
3 (22, 28) (11, 10) -145781 -135006 -125986
4 (29, 37) (13, 14) -142638 -130166 -118147
5 (35, 45) (16, 18) -134634 -120161 -104534
6 (44, 56) (18, 20) -125504 -109257 -91506

Table A2.11: Model description and information criteria for the TD group in the EEG
implicit learning study.

Model (p1, p2) (q1, q2) DIC BIC BICh
1 (10, 14) (5,7) 32386 40921 45584
2 (13, 19) (6,9) 16767 25186 31128
3 (19, 28) (9, 14) -229 8717 18181
4 (25, 38) (12, 19) -16421 -6618 6596
5 (28, 42) (14, 21) -25416 -15675 -543
6 (30, 45) (15, 22) -29894 -19915 -3803
7 (37, 56) (18, 28) -65231 -33544 -54380
8 (37, 15) (18, 7) 41286 50165 59179
9 (37, 20) (18, 10) 28260 36967 47670
10 (37, 25) (18, 12) 17101 25378 37207
11 (10, 56) (5, 28) -60983 -48876 -34468
12 (15, 56) (7, 28) -89911 -78659 -63262
13 (20, 56) (10, 28) -96729 -85843 -68962
14 (25, 56) (12, 28) -85646 -74844 -56974
15 (30, 56) (15, 28) -76871 -65849 -46496

95



Table A2.12: Model description and information criteria for the ASD group in the EEG
implicit learning study.

Model (p1, p2) (q1, q2) DIC BIC BICh
1 (10, 14) (5,7) 47203 55873 60539
2 (13, 19) (6,9) 28813 37426 43370
3 (19, 28) (9, 14) 4003 11895 21364
4 (25, 38) (12, 19) -17713 -8591 4630
5 (28, 42) (14, 21) -22473 -12891 2247
6 (30, 45) (15, 22) -26997 -16926 -806
7 (37, 56) (18, 28) -67619 -57589 -36741
8 (37, 15) (18, 7) 56749 65547 74566
9 (37, 20) (18, 10) 34387 42837 53546
10 (37, 25) (18, 12) 24240 32226 44061
11 (10, 56) (5, 28) -30508 -18227 -3812
12 (15, 56) (7, 28) -76282 -64538 -49133
13 (20, 56) (10, 28) -102624 -91275 -74386
14 (25, 56) (12, 28) -90221 -79561 -61682
15 (30, 56) (15, 28) -80708 -70094 -50731

Appendix 2E: Missing and Sparse Functional Data

The main text presents a model with data observed on a common grid for simplicity. In this

section we discuss accounting for missing or sparse functional responses. There are three

cases to consider: missingness over longitudinal time (case 1), missingness over functional

time (case 2), and missingness over both longitudinal and functional time (case 3). All three

cases can be handled by imputing missing observations during sampling, and this is the

approach we take in the EEG case study which had a total of 37 trials missing for the ASD

group and 77 trials missing for the TD group.

Let s̃i denote the missing longitudinal times for subject i. Let Bi1(s̃) denote the rows of

B1(s) corresponding to longitudinal times s̃i. For case 1, we impute Yi(s̃i, t) ∼ N((Bi1(s̃i)⊗

B(t))vec(Θi), ϕ
2). The imputed observations Yi(s̃i, t) are treated as observed data in the

Gibbs sampler.

Cases 2 is handled in a slightly different manner. Here we assume each subject has

complete longitudinal data but sparse or missing functional data. Suppose subject i has

missing functional data t̃i1, . . . , t̃iJ over J longitudinal times. Form the matrix Bi in the
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following manner: 
B1(s1)⊗B2(t̃i1)

B1(s2)⊗B2(t̃i2)
...

B1(sJ)⊗B2(t̃iJ)


Then impute the response by sampling from N(Bivec(Θi), ϕ

2).

For case 3 the matrix Bi is formed in a similar manner. Suppose subject i has missing

longitudinal time s̃i = (si1, . . . sim) and missing functional observations t̃i1, . . . til. Let ŝi

be the sorted longitudinal times from least to greatest. The vector ŝi has length m equal

to number of missing longitudinal time plus number of longitudinal times with missing

functional observations. Let t be the entire grid of functional time. If ŝij is an entire missing

longitudinal time point, let t̃ij = t. Otherwise, let t̃ij be the grid of missing functional

observations. Construct Bi as 
B1(ŝi1)⊗B2(t̃i1)

...

B1(ŝim)⊗B2(t̃im)


As in cases 1 and 2, impute the missing data by sampling from N(Bivec(Θi), ϕ

2).

Alternatively, one can alter the update for Θi to accommodate missing or sparse observa-

tions over longitudinal or functional domains. Suppose subject i has observed longitudinal

times si1, . . . , sin with corresponding observed functional times ti1, . . . tin. Define Bi to be


B1(si1)⊗B2(ti1)

...

B1(sin)⊗B2(tin)


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Sample Θi by

π(vec(Θi)) ∼ N(µi,Λ
−1
i )

µi = Λ−1i ϕ−2Biyi + Σ−1(Γ⊗ Λ)vec(ηi))

Λi = ϕ−2B>i Bi + Σ−1

Appendix 2F: Post-processing MCMC samples

The main text discusses posterior inference for the mean µ(xi, s, t). In this section we give

details on posterior inference for eigenfunctions of KT (t, t′) and KS(s, s′), defined in the main

text. The total covariance K{(s, t), (s′, t′)} can be expressed as

K{(s, t), (s′, t′)} =

q1∑
j=1

q2∑
k=1

hjkψj(s)ψj(s
′)φk(t)φk(t

′) +

p1∑
j=1

p2∑
k=1

σjkb
(1)
j (s)b

(1)
j (s′)b

(2)
k (t)b

(2)
k (t′)

Direct computation of the marginal covariance function KS(s, s′) yields

KS(s, s′) =

∫
T
K{(s, t), (s′, t)}dt

=

∫
T
{
q1∑
j=1

q2∑
k=1

hjkψj(s)ψj(s
′)φk(t)φk(t) +

p1∑
j=1

p2∑
k=1

σjkb
(1)
j (s)b

(1)
j (s′)b

(2)
k (t)b

(2)
k (t)}dt

=

q1∑
j=1

ψj(s)ψj(s
′)

q2∑
k=1

hjk

∫
T
φk(t)φk(t)dt+

p1∑
j=1

σjkb
(1)
j (s)b

(1)
j (s′)

∫
T
b
(2)
k (t)b

(2)
k (t)dt

=

q1∑
j=1

ψj(s)ψj(s
′)

q2∑
k=1

hjkνk +

p1∑
j=1

σjkχkb
(1)
j (s)b

(1)
j (s′)

where νk =
∫
T φk(t)φk(t)dt and χk =

∫
T b

(2)
k (t)b

(2)
k (t)dt. A similar expression can be de-

rived for KT (t, t′). Computing marginal kernels with the above expression has much better

scalability than first forming K{(s, t), (s′, t′)} and then computing the required integrals∫
T K{(s, t), (s

′, t)}dt or
∫
S K{(s, t), (s, t

′)}ds directly. In our implementation we use the

‘trapz’ function from the R package ‘pracma’ to numerically approximate the above inte-

grals.
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Appendix 3A: Markov-Chain Monte Carlo Sampling Algorithm

In this section we give a detailed Markov-Chain Monte Carlo (MCMC) algorithm to sample

from the posterior. Let N be the number of independent functional responses and assume

all response functions are observed on a common grid T = {t1, . . . , tn}. Let B be an n × p

matrix with Bij = bj(ti). Let X be an N × r(d1) matrix with row i equal to bx(xi). Let Y

be an N × n matrix with Yij = yi(tj), so that each row represents one discretized functional

response. Let Γj be an N × N diagonal matrix with rth diagonal element equal to ηrj for

j = 1, . . . , k.

1. Update β:

Let Ωr = τ1xrK̃r + τ1trK̃ if pr > 1. Otherwise set Ωr = τ1trK. Construct

Ω = blkdiag(Ω1, . . . ,ΩR).

Let C = σ−2X>X ⊗B>B + Ω

Let A = σ−2vec[{B>Y > −B>B(
∑k

j=1 ΛjX
>Γj)}X]

Sample vec(β) ∼ N(C−1A,C−1)

2. Update Λj:

Let Ωr = τ2xrK̃r + τ2trK̃ + τ ∗rjφrj if pr > 1. Otherwise set Ωr = τ2trK + τ ∗rjφrj.

Construct Ω = blkdiag(Ω1, . . . ,ΩR)

Let C = σ−2X>Γ2
j X ⊗B>B + Ω

Let A = σ−2vec[{B>Y > −B>B(β +
∑

j′ 6=j Λj′X
>Γj′)}ΓjX]

Sample Λj ∼ N(C−1A,C−1)

3. Update ηij:

Let ηi = (ηi1, . . . , ηik).

Let Ẍi be a p× k matrix with column j equal to Λjb
x(xi).

Let C = σ−2Ẍ>i B
>BẌi + Ik, where Ik is the k × k identity matrix.

Let A = σ−2Ẍ>i {B>Yi· −B>Bβbx(xi)}

Sample ηi ∼ N(C−1A,C−1)

4. Update σ2:
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Let A = Y > −BβX> +
∑k

j=1BΛjX
>Γj

Sample σ−2 ∼ Gamma(Nn/2 + aε, A�A/2 + bε), where � denotes element-wise mul-

tiplication.

5. Update τ1tr, τ1xr, τ2tr, τ2xr:

Sample τ1tr ∼ Gamma{rank(K̃)/2− 0.5, vec(βr)
>K̃vec(βr)/2}

Sample τ1xr ∼ Gamma{rank(K̃r)/2− 0.5, vec(β>r )K̃rvec(βr)/2} (if pr > 1)

Sample τ2trj ∼ Gamma{rank(K̃)/2− 0.5, vec(Λrj)
>K̃vec(Λrj)/2}

Sample τ2xrj ∼ Gamma{rank(K̃r)/2− 0.5, vec(Λ>rj)K̃rvec(Λrj)/2} (if pr > 1)

6. Update φrj:

Let φirj denote the ith diagonal element of φrj.

Let λirj be the ith element of vec(Λrj).

Sample φirj ∼ Gamma(aφ + 0.5, τ ∗rjλ
2
irj/2 + bφ)

7. Update δr1:

Let A = vec(Λ>r1)φr1vec(Λr1)

Let B =
∑k

j=2 τ
∗
rjvec(Λrj)

>φrjvec(Λrj)

Sample δr1 ∼ Gamma{kprp/2 + ar0, (A+B)/2 + 1}

8. Update δrj:

Let A =
∑k

j′=1 τ
∗(j)
rj′ vec(Λrj′)

>φrj′vec(Λrj), where τ
∗(j)
rj′ = τ ∗rj′ if j 6= j′ and 1 otherwise.

Sample δrj′ ∼ Gamma{prp(k − j′ + 1)/2 + ar1, A/2 + 1}

9. Update ar0:

Let Gamma∗(x, a, b) denote the Gamma density evaluated at x with shape a and rate

b.

Let φ(x) denote the standard normal cumulative distribution function evaluated at x.

Sample candidate a∗r0 ∼ N(ar0, 1) until a∗r0 > 0.

Compute A =
Gamma∗(δr1, a

∗
r0, 1) ·Gamma∗(a∗r0, 2, 1) · φ(ar0)

Gamma∗(δr1, ar0, 1) ·Gamma∗(ar0, 2, 1) · φ(a∗r0)
Sample U ∼ Unif(0, 1)

If U ≤ A, accept candidate a∗r0.
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10. Update ar1:

Let δ∗r2 =
∏k

j=2 δrj

Let Gamma∗(x, a, b) denote the Gamma density evaluated at x with shape a and rate

b.

Let φ(x) denote the standard normal cumulative distribution function evaluated at x.

Sample candidate a∗r1 ∼ N(ar1, 1) until a∗r1 > 0.

Compute A =
Gamma∗(δ∗r2, a

∗
r1, 1) ·Gamma∗(a∗r1, 2, 1) · φ(ar1)

Gamma∗(δ∗r2, ar1, 1) ·Gamma∗(ar1, 2, 1) · φ(a∗r1)
Sample U ∼ Unif(0, 1)

If U ≤ A, accept candidate a∗r1.

11. Update missing values of Y :

Suppose yi(tj) is missing.

Let µ = b(tj)βb
x(xi) +

∑k
j=1 b(tj)Λjb

x(xi)ηij

Sample yi(tj) ∼ N(µ, σ2)

Appendix 3B: Additional Details on Posterior Inference

In this section we give details on post-processing MCMC samples to obtain eigenfunctions

as in a usual FPCA. Latent functional factors ψj(t,x) are not orthonormal and cannot be

directly interpreted as function principal components. To orthonormalize ψj(t,x), one may

evaluate posterior draws of c(t, t′,x) on an arbitrary domain t, t′ ∈ T followed by a spectral

decomposition to yield orthonormal modes of variation. However, this procedure may be

computationally intensive because T is in theory infinite-dimensional. To alleviate this

burden, we borrow methods from Aguilera and Aguilera-Morillo [2013] to obtain orthonormal

modes of variation by performing a spectral decomposition on a much lower dimensional

matrix. To obtain ψ̃(m)(t,x), the mth draw of orthonormal posterior modes of variation, we

1. Compute p× p matrix Ψ, where Ψij =
∫
T bi(t)bj(t)dt.

2. Compute Λ̃x =
∑k

j=1 Λjb
x(x)bx(x)>Λ>j

3. Set Λ̃x = Ψ1/2Λ̃xΨ1/2
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4. Perform a spectral decomposition on Λ̃x to obtain ψ̃j(x)

5. Set ψ̃j(t,x) = b(t)Ψ−1/2ψ̃j(x)

6. If desired, postprocessed principal scores are equal to
∫
T ψ̃j(t,xi)ri(t,xi) dt. For sparse

functional response settings, principal scores are based on conditional expectation [Yao

et al., 2005].

Step 1 may be pre-computed before any posterior samples are evaluated. We compare the

mth posterior eigenfunction to the running average in l2 norm. If the norm is smaller after

multiplying the estimated eigenfunction by -1, we multiply the estimated eigenfunction by

-1. This process ensures all posterior samples of eigenfunctions are oriented correctly so that

means and interval calculations are sensible.

Up until this point we have only discussed pointwise credible intervals. However, point-

wise intervals are not appropriate for making probabilistic statements of an entire function.

Simultaneous credible bands are more appropriate for entire function inference and are eas-

ily computable using posterior samples assuming normality as detailed in Krivobokova et al.

[2010] and Crainiceanu et al. [2007]. Suppose we desire a simultaneous credible band of

some functional f(·) observed at points t1, . . . , tN . Let µf (ti) and σf (ti) be the estimated

pointwise mean and standard deviation respectively. Let f (m)(·) be the mth realization of

f(·) drawn from the posterior out of M total samples. By assuming approximate normality

and deriving the (1− α) sample quantity cb of

max
i=1,...,N

∣∣∣∣f (m)(ti)− µf (ti)
σf (ti)

∣∣∣∣ , m = 1, . . . ,M

a simultaneous credible region is given by the hyperrectangular

[
µf (ti)− cb · σf (ti), µf (ti) + cb · σf (ti)

]
, i = 1 . . . , N

In our implenetation on github we include the option to compute pointwise and simultaneous

bands for latent subject-specific functions, covariate-adjusted means, and covariate-adjusted
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eigenfunctions.

Appendix 3C: Additional Details on the Case Studies

In this section we provide details setting up the design matrices and penalty matrices for the

ASD case study [Dickinson et al., 2018] and sleep wave data from the Sleep Heart Health

Study (SHHS) [Quan et al., 1997]. We also discuss computing low dimensional covariance

summaries g(t,x) and associated inference.

The ASD case study [Dickinson et al., 2018] has three covariates excluding an intercept

term: diagnostic group, age of child, and a group by age interaction term. In terms of

notation used in Web Appendix A, the design matrix X has dimension 97 by 12. The

first column of X is an intercept column with repeating ones. The second column is a

group indicator with a 1 if the child is diagnosed with ASD and 0 otherwise. The next

five columns expand age of child by p-splines. The next five columns expand age of child

of child by p-splines row-wise multiplied by 0 if the child is in the TD diagnostic group.

In terms of notation from Sections 2 and 3 of the main manuscript, x1 = {Intercept},

x2 = {Group}, x3 = {Age}, and x4 = {Group by age interaction}. We also expand the

frequency dimension into a set of 12 p-splines. The frequency dimension is associated with

a 12× 12 second order smoothing matrix K with rank 10. The age dimension is associated

with a 5 × 5 second order smoothing matrix with rank 3. Let M− denote the generalized

inverse of a matrix M . The 12× 1 coefficient matrices β1 and β2 have priors N{0, (τ1t1K)−}

and N{0, (τ1t2K−)}. The 12 × 5 coefficient matrices β3 and β4 have priors N{0, (τ1t3K̃ +

τ1x3K̃age)
−} and N{(0, (τ1x4K̃age + τ1t4K̃)−} after vectorization. Here K̃age = Kage ⊗ I12×12

and K̃ = I5×5⊗K. Priors for Λrj are identical after replacing τ1tr and τ1xr by τ2trj and τ2xrj.

The low dimensional summaries g(t,xr) are designed to help users quantify heterogeneity

by covariates. Since the functional argument is frequency, abbreviated as ω, we will write

g(ω,xr) in place of g(t,xr). In this example we compute four g(ω,xr) to quantify heterogene-

ity. The first quantifies heterogeneity for a 70 month old child with ASD. A single posterior

sample is computed by g(ω,xr) =
∑8

j=1[b(ω)Λkb
x(x1)]2, where x1 is the covariate vector for
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a 70 month old child in the ASD group. The second quantifies heterogeneity for a 70 month

old TD child. A single posterior sample is computed by g(ω,xr) =
∑8

j=1[b(ω)Λkb
x(x2)]2,

where x2 is the covariate vector for a 70 month old child in the TD group. These two quanti-

ties represent the total amount of heterogeneity for a typical child in the ASD and TD groups

respectively. The third quantifies the additional amount of heterogeneity over age in the

ASD group. A single posterior sample is computed as 1
10

∑10
m=1

∑8
j=1[b(ω)Λkb

x(x1m−x1)]2,

where x1m denotes the covariate vector for a child in the ASD group at mth equally spaced

age between the 10th and 90th percentile of all ages. The fourth quantifies the additional

amount of heterogeneity over age in the TD group. A single posterior sample is computed

as 1
10

∑10
m=1

∑8
j=1[b(ω)Λkb

x(x2m − x2)]2, where x2m denotes the covariate vector for a child

in the TD group at the mth equally spaced age between the 10th and 90th percentile of

all ages. The latter two summaries are designed to integrate additional heterogeneity over

age compared to the group respective baseline at 70 months old. Web Figure A3.1 displays

pointwise posterior medians of the four summaries described above. Baseline heterogeneity

is similar between ASD and TD groups. The TD baseline heterogeneity curve shows that the

heterogeneity is concentrated between childrens’ alpha spectral densities at 6 Hz and at 8 - 11

Hz. The ASD baseline curve shows shows that variability is conentrated at 6 Hz and peaked

around 9.5 Hz. There does not seem to be a relationship between heterogeneity and age. The

SHHS case study has three covariates of interest excluding an intercept term: hypertension

group, age, and a group by age interaction. The design matrix X has dimension 5258 by 16,

which accounts for 5258 patients with an intercept, group indicator, and seven p-spline basis

functions for age and age× group interaction. Following a similar setup as the previous case

study, x1 = {Intercept}, x2 = {Group}, x3 = {Age}, and x4 = {Group by age interaction}.

We expand the sleep time dimension into a set of 24 p-splines associated with a 24 × 24

second order smoothing matrix K with rank 22. The age dimension is associated with a

second order smoothing matrix Kage with rank 5. The 24× 1 coefficient matrices β1 and β2

have priors N({0, (τ1t1K−)} and N{0, (τ1t2K)−)}. The 24× 7 coefficient matrices β3 and β4

have have priors N{0, (τ1t3K̃+τ1x3K̃age)
−} and N{0, (τ1t4K̃+τ1x4K̃age)

−} after vectorization.

Here K̃age = Kage⊗ I24×24 and K̃ = I7×7⊗K. Priors for Λrj are identical after replacing τ1tr
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Figure A3.1: Posterior medians of low dimensional summaries g(ω,xr). The age effect is
averaged over 10 equally spaced ages. Heterogeneity is largest around 6 Hz. TD heterogeneity
is large around 8 - 11 Hz and ASD heterogeneity is more peaked around 9.5 Hz.

and τ1xr by τ2trj and τ2xrj. Low dimensional covariance summaries g(t,xr) are calculated in

the same manner as in the ASD case study, except we sum over 12 latent factors as opposed

to 8. The baseline age for both groups is 63 years old. Web Figure A3.2 displays the poste-

rior mean of the low dimensional summaries. Heterogeneity between subjects’ relative delta

power spectral density is highest at about 1 hour of sleep (epoch 100 - 120). The figure

also shows that heterogeneity does not depend on age, similar to the ASD case study.
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Figure A3.2: Posterior medians of low dimensional summaries g(ω,xr). The age effect is
averaged over 10 equally spaced ages. Heterogeneity curves have a similar profile over both
hypertension and nonhypertension groups. Heterogeneity is is largest around the first hour
of sleep (epoch 100 - 120) for both groups. Heterogeneity is not influenced by age in either
group.
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Appendix 4A: Orthonormal Constraints and Likelihood Simplifica-

tions

Orthonormality constraints are imposed on both data-driven basis functions

ψl = (ψl(t1), . . . , ψl(tn))′ and regional bases φlj during sampling. For every posterior sample,

these constraints force ψ′lψl′ = δll′ and φ′ljφlj′ = δjj′ where δij is the Kronecker delta. We

follow Kowal et al. [2017], Kowal and Bourgeois [2020], Kowal [2021] and use a two-step

procedure to impose orthonormality conditions: at every posterior sample of ψl (or φlj), we

(1) condition on Cl,ψψl = 0 (or Cl,φlφlj = 0) and (2) rescale to enforce unit l2 norm. The

matrices Cl,ψ and Cj,φl are equal to (ψ1, . . . ,ψk−1)
′ and (φl1, . . . ,φl,j−1)

′ respectively. Note

that these orthogonal constraints only apply when l > 1 (or j > 1), so that ψ1 (or φl1)

has no constraints. Conditioning on constraints is a natural idea in Bayesian statistics, and

produces optimal properties for constrained penalized regression.

Let bp = (bp(t1), . . . , bp(tn))′ and B = (b1, . . . , bP ). To condition on Cl,ψψl = 0 during

the posterior sample of ψl, we first sample λl without constraints as λl ∼ N(Q−1λ,lbλ,l, Q
−1
l )

for some matrix Q−1λ,l and vector bλ,l. Since λl and Cl,ψψl = Cl,ψBλl have joint distribution

 λl

Cl,ψBλl

 ∼ N

 Q−1λ,lbλ,l

Cl,ψBQ
−1
λ,lbλ,l

 ,

 Q−1λ,l Q−1λ,lB
′C ′ψ,l

Cψ,lBQ
−1
λ,l Cψ,lBQ

−1
λ,lB

′C ′ψ,l


so λl |Cψ,lBλl = 0 is again multivariate normal with mean

Q−1λ,lbλ,l −Q
−1
λ,lB

′C ′ψ,l(Cψ,lBQ
−1
λ,lB

′C ′ψ,l)
−1Cψ,lBQ

−1
λ,lbλ,l

and variance-covariance matrix

Q−1λ,l −Q
−1
λ,lB

′C ′ψ,l(Cψ,lBQ
−1
λ,lB

′C ′ψ,l)
−1Cψ,lBQ

−1
λ,l

Now consider the random variable λ∗l = λl − Q−1ψ,lB′C ′ψ,l(Cψ,lBQ
−1
λ,lB

′C ′ψ,l)
−1Cψ,lBλl. One
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can work out the algebra to show λ∗l has the same mean and variance-covariance above.

Since the the multivariate normal distribution is idenified by its mean and covariance, λ∗l

is equal in distribution to λl |Cψ,lBλl = 0. Moreover, sampling λ∗l requires fewer floating

point operations than sampling λl |Cψ,lBλl = 0, so sampling λ∗l is the preferred method. By

construction, ψl = Bλ∗l , is orthogonal to ψl′ for l′ > l. After constructing ψl, we overwrite

ψl with its normalized version, ψl/||ψl||, where || · || denotes the Euclidean norm. As ψl

are sampled in succession, ψ′lψl′ = δll′ , as desired. Ensuring orthonormality of φlj follows a

similar strategy.

Aside from enhancing interpretability of ψl(t) and φlj, orthonormalization leads to like-

lihood simplifications, greatly improving computational scalability. Let Yi =

(Yi(t1), . . . ,Yi(tn)). Consider the likelihood p(Yi |ψl, φl, ηi,Σε). As a function of ηi, we have

that

p(Yi |ψl, φl, ηi,Σε) (5.1)

∝ exp

{
− .5

[
vec(Yi)−

L∑
l=1

(ψl ⊗ φl)ηil
]′
Itn ⊗ Σ−1ε

[
vec(Yi)−

L∑
l=1

(ψl ⊗ φl)ηil
]}

(5.2)

∝ exp

{
vec(Σ−1ε Yi)

′
L∑
l=1

(ψl ⊗ φl)ηil
}

exp

{
− .5

[ L∑
l=1

η′ilφ
′
lΣ
−1
ε φlηil

]}
(5.3)

Equation 5.3 follows from Equation 5.2 because ψ′lψl′ = δll′ . Note that removing this

constraint would make a double sum involving ψl appear in the last term of the like-

lihood in Equation 5.3. Clearly the orthonormality constraint simplifies the likelihood

p(Yi |ψl, φl, ηi,Σε), thus enabling more efficient sampling of ηi.

Appendix 4B: Markov-Chain Monte Carlo Sampling Algorithm

In this section we give a detailed Markov-Chain Monte Carlo (MCMC) algorithm to sample

from the posterior distribution. The github repository github.com/jshamsho/rrbfda includes

a C++ implementation of all MCMC algorithms. The algorithms described here use param-
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eter expansion to sample from conjugate conditional posteriors. Specifically, we replace

ηijl ∼ tν(x
′
iβlj, σ

2
lj) with ηilj ∼ N(xiβlj, σ

2
ljξηilj) and ξ−1ηilj ∼ Gamma(ν/2, ν/2). Let βljd be

the dth element of βlj. We also replace βljd ∼ t4(0, 1) priors with βljd ∼ N(0, σ2
βljd

) and

σ−2βljd ∼ Gamma(4/2, 4/2). We will describe our sampling algorithms for parameters common

to both PSFLM, specific to PSFLM, and specific to WSFLM in this order.

MCMC algorithms for parameters common to PSFLM and WSFLM

1. Update ζl

Sample ζl ∼ Gamma(a, b)1(ζl < 107)

a = −.5 + .5rank(Ω)

b = .5λ′lΩλl

2. Update ν

Standard Metropolis-Hastings update with a proposal distribution

Uniform(max(2, ν − 2),min(128, ν + 2))

3. Update βlj

Let ηlj = (η1lj, . . . , ηnlj)
′ , Σηlj = diag(σ2

ljξηilj , . . . , σ
2
ljξηilj), Σβlj = diag(σ2

βlj1
, . . . , σ2

βljD
)

Sample βlj ∼ N(Q−1b, Q−1)

Q = X ′Σ−1ηljX + Σ−1βlj

b = X ′Σ−1ηljηlj

4. Update σ2
βljd

Sample σ−2βljd ∼ Gamma(a, b)

a = .5(4 + 1)

b = .5(4 + β2
ljd)

5. Update ξηilj

Sample ξ−1ηilj ∼ Gamma(a, b)

a = .5(ν + 1)

b = .5(ν + (ηilj − x′iβlj)2σ−2lj )
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MCMC algorithms for PSFLM

1. Update ψl

Let B = (b(t1), . . . , b(tn))′, Yi = (Yi(t1), . . . ,Yi(tn))′

Sample λl ∼ N(Q−1b, Q−1)

Q = tr(φlΣ
−1
ε φl

∑n
i=1 ηilη

′
il)B

′B + ζlΩ

b =
∑n

i=1B
′YiΣ

−1
ε φlηil −

∑n
i=1

∑L
l′=1,l′ 6=lB

′Bλl′η
′
il′φ
′
l′Σ
−1
ε φlηil

Overwrite λl = λl −Q−1B′C ′ψ,l(Cψ,lBQ−1B′C ′ψ,l)−1Cψ,lBλl

Where Cψ,l = (ψ1, . . . ,ψl−1)
′

Set ψl = Bλl

Overwrite ψl = ψl/||ψl||

2. Update φlj

Let φj = (φ′1j, . . . ,φ
′
Lj)
′, ηij = diag(ηi1j, . . . , ηiLj), ψ = (ψ1, . . . ,ψL)

Let Mφj = (φ1j, . . . ,φLj)

Sample φj ∼ N(Q−1b, Q−1)

Q = (
∑n

i=1 ηijηij)⊗ Σ−1ε + IRL

b =
∑n

i=1 vec(Σ−1ε Y ′i ψηij)−
∑n

i=1

∑R
j′=1,j′ 6=j vec(Σ−1ε Mφjηij′ηij)

Overwrite φj = φj −Q−1C ′φ,j(Cφ,jQ−1C ′φ,j)−1Cφ,jQ−1φj

Where Cφ,j = (φ1, . . . ,φj−1)
′

Overwrite φlj = φlj/||φlj||

3. Update ηilj

Let Yi = (Yi(t1), . . . ,Yi(tn))′, Σηil = diag(σ2
l1ξηil1 , . . . , σ

2
lRξηilR), βl = (βl1, . . . ,βlR)′

Sample ηil ∼ N(Q−1b, Q−1)

Q = φ′lΣ
−1
ε φl + Σ−1ηil

b = φ′lΣ
−1
ε Y ′iψl + Σ−1ηil βlxi

4. Update Σε

Let σ2
εj be the jth diagonal element of Σε

Let φljj′ be the j′th element of φlj
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Sample σ−2εj ∼ Gamma(a, b)

Where a = .5ntn

b = .5
∑n

i=1

∑tn
t=t1

(Yij(t)−
∑L

l=1

∑R
j′=1 ψl(t)φljj′ηilj′)

2

5. Update δ1

Let ηlj = (η1lj, . . . , ηnlj)
′, Dξηlj

= diag(ξη1lj , . . . , ξηnlj)

Set δ1 = 1

Compute σ−2l1 =
∏l

l′=1 δl′

Compute σ−2lj =
∏l

l′=1

∏j
j′=2 δl′δl′j′ , j > 1

Sample δ1 ∼ Gamma(a, b)

a = a1 + .5nRL

b = .5 +
∑L

l=1

∑R
r=1(ηlj −Xβlj)′D

−1
ξηlj

(ηlj −Xβlj)σ−2lj

6. Update δl, l > 1

Let ηl′j = (η1l′j, . . . , ηnl′j)
′, Dξηl′j

= diag(ξη1l′j , . . . , ξηnl′j)

Set δl = 1

Compute σ−2l′1 =
∏l′

l′′=1 δl′′

Compute σ−2l′j =
∏l′

l′′=1

∏j
j′=2 δl′′δl′′j′

Sample δl ∼ Gamma(a, b)

a = a2 + .5n(L− l′ + 1)R

b = .5 +
∑L

l′=l(ηl′j −Xβl′j)′D
−1
ξηl′j

(ηl′j −Xβl′j)σ−2l′j

7. Update δlj, j > 1

Let ηlj′ = (η1lj′ , . . . , ηnlj′)
′, Dξηlj′

= diag(ξη1lj′ , . . . , ξηnlj′ )

Set δlj = 1 Compute σ−2l1 =
∏l

l′=1 δl′

σ−2lj′ =
∏l

l′=1

∏j′

j′′=2 δl′δl′j′′

Sample δlj ∼ Gamma(a, b)

a = a3 + .5n(R− j + 1)

b = .5 +
∑R

j′=j σ
−2
lj′ (ηlj′ −Xβlj′)′D

−1
ξηlj′

(ηlj′ −Xβlj′)

8. Update a1, a2, a3

Standard Metropolis-Hastings updates with proposal distributions
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av ∼ Uniform(max(av − 0.5, 0), av + 0.5), v = 1, 2, 3

MCMC algorithms for WSFLM

1. Update ψl

Let φ = (φ1, . . . ,φR), B = (b(t1), . . . , b(tn))′, Yi = (Yi(t1), . . . ,Yi(tn))′

Sample λl ∼ N(Q−1b, Q−1)

Q = tr(φ′Σ−1ε φ
∑n

i=1 ηilη
′
il)B

′B + ζlΩ

b =
∑n

i=1B
′YiΣ

−1
ε φηil −

∑L
l′=1,l′ 6=lB

′Bλl′η
′
il′φ
′Σ−1ε φηil

Overwrite λl = λl −Q−1B′C ′ψ,l(Cψ,lBQ−1B′C ′ψ,l)−1Cψ,lBλl

Where Cψ,l = (ψ1, . . . ,ψl−1)
′

Set ψl = Bλl

Overwrite ψl = ψl/||ψl||

2. Update φj

Let η∗ij = (ηi1j, . . . , ηiLj)
′, Yi = (Yi(t1), . . . ,Yi(tn))′, ψ = (ψ1, . . . ,ψL)

Sample φ ∼ N(Q−1b, Q−1)

Q = (
∑n

i=1 η
∗′
ijη
∗
ij)Σ

−1
ε + IR

b =
∑n

i=1 vec(Σ−1ε Y ′i ψη
∗
ij −

∑R
j′=1,j′ 6=j φj′η

∗′
ij′η

∗
ij)

Overwrite φj = φj −Q−1C ′φ,j(Cφ,jQ−1C ′φ,j)−1Cφ,jQ−1φj

Where Cφ,j = (φ1, . . . ,φj−1)
′

Overwrite φj = φj/||φj||

3. Update ηilj

Let ηi = vec(ηi1, . . . , ηiL), φ = (φ1, . . . ,φR), β = (β11,β12, . . . ,βLR)

Yi = (Yi(t1), . . . ,Yi(tn))′, ψ = (ψ1, . . . ,ψL), Σηi = diag(σ2
11ξηi11 , σ

2
12ξηi12 , . . . , σ

2
LRξηiLR)

Sample ηi ∼ N(Q−1b, Q−1)

Q = IL ⊗ φ′Σ−1ε φ+ Σ−1ηi

b = vec(φ′Σ−1ε Y ′i ψ) + Σ−1ηi βxi

4. Update Σ−1ε

Let σ2
εj be the jth diagonal element of Σε
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Let φjj′ be the j′th element of φj

Sample σ−2εj ∼ Gamma(a, b)

Where a = .5ntn

b = .5
∑n

i=1

∑tn
t=t1

(Yij(t)−
∑L

l=1

∑R
j′=1 ψl(t)φjj′ηilj′)

2

5. Update avj, bvl, dv

Standard Metropolis-Hastings updates with proposal distributions

av1 ∼ N(av1, .025av1)1(av1 > 10−5)

avj ∼ N(avj, .025avj)1(avj > av,j−1), j > 1

bv1 ∼ N(bv1, .025bv1)1(bv1 > 10−5)

bvl ∼ N(bvl, .025bvl)1(bvl > bv,l−1), l > 1

dv ∼ N(dv, .05dv)1(dv > dv−1), v > 1

Appendix 4C: Markov-Chain Monte Carlo Initialization Scheme

Parameter initialization greatly reduces the need for a long burn-in at the begin of the

sampling process. We initialize the parameters for λj, φl, Σε, and ηilj. The initialization

scheme for PSFLM is very similar to that of WSFLM. The algorithms require either a %

variability explained criteria (e.g., 95%) or a pre-specified number of latent eigenfunctions

L. Starting with PSFLM, the important steps are

1. Create the data matrix Yi = (Yi(t1), . . . ,Yi(tn))′. Stack these matrices along the

column dimension to generate Y = (Y1, . . . , Yn).

2. Use a one-dimensional functional principal components analysis (FPCA), e.g., Xiao

et al. [2013], to extract a pre-specified number of eigenfunctions or explain a % vari-

ability threshold. Either way, retain L eigenfunctions ψl. In our implementation, we

use .2tn knots rounded down to the nearest integer. We use the function fpca.face

in the R package Goldsmith et al. [2020].

3. Regress the eigenfunctions one at a time on a pre-specified basis matrix B to obtain

λl, l = 1, . . . , L. Simply set λl = (B′B)−1B′ψl.
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4. Extract all θil coefficients from the one-dimensional FPCA. Arrange the θil coefficients

in a matrix θl = (θ1l, . . . ,θnl)
′. Perform principal components analysis (PCA) on θl

for each l. Retain all loadings to form the matrix φl. Retain all individual scores to

form ηil.

5. Reconstruct the smoothed data by Yi(t) =
∑L

l=1ψη
′
ilφ
′
l. Compute all residuals between

smoothed data and observed data, one region at a time. Set σ2
εj to the sample variance

of the residuals for the jth region.

Steps 1, 2, and 3 for initializing WSFLM are exactly the same as PSFLM. The rest of the

steps for initializing parameters for WSFLM are

4. Stack Yi along the row dimension to generate Y = (Y1, . . . , Yn)′. Perform a PCA on

this matrix, extracting regional eigenvectors φj, j = 1, . . . , R.

5. Construct a matrix of tensor terms, E = (ψ1 ⊗ φ1,ψ1 ⊗ φ2, . . . ,ψL ⊗ φR). Vectorize

Yi column by column to obtain a vector Ỹi.

6. Compute vec(ηi) = (E ′E)−1E ′Ỹi. Rearrange the vec(ηi) to obtain ηilj.

7. Reconstruct the smoothed data Yi =
∑L

l=1

∑R
j=1ψlφjηilj.

Compute all residuals smoothed data and observed data, one region at a time. Set σ2
εj

to the sample variance of residuals for the jth region.

In summary, these algorithms efficiently initialize λl, ψl, φl, θil, and ηilj. This initialization

scheme is useful for (1) reducing the need for a long burn-in during posterior sampling and

(2) a heuristic for selecting the number of latent ψl. In particular, we use these algorithms

to select L explaining 95% of variability in the EEG applied case study. One should note

that the priors on ηilj are designed to prevent overfitting with superfluous ψl. Therefore,

the only penalty of large L is wasted computation, not overfitting.
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