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Machine learning applications have widely expanded from single, isolated systems to

complex distributed environments, such as mobile computing, sensor networks, and healthcare

systems. These environments often include thousands of nodes (e.g., edge devices) that collect

data and perform local training or inference, exhibiting considerable heterogeneity in data and

computing resources. The heterogeneity poses great challenges for training machine learning

models across distributed systems.

This dissertation discusses practical scenarios for deploying machine learning in dis-

tributed environments. We introduce new methods for effective learning under heterogeneity,
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focusing on three dimensions: robustness, scalability, and quality. In the first part, we ad-

dress data heterogeneity by leveraging contextual cues to align and adapt models, ensuring

robustness to variations in distributed training data. In the second part, we manage system

heterogeneity by developing knowledge aggregation methods that enable nodes with varying

capacities to collaborate inclusively and efficiently. In the third part, we develop methods for

deriving implicit contextual information from data, which is essential for finding correlations

among distributed domains and enhancing model quality. The proposed approaches are designed

to be model-agnostic, supporting various applications and system configurations. Extensive

evaluations demonstrate that our methods achieve state-of-the-art performance across a wide

range of real-world applications, including image and language processing, human sensing and

mobile computing tasks, such as healthcare and activity recognition. By addressing different

heterogeneity scenarios, our methods improve the global model trained on heterogeneous data

sources by 6.14%, enhance node-specific adapted models by up to 14.85%, boost performance

across nodes with diverse capacities, and accelerate training by 12×. The contributions in this

dissertation enhance the practicality of Artificial Intelligence (AI) at the edge, facilitating the

implementation of ubiquitous intelligent systems for seamless assistance.
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Chapter 1

Introduction

Artificial Intelligence (AI) has demonstrated strong capabilities in complex tasks across

various domains, assisting in numerous everyday and industrial applications. As a result, machine

learning models are increasingly integrated into daily life and production processes, which are no

longer confined to isolated systems but are deployed in ubiquitous, distributed environments. For

example, large-scale sensor networks can continuously collect environmental data from multiple

locations, which is then processed by machine learning algorithms deployed on edge devices for

analytics and inference.

The real-world digital systems today have several notable characteristics. First, most

systems are distributed in nature. These systems consist of interconnected nodes that operate

in different locations, generating vast amounts of data and performing computations at varying

scales of time and distances. For instance, a city-wide intelligent transportation system may

connect thousands of vehicles and roadside infrastructure, collecting data about traffic flow,

road conditions, and accidents from different geographical areas, each feeding information into

machine learning pipelines to facilitate decision-making and enhance traffic safety. Second,

these systems show considerable heterogeneity. The heterogeneity arises from two key sources:

data and compute. From the data perspective, devices often produce information with different

feature and label distributions. From the computing perspective, resources vary widely, ranging

from high-performance servers with powerful GPUs to resource-constrained edge devices or
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Figure 1.1. Four common learning paradigms in distributed environments.

smartphones that can only train or store small models. Third, these systems involve interactions

with users, introducing an additional layer of variability in inputs. Unlike traditional programs

that execute deterministic steps, machine learning algorithms in distributed environments must

account for changing usage patterns and dynamic environmental factors that affect both data

generation and computational demands.

An effective machine learning system maintains reliable and high-quality performance

despite the abovementioned variations. It is crucial for real-world deployments, as it ensures that

models remain functional despite evolving conditions, such as new data distributions, changing

compute resources, or unexpected user behaviors.

1.1 Learning Paradigms in Distributed Environments

There are multiple approaches for training machine learning models across distributed

nodes. Each approach entails different trade-offs regarding data and model movement, scalability,

and overall model performance. We discuss four main paradigms that are common in distributed

environments. Figure 1.1 illustrates the key features.

Centralized Training. A traditional strategy aggregates all data from distributed nodes

into a central data center, and trains a unified model on high-performance computing machines.

In this way, the local device does not incur computational costs as most of the computations are

done on one or several centralized servers. However, it can be infeasible in applications where

2



Table 1.1. Comparison of learning paradigms in distributed environments.

Paradigm Data Transfer Model Transfer Scalability Generalization

Centralized Training High None Low High
Localized Training None None High Low
Federated Learning None High High High

Pretraining & Fine-Tuning Moderate Moderate High High

transferring large volumes of data is costly or restricted by legal and organizational guidelines.

Moreover, handling inference centrally can impose additional communication overhead and

latency if local devices must transmit inference data and wait for results.

Localized Training. Localized training isolates the operations on each individual node.

In this scenario, both training and inference happen on each device locally, without transferring

data or models to a central server. While this minimizes the cost of information exchange, it

often results in poor generalization since each node has limited or non-representative data, and

there is no mechanism to benefit from knowledge accumulated by other nodes.

Federated Learning. Federated learning offers a balance between isolation and collabo-

ration by keeping raw data on devices while sharing parameters of locally maintained and global

models. Each node updates a local model on its private data, and these updates are periodically

aggregated to form a more powerful global model, which is then redistributed for further local

training [138]. This approach allows distributed nodes to learn from broader data distributions

without direct data sharing. It is effective in leveraging the collective knowledge from a network

of nodes.

Pretraining and Fine-Tuning. The process involves pretraining a model on a large

aggregated or representative dataset (which could be publicly available or sourced from a smaller

subset of devices), which is then distributed to individual nodes. Pretraining provides a strong

baseline model that can be efficiently adapted to local domains, thereby addressing data scarcity

on individual nodes and improving accuracy [244]. Local nodes then fine-tune the pretrained

model with their smaller, task-specific datasets, improving performance in local contexts. This
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Figure 1.2. Major challenges in training and deploying machine learning models in distributed
environments arise from heterogeneity in data and computing.

approach reduces the computational burden on resource-constrained devices by shifting much of

the training complexity to the pretraining phase, and it also mitigates challenges of data scarcity

at individual nodes as discussed in localized training.

As summarized in Table 1.1, federated learning and pretraining with subsequent fine-

tuning are effective for handling data scarcity and heterogeneity in distributed environments. This

dissertation focuses on these two paradigms to develop strategies that achieve robust performance

across diverse devices and statistical environments. Furthermore, these two learning paradigms

can be combined, with pretraining taking place within the federated learning process.

1.2 Challenges

Compared to centralized settings where data and computing resources are pooled in

a single location, distributed environments introduce a range of additional complexities. As

depicted in Figure 1.2, these complexities broadly revolve around data and computing.

Generalization Under Statistical Heterogeneity. In distributed environments, data

generated by individual nodes or users can differ significantly in underlying statistical properties

such as quantity, labels, features, labels, and modalities. Unlike centralized learning, which can

mix all data to reduce bias, training models in distributed environments must deal with localized
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data sources that may exhibit skewed or non-i.i.d. characteristics. This statistical heterogeneity

makes the convergence harder and degrades model performance. Moreover, limited visibility

into raw data—due to bandwidth constraints or organizational policies—further complicates

collective learning. The key research question is: How to train a robust machine learning model

under statistical heterogeneity (without direct access to training data), but generalize well across

diverse distributions?

Evolving Environments and Data Distribution Shift. Over time, data distributions may

shift due to changing user behaviors, environmental factors, or evolving operational conditions

(e.g., sensor drift or dynamic network conditions). These shifts may be subtle or abrupt, making

it challenging for a model trained on prior distribution to remain accurate without retraining.

However, new data are often limited or arrive sporadically on distributed nodes, constraining

how quickly a model can adapt to unforeseen patterns. Naive retraining would overfit to limited

recent observations. The key research question is: How can a model adapt to distribution shifts

in heterogeneous environments when only a limited amount of new data is available?

Heterogeneous Device Capacities. Distributed computing nodes exhibit varying device

capabilities, including computational power, memory capacity, network bandwidth, etc. For

example, a company wants to develop a machine learning system in collaboration with its

end users. The company trains a large model using a vast dataset gathered from controlled

environments, while its users can contribute by sharing local models trained on their personal

data in the wild. The enterprise-grade computing machines can load and train large models,

while the users’ weak mobile devices can only train small models. Training large-scale models

across this heterogeneous spectrum requires coordination and aggregation methods to ensure

that each device actively contributes and benefits from others. The key research question is: How

can collaborative training frameworks work under system heterogeneity to achieve scalability

and strong performance inclusively across diverse devices?

Inefficiency and Low Resource Utility. Communication and synchronization overhead

account for a substantial portion of training time in distributed learning frameworks, particularly
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Figure 1.3. Dissertation outline. The first part addresses data heterogeneity to enhance robustness
against variations in distributed training data. The second part manages system heterogeneity to
enable collaboration among nodes with varying capacities and improve scalability. The third part
describes ways of deriving contextual information from data, enhancing the quality of learning.

when devices exhibit uneven compute speeds or network conditions. Straggler nodes may delay

global updates, and naive synchronous approaches can stall progress if even one device lags

significantly. The key research question is: How can the training process be accelerated in the

presence of heterogeneous device resources while maintaining convergence quality?

Limited Contextual Cues for Finding Correlations Across Nodes. Contextual infor-

mation, such as demographic information, environmental conditions, or device usage patterns,

can improve model performance and robustness as it provides additional information about

underlying data patterns and correlations among domains [243]. For instance, in healthcare

applications, knowledge of patient demographics and regional environmental factors can assist

personalized diagnoses; usage patterns in distributed sensor networks offer insights into resource

scheduling. Yet, in many distributed systems, such contextual cues are often sparse or incon-

sistently shared [235], limiting opportunities for effective knowledge transfer among disparate

nodes. The key research question is: How can contextual information be obtained to enhance

the quality of learning in distributed environments?

1.3 Dissertation Outline

We address the effectiveness in three aspects: robustness, scalability, and quality. This

dissertation presents methods to address the core challenges of machine learning in heterogeneous
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distributed environments. We propose five components, categorized into three parts, as depicted

in Figure 1.3.

• Part I (Chapters 2–3): Focuses on statistical heterogeneity across devices and domains,

involving learning paradigms of federated learning, pre-training, and fine-tuning. The proposed

methods describe how to leverage expressive natural language class names [236] (Chapter 2)

and other contextual cues such as temporal factors [233] (Chapter 3) to align and adapt models

under varying data distributions in different stages, promoting model robustness.

• Part II (Chapters 4–5): Addresses system heterogeneity, including diverse device capacities

and network constraints. We introduce a method [231] for representing different model

architectures via graph modeling and enable collaboration among devices of varying capacities

inclusively (Chapter 4). We further develop an asynchronous update scheme [232] to accelerate

training (Chapter 5). These solutions extend the insights from Part I, enhancing scalability and

efficiency in large-scale deployments.

• Part III (Chapter 6): Explores contextual inference as an auxiliary approach to link het-

erogeneous domains across distributed nodes. The techniques in Part I and Part II leverage

various forms of contextual information (e.g., domain semantics, temporal factors); however,

such information may be sparse or implicit in practice. Therefore, in this part, we present

a contextual inference method [234] to uncover contextual information from data. The in-

ferred contextual information can then be integrated into the previous components to ensure

high-quality performance.

1.4 Contributions and Key Outcomes

We summarize below the contributions and key findings of each component of this

dissertation:

• FEDALIGN (Chapter 2) presents an approach for handling non-identical client class sets in fed-

erated learning, where different clients may hold different or even non-overlapping classes. To
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address this data heterogeneity, FEDALIGN aligns the latent spaces across clients by modeling

the natural language class names and knowledge distillation. We evaluate FEDALIGN on real-

world datasets of different applications (e.g., behavioral context recognition, text classification,

medical code prediction), including both single-label and multi-label classification problems.

FEDALIGN demonstrates state-of-the-art performance compared to various federated classifi-

cation methods. On average, it improves accuracy by 6.14% over the best-performing baseline

across all datasets.

• REACT (Chapter 3) proposes a model adaptation method that addresses the distribution

shift problem from both pretraining and fine-tuning steps. REACT decomposes model

weights into meta and adaptive components and updates the two components through meta-

learning. By integrating a hypernetwork to generate adaptive weights based on data and

contextual information, REACT enables knowledge sharing and adjusts model weights for

new distributions with few fine-tuning efforts (i.e., a few gradient updates on a small set of new

samples). We evaluate the effectiveness of REACT on two applications, network intrusion

detection and malware detection, with scenarios where distribution shifts occur over time or

across domains. REACT demonstrating substantial performance gains, with up to a 14.85%

improvement in the area under the receiver operating characteristic curve (AUROC), compared

to existing solutions.

• RECIPFL (Chapter 4) is the first work to investigate federated learning in resource-skewed

environments, where a small number of powerful devices train large models while many

resource-constrained devices train small models. Prior methods often fail to guarantee mutual

benefits for all device types. RECIPFL employs a graph hypernetwork at the server, trains it

to generate personalized model parameters for client models with different neural network

architectures, and effectively transfers knowledge across these models. Our method supports

arbitrary model scaling strategies, making it practical for real-world deployment. Our eval-

uations show RECIPFL improves accuracy by 4.5% for strong devices and 7.4% for weak

devices, demonstrating that all types of devices can contribute and benefit from collaborative
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training.

• ORTHOFL (Chapter 5) is an asynchronous update approach for accelerating federated learning

under heterogeneous device capacities and network conditions. ORTHOFL maintains separate

weights for global and local models to account for inconsistent global and local objectives in

heterogeneous data environments. It introduces an orthogonal weight calibration mechanism,

which projects global weight shifts onto subspaces orthogonal to the client’s local updates,

thereby mitigating interference and preserving meaningful contributions from asynchronous

local and global progress. Based on our evaluation, ORTHOFL presents an average of 9.6%

accuracy improvement over synchronous methods and a 12× speedup, and consistently out-

performs existing asynchronous baselines under diverse delay patterns and heterogeneity

scenarios.

• STCOLAB (Chapter 6) presents a collaborative distillation method for contextual inference

under the constraint of minimal supervision, where only a few labeled samples per class are

available. STCOLAB separates individual modules for different modalities (e.g., spatial and

temporal). It sequentially trains two modules in multiple iterations and distills knowledge

between them. In this way, it mutually calibrates these modules and combines complementary

insights from each modality. Experiments on two real-world mobility datasets demonstrate

that, with a small number of labeled samples per class (e.g., 10), STCOLAB accurately infers

important demographic attributes, yielding a 4.74% increase in micro-F1 over the existing

semi-supervised baseline.

Collectively, these contributions promote the deployment of machine learning in practical

distributed environments. The methodologies presented in this dissertation apply to diverse tasks,

including image and text classification, activity recognition, anomaly detection, and medical

care. By addressing both statistical and system heterogeneity, the proposed methods advance the

effectiveness of machine learning solutions in modern digital systems.
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Part I

Addressing Statistical Heterogeneity
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Chapter 2

Navigating Feature Alignment in Dis-
tributed Machine Learning

In this chapter, we address the challenge of statistical heterogeneity in distributed machine

learning environments. We introduce an approach that leverages language semantics to align fea-

ture spaces across distributed nodes, mitigating inconsistencies that arise from non-independent

and identically distributed (non-IID) data. While this heterogeneity problem is pervasive across

many learning paradigms, we begin by focusing on federated learning as a practical case study.

Traditional federated classification methods, even those designed for non-IID clients,

assume that each client annotates its local data with respect to the same universal class set. In

this work, we focus on a more general yet practical setting, non-identical client class sets, where

clients focus on their own (different or even non-overlapping) class sets and seek a global model

that works for the union of these classes. If one views classification as finding the best match

between representations produced by data/label encoder, such heterogeneity in client class sets

poses a new significant challenge—local encoders at different clients may operate in different

and even independent latent spaces, making it hard to aggregate at the server. We propose a

novel method, FEDALIGN, to align the latent spaces across clients from both label and data

perspectives. From a label perspective, we leverage the expressive natural language class names

as a common ground for label encoders to anchor class representations and guide the data encoder

learning across clients. From a data perspective, during local training, we regard the global class
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Figure 2.1. Illustrations of our problem setting and unique challenge of misaligned latent
spaces across clients, using a behavioral context recognition system where users have different
preferences in reporting (i.e., annotating) labels.

representations as anchors and leverage the data points that are close/far enough to the anchors

of locally-unaware classes to align the data encoders across clients. Our theoretical analysis

of the generalization performance and extensive experiments on four real-world datasets of

different tasks confirm that FEDALIGN outperforms various state-of-the-art (non-IID) federated

classification methods.

2.1 Introduction

Federated learning [138] allows multiple parties to collaboratively learn a global model

effective for all participants while preserving the privacy of their local data. It brings benefits

to various domains, such as recommendation systems [119, 128, 219], ubiquitous sensing [105,

189, 103] and mobile computing [216, 102, 108].

Existing federated classification methods [111, 109, 80, 198, 120, 199, 251, 132] typically

assume that the local annotations at each client follow the same set of classes; however, this

assumption does not hold true in many real-world applications. For example, a smartwatch

company wants to build a human activity classifier for all activity types, as shown in Figure 2.1a.

Although their smartwatch users as clients could experience almost all types of daily activities,
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Figure 2.2. Overview of FEDALIGN. The label names are leveraged as a common ground for
label encoders to anchor class representations. During local training, the two encoders perform
alternating training to mutually regulate the latent spaces. The global class representations are
regarded as class anchors. Pseudo-labels are assigned to partially-unlabeled local samples for
unaware classes based on their distances to the anchors. An additional cross-entropy loss for
unaware classes is added to the local learning objective to reduce the divergence between global
and local distributions.

each user may only opt to report (i.e., annotate) a subset of activities. Another example is a

federated medical diagnosis system, which attempts to infer all types of diseases of a patient for

comprehensive health screening. Physicians and specialist groups with different expertise can

participate in this federated learning system as clients. As one can see here, different specialists

will only offer disease annotations within their domains, even if a patient may have several types

of diseases at the same time. This makes the class sets at many clients non-identical and even

non-overlapping.

We aim to lift this assumption and work on a general and rather practical federated

learning setting, non-identical client class sets, where clients focus on their own (different

or even non-overlapping) class sets and seek a global classification model that works for the

union of these classes. We denote the classes that are not covered in the local annotations

as locally-unaware classes. Note that each client can have local data whose true labels are

among the locally-unaware classes. Also, the classification task here can be either single-label

or multi-label. When it is multi-label, the local data might be only partially labeled due to the
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locally-unaware classes. Therefore, this new setting is more general and challenging than the

missing class scenario [113] which assumes the single-label scenario and no local data is from

locally-unaware classes.

The non-identical client class sets pose a significant challenge of huge variance in

local training across different clients. As shown in Figure 2.1b, one can view classification

as a matching process between data representations and label representations in a latent space.

Because of the non-identical client class sets, locally trained classifiers are more likely to operate

in drastically different latent spaces. Moreover, when the class sets are non-overlapping, it is

possible that the latent spaces at different clients are completely independent. This would result

in inaccurate classification boundaries after aggregation at the server, making our setting more

challenging than non-IID clients with identical client class sets.

We propose a novel federated learning method FEDALIGN, as shown in Figure 2.2, to

align the latent spaces across clients from both label and data perspectives as follows:

(1) Anchor the label representations using label names. We observe that the natural-language class

names (i.e., label names) often carry valuable information for understanding label semantics,

and more importantly, they are typically safe to share with all parties. Therefore, we break

the classification model into a data encoder and a label encoder as shown in Figure 2.2,

and then leverage the label names as the common ground for label encoders. The server

initializes the label encoder with pretrained text representations, such as word embedding.

The label encoder will be then distributed to different clients and updated alternatingly with

data encoders during local training and global aggregation, mutually regulating the latent

space.

(2) Connect the data representations via anchors of locally-unaware classes. During local

training, we regard the global class representations as anchors and utilize data points that

are close/far enough to the anchors of locally-unaware classes to align the data encoders.

Specifically, as shown in Figure 2.2, at each client, we annotate local data based on their

distances to the anchors and add another cross-entropy loss between the pseudo-labels and
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the model predictions. Such regularization encourages the data encoders to reside in the same

latent space.

Our theoretical analysis shows that FEDALIGN can achieve a better generalization bound

than traditional federated learning methods, suggesting a strong potential for performance

improvement. Experiments on four real-world datasets, including the most challenging scenario

of multi-label classification and non-overlapping client class sets, confirm that FEDALIGN

outperforms various state-of-the-art (non-IID) federated classification methods. Our contributions

are summarized as follows:

• We propose a more general yet practical federated classification setting, namely non-identical

client class sets. We identify the new challenge caused by the heterogeneity in client class sets

— local models at different clients may operate in different and even independent latent spaces.

• We propose a novel method FEDALIGN to align the latent spaces across clients for both label

and data.

• Our generalization bound analysis and extensive experiments on four real-world datasets of

different tasks confirm the superiority of FEDALIGN over various state-of-the-art (non-IID)

federated classification methods both theoretically and empirically.

2.2 Preliminaries

Problem Formulation. We aim to generate a global classification model using federated

learning with non-identical class sets, where each client only identifies part of the classes from

its dataset. Denote the universal set of classes as C, the set of classes that are identified on client

m is Cm, and the set of locally-unaware classes is Cm, where Cm∪Cm = C. The goal is to learn

a global model g : X →{0,1}|C| that given x ∈X , all positive labels from C can be inferred.

The training set on client m is denoted as Dm = {(xi,yi)}N
i=1, where xi is the input data

and yi = [yi,c]c∈C is a vector showing the labels of each class. If c ∈ Cm, yi,c ∈ {0,1}. If c ∈ Cm,

yi,c is unknown. It is possible that some data samples xi ∈ Dm do not belong to any of the classes
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in Cm, i.e., ∀c ∈ Cm : yi,c = 0.

Backbone Classification Model. Let Z ⊂Rd be the latent feature space and Y be

the output spaces. Generally, the classification model g can be decomposed into a data encoder

f : X →Z parameterized by θ and a linear layer (i.e., classifier) h : Z → Y parameterized by

ζ . The data encoder f generates representations for input data. Then, the classifier h transforms

the representations into prediction logits. Given an input xi, the predicted probability given by g

is g(xi;θ ,ζ ) = σ(h( f (xi;θ);ζ )), where σ is the activation function. We discuss two types of

classification tasks as follows.

Single-Label Multi-Class Classification. In this setting, each sample is associated with

only one positive class. In other words, the classes are mutually exclusive. We use softmax

activation to get the predicted probability. The class with the maximum probability is predicted

as the positive class. Let g(xi;θ ,ζ )c denote the predicted probability of xi belonging to class c.

During training, the cross-entropy loss is used as the loss function:

ℓ(g(xi;θ ,ζ ),yi) =−∑c∈Cm
yi,c logg(xi;θ ,ζ )c. (2.1)

Multi-Label Classification. In this setting, each sample may be associated with a set

of positive classes. For example, a person may have both diabetes and hypertension. The

sigmoid activation is applied to get the predicted probability. Each element in the predicted

probability represents the probability that the input data xi is associated with a specific class. The

final predictions are achieved by thresholding the probabilities at 0.5. If g(xi;θ ,ζ )c > 0.5, xi is

predicted to be associated with class c. During training, the binary cross-entropy loss is used as

the loss function:

ℓ(g(xi;θ ,ζ ),yi) =−∑c∈Cm[yi,c logg(xi;θ ,ζ )c

+(1− yi,c) log(1−g(xi;θ ,ζ )c)].

(2.2)

Federated Learning. Consider a federated learning system with M clients. The server
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coordinates M clients to update the model in T communication rounds. The learning objective is

to minimize the loss on every client, i.e., minθ ,ζ
1
M ∑m∈[M]Lm(θ ,ζ ). At each round, the server

sends the model parameters to a subset of clients and lets them optimize the model by minimizing

the loss over their local datasets. The loss at client m is:

Lm(θ ,ζ ) = E(xi,yi)∼Dmℓ(g(xi;θ ,ζ ),yi). (2.3)

At the end of each round, the server aggregates the model parameters received from

clients, usually by taking the average.

2.3 Methodology

Algorithm 1: Pseudo-code of FEDALIGN

Input :Communication rounds T , number of selected clients per round |St |, local
training epochs E.

Output :The final global model g(x;θ T ,ωT ).
1 Server executes:
2 Collect label names from clients and pretrain text representations to initialize label

encoder ω0;
3 Randomly initialize data encoder θ 0;
4 for t = 0,1, . . . ,T −1 do
5 Select a subset St of clients at random;
6 for m ∈ St do
7 θ

(t+1)
m ,ω

(t+1)
m ← ClientUpdate(m,θ (t),ω(t));

8 θ (t+1)← ∑m∈St θ
(t+1)
m

|St | ; ω
(t+1)
c ← ∑m∈St ,c∈Cm ω

(t+1)
m,c

|{m|m∈St ,c∈Cm}| ;

9 return θ T ,ωT ;
10 ClientUpdate(m,θ (t),ω(t)):

11 θ
(t)
m ,ω

(t)
m ← θ (t),ω(t);

12 for e = 1,2, . . . ,E do
13 Calculate distances of data points and class anchors and form dataset D′(t)m ;

14 Alternatingly update θ
(t+1)
m and ω

(t+1)
m ;

15 return θ
(t+1)
m , and ω

(t+1)
m to server ;
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2.3.1 Overview

The pseudo-code of FEDALIGN can be found in Algorithm 1. Learning with FEDALIGN

consists of the following steps:

1. Label name sharing and label encoder initialization: Before training, the server collects

the natural language label names from the clients. The server initializes the label encoder’s

parameters ω0 via pretrained text representations, such as word embedding.

2. Client selection and model communication: At t-th round, the server randomly selects a

subset of clients St and sends the global model parameters to them.

3. Local training: Client m ∈ St independently trains its local model and returns the model

parameters.

4. Model aggregation: The server aggregates the parameters of client models into global

parameters.

Pretraining text representations and label encoder initialization in (1) are conducted only once at

the beginning. Steps (2)-(4) repeat for T rounds until the global model converges. During local

training in (3), each client m ∈ St conducts the following steps:

(a) Select samples for unaware classes via class anchors: Client m forms a dataset D′(t)m

for locally-unaware classes Cm by using the latest class representations as anchors and

computing the distances to the data representations.

(b) Alternating training of two encoders: Client m freezes the label encoder and updates the

data encoder. Then, it freezes the data encoder and updates the label encoder.

(c) Model communication after local updates: Client m sends the updated model parameters

to the server.
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2.3.2 Label Name-Anchored Matching

The vanilla model described in Section 2.2 learns feature spaces merely based on local

training data with numerical label IDs. However, with non-identical client class sets, local

models at different clients are likely to form different and even independent feature spaces,

making the classification boundaries aggregated at the server inaccurate. To better align the

feature spaces, we leverage the semantics of label names as a common reference to anchor class

representations. The natural language label names carry valuable information for understanding

label correlations. For example, in behavioral context recognition, the activity of “lying down” is

likely to indicate the person is “sleeping”, and the possible location of the activity is “at home”.

Such knowledge about label correlations not only exists in the datasets to investigate, but can

also be mined through analyzing the semantics of label names.

Incorporating Label Encoder to Classification Model. We replace the classifier in

a conventional classification model with a label encoder as shown in Figure 2.2. Let W be

the set of natural language label names with respect to C, and Z be the latent feature space.

The new classification model g = f ◦ γ consists of two branches: a data encoder f : X →Z

parameterized by θ and a label encoder γ : W →Z parameterized by ω . The ◦ is the operation to

get dot product. The label encoder γ(wc;ω) (parameterized by ω) takes the label names wc ∈W

as inputs and maps them into representations. Prior knowledge about label semantics can be

inserted into the label encoder by initializing it with pretrained label embeddings. Below, we

introduce our implementation of pretraining by modeling label co-occurrence. We expect more

advanced techniques like pretrained neural language models could further enrich the semantic

label embedding, but we leave it as future work.

Semantic Label Embedding Pretraining. Inspired by existing works that learn semantic

word embeddings based on word-word co-occurrence [20] and point-wise mutual information

(PMI) [153, 101], we use an external text corpus related to the domain of the classification task

to extract knowledge of label co-occurrence and pretrain label embeddings for initializing the
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label encoder. Before collaborative training, each client shares the natural language names of

its classes with the server. The server then searches for these label names in a large text corpus

related to the domain of the classification task. It counts the occurrences of each label name

wi in the text segments (e.g., sentences or paragraphs). We notice that the label names can be

phrases that contain multiple words, and the order of the words may change in different text

segments while representing the same meaning. For example, “colon cancer” and “cancer of

the colon” refer to the same concept. To handle such variations, we organize the label names

into sets of words and use a sliding window of length Lw to scan the text segments. If the set

of words in the label name is covered by the words within the sliding window, we consider the

label name appears in the text segment. The length of the sliding window Lw varies per label

name being searched. The co-occurrence of a pair of label names wi and w j is then calculated

using the point-wise mutual information (PMI):

PMI(wi,w j) = log
p(wi,w j)

p(wi)p(w j)
,

where p(wi) and p(w j) are the individual distributions and p(wi,w j) is the the joint distribution.

The higher the PMI(wi,w j), the stronger the association between the two label names wi and w j.

The server then learns semantic label embeddings based on the PMIs. The goal of

label embedding learning is to learn a mapping function from label names to representations

γ : W →Z , which enforces labels with related semantic meanings to have similar representations.

To achieve this, the server builds a label co-occurrence graph G = ⟨V,E⟩, where the nodes V

represent the label names and the edges E represent the co-occurrence relationship between

the nodes. The PMI values are zero-centered by subtracting the mean and are used as the edge

weights between label names. Edges with negative weights are removed from the graph. For

every source node w ∈ V, we define Ns(w)⊂ V as its network neighborhood generated through

simulating fixed-length random walks starting from w. The transition probability for random

walk simulation is calculated by normalizing the edge weight. The objective function of label
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embedding learning is defined as:

max
γ

∑
w∈V

(− logZw + ∑
u∈Ns(w)

γ(u) · γ(w)),

where Zw = ∑v∈V exp(γ(v) · γ(w)) and is approximated using negative sampling [140]. The

mapping function γ is achieved by a single hidden layer feedforward neural network and the

objective is optimized using stochastic gradient descent.

Representation Matching. Given an input xi, the model uses the data encoder to generate

its representation f (xi;θ). Then, it takes the dot product of the data representation and every

class representation. This way, it calculates the similarity between the input data and classes. An

activation function σ is applied to the dot product to get the predicted probabilities of xi:

g(xi;θ ,ω) = σ([ f (xi;θ)◦ γ(wc;ω)]wc∈W ). (2.4)

The choice of activation function is the same as defined in Section 2.2.

Alternating Encoder Training. With the new model design, we rewrite the learning

objective in Equation 2.3 as:

Lm(θ ,ω) = E(xi,yi)∼Dmℓ[σ([ f (xi;θ)◦ γ(wc;ω)]wc∈W ),yi]. (2.5)

The two encoders are two branches in the model. We want the representations obtained by

one encoder to regulate the training of the other while preventing mutual interference. Therefore,

at each local update step, we first fix the parameters in the label encoder and update the data

encoder. Then, we fix the data encoder and update the label encoder. Let θ
(t)
m, j and ω

(t)
m, j be the

parameters of the local data encoder and label encoder at j-th update step in t-th round and η be
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the learning rate. The parameters are updated as:

θ
(t)
m, j+1← θ

(t)
m, j−η∇

θ
(t)
m, j

Lm(θ
(t)
m, j,ω

(t)
m, j), (2.6)

ω
(t)
m, j+1← ω

(t)
m, j−η∇

ω
(t)
m, j

Lm(θ
(t)
m, j+1,ω

(t)
m, j). (2.7)

2.3.3 Anchor-Guided Alignment for Locally-Unaware Classes

Due to the lack of label information of certain classes to support supervision, the training

at each client is biased toward the identified classes [132, 240]. To mitigate such drift, we

further exploit the global class representations to assist the alignment for locally-unaware classes.

Since we formulate the classification problem as a matching between representations of classes

and local data at each client, the class representations produced by the global label encoder

can reflect the global distribution. Therefore, we regard the global class representations as

anchors and use them to identify features for unaware classes at each client. Specifically, at

the beginning of each round of local training, the client measures the distances between class

anchors and local data representations. The nearest and farthest samples from the anchors are

annotated. An additional loss term is added to the local optimization objective to reduce the

distribution mismatch. Compared with common practices of pseudo-labeling [137, 98] which

assign labels based on model predictions, the annotations assigned by our anchor-guided method

are independent of the biased classifier and are thus more reliable.

Deriving Class Anchors. When the client receives the parameters of the label en-

coder ω(t) at t-th round, it uses the latest label encoder to derive the global class anchors:

{γ(wc;ω(t))|wc ∈W }.

Selecting Samples for Locally-Unaware Classes. Client m uses the received data

encoder to generate representations of its local data: { f (xi;θ (t))|xi ∈Xm}. Then, the client
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calculates the cosine distance from every class anchor to the local data in latent space:

d(t)
i,c = 1− γ(wc;ω(t))◦ f (xi;θ (t))

∥γ(wc;ω(t))∥2 · ∥ f (xi;θ (t))∥2
. (2.8)

Then, the client annotates samples for the locally-unaware classes Cm based on the

distances. Samples with the closest distances to the class anchor γ(wc;ω(t)) are annotated as

positive samples of class c. Similarly, samples that are farthest from γ(wc;ω(t)) are annotated

as negative samples of c. The number of samples to be annotated depends on the percentile

of distances. We define two thresholds, τ̂
(t)
c and τ̌

(t)
c , as the q1-th and q2-th percentile of the

distances over all samples for annotating positive and negative samples respectively. The client

annotates the samples whose distances are less than τ̂
(t)
c as positive samples (i.e., ỹ(t)i,c = 1) and

those with distances greater than τ̌
(t)
c as negative samples (i.e., ỹ(t)i,c = 0). Figure 2.3a shows an

example of selecting positive samples for two classes. The dataset for alignment after the t-th

round is as follows:

D′(t)m ←{(xi, ỹ
(t)
i )|d(t)

i,c < τ̂
(t)
c or d(t)

i,c > τ̌
(t)
c ,c ∈ Cm}. (2.9)
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For single-label classification, we add another constraint that a sample whose true label

is not in Cm is annotated as a positive sample of class c ∈ Cm only if c is the closest to it among

all classes.

Alignment. The annotations for unaware classes are then used to guide the alignment at

client m. We add an additional loss term to the local learning objective. The loss over D′(t)m is as

follows:

L ′(t)
m (θ ,ω) = E

(xi,ỹi)∼D′(t)m
ℓ′[σ([ f (xi;θ)◦ γ(wc;ω)]wc∈W , ỹi], (2.10)

where ℓ′ represents the loss function with the same choice as defined in Equation 2.1 and 2.2.

A slight difference is that ℓ′ here is summed over Cm. Finally, the local learning objective is

to jointly minimize Equation 2.5 and 2.10, i.e., minθ ,ω [Lm(θ ,ω)+L ′(t)
m (θ ,ω)]. Figure 2.3b

illustrates the effect of these two losses.

2.4 Analysis

In this section, we perform an analysis of the generalization performance of the aggregated

model in federated learning.

Denote D as the global distribution on input space X , and D̃ as the induced global dis-

tribution over feature space Z . Similarly, for the m-th client, denote Dm as the local distribution

and D̃m be the induced image of Dm over Z . We review a typical theoretical upper bound for

the generalization of global hypothesis [152, 251, 120]:

Theorem 2.4.1 (Generalization Bound of Federated Learning). Assume there are M clients in

a federated learning system. Let H be the hypothesis class with VC-dimension d. The global

hypothesis is the aggregation of hm, i.e., h = 1
M ∑m∈[M] hm. Let L (h) denote the expected risk of

h. With probability at least 1−δ , for ∀h ∈H:

L (h)≤ 1
M ∑m∈[M]

L̂m(hm)+
1
M ∑m∈[M]

[dH∆H(D̃m,D̃)+λm]

+

√
4
N
(d log

2eN
d

+ log
4M
δ

),

(2.11)
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where L̂m(hm) is the empirical risk on the m-th client given N observed samples, dH∆H(·, ·) is

the A -distance that measures the divergence between two distributions based on the symmetric

difference with respect to H, λm is the risk of the optimal hypothesis over H with respect to D

and Dm, e is the base of the natural logarithm.

Theorem 2.4.1 applies to the traditional algorithm FedAvg [138], we observe two factors

that affect the quality of the global hypothesis: the divergence between the local and global

distributions dH∆H(D̃m,D̃) and the sample size N. Then, we discuss the generalization bound

when FEDALIGN introduces empirical distributions for locally-unaware classes to align latent

spaces.

Corollary 2.4.1.1 (Generalization Bound of Federated Learning with Mix-up Distributions). Let

D ′m denote the distribution added for aligning the m-th client. Define the mix-up distribution D∗m

to be a mixture of the original local distribution Dm and D ′m:

D∗m = αDm +(1−α)D ′m, (2.12)

where α ∈ [0,1] is the weight of the original distribution, which is decided by the number of

empirical samples added. Let H be the hypothesis class with VC-dimension d. The global

hypothesis is the aggregation of hm, i.e., h = 1
M ∑m∈[M] hm. With probability at least 1−δ , for

∀h ∈H:

L (h)≤ 1
M ∑m∈[M]

L̂m(hm)

+
1
M ∑m∈[M]

[αdH∆H(D̃m,D̃)+(1−α)dH∆H(D̃
′
m,D̃)+λm]

+

√
4

N∗
(d log

2eN∗

d
+ log

4M
δ

),

(2.13)

where L̂m(hm) is the empirical risk on the m-th client given N∗ (N∗ > N) observed samples, e is

the base of the natural logarithm.
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Table 2.1. Dataset statistics. The imbalance factor refers to the ratio of the smallest class size to
the largest class size.

Dataset |C| # of clients Avg. Nm Avg. |Cm| Imbalance Remarks

ES-5

51

5 5,446 10.2

0.0013
Multi-label,
non-overlapping
client class sets

ES-15 15 1,769 3.4

ES-25 25 1,073 2.04

MIMIC-III-10 50 10 807 5 0.1157

PAMAP2-9 18 9 1,287 5 0.2049
Single-label

R8-8 8 8 617 3 0.0130

By combining the local dataset with pseudo-annotated samples, FEDALIGN increases the

sample size i.e., N∗ > N, thus the last term of the bound becomes smaller. Second, given that

the selected samples are in proximity to the anchors which are derived by the ensemble of the

empirical distributions across all clients, the distribution derived via class anchors would exhibit

lower divergence from the global distribution compared to the original local distribution i.e.,

dH∆H(D̃
′
m,D̃)< dH∆H(D̃m,D̃). The proof and more details are given in Appendix. Therefore,

FEDALIGN can achieve a better generalization bound than traditional methods [138], suggesting

a strong potential for performance improvement.

2.5 Experiments

2.5.1 Datasets

We conduct experiments on 6 datasets covering 4 different application scenarios and both

single-label and multi-label classification problems. Table 2.1 offers an overview and the details

are as follows.

1. Behavioral Context Recognition. The task is to infer the context of human activity. Ex-

traSensory [190] is a benchmark dataset for this task. The classes can be partitioned into 5

categories (e.g. location, activity, etc.). Based on ExtraSensory, we construct 3 datasets with

non-overlapping client class sets. ES-5: We set 5 clients and every client only has annotations
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from a different category (i.e., one category to one client). Training samples are then assigned

to clients according to their associated classes. Since ExtraSensory is a multi-label dataset,

we assign samples based on the most infrequent class among multiple labels to ensure each

locally-identified class will have at least one positive sample. To make this dataset more

realistic, we always assign all data of a subject to the same client. ES-15 and ES-25: We

increase the number of clients to 15 and 25 to further challenge the compared methods. We

start with the 5 class groups as ES-5 and iteratively split the groups until the number of class

groups matches the number of clients. During every split, we select the group with the most

classes and randomly divide it into two sub-groups. Every class group is visible and only

visible to one client. One can then apply a similar process as ES-5 to assign training samples

to clients.

2. Medical Code Prediction. Medical codes describe whether a patient has a specific medical

condition or is at risk of development. The task is to annotate medical codes from clinical

notes. We start with the MIMIC-III database [75] and follow the preprocessing method in

[144] to form the benchmark MIMIC-III 50-label dataset. The classes span 10 categories in

the ICD-9 taxonomy1. We construct MIMIC-III-10 by partitioning the dataset into 10 clients

following the same strategy as in ES-5.

3. Human Activity Recognition. The task aims at identifying the movement or action of a

person based on sensor data. We start with the PAMAP2 [161] dataset, which collects data of

physical activities from 9 subjects. We construct the PAMAP2-9 dataset by regarding each

subject as a client. For each client, we randomly select 5 classes to be its locally-identified

classes.

4. Text Classification. We use the Reuters-21578 R8 dataset [21], which consists of news

articles classified into 8 categories. We construct R8-8 by randomly partitioning the data

into 8 subsets and assigning one subset to each client. For each client, we randomly select 3

1the International Statistical Classification of Diseases and Related Health Problems (ICD): ftp://ftp.cdc.gov/
pub/Health Statistics/NCHS/Publications/ICD-9/ucod.txt
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classes to be the identified classes.

2.5.2 Text Corpus for Semantic Label Embedding Pretraining

Domain-specific raw corpora are often readily available. For example, novel books that

depict daily scenes can be used for understanding human activities. Academic journals are

good study resources for understanding concepts in different professional domains. We use the

following corpora for applications in our experiments:

• BookCorpus [250] is a large collection of free novel books collected from the internet. It is

a popular text corpus in the field of natural language processing and has contributed to the

training of many influential language models such as BERT [32] and GPT [19].

• PubMed Open-Access (OA) subset [148] is a text archive of journal articles and preprints in

biomedical and life sciences. It has been widely used for biomedical text mining [99].

• CommonCrawl (CC) News dataset [57] is an English-language news corpus collecting news

articles published between 2017 to 2019 from news sites worldwide.

We use PubMed-OA as the text corpus for medical code prediction, BookCorpus for behavioral

context recognition and human activity recognition, and CC News for text classification. We

consider a sentence as a text segment in BookCorpus, an article as a text segment in CC News,

and a paragraph as a text segment in PubMed-OA.

2.5.3 Compared Methods

We compare FEDALIGN with classical [138] and state-of-the-art federated learning

methods for non-IID data [111, 109, 80] as follows.

• FedAvg [138] is a classical federated learning algorithm where the server averages the updated

local model parameters in each round to obtain the global model.

• FedProx [111] enforces a L2 regularization term in local optimization which limits the distance

between global and local models.
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• MOON [109] adds a contrastive loss term to maximize the consistency of representations

learned by the global and local models and minimize the consistency between representations

learned by the local models of consecutive rounds.

• Scaffold [80] maintains control variates to estimate the update directions of global and local

models. The drift in local training is approximated by the difference between the update

directions. This difference is then added to the local updates to mitigate drift.

We also compare two state-of-the-art methods designed for federated classification with

missing classes. Specifically,

• FedRS [113] is designed for the missing class scenario where each client owns data for part of

the classes (i.e., locally-identified classes in our terminology). It restricts the weight update of

missing classes by adding scaling factors to the softmax operation.

• FedPU [121] addresses scenarios where clients annotate only a small portion of their data, and

unlabeled data exists for both locally identified and unaware classes. It leverages the labeled

data at every client to estimate the misclassification loss of unaware classes from other clients

and incorporates this estimated loss into local optimization objectives.

2.5.4 Experimental Setup

Base Neural Network Model. For a fair comparison, we use the same model setting

for all compared methods. The data encoder is based on the Transformer architecture [192]

with one encoder layer. There are 4 attention heads, and the dimension of the feed-forward

network is 64. The label encoder is a single hidden layer neural network. The dimension d of

representations is 256. Since the size of the label encoder is equivalent to the classifier layer in

the conventional classification model, there is no extra overhead during model communication in

FEDALIGN. Additionally, when considering future work involving the use of advanced neural

language models as the label encoder, we can train only the adapter module [63], i.e., adding a

small number of new parameters to the pretrained language model. The adapters are transferred
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Table 2.2. Main experimental results (% averaged over 5 runs). ES-5, ES-15, ES-25 and MIMIC-
III-10 are multi-label datasets where class sets across clients have no overlap. PAMAP2-9 and
R8-8 are single-label datasets where client class sets overlap.

Method
ES-5 ES-15 ES-25 MIMIC-III-10 PAMAP2-9 R8-8

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

FedAvg [138] 28.77 80.79 22.71 62.44 19.52 50.42 35.04 67.07 68.89 71.45 78.51 92.76
FedProx (µ = 0.001) [111] 29.26 80.67 22.42 61.91 19.48 51.16 30.57 61.76 69.70 73.63 79.05 92.61
FedProx (µ = 0.0001) [111] 28.53 79.14 22.52 61.95 19.05 52.33 33.73 64.31 69.38 71.78 75.98 91.78
MOON (µ = 0.001) [109] 29.12 81.00 22.84 62.53 19.52 50.24 34.62 66.34 71.70 74.25 79.26 93.07
Scaffold [80] 28.14 77.13 23.15 61.69 19.73 48.81 33.58 62.84 73.57 75.60 82.83 94.43

FedPU [121] 27.95 79.82 22.27 59.22 16.97 34.59 33.23 62.83 85.50 87.66 83.06 94.17
FedRS (α = 0.5) [113] 28.01 78.72 22.50 62.09 19.44 51.41 34.82 66.80 68.70 71.42 80.10 92.74
FedRS (α = 0.9) [113] 28.25 79.25 22.55 62.17 19.40 50.87 35.44 67.45 71.81 74.44 76.68 91.81

FEDALIGN 30.19 84.05 23.36 73.61 20.80 67.12 37.97 74.37 87.21 88.14 83.76 94.92

and aggregated, while the other layers remain fixed at all parties.

Evaluation Metrics. Due to label imbalance, we adopt both accuracy and F1-score to

evaluate the performance. They are often used as benchmark metrics for the datasets and tasks

in our experiments [190, 46, 161, 155]. We calculate the metrics for each class and report the

macro-average. All experiments are repeated 5 times with a fixed set of random seeds for all

compared methods.

Train/Test Split. We set aside a portion of the dataset for testing the global model. For

MIMIC-III and R8, we use the data split provided by the dataset. For the other datasets, we use

20% of the data for testing and distribute the rest of the data to clients for training.

Federated Learning Setting. For ES-5, ES-15, ES-25, PAMAP2-9 and R8-8, we run

T = 50 rounds. For MIMIC-III-10, we run T = 100 rounds as it takes longer to converge. The

number of selected clients per round is |St |= 5 and the local epochs E = 5. Note that we conduct

sensitivity analysis in Section 2.5.7 and show the conclusion of the results is robust to the value

of |St | and E.

Hyperparameters. For the compared methods, we try different values for the hyper-

parameters µ in FedProx and MOON, and α in FedRS, that are often adopted in previous

work [111, 109, 113]. The values are displayed alongside the method name in Table 2.2.
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Figure 2.4. Performance w.r.t. communication rounds on six datasets. The results are averaged
over 5 runs.

2.5.5 Main Results and Analysis

Multi-Label, Non-overlapping Client Class Sets. Table 2.2 shows the results. As

one can clearly see, FEDALIGN always yields better performance than the baseline methods.

Remarkably, with non-identical client class sets, the three state-of-the-art algorithms designed to

deal with non-IID data (i.e., FedProx, MOON, and Scaffold) do not guarantee improvement over

FedAvg (e.g., Scaffold loses to FedAvg on ES-5). In addition, although FedRS and FedPU are

designed for missing class scenarios, their mechanisms are specifically tailored for single-label

classification. In the context of multi-label classification, the label of one class does not indicate

the labels of other classes, and the weight update of a class is solely influenced by its own

features. Therefore, the scaling factors in FedRS and the misclassification loss estimation in

FedPU become ineffective.

Single-Label, Non-identical but Overlapping Client Class Sets. FEDALIGN outper-

forms the baselines on both applications. The non-IID problems that FedRS and FedPU aim to

tackle (i.e., missing class scenario, and positive and unlabeled data) are slightly different from

ours. Although they show improvements over FedAvg and methods designed for the typical

non-IID setting (i.e., FedProx, MOON, and Scaffold), FEDALIGN shows better performance

compared with FedRS and FedPU in the problem of non-identical client class sets.

Performance w.r.t. Communication Rounds. Figure 2.4 shows the test performance
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Table 2.3. F1-score (% averaged over 5 runs) of ablation studies.

Method ES-25 MIMIC-III-10 PAMAP2-9 R8-8

FedAvg 19.52 35.04 68.89 78.51
FEDALIGN w/o AL 19.57 37.87 70.87 79.67
FEDALIGN w/o SE 19.62 34.91 83.39 82.37
FEDALIGN w/o AT 20.28 37.09 86.01 83.22
FEDALIGN 20.80 37.97 87.21 83.76

with respect to communication rounds. FEDALIGN shows its advantage from the early stages

of training. This indicates the pretrained text representations provide good initialization for

the label encoder to guide the alignment of latent spaces. We do notice a decrease in the

F1-score of FEDALIGN on ES-25 during initial rounds. This can be attributed to the noise in

pseudo annotations for locally-unaware classes due to the undertrained encoders. However, as

the training progresses, the quality of the pseudo annotations improves, leading to enhanced

performance.

2.5.6 Ablation Studies

We conduct ablation studies to evaluate the contribution of each design in FEDALIGN.

First, we evaluate the performance of the method without alignment for locally-unaware classes

(denoted as FEDALIGN w/o AL). The classification model consists of a data encoder and a

label encoder and the algorithm conducts alternating training of the two modules. Second, we

evaluate the performance of the method without the semantic label name sharing (denoted as

FEDALIGN w/o SE). In this case, the dataset for alignment is formed by annotating the samples

according to prediction confidence given by the latest global model. For locally-unaware classes,

samples with high prediction confidence are pseudo-annotated, and the confidence thresholds are

decided by the same percentile values as in FEDALIGN. Third, we evaluate the performance of

the method without alternating training (denoted as FEDALIGN w/o AT) which updates label

and data encoders simultaneously.

Since the model aggregation method in FEDALIGN is based on FedAvg (i.e., averaging

32



1 3 5

0.15

0.18

0.21

F1

ES-25

1 3 5
0.25

0.3

0.35

0.4
MIMIC-III-10

1 3 5

0.4

0.6

0.8

R8-8
FedAlign FedAvg MOON FedProx Scaffold FedPU FedRS

1 3 5

0.4

0.6

0.8

1
PAMAP2-9

(a) Performance w.r.t. Participating Clients Per Round
//

1 3 5

0.15

0.18

0.21

F1

ES-25

1 3 5
0.25

0.3

0.35

0.4
MIMIC-III-10

1 3 5

0.4

0.6

0.8

R8-8
FedAlign FedAvg MOON FedProx Scaffold FedPU FedRS

1 3 5

0.4

0.6

0.8

1
PAMAP2-9

(b) Performance w.r.t. Local Training Epochs
//

95 97 99
0.16

0.18

0.2

0.22

F1

ES-25

95 97 99
0.25

0.3

0.35

0.4
MIMIC-III-10

95 97 99
0.6

0.7

0.8

0.9

1
R8-8

FedAlign FedAvg

95 97 99
0.6

0.7

0.8

0.9

1
PAMAP2-9

(c) Performance w.r.t. Distance Threshold

Figure 2.5. Sensitivity analyses of FEDALIGN.

the model parameters), we also compare FedAvg as the baseline method. Table 2.3 shows

the F1-scores. We notice the performance decreases when removing any of the designs. This

suggests the designs in FEDALIGN all contribute to improvement, and combining them can

produce the best performance.

2.5.7 Sensitivity Analysis

Participating Clients Per Round. The number of participating clients in each round

(i.e., |St |) has an effect on the speed of convergence [112]. We vary |St | from 1 to 5 and compare

FEDALIGN with all baseline methods. The comparisons in F1-score are shown in Figure 2.5a.

We observe that FEDALIGN can always outperform the baseline methods under different values
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Figure 2.6. Data representations generated by two local models and the global model on the
testing set of PAMAP2-9.

of |St |.

Local Training Epochs. We vary the local training epochs from 1 to 5 and compare the

performance of FEDALIGN with all baseline methods. The comparisons are shown in Figure 2.5b.

We see that FEDALIGN has consistently better performance than the baselines.

Distance Threshold for Selecting Samples for Unaware Classes. In Section 2.3.3, we

set the threshold for assigning labels to samples for locally-unaware classes based on distance

percentiles. To test the robustness of FEDALIGN to this hyperparameter, we vary the threshold

for annotating positive samples by using different percentiles (95 to 99.9). Figure 2.5c shows the

result. We see that FEDALIGN only needs a very small amount of pseudo annotations to have

significant improvements over FedAvg. Notably, samples closer to the class anchors exhibit a

higher likelihood of being accurately annotated, providing better guidance for alignment.

2.5.8 Case Studies

Visualization of Feature Latent Spaces. We visualize the learned data representations in

PAMAP2-9. We generate the data representations on the testing set by the global model and the
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(a) Similarity of Class Representations (b) PMI of Labels in Centralized Dataset

Figure 2.7. (a) shows cosine similarities among class representations of ES-25 learned via
FEDALIGN. (b) demonstrates the PMI of labels in the centralized dataset as a reference of
ground truth. Brighter colors indicate higher similarity/PMI.

local models of two participating clients after 50 communication rounds. The locally-identified

classes at the two clients are {walking, running, cycling, ironing, rope jumping} and {walking,

lying, sitting, standing, vacuum cleaning} respectively. There are one overlapping class and

four client-exclusive classes per client. We use t-SNE [191] to project the representations to

2-dimensional embeddings and compare the learned representations by FedAvg and FEDALIGN.

In order to see if the representations generated by different client models are aligned by classes,

for each algorithm, we gather the data representations generated by the client models and the

global model together to perform the t-SNE transformation. The visualization is shown in

Figure 2.6. We position them in the same coordinates. When training via FedAvg, we observe

that the data representations of the same class generated by the two local models are likely to

fall into different locations in the latent space. This suggests that the latent spaces of the two

clients are misaligned, leading to less discriminability among data representations from different

classes in the global latent space after model aggregation. On the contrary, when training via
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FEDALIGN, the data representations of the same class generated by the two local models have

similar locations in latent space. In addition, the data representations learned by FEDALIGN

have clearer separations than those learned by FedAvg.

Similarity Among Class Representations. We then analyze the similarities among

the class representations of ES-25 learned via FEDALIGN. Recall that ES-25 is the multi-label

classification task where the class sets at different clients are non-overlapping. We use the

label encoder from the global model trained after 50 rounds to generate class representations.

For a clear view of group similarities, we apply Spectral Clustering [221] to cluster the class

representations and sort the label names based on the assigned clusters. We visualize the cosine

similarities of a subset of the classes as shown in Figure 2.7a, where brighter colors indicate

higher similarity. The observed similarity patterns in the class representations conform with our

knowledge about what contexts of daily activities often happen together or not. For example, the

representations of the classes, “toilet” and “bathing”, “meeting” and “with co-workers”, “gym”

and “exercise” have higher similarity, while they have less similarity with other classes. To

provide a reference for ground truth, we calculate the PMI of labels based on their co-occurrence

in the centralized dataset to indicate how strong the association is between every two classes. We

show the results in Figure 2.7b. The brighter the color, the higher the PMI (i.e., the two classes

have a stronger association). The order of the classes is the same as in Figure 2.7a. We observe

the two figures display similar patterns of associations among classes. Although the class sets

of different clients are non-overlapping, the label encoder trained via FEDALIGN successfully

captures associations among classes across clients.

2.6 Related Work

Federated Learning with Non-IID Data. One of the fundamental challenges in feder-

ated learning is the presence of non-IID data [78]. The reasons and solutions to this challenge are

being actively explored. Common solutions involve adding local regularization [111, 109, 80],
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improving server aggregation [198, 120, 199], and leverage public dataset [120] or synthesized

features [132, 251] to calibrate models. These methods tackle more relaxed non-IID problems

that assume clients have the same set of classes. As shown in our experiments, these baselines

show marginal improvements over FedAvg when the clients have unaware classes. Some recent

works [113, 121] consider the problem of clients having access to only a subset of the entire class

set. For example, FedRS [113] addresses the case where each client only owns data from certain

classes. FedPU [121] focuses on the scenario where clients label a small portion of their datasets,

and there exists unlabeled data from both positive (i.e., locally-identified in our terminology)

and negative (i.e., locally-unaware) classes. The problem settings differ from ours. Moreover,

these methods are specifically tailored for single-label classification, where the presence of one

class indicates the absence or presence of other classes. When applied to our problem, they

demonstrate less improvement compared to FEDALIGN.

Label Semantics Modeling. In tasks where some of the label patterns cannot be directly

observed from the training dataset, such as zero-shot learning [97], it is hard for the model

to generalize to unseen classes. To deal with the problem, several methods are proposed to

leverage prior knowledge such as knowledge graphs [194] or model semantic label embedding

from textual information about classes [100, 136, 212, 158]. For example, Ba et al. [100]

derived embedding features for classes from natural language descriptions and learned a mapping

to transform text features of classes to visual image feature space. Radford et al [158] used

contrastive pretraining to jointly train an image encoder and a text encoder and predict the correct

pairings of image and text caption, which helps to produce high-quality image representations.

Matsuki et al [136] and Wu et al [212] incorporate word embeddings for zero-shot learning in

human activity recognition. These methods show the potential of using semantic relationships

between labels to enable predictions for classes not observed in the training set, which motivates

our design of semantic label name sharing.
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2.7 Summary

We studied the problem of federated classification with non-identical class sets. We

propose FEDALIGN and demonstrate its use in federated learning for various applications.

FEDALIGN incorporates a label encoder in the backbone classification model. Semantic label

learning is conducted by leveraging a domain-related corpus and shared label names. The

pretrained semantic label embeddings contain the knowledge of label correlations and are used to

guide the training of the data encoder. Moreover, the anchor-guided alignment enriches features

for unaware classes at each client based on global class anchors and reduces the discrepancy

between local distributions and global distribution. These two designs are key to mitigating

client variance in FEDALIGN, which addresses the challenge of non-identical class sets. We

show that FEDALIGN improves the baseline algorithms for federated learning with non-IID data

and achieves new state-of-the-art. It is worth mentioning that FEDALIGN can work when clients

can only share the label IDs by assuming label names are unknown and randomly initializing the

label encoder. Of course, advanced techniques like neural language models can be applied to

generate and enrich the label representations [242], and we leave it as future work.

Chapter 2 incorporates material from the publication “Navigating Alignment for Non-

identical Client Class Sets: A Label Name-Anchored Federated Learning Framework”, by Jiayun

Zhang, Xiyuan Zhang, Xinyang Zhang, Dezhi Hong, Rajesh K. Gupta, Jingbo Shang, published

in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data

Mining (KDD), 2023. The dissertation author was the primary investigator and the lead author

of this paper.
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Chapter 3

Model Adaptation Under Distribution
Shift

Building upon the foundation of federated learning introduced in the previous chapter, we

now address a follow-up challenge: distribution shift during inference. Discrepancies between

the training and test data distributions often emerge during deployment, compromising model

performance. In this chapter, we propose a solution that leverages meta-learning to prepare

the model for adaptation and employs fine-tuning with limited new data and contextual cues to

handle distribution shifts effectively. This method is discussed within the broader context of

the pretraining and fine-tuning paradigm. As a key application, we explore anomaly detection,

a domain particularly susceptible to distribution shifts, to demonstrate the effectiveness of our

approach in maintaining model robustness under changing conditions.

Web and mobile systems show constant distribution shifts due to the evolvement of

services, users, and threats, severely degrading the performance of threat detection models trained

on prior distributions. Fast model adaptation with minimal new data is essential for maintaining

reliable security measures. A key challenge in this context is the lack of ground truth, which

undermines the ability of existing solutions to align classes across shifted distributions. Moreover,

the limited new data often fails to represent the underlying distribution, providing sparse and

potentially noisy information for adaptation. In this work, we propose REACT, a novel method

that adapts the model using a few unlabeled data and contextual insights. We leverage the
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inherent data imbalance in threat detection and meta-train weights on diverse unlabeled subsets to

generalize common patterns across distributions, eliminating the reliance on labels for alignment.

REACT decomposes a neural network into two complementary components: meta weights

as a shared foundation of general knowledge, and residual adaptive weights as adjustments

for specific shifts. To compensate for the limited availability of new data, REACT trains a

hypernetwork to predict adaptive weights based on data and contextual information, enabling

knowledge sharing across distributions. The meta weights and the hypernetwork are updated

alternately, maximizing both generalization and adaptability. Extensive experiments across

multiple datasets and models demonstrate that REACT improves AUROC by 14.85% over

models without adaptation, outperforming the state-of-the-art.

3.1 Introduction

Threat detection is an essential component in web and mobile systems that identifies

malicious activities across networks, endpoints, and software, defending against security risks.

Cyber environments undergo continual distribution shifts due to various factors, including users

joining and leaving the network, user behavior changes, and software updates. These shifts

severely degrade the performance of threat detection models trained on prior distributions. For

example, during special events on the Web, such as major sales promotions, there is often a

surge in users visiting the site and subscribing to services, and many of them may cancel the

subscription and reduce their activity after the event, causing abrupt shifts in network traffic.

Threat detection models trained on typical traffic are less effective in these scenarios. Adapting

model weights after minimal exposure to new data is crucial for timely and effectively identifying

threats in dynamic and adversarial environments.

A critical challenge in managing distribution shifts in threat detection is the lack of

ground truth, as this requires user reports or detailed inspections by domain experts. Traditional

methods [13, 41, 129, 172, 178, 184, 210], which rely on labels from either source or target
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Figure 3.1. Illustration of our problem setting of model adaptation.

domains to align classes across shifted distributions, fail to address this scenario. Moreover,

the limited new data often does not fully represent the underlying distribution, providing sparse

and potentially noisy information for adaptation. Existing methods [35, 92, 104, 116] fine-tune

models exclusively on these limited data. They may exhibit large variations in performance and

are sensitive to the quality of the observed data, often prone to overfitting [67, 197, 234, 248].

The problem setting is illustrated in Figure 3.1.

Due to label scarcity, threat detection often exhibits extreme data imbalance, with a few

suspicious activities (e.g., unauthorized access attempts, anomalous traffic, malware) hidden

among a vast majority of benign behaviors. This imbalance presents an opportunity to address

distribution shifts. Instead of learning the exact benign and suspicious behaviors and matching

them across domains, models could learn to generalize majority patterns for various distributions.

Samples that deviate from such patterns are regarded as potential threats [2, 59]. Therefore, we

apply meta-learning on diverse unlabeled subsets dominated by benign samples. These subsets

are sampled according to underlying shifts, e.g., time-based sampling for temporal shifts. After

being meta-trained on various scenarios, the model can quickly adapt to new distributions by

adjusting the learned pattern using a few unlabeled samples.

To compensate for the limited new data, we utilize contextual information to model

correlations among distributions. For example, in network intrusion detection, a newly deployed

service like a microservices-based API can find similarities with common web servers (e.g.,
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Apache and Tomcat) based on their intrinsic characteristics of services and deployment envi-

ronments (e.g., service configuration, user role). By modeling these contexts, we can recognize

relationships across distributions and transfer knowledge from mature systems to newly deployed

ones.

Building on these insights, we introduce REACT (Residual-Adaptive Contextual Tuning),

a novel method adapting models with a few unlabeled new data and contextual insights. Given a

neural network, REACT decomposes its weights into the sum of two components: meta weights,

which are meta-trained to form a solid foundation of general knowledge and shared globally,

and adaptive weights, which are the residual components fine-tuned to specific distributions.

We leverage a hypernetwork [55] to generate adaptive weights based on data and contextual

information. Intuitively, the hypernetwork maps its inputs onto a low-dimensional manifold

within the parameter space [26, 170]. This mapping positions adaptive weights for similar

contexts and data patterns close to each other, enabling knowledge transfer across different

distributions. During training, REACT optimizes the meta weights and the hypernetwork

alternately through meta-learning on subsets sampled according to underlying shifts. At inference,

the adaptive weights are fine-tuned from the prediction given by the trained hypernetwork, while

the meta weights are fixed, preserving the generalizability of the model [27, 107, 135, 188].

We theoretically analyze the convergence of REACT on linear models, showing the

parameters converge at a linear rate characterized by the eigenvalues of the sample matrices

and other hyperparameters in REACT. Our approach is model-agnostic, broadly applicable

to various neural networks and loss functions. We evaluate REACT on three datasets with

different backbone models. Compared to models without adaptation, REACT improves the

AUROC by 14.85% with few fine-tuning efforts (e.g., update 1 to 10 gradient steps on 10 to

100 samples). Sensitivity analyses show that REACT is robust to variations in the number

of samples, the number of fine-tuning steps, and contamination in training data. We further

showcase the capability of REACT for parameter-efficient fine-tuning, achieving 5.75% higher

AUROC with 94.3% fewer parameters updated compared to full fine-tuning, highlighting its
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efficiency. Our contributions are as follows:

• We study the problem of fast model adaptation under distribution shift in threat detection,

focusing on a practical yet challenging scenario where labels are unavailable and only limited

data from new distributions are observed.

• We introduce REACT, a novel adaptation method using a few unlabeled data and contextual

insights. REACT decomposes model weights into meta and adaptive components and updates

them through meta-learning alternately. It employs a hypernetwork to generate adaptive

weights based on data and contexts, enabling knowledge transfer across distributions.

• We establish the convergence rate of REACT through theoretical analysis. Moreover, we

conduct extensive evaluations on multiple model architectures and datasets, demonstrating that

REACT consistently outperforms various state-of-the-art methods.

3.2 Related Work

Threat Detection. Threat detection [14, 126, 182, 183, 224, 48] aims to identify se-

curity risks in systems and networks, such as insider threat [126, 224], intrusion attack [34],

malware [106], spammer [182]. Typically, the ground truths for benign and malicious activities

are not available, as they require user reports or inspections by domain experts. As a result, threat

detection follows unsupervised or semi-supervised approaches in anomaly detection based on

different assumptions of data distribution [2, 59]. These methods assume the majority of data

belong to a “normal” class, while anomalies deviate from this norm, e.g., lying in low-density

regions [252], being far from normal data clusters [163], or showing high reconstruction errors

from the latent space of normal data [2]. These methods are designed for static environments

and are not robust to distribution shifts. Changes in data distributions can significantly degrade

model performance.

Distribution Shifts in General Machine Learning. Distribution shift means the distribu-

tions of the training and testing data are different, leading to poor model generalization to unseen
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data [50]. To address the challenge, adaptation methods have been proposed [41, 129, 210]. We

focus on works designed for unsupervised or semi-supervised scenarios due to the data specificity

in threat detection. Unsupervised domain adaptation [13] is a closely related topic, which adapts

models to target domains that have no labeled data. Methods include invariant representation

learning [178], prototype-oriented conditional transport [184], contrastive pre-training [172].

However, these methods assume the availability of labels from source data to guide adaptation,

falling short in threat detection where labels in source domains are also unavailable.

Model Adaptation in Threat Detection. Distribution shifts are observed in threat detec-

tion, such as malware detection [77], network intrusion detection [24, 217], and log anomaly

detection [73]. Traditional supervised approaches [11, 77, 151] require extensive labeling, mak-

ing them impractical for real-world deployment. Recent efforts have recognized this limitation

and have been exploring adaptation approaches without relying on labels. Unsupervised domain

adaptation methods, like learning domain-invariant representations [22] have been extended.

However, they typically require simultaneous training on source and target domains, making

them less suitable for emerging domains. Test-time adaptation, such as batch normalization

updates [104], energy-based models [205], and trend estimation [81], updates models during

inference without gradient descent. Though efficient, they are limited to minor shifts [52] or

sequential shifts that display continuous patterns [81]. To address more severe and random shift,

meta-learning [43, 186] is a promising approach that trains a meta model on a variety of learning

tasks, enabling adaptation to new distributions with a small amount of data. Prior works have ap-

plied meta-learning to graph neural networks [35] and autoencoders [92] for few-shot detection,

and introduced prototype-oriented optimal transport for adapting models to new multivariate

time-series [116]. However, these methods fine-tune models solely on limited data from new

distributions, leading to variations in adaptation performance. In contrast, our method considers

contextual information about shifts to understand correlations among distributions and transfer

knowledge, improving adaptability.
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3.3 Preliminaries

3.3.1 Problem Definition

Distribution shifts in threat detection involve changes in the probability distribution of

data over time or across domains (e.g., users, services). These shifts can affect the marginal

feature distribution P(x), the conditional distribution P(y|x), or both, where x is the data and

y is the category. Consider a threat detection model f (·;θ) trained on a dataset D = {xi}N
i=1

drawn from a distribution P . The dataset D is unlabeled and is dominated by samples from the

benign class. The model parameters θ are optimized by minimizing a loss function mathcalL.

Common choices for mathcalL include reconstruction loss in autoencoders or contrastive loss

in self-supervised learning. The objectives: θ ∗ = argminθ Ex∼PL ( f (x;θ)). Our goal is to

develop an adaptation method that updates model parameters to θ ′ using a few examples from

the new distribution P ′. The observed dataset D′ from distribution P ′ is unlabeled, and its size

is small |D′|= k≪ |D|.

3.3.2 Meta-Learning

Meta-learning trains models that can quickly adapt to new tasks using only a few ex-

amples. A task Ti is defined as an independent learning problem with a dataset following a

specific distribution Pi and a learning objective which is to find the optimal parameters θ ∗i

that minimize the expected loss θ ∗i = argminθ Ex∼PiL ( f (x;θ)). The dataset Di for task Ti is

divided into a support set Di
support and a query set Di

query. Di
support is used to fine-tune the model

to learn task-specific parameters for Ti, while Di
query evaluates how well the model generalizes

the learned task-specific knowledge.

Model-Agnostic Meta-Learning (MAML) [43] is one of the most representative algo-

rithms, which optimizes the initial model parameters θ so that after fine-tuning, the model

performs well across various tasks, minimizing the average loss. For each task Ti, the parameters

are fine-tuned using the support set Di
support: θ ∗i = argminθ ∑x∈Di

support
L ( f (x;θ)). The weight
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initialization θ is optimized using the query sets:

θ
∗ = argmin

θ
∑
Ti

∑
x∈Di

query

L ( f (x;θ
∗
i )).

During inference, the model is fine-tuned on a few samples from the new distribution and then

applied to all testing samples.

3.3.3 Hypernetwork

A hypernetwork [56] is a neural network that predicts the weights of another neural

network (i.e., target network). By training a single hypernetwork to predict weights across

multiple tasks rather than optimizing each one independently, hypernetworks offer a parameter-

efficient solution for model adaptation. It has shown effective in improving learning efficiency

through parameter sharing [3, 17, 134, 229]. Let h represent the hypernetwork with parameters

φ , and let f denote the target network. Given a representation Vi for describing task Ti,

the hypernetwork generates the model weights θ = h(Vi;φ), which are loaded into f for the

downstream task. Given multiple tasks Ti and the corresponding task representations Vi, the

learning objective is to optimize the hypernetwork’s parameters φ to minimize the loss L across

these tasks:

φ
∗ = argmin

φ
∑
Ti

∑
x∈Di

L [ f (x;h(Vi;φ))].

3.4 Methodology

We approach the problem from both meta-training and fine-tuning perspectives. Through

meta-training, the model establishes a strong, generalizable foundation that can be applied to

most scenarios. Then, through fine-tuning, the model weights are slightly adjusted for specific

shifts. We propose a method that decomposes model weights into two components and alternately

optimizes them to address both perspectives. Algorithm 2 provides the pseudo-code.
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Algorithm 2: Training Procedure of REACT
Input: Task distribution P(T ), target network f , hypernetwork h
Output: Meta weights θmeta, hypernetwork weights φ

1 Initialize model weights θmeta and φ ;
2 while not converged do

/* Update meta weights */

3 Sample a set of tasks {Ti}M
i=1 ∼P(T );

4 for each task Ti do
5 Form support set Dsupport

i and query set Dquery
i and extract contextual

information ci;
6 Generate adaptive weights: θ

adapt
i = h(Dsupport

i ,ci;φ);
7 Fine-tune θ

adapt
i on Dsupport

i following Eq. 3.1;

8 Update θmeta following Eq. 3.2;
/* Update hypernetwork */

9 Sample a set of tasks {Tj}M
j=1 ∼P(T );

10 for each task Tj do
11 Form support set Dsupport

j and query set Dquery
j and extract contextual

information c j;
12 Update φ following Eq. 3.2;

3.4.1 Weight Decomposition

Given a neural network, we decompose its weights into two complementary components:

meta weights θmeta and adaptive weights θadapt. Meta weights capture global patterns that are

common across different distributions, representing the core knowledge acquired during meta-

learning. Adaptive weights, on the other hand, serve as a small “residual” component that allows

the model to be fine-tuned to the unique characteristics of specific data distributions, while

still leveraging the global patterns encoded in the meta weights. The full model weights are

then formed by adding the two components together: θ = θmeta +θadapt. By applying a small

residual update to the pretrained meta weights, the model can adapt to new distributions without

overwriting the essential pretrained knowledge.
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Figure 3.2. Architecture of the proposed hypernetwork in REACT.

3.4.2 Residual-Adaptive Weight Generation with Hypernetwork

We incorporate a hypernetwork to generate adaptive weights based on data characteristics

and contextual information. The architecture of the hypernetwork is presented in Figure 3.2.

Data Encoding. Our hypernetwork includes a data encoder that processes data from the

support set to produce feature representations. These representations are averaged and passed

through a series of linear layers, with each layer producing the weights for a corresponding layer

in the target network.

Context Encoding. To enhance the hypernetwork’s ability to handle varying distributions,

we integrate the contextual information ci about distribution Pi as an additional input. This

context offers semantic insights into the shifts and helps capture similarities across distributions.

We incorporate a context encoder in the hypernetwork to transform contexts into embeddings,

which are then added to the data representations for weight generation. The choice of context

depends on the type of shift. For example, we use time information for temporal shifts, with

positional encoding [207] generating embeddings. Details about context modeling for different

tasks can be found in Section 3.6.1.

3.4.3 Alternating Optimization

We design an alternating optimization scheme to iteratively update the meta weights

and the hypernetwork. This approach balances the learning dynamics and prevents mutual
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Figure 3.3. Alternating optimization in REACT. In each training iteration, we sample a set of
tasks to update the meta weights, then sample another set to train the hypernetwork.

interference between the two components. Figure 3.3 illustrates the process.

Task Sampling for Meta Learning. To let the model learn how to adapt to new

distributions, we first create a diverse set of tasks that reflect the expected variations in the

application. We sample tasks from the training set by simulating the underlying data shifts. For

instance, if the goal of adaptation is to address distribution shifts over time, the data can be

grouped according to temporal factors such as day or month, with each time period forming a

separate task. If the focus is on handling shifts across different users, the data can be grouped by

users, with each user forming a task.

Update of Meta Component. Let θ i
adapt denote the adaptive weights of task Ti. In

each iteration, we begin by updating the meta weights. We sample a set of tasks {Ti}M
i=1 and

contextual information {ci}M
i=1. The hypernetwork h(·;θ) is fixed and used to generate adaptive

weights, θ i
adapt = h(Di

support,ci;φ). The generated adaptive weights are then fine-tuned to derive

the optimal model weight θ
i,∗
adapt for task Ti by minimizing the empirical loss over the support set

Di
support:

θ
i,∗
adapt = argmin

θadapt
∑

x∈Di
support

L ( f (x;θmeta,θadapt)). (3.1)

We then fix these fine-tuned adaptive weights and update the meta model by minimizing

the loss on the query set Dquery. Let θmeta be the learning rate for updating meta weights. The
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update of meta weight after one gradient step is as follows:

θmeta← θmeta−ηmeta∇θmeta ∑
Ti

∑
x∈Di

query

L [ f (x;θmeta,θ
i,∗
adapt)]. (3.2)

Update of Hypernetwork. Next, we sample another set of tasks {T j}M
j=1, fix the meta

weights learned in the previous step, and update the hypernetwork using the query sets. Let ηh

be the learning rate for updating the hypernetwork. The weight update of hypernetwork after one

gradient step is as follows:

φ ← φ −ηh∇φ ∑
T j

∑
x∈D j

query

L [ f (x;θmeta,h(D
j
support,c j;φ))]. (3.3)

Regularization. We apply L2 regularization to the adaptive weights generated by

the hypernetwork, encouraging them to act as residuals to the globally shared meta weights.

The query loss for optimizing the hypernetwork, denoted as Lquery, is combined with the

regularization as L = Lquery + λ∥θadapti∥2
2, where λ is the hyperparameter to control the

regularization strength.

3.4.4 Adapting to New Distributions

When doing inference on a new distribution P j, the meta weights and the hypernetwork

are fixed. This ensures the pre-trained knowledge is not “forgotten” during fine-tuning [27, 107,

135, 188], preserving generalizability of the model. A small number of support data D j
support

from P j along with its contextual information c j are fed into the hypernetwork to predict the

adaptive weights θ
j

adapt = h(D j
support,c j;φ). With this initialization, the adaptive weights are then

fine-tuned on D j
support following Equation 3.2. Finally, the two parts of the weights are merged by

summing them as if there is only one target network. The merged weights are used for inference

on data from the new distribution P j.
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3.5 Analysis

In this section, we provide convergence analysis of REACT on linear models. Let Xi be

the matrix whose rows are the samples from the dataset of task i ∈ {1, ...,M}, i.e., Di. The data

matrix Xi can be split into support set Xi
s and query set Xi

q. We assume that the relevant datasets

are sampled at the beginning of the algorithm. Given linear model1

h(X;φ) = Xφ , f (X;θmeta,θadapt) = X(θmeta +θadapt). (3.4)

The following theorem provides convergence guarantees for REACT.

Theorem 3.5.1. Consider REACT on the linear model in (3.4) with Eq. (3.1) being solved exactly.

Let Xs
i and Xq

i satisfy (Xs
i )
⊤Xs

i = (Xq
i )
⊤Xq

i = σiI for each task i ∈ {1, . . . ,M}, where σi are the

variances and I is the identity matrix. Learning rates are chosen as ηmeta < 1/∑
M
i=1 σiλ/(σi+λ )

and ηh < 1/max
(

∑
nh
j=1 σ j(σ j +λ ),∥Xs∥

)
where Xs = ∑

M
j=1 σ j(X

j
s)
⊤. Then, for any ε > 0,

there exists

K = O

(
log 1

ρmeta

(
1
ε

)
+ log 1

ρh

(
1
ε

))
,

for ρmeta = 1− ηmeta ∑
M
i=1 σiλ/(σi + λ ) and ρh = 1− ηh ∑

M
j=1 σ j(σ j + λ ) such that the K-

iteration of Algorithm 2 satisfies

∥θ K−θ
∗∥ ≤ ε, and ∥φ K−φ

∗∥ ≤ ε,

where θ ∗ and φ∗ are stationary points of the algorithm.

The proof is provided in Appendix A.2. Our results suggest that θmeta and φ converge

to stationary points at a linear rate which can be characterized based on the eigenvalues of the

sample matrices in each task and hyperparameters considered in REACT.

1We note that we abuse the notation and set h(X,c;φ) = h(X;φ),i.e., the context information is part of the input
data.
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Table 3.1. Experiment configurations and dataset statistics after preprocessing.

Dataset # Train/Test # Train/Test tasks k Shift by Model

AnoShift 1.3M / 1.8M 50 / 110 100 Time AutoEncoder
NSL-KDD 28K / 6K 8 / 6 10 Service GOAD
Malware 15K / 5K 36 / 12 10 Time DeepSVDD

3.6 Experiments

3.6.1 Experiment Setup

Datasets and Backbone Models. Our evaluation focuses on two key applications in

cybersecurity, network intrusion detection and malware detection, and targets both temporal and

domain shifts. REACT is compatible with various neural network architectures.

• AnoShift [37] is a benchmark for network intrusion detection under distribution shifts. It

collects traffic logs from a university network between 2006 and 2015. Data shifts occur over

time due to reasons such as user behavior changes and software updates. Each sample has

15 features (9 numerical and 6 categorical) and a label of whether it is an attack. We use the

train-test split provided by the dataset, including training subsets from 2006 to 2010 and test

subsets from 2006 to 2015. Each month is regarded as a separate task.

• Malware [68] contains executables collected between 2010 and 2014 from VirusShare2, an

online malware analysis platform. Data shifts happen over time. Each executable has 482

counting features and a risk score (ranging from 0 to 1) indicating the probability of it being

malware. These risk scores are converted to binary labels using thresholding, with executables

labeled as malicious if the score is greater than 0.6 and benign if the score is less than 0.4 [68].

Following previous work [104], the dataset is split into training data from 2011 to 2013,

validation data from 2010, and testing data from 2014. Each month is treated as a separate

task.

• NSL-KDD [185] is another dataset for evaluating network intrusion detection. Each sample

has 40 attributes describing the network traffic, with 6 categorical and 34 numerical features.
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We simulate domain shifts by grouping data according to services (e.g., HTTP, Telnet) and

randomly assigning half of the services as training tasks and the other half as test tasks. We

use the official train-test split provided by the dataset and remove services not selected for the

respective splits. Besides, services with fewer than 20 benign samples are excluded to ensure

sufficient unseen data for testing.

We sample the datasets to form a 10% ratio of threat samples for both training and testing.

In Section 3.6.4, we vary this ratio to test the robustness of REACT to the contamination of

training data. For the NSL-KDD dataset, since GOAD is a semi-supervised method that trains

only on benign data, we remove attack samples from the training set.

Backbone Models and Implementation. To assess the adaptation performance across

different models, we employ three representative architectures as follows:

• AutoEncoder (AE) [2]: is an unsupervised model trained to reconstruct the input through

an encoder-decoder structure. The key idea is that, threat samples, appearing less frequently,

tend to have larger reconstruction losses, making them distinguishable by observing the loss.

We implement the AutoEncoder with four linear layers followed by ReLU activation. These

layers project the data into [64, 32, 64]-dimensional features and finally map the features to the

original data dimension. Cross-entropy loss is applied to categorical features, and mean-square

error is used for numerical features. We use it as the backbone model for AnoShift.

• DeepSVDD (DSVDD) [163]: is an unsupervised model which encodes data into feature

representations and measures their distances from a learnable center. The encoder is a multi-

layer perception (MLP) consisting of two linear layers with ReLU activation, mapping data to

representations of dimension [64, 32]. Similar to the AutoEncoder, threat samples tend to have

larger distances from the center. The smooth L1 loss [162] is used to measure the distances for

its robustness against outliers. We use it as the backbone model for Malware.

• GOAD [15]: is a semi-supervised model that applies multiple transformations to the input

data and uses a convolutional neural network (CNN) [96] to extract feature representations.

We implement a 5-layer CNN with kernel size of 1. The loss function has two components: a
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center triplet loss, which measures the distance between the learned representations and their

mean, and a cross-entropy loss for predicting which transformation was applied to the data. It

is used as the backbone model for NSL-KDD.

Table 3.1 summarizes the statistics and configurations of the datasets and backbone

models in the experiments.

Baselines. We compare REACT with unsupervised methods from the anomaly de-

tection benchmark [59], including linear and statistical models: ECOD [118], COPOD [117],

OCSVM [168]; distance- and proximity-based methods: LOF [18], KNN [159]; ensemble meth-

ods: LODA [154], IForest [124]; and neural networks: AE [2], DSVDD [163], LUNAR [49].

These methods assume static environments and do not account for distribution shifts. In addition,

we compare REACT with training from scratch, fine-tuning strategies, and state-of-the-art model

adaptation methods. Brief descriptions are as follows:

• Static model: The model is trained on the training data and directly tested on each test task,

i.e., the pretrained model.

• Train-from-scratch: For each task, a model is trained from scratch using k samples and is

used for evaluation.

• Fine-tuning: For each task, the model is fine-tuned using k samples from the task based on

the pretrained model.

• Continual learning: Starting from pretrained model, we sequentially fine-tune the model using

k samples from each task.

• Experience Replay (ER) [25] is a method to mitigate catastrophic forgetting in continual

learning. We maintain a memory buffer to store historical data. In each fine-tuning iteration,

we sample a batch from this buffer and compute its loss. This loss is then weighted and

combined with the loss from the new batch.

• ACR [104] is a zero-shot adaptation which adopts meta-learning to train the model and update

the batch normalization (BN) layers with the batch statistics during inference. We add a BN

layer after each linear or convolutional layer in the model.
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• OC-MAML [44] is a few-shot one-class classification method. It extends MAML by modify-

ing the episodic data sampling strategy. It forms one-class support sets to optimize the meta

model.

Training and Adaptation Configurations. The size of support data k is set based on the

data quantity, with k = 100 for AnoShift and k = 10 for Malware and NSL-KDD. The size of

query data varies proportionally, with 1000 for AnoShift and 100 for Malware and NSL-KDD.

In each meta-training iteration, we sample M = 5 tasks for Malware and NSL-KDD, and M = 1

for AnoShift. The number of fine-tuning epochs E is determined by the convergence rate of the

learning task, with E = 10 epochs for AnoShift and Malware, and E = 1 for NSL-KDD due to

its faster convergence. Regularization parameter λ = 10.

Choices of Contexts. For AnoShift and Malware whose shifts occur over time, we use

time index as the context, which is modeled by positional encoding [207] to generate contextual

embedding for each task. For NSL-KDD dataset whose shifts occur across services, we first

feed these services names to GPT-4 [1] with the prompt “please briefly describe each of these

web services, including the normal and anomalous patterns”. The use of a large language model

(LLM) is to reduce the reliance on domain experts. The LLM choice is generic, and other

advanced models may be used. Then, we use Sentence Transformer4 to generate embeddings

for the descriptions. Evaluation Metrics. For each test task, we adapt the model and evaluate its

performance using AUROC and AUPR scores. All experiments are repeated for five times with

the same set of random seeds, and the results are averaged across all test tasks and runs.

3.6.2 Main Results and Analysis

The results are presented in Table 3.2, where the left sub-table shows the performance

of static methods and the right one focuses on fine-tuning and adaptation methods across three

backbone models. The static methods (left table) generally show lower performance than models

with adaptation (right table), highlighting the negative impact of distribution shifts on model

performance. The right table also includes the performance of train-from-scratch using all data
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Table 3.2. Main experiment results on threat detection (averaged over 5 runs). The left sub-table
reports the performance of static methods, while the right focuses on fine-tuning and adaptation
across three backbone models. REACT consistently outperforms all other methods. |Di| denotes
the number of samples observed from each test task for gradient updates.

Method
AnoShift Malware NSL-KDD

AUROC AUPR AUROC AUPR AUROC AUPR

KNN [159] 0.6714 0.4062 0.2732 0.1040 0.5323 0.2956
LOF [18] 0.6107 0.2873 0.2781 0.1101 0.4150 0.1827
OCSVM [168] 0.6903 0.3157 0.3880 0.1190 0.6649 0.3492
iForest [124] 0.6658 0.2830 0.2660 0.0722 0.7809 0.4798
LODA [154] 0.5723 0.2111 0.5190 0.1368 0.5207 0.2532
AE [2] 0.7110 0.3204 0.3789 0.1156 0.6057 0.2678
DSVDD [163] 0.7716 0.3895 0.5165 0.1644 0.6006 0.2848
COPOD [117] 0.7664 0.3831 0.4450 0.1102 0.7849 0.4471
ECOD [118] 0.7461 0.3727 0.5403 0.1390 0.8100 0.4706
LUNAR [49] 0.4449 0.2450 0.2719 0.0880 0.5243 0.2350

Method |D′i|
AnoShift Malware NSL-KDD

AUROC AUPR AUROC AUPR AUROC AUPR

train-from-scratch all 0.7681 0.3689 0.6010 0.1822 0.9308 0.7107

static model - 0.7110 0.3204 0.5165 0.1644 0.7420 0.5110
train-from-scratch k 0.7398 0.3398 0.3659 0.1337 0.7382 0.4219
fine-tuning k 0.7039 0.3333 0.5678 0.1797 0.8175 0.5098
continual learning k 0.6087 0.3063 0.5879 0.1873 0.8285 0.5188
ER [25] k 0.6144 0.2996 0.6022 0.1932 0.8356 0.5114
ACR [104] - 0.7634 0.3753 0.5798 0.1794 0.7513 0.4658
OC-MAML [44] k 0.7770 0.3811 0.6779 0.2334 0.8547 0.5504

REACT (ours) k 0.8226 0.4376 0.7252 0.2750 0.8673 0.5559

from each individual test task (in grey). When sufficient data is available from the new tasks,

training a model from scratch yields better performance than using a pretrained model without

adaptation. When comparing the models trained from scratch, fine-tuning, and continual learning,

it is shown that the pretrained model can be a poor initialization for shifted distributions, e.g.,

AnoShift. We also observe that experience replay slightly improves performance compared

to continual learning without any strategy to prevent catastrophic forgetting. However, this

improvement is limited.

REACT consistently outperforms the baselines and even surpasses the model trained

from scratch using all data from individual tasks on two datasets. This is because REACT adapts

from a model meta-trained on a larger and more diverse training set than each individual task,

providing a stronger foundation for adaptation. Furthermore, the training data in AnoShift and

Malware contains noise (10% threat ratio). Training a model on all data from an individual task

increases the likelihood of exposing the model to many threat samples within that distribution,

which, due to the specific training objectives of AutoEncoder and DSVDD, may cause the models

to mistakenly learn malicious patterns as benign ones. In contrast, REACT is less prone to such

overfitting as it utilizes the meta model and only updates the adaptive weights on a small set of

new data. We note that on NSL-KDD, GOAD achieves high scores when trained from scratch

using all data since it is trained on benign data only, but such training is impractical in the real
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Table 3.3. Ablation studies. The results demonstrate that every component in our method
contributes to the overall performance improvement.

Method
AnoShift Malware NSL-KDD

AUROC AUPR AUROC AUPR AUROC AUPR

static model 0.7110 0.3204 0.5165 0.1644 0.7420 0.5110
fine-tuning 0.7039 0.3333 0.5678 0.1797 0.8175 0.5098
OC-MAML 0.7770 0.3811 0.6779 0.2334 0.8547 0.5504

REACT (ours) 0.8226 0.4376 0.7252 0.2750 0.8673 0.5559
w/o fine-tuning 0.7873 0.3977 0.7159 0.2696 0.7282 0.4838
w/o context 0.7865 0.3838 0.6772 0.2325 0.8503 0.5323
w/ random context 0.7922 0.3888 0.6892 0.2426 0.8597 0.5522
w/o regularization 0.6541 0.3379 0.6326 0.2001 0.8045 0.4705

world. When compared to other baselines using the same k samples from new tasks, REACT

achieves the highest scores. Among state-of-the-art methods, ACR, which performs test-time

adaptation, shows relatively lower performance as it does not apply gradient updates during

inference, limiting its adaptation ability. OC-MAML achieves the second-best performance,

demonstrating the strength of meta-learning. However, REACT outperforms OC-MAML by

weight decomposition and incorporating a hypernetwork for contextual tuning. These designs

help maintain generalizability and enhance adaptability beyond meta-learning alone.

3.6.3 Ablation Studies

We crafted four ablated versions of REACT by systematically removing each key

component: (1) We disable fine-tuning during inference and use the merged weights from meta

weights and the hypernetwork’s prediction to do the inference directly, denoted as w/o fine-

tuning. (2) We remove the use of context and only provide the support data for hypernetwork,

denoted as w/o context. (3) We replace the context with fixed random vectors of the same

shape as context embeddings sampled from a normal distribution, denoted as w/ random

context. (4) We remove the regularization term on the hypernetwork’s prediction, denoted as

w/o regularization.
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The results in Table 3.3 show that every component in REACT contributes to performance

improvement. Fine-tuning and regularization have notable impacts. REACT w/o fine-tuning

shows competitive performance on AnoShift and Malware compared to the baselines, indicating

its potential for zero-shot adaptation. However, with just a few gradient updates, performance

can be largely improved. Besides, adding regularization ensures the adaptive weights predicted

by the hypernetwork do not overpower the full model, maintaining model generalizability. We

present the results with different values of the regularization parameter in Section 3.6.4. REACT

w/o context learns distribution patterns solely from the support data, which is less effective than

incorporating contexts since the support data is limited and might not provide sufficient insights.

REACT w/ random context introduces randomness into the encoded representations. This

exposes the hypernetwork to variations during training and reduces reliance on specific patterns,

enhancing robustness to noise. Therefore, it performs slightly better than w/o context. However,

these random contexts do not provide task-specific knowledge to capture meaningful patterns.

With additional information about tasks, REACT can model similarity among distributions

more effectively. We anticipate that selecting indicative contexts for downstream applications

and using advanced techniques like graph-based prompting [181] could further enhance context

encoding. These explorations are left for future work.

3.6.4 Sensitivity Analyses

Number of Support Samples. We vary the number of support samples k for each

task from 5 to 100 and compare REACT with the fine-tuning baseline. Figure 3.4 shows that

REACT consistently outperforms the fine-tuning baseline across all datasets. This demonstrates

REACT’s robustness in data-scarce scenarios and highlights its ability to efficiently leverage

available data for fast adaptation.

Number of Fine-Tuning Epochs. We vary the number of fine-tuning epochs for each

new task from 1 to 10 and compare the performance of REACT with the fine-tuning baseline.

Figure 3.5 shows that REACT outperforms the baseline in all settings. On NSL-KDD, the
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Figure 3.4. Sensitivity analysis of the number of support samples k.

improvement of REACT over the baseline becomes less significant with more fine-tuning epochs,

as its tasks are simpler and the model is able to adapt to them with fewer epochs.

Contamination on Training Data. We evaluate the robustness of our system against

contamination in the training data when applying to AutoEcoder and DeepSVDD models on

AnoShift and Malware respectively—both unsupervised methods. We note that GOAD is a

semi-supervised method trained solely on benign data (as applied to the NSL-KDD dataset)

thus the evaluation is trivial to it. We fix the number of benign samples while varying the ratio

of threat samples from 1% to 20%. Table 4 shows the AUROC scores. REACT consistently

achieves higher AUROC scores across different contamination rates than the fine-tuning baseline,

showing that it is robust to noise in training data.

Effect of Regularization. We experiment with different values of the regularization

parameter λ as presented in Table 3.5. Adjusting λ controls the trade-off between adaptability and

generalization. A larger λ reduces the norm of adaptive weights and emphasizes generalization,

while a smaller λ encourages adaptability. Selecting an appropriate λ is essential for achieving

optimal performance.
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Figure 3.5. Sensitivity analysis of the number of fine-tuning epochs (E).

3.6.5 Computational Efficiency in Adaptation

The hypernetwork is fixed after training. During adaptation, it conducts a single forward

pass for a new task which incurs minimal overhead. As adaptation typically occurs less frequently

(e.g., once daily) than inference, this overhead is negligible. Table 6 shows the run time of

hypernet forward pass (t1) and gradient descent fine-tuning (t2) during the adaptation of a new

task. Experiments are performed with a NVIDIA Tesla T4 GPU.

3.6.6 Parameter-Efficient Fine-Tuning

Our method supports parameter-efficient fine-tuning, which is especially useful when

working with large models. By incorporating adaptive weights into only a subset of the model’s

parameters and having the hypernetwork predict this subset of weights, we can reduce the

number of parameters to be fine-tuned. We conduct experiments using an AutoEncoder on the

AnoShift dataset to showcase REACT’s ability in parameter-efficient fine-tuning. Specifically,

we predicted adaptive weights for either the two symmetric linear layers closest to the input

(denoted as REACT-Inner) or those closest to the latent representations (denoted as REACT-

Outer). Full fine-tuning of REACT is denoted as REACT-Full. The results are shown in Figure
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Table 3.4. Sensitivity analysis: AUROC scores under different contamination levels.

Method
Malware AnoShift

1% 5% 10% 20% 1% 5% 10% 20%

static model 0.506 0.513 0.517 0.567 0.764 0.753 0.711 0.634
train-from-scratch 0.366 0.368 0.366 0.377 0.818 0.791 0.740 0.740
fine-tuning 0.550 0.545 0.568 0.580 0.812 0.765 0.704 0.605
continual learning 0.562 0.559 0.588 0.590 0.683 0.572 0.609 0.453
ER 0.582 0.585 0.602 0.602 0.734 0.669 0.614 0.577
ACR 0.544 0.570 0.580 0.570 0.785 0.774 0.763 0.773
OC-MAML 0.683 0.688 0.678 0.687 0.827 0.803 0.777 0.755

REACT (ours) 0.725 0.738 0.725 0.719 0.832 0.813 0.823 0.775

Table 3.5. Results with different regularization parameter λ .

λ
AnoShift Malware NSL-KDD

AUROC AUPR AUROC AUPR AUROC AUPR

0 0.6541 0.3379 0.6326 0.2001 0.8045 0.4705
1 0.7276 0.3860 0.6878 0.2531 0.8260 0.5331

10 0.8226 0.4376 0.7252 0.2750 0.8673 0.5559
100 0.7889 0.3947 0.7048 0.2561 0.8192 0.5134

6. Both methods achieve better performance compared to the baselines, although they slightly

underperformed compared to REACT-Full which fine-tunes all layers. Notably, REACT-Inner

achieved a 5.75% higher AUC while updating 94.3% fewer parameters compared to conventional

full fine-tuning, highlighting its efficiency.

3.6.7 Case Study

To understand how well REACT leverages contextual information, we analyze the

weights generated by the trained hypernetworks. Specifically, we compare the adaptive biases

of the last layer in the AutoEncoder for AnoShift across different months and calculate their

cosine similarities. The results are presented in Figure 3.7a, with warmer colors indicating higher

similarity. The high similarities around the diagonal indicate the weights generated for each

month are similar to those of nearby months. This suggests that REACT effectively captures the
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Table 3.6. Run time of REACT for adaptation.

Dataset t1 (ms per task) t2 (ms per task) t1/t2

AnoShift 1.52 255.39 0.59%
NSL-KDD 1.58 59.42 2.66%
Malware 1.61 18.69 8.62%
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Figure 3.6. Parameter-efficient fine-tuning. Numbers in the legend indicate the percentage of
fine-tuned parameters. Both REACT-Inner and REACT-Outer outperform the baselines.

temporal dynamics and smoothly adapts model weights over time. As a reference for how data

shifts, we follow the analyses in [37] to calculate distances between data subsets of each year.

Specifically, we measure the Jeffrey’s Divergence [70] averaged over categorical features and the

Optimal Transport Dataset Distance (OTDD) [5] across all features. As shown in Figure 3.7b,

data from adjacent years exhibit smaller distances (in red). Besides, it presents block patterns

where data from 2006–2010, 2011–2013, and 2014–2015 are more similar within their respective

groups than with other years. This temporal shift corresponds with trends in weight similarity

over time. The observations also hint at the potential for detecting shifts, a research question

actively discussed in the literature [58, 91, 157]—by monitoring deviations in the hypernetwork’s

predictions compared to prior tasks, we may identify moments where shifts occur.
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Figure 3.7. Case study. The adaptive weights generated for each month are similar to those of
nearby months, reflecting the data shift pattern.

3.7 Summary

Our work sheds light on how to approach the distribution shift problem—from both meta-

learning and fine-tuning perspectives. We propose a novel method, REACT, that decomposes

the weights of a neural network into the sum of meta and adaptive components, following a

meta-learning paradigm to train the components. By integrating a hypernetwork to generate

adaptive weights, REACT enables knowledge sharing and adjusts weights for new distributions

with minimal fine-tuning effort. The approach is model-agnostic, generally applicable to arbitrary

neural networks. It works effectively with unlabeled and imbalanced data, making it broadly

applicable to various threat detection models and objectives. While focused on cybersecurity,

the principles and methods developed in our research can be adapted to other fields facing

similar distribution shift challenges, such as finance [47, 53, 195] and healthcare [72, 84, 169].

Our study provides insights for studies in the general machine learning community, fostering a

more comprehensive understanding of adaptation and fine-tuning by showcasing applications in

cybersecurity. One of the future directions is to incorporate a lightweight mechanism for updating
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the meta model within our method. A potential solution could involve applying aggregation of

the predicted adaptive weights into the meta model. This approach could enhance the ability to

continuously adapt to evolving distributions, especially for scenarios with significant distribution

shifts over a long period of time.

Chapter 3 incorporates material from the publication “REACT: Residual-Adaptive Con-

textual Tuning for Fast Model Adaptation in Threat Detection”, by Jiayun Zhang, Junshen

Xu, Bugra Can, Yi Fan, published in Proceedings of the ACM Web Conference 2025. The

dissertation author was the primary investigator and the lead author of this paper.
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Part II

Addressing System Heterogeneity
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Chapter 4

Collaborative Training in Resource-Skewed
Environments

The previous chapters addresses data heterogeneity during training and inference stages.

In the second part, we extend our focus to system heterogeneity when coordinating training

across distributed nodes. In this chapter, we identify a practical scenario where nodes in the

federated network are skewed in data volume and computing resources. We leverage a graph

hypernetwork to enable effective knowledge sharing.

Real-world deployment of federated learning requires orchestrating clients with widely

varied compute resources, from strong enterprise-grade devices in data centers to weak mobile

and Web-of-Things devices. Prior works have attempted to downscale large models for weak

devices and aggregate shared parts among heterogeneous models. A typical architectural

assumption is that there are equally many strong and weak devices. In reality, however, we often

encounter resource skew where a few (1 or 2) strong devices hold substantial data resources,

alongside many weak devices. This poses challenges—the unshared portion of the large model

rarely receives updates or gains benefits from weak collaborators.

We aim to facilitate reciprocal benefits between strong and weak devices in resource-

skewed environments. We propose RECIPFL, a novel method featuring a server-side graph

hypernetwork. This hypernetwork is trained to produce parameters for personalized client

models adapted to device capacity and unique data distribution. It effectively generalizes knowl-
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edge about parameters across different model architectures by encoding computational graphs.

Notably, RECIPFL is agnostic to model scaling strategies and supports collaboration among

arbitrary neural networks. We establish the generalization bound of RECIPFL through theoretical

analysis and conduct extensive experiments with various model architectures. Results show

that RECIPFL improves accuracy by 4.5% and 7.4% for strong and weak devices respectively,

incentivizing both devices to actively engage in federated learning.

4.1 Introduction

The real-world deployment of federated learning needs to deal with heterogeneous edge

computing environments [93, 187, 74]. Typically, a few devices, often owned by large enterprises,

can be powerful enough to afford large models, while the vast majority are ‘weak’ devices that can

only host small models, such as mobile and Web-of-Things (WoT) devices owned by individuals.

Universally deploying homogeneous small models as required by traditional methods [88, 89]

not only wastes available compute resources but also compromises performance. Ideally, we

need models scaled to fit varying device capacities and perform effective model aggregation.

To support collaboration among heterogeneous models, prior methods [102, 147, 33,

127, 82] downscale the large model for weak devices and perform aggregation on common

components. These works typically assume there are equally many strong and weak de-

vices [82, 200, 127]. However, in reality, we often see a skewed computing environment

where a small number of strong devices operated by enterprises are accompanied by a large

number of user-owned weak devices. For example, a smartwatch company wants to develop

an activity recognition system. The company trains a large model using a vast dataset gathered

from controlled environments, while its smartwatch users join via federated learning to train

small models using personal data in the wild. Although small models are expected to benefit

from the large model [62, 10], their contribution to the large model is dubious given their limited

capability.
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In light of this gap, we explore a new research question: Can strong devices benefit

from weak devices in resource-skewed environments? We consider an extreme scenario where

limited (1 or 2) strong devices and numerous weak devices engage in the learning, as depicted

in Figure 4.1a. In this scenario, the learning system heavily leans on weak devices, leaving the

unshared portion of the large model rarely being updated or deriving benefits from others. This

presents a significant challenge in improving strong devices.

Existing approaches employ either width-scaling to prune channels or neurons in each

layer of the large model [102, 147, 33], or depth-scaling for layer-wise pruning [127, 82]. They

rely on weight-averaging aggregation [138, 111] to update shared layers. However, it can be

destructive when layers or neurons in small models are ill-aligned with those in large models. For

example, if the first block of ResNet [61] operates as an independent model for a complete vision

recognition process, its layers function differently compared to their counterparts within an entire

ResNet. When a few full ResNets are aggregated with many of their smaller versions (i.e., first

blocks only), the first block may only extract shallow vision features, leading to performance

decline. Even facilitated with knowledge distillation [82], improvements are not guaranteed if

knowledge is transferred from numerous small models biased by non-IID data, as corroborated

by our experiment results.

To effectively align and aggregate heterogeneous models, we propose RECIPFL, a novel

federated learning method that empowers the server with a graph hypernetwork tasked with

producing personalized model parameters for clients. Clients retain the flexibility to adapt the

model to their capacities, through pruning or architectural changes. The server transforms client

models into directed acyclic graphs to delineate their computation flow among layers. Figure 4.2

presents the overview of RECIPFL. Unlike traditional weight-averaging aggregation, which

requires layers to have uniform operations, sizes, and computational flows, graph hypernetwork

supports collaboration among arbitrary model architectures. This is achieved by encoding the

computational graphs of client models with a graph neural network (GNN) [166, 115] and

decoding parameters with multi-layer perceptrons (MLPs). It captures shared patterns among
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Figure 4.1. Illustration of problem setting and the performance of prior methods in resource-
skewed environments.

model architectures, such as residual block and convolution patterns, and generalizes knowledge

across them. The hypernetwork is trained using feedback (i.e., updated weights) from clients

during federated learning. The computations of hypernetwork are executed by the server and

therefore do not add extra communication or computation overhead to edge devices. We further

augment weak devices by distilling knowledge from large models to smaller ones on strong

devices.

We theoretically analyze the generalization bound of RECIPFL and empirically evaluate

RECIPFL across four datasets for image classification and natural language inference. We

simulate non-IID client distributions and evaluate personalized client models on their own test

data as real-world WoT and mobile computing applications typically require. The results show

RECIPFL outperforms state-of-the-art methods across different scaling strategies and various

model architectures with significant margins. Notably, RECIPFL yields improvements for both

strong and weak devices, demonstrating that even devices with limited computational resources

can contribute meaningfully to the learning system, thereby providing incentives to both devices

to participate in federated learning.

Our contributions are summarized as follows:
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Figure 4.2. Overview of RECIPFL. The server transforms client models into directed acyclic
graphs (DAGs) to represent the computation flow among operations and trains a graph hypernet-
work to generate weights for customized client models.

• We address a new research question in federated learning: Can strong devices benefit from

weak devices in resource-skewed environments? We show the existing approaches do not

guarantee improvement for both types of devices.

• We propose a novel method RECIPFL to effectively generate weights for heterogeneous client

models based on graph hypernetwork, compatible with arbitrary model scaling strategies.

• We establish the generalization bound of RECIPFL through theoretical analysis and validate

its performance through extensive experiments. RECIPFL outperforms various state-of-the-art

methods with significant margins and demonstrates that weak devices can also contribute

effectively to the learning of strong devices.

4.2 Preliminaries

4.2.1 Problem Definition

We aim to build a federated learning system with M clients that allows the clients to have

customized model architectures {Gm|m ∈ [M]} that fit their specific running capabilities. Within

the M clients, there are a few (e.g., 1 or 2) strong devices that have enough running capacity to

hold large models and the rest are weak devices having limited computing power. Denote the

training set on client m as Dm =
{(

x(m)
i ,y(m)

i

)}Nm

i=1
, where x(m)

i is the input data and y(m)
i is the

label, and the data distribution of client m as Pm. Denote ℓ as the loss function. The goal is to
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learn a personalized model fm(·;θm) for every client m that works on its own data distribution:

θθθ
∗ = argmin

θθθ

1
M ∑

M
m=1E(x,y)∼Pmℓ( fm(x;θm),y), (4.1)

where θθθ is the set of client model weights: θθθ = {θ1, . . . ,θM}.

4.2.2 Resource-Skewed Computing Environments

Existing works often assume the strong and weak devices are equally distributed [127, 82,

200]. Among these, a tangential sensitivity evaluation [127] indicates that when strong devices

are the minority, the large models deployed on them converge slowly and the performance is

even worse than training them without the participation of weak devices. Yet, there is a lack of

analysis or solutions for this resource skew issue.

To understand how existing methods perform in skewed computing environments, we

summarize the results from Section 2.5 by averaging the accuracies across all datasets for strong

and weak devices respectively. Our experiments use a majority of weak devices (e.g., 5, 20, 50,

500) and 1 or 2 strong devices, allocating 50% of data to strong devices and the rest to weak

devices under Dirichlet distributions. We craft two naive baselines: AllSmall, which trains small

models on all devices via federated learning, and ExclusiveFL, which trains large models on

strong devices and small models on weak devices, with weight aggregation carried out separately

within each group. In addition, we include comparisons with existing federated methods for

heterogeneous models [82, 127, 200, 33]. We evaluate client models on their own test data

sampled from clients’ data distributions. The summary is presented in Figure 4.1b, from which

we draw the following observations:

• Small models are insufficient for strong devices: By comparing AllSmall and ExclusiveFL on

strong devices, we see that training small models with collaboration from weak devices yields

lower accuracy compared to training large models independently.

• Weak devices benefit from collaboration with strong devices: By comparing ExclusiveFL and
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other methods on weak devices, we observed that all other methods show higher accuracy than

training small models independently.

• Strong devices derive minimal benefits from weak devices with existing methods: For strong

devices, we see the accuracy of existing methods is generally lower than ExclusiveFL.

• Existing methods could enhance the performance of one type of model but struggle to improve

both. For example, DepthFL achieves high accuracy on weak devices but does not perform

well on strong devices. FlexiFed achieves higher accuracy on strong devices than DepthFL but

shows less improvement on weak devices.

Recognizing these limitations, we aim to enable mutual benefits between both types of

devices in resource-skewed environments.

4.3 Methodology

RECIPFL employs a graph hypernetwork at the server that learns from client feedback

during federated learning. This hypernetwork encodes clients’ computational graphs, enabling it

to generalize knowledge across different model architectures and produce personalized client

parameters. Algorithm 3 outlines the pseudo code.

4.3.1 Federated Training

In each training round, the server initiates the process by randomly selecting a subset of

clients, denoted as St , to conduct local updates. The server utilizes the graph hypernetwork to

produce model weights {θ̃m|m ∈ St}, sends the weights to selected clients and waits for their

feedback. At the client side, the client performs local updates by training the client model fm

with its local dataset Dm. The training objective at client m is to minimize the loss:

argmin
θθθ

Lm(θm) = argmin
θθθ

1
Nm

Nm

∑
i=1

ℓ
(

fm

(
x(m)

i ;θm

)
,y(m)

i

)
, (4.2)
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Algorithm 3: Pseudo-code of RECIPFL
Input :Communication rounds T , number of selected clients per round |St |, local

training epochs E, client descriptors {am|m ∈ [M]} and model architectures
{Gm|m ∈ [M]}.

Output :A graph hypernetwork that generates personalized model weights for
heterogeneous client models.

1 Server executes:
2 for t = 1, . . . ,T do
3 Select a subset St of clients at random;
4 for m ∈ St do
5 θ̃m← GHN(Gm,am;φ);
6 θm← ClientUpdate(m, θ̃m);
7 ∆θm← θm− θ̃m;

8 Update GHN: φ ← φ −ηs ∑m∈St (∇φ θm)
T ∆θm;

9 return GHN(·;φ);
10 ClientUpdate(m, θ̃m):
11 θm← θ̃m;
12 for e = 1, . . . ,E do
13 Partition Dm into mini-batches

⋃ jm
i=1 B(m)

i ;
14 for i = 1, . . . , jm do
15 θm← θm−ηc∇θmLm(θm;B(m)

i ) ;

16 return θm to server ;
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where Nm is the number of samples in the local dataset Dm. Let ηc be the learning rate for local

training at the client. Starting with the initial value θm = θ̃m, the client updates θm as follows:

θm← θm−ηc∇θmLm(θm). (4.3)

After local training, the clients send the updated model weights back to the server. The

server then calculates the change in local model parameters ∆θm = θm− θ̃m, and uses the chain

rule ∇φLm = (∇φ θm)
T ∇θmLm to update the graph hypernetwork parameter φ :

φ ← φ −ηs ∑m∈St
(∇φ θm)

T
∆θm, (4.4)

where ηs is the learning rate for updating the graph hypernetwork. By adopting the graph

hypernetwork, we modify Equation 4.1 and formulate the new learning objective as:

argminφL̂ (φ ,DDD), (4.5)

where L̂ (φ ,DDD) = 1
M ∑

M
m=1 Lm(GHN(Gm,am;φ)) is the average empirical loss on dataset DDD =

{DDDm}M
m=1.

Importantly, the graph hypernetwork resides on the server, with all computations related

to the graph hypernetwork executed solely by the server. This design ensures it does not impose

additional communication or computational overhead on clients.

4.3.2 Weight Generation with Graph Hypernetwork

Representation of target network architectures. We represent the computational graph

of a neural network model as a directed acyclic graph, denoted as G (V ,E ), where the nodes V

are the operators (e.g., convolution, pooling, linear layer, etc.) and the directed edges E describe

the computation flow in the order of forward propagation among the operators. Conventional

graph hypernetworks are inefficient in dealing with repeated similar local connection patterns in
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Figure 4.3. Graph hypernetwork architecture in RECIPFL.

deep networks such as the ResNet blocks in ResNet-152. To enhance the ability to distinguish

local connection patterns in target networks, we inform the graph hypernetwork about the

model parameters of the target network at the current training round. To do so, the node features

{hv|v∈V }= {[lv,qv]|v∈V } consist of two parts: (1) one-hot vectors lv indicating the operations

performed by the node, and (2) the current parameters qv of the operators. A linear embedding

layer transforms the one-hot vector lv to a dense vector and a Transformer encoder [192] maps

the variable-length node parameters qv to a fixed-dimensional vector. The linear embedding

layer and the Transformer encoder are learnable and are updated during training.

Graph hypernetwork architecture. As depicted in Figure 4.3, the graph hypernetwork

consists of an encoding process that extracts features from node information and a decoding

process that predicts weights for parametric operators according to the encoded features.

In the encoding phase, a graph neural network (GNN) [166, 115] is employed to conduct τ

steps of graph propagation within G (V ,E ) of the target network. During this graph propagation,

the GNN topologically traverses the nodes in both forward and backward directions, iteratively

conducting message passing and updating node features. For the t-th propagation step, the GNN
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first forward traverses nodes. Every node v receives messages from its incoming nodes and sends

messages to its outgoing nodes. Denote the incoming nodes to node v as IN(v). The message

function is modeled with an MLP shared among all the nodes. The message received by node v

at step t is:

m(t)
v = ∑u∈IN(v)MLP(h(t)u ) (4.6)

The node feature vector h(t)v is then updated based on the aggregated message m(t)
v and

the feature vector of node v at step t−1 using a Gated Recurrent Unit (GRU) cell [28]:

h(t)v = GRU(h(t−1)
v ,m(t)

v ) (4.7)

After traversing G (V ,E ) in forward propagation, the GNN reverses the traversal direc-

tion and updates the node features again, i.e. receives messages from its incoming nodes along

backward passes and sends to its outgoing nodes.

In the decoding phase, we use an individual MLP as the decoder for each type of

parametric operator to generate parameters. To further support personalization, we introduce

client descriptors {am|m ∈ [M]} that describe the data characteristics of every client m. This

descriptor is provided as input to the MLP decoder. Specifically, we use the class distribution of

local training samples as the client descriptor. Alternatively, the client descriptor can simply be

the client IDs, and in that case, a linear embedding layer can be used to transform them into client

embeddings, enabling the learning of client features through training. Let MLPl(·) represent the

decoder for the l-type operator. MLPl operates on the concatenation of the node embedding and

the client embedding, denoted as [h(τ)v ,am], and generates parameters for the node. The resulting

set of generated weights for the target network is:

w = {wv|v ∈ V }= {MLPlv([h
(τ)
v ,am])|v ∈ V } (4.8)

To handle different dimensionalities of layers within the same operator type, the outputs
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of the decoder are reshaped through tiling and concatenation to match the shape of the target

layers following common practices in graph hypernetworks [85, 227].

4.3.3 Strong-to-Weak Device Knowledge Transfer

To further enhance the learning of small models, we leverage the computing resources on

strong devices and employ regularizations to distill knowledge from large models to small ones.

For strong devices, we let the central graph hypernetwork generate weights for both

small and large models. Denote the small and large model at the strong device m as f S
m and f L

m

respectively and the corresponding model parameters are θ S
m and θ L

m. After training the large

model f L
m, we proceed to train the small model and distill knowledge from the large one. We

introduce an additional cross-entropy loss term CE(·) to let the small model mimic the prediction

probabilities of the large model. In addition, if the representations generated by the last hidden

layers of the models have the same dimension, we add a KL-divergence loss term DKL(·) to align

the feature spaces. Denote the softmax probability distributions of features generated by the last

hidden layers of the small model and the large model as pS
i and pL

i respectively. The optimization

objective for training small model f S
m on strong device m is to minimize the following loss:

L S
m(θ) =

1
n ∑

n
i=1[CE( f S

m(xi;θ
S
m),yi)+CE( f S

m(xi;θ
S
m), f L

m(xi;θ
L
m))+DKL(pL

i ∥pS
i )]. (4.9)

After local training, the updated weights of both small and large models are sent to the

server and used for the update of the graph hypernetwork. This knowledge transfer mechanism

helps small models benefit from the insights learned by strong devices.

4.4 Analysis

In this section, we establish the generalization bound of RECIPFL.

Consider a training set on clients Dm =
{(

x(m)
i ,y(m)

i

)}N

i=1
for some natural number

N ≥ 1, i.e. we sample uniformly N training data from each data distribution Pm on client m for
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m = 1, · · · ,M.

Assume the loss function ℓ takes value in [0,1], or equivalently with rescaling, ℓ is

bounded. Let d be the dimension of the hypernetwork parameter φ and assume φ ∈ [−R,R]d for

some large R > 0. Finally, assume the loss l is Lipschitz with respect to φ with Lipschitz constant

K > 0, i.e. |ℓ( fm (x;GHN(Gm,am;φ)) ,y)− ℓ( fm (x;GHN(Gm,am;φ ′)) ,y) | ≤ K∥φ −φ ′∥ for all

x,y and m = 1, . . . ,M. Here ∥ · ∥ denotes the Euclidean distance on Rd . Define the expected loss

as:

L (φ) =
1
M ∑

M
m=1E(x,y)∼Pmℓ( fm(x;(Gm,am;φ)),y). (4.10)

Theorem 4.4.1. If the number of samples on each client satisfies

N ≥max

{
4d

Mε2 log

⌈
4RK
√

d
ε

⌉
+

4
Mε2 log

4
δ
,

1
ε2

}
, (4.11)

then with probability at least 1−δ with respect to the probability distribution on DDD = {DDDm}M
m=1,

L (φ)< L̂ (φ ,DDD)+ ε for every φ .

The proof and more details are given in Appendix A.3. From Equation 4.11, we observe

that the number of training samples N per device required for generalization is negatively related

to the number of devices M, which suggests that introducing new weak devices to the system can

help lower the threshold for generalization. Moreover, when there is a strong device possessing a

large amount of data, it can also lower the threshold for weak devices. For example, if there is

one strong device and M weak devices, we can regard the strong one as k virtual devices, which

increases the total number of devices to M+ k, and thereby lowers the threshold for the number

of samples on weak devices. The only requirement is that the strong device then needs to take on

k times more data samples than that is required for a weak device.
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Table 4.1. RECIPFL is compatible with various ways of model scaling, showing more flexibility
than existing solutions.

Scaling Strategy HeteroFL InclusiveFL FlexiFed DepthFL RECIPFL (ours)

depth-wise ✓ ✓ ✓ ✓
width-wise ✓ ✓

architecture-wise ✓

(b) depth-wise (c) width-wise (d) architecture-wise(a) original model

,#

+#

,$
,#

+#
+$

layer (color represents operations)

Figure 4.4. Illustration of model scaling strategies. The rectangle blocks represent the layers in
neural networks. Different colors indicate different operations (e.g., convolution).

4.5 Experiments

4.5.1 Experiment Setup

Configurations are summarized in Table 4.2. We provide details below.

Datasets. We evaluate RECIPFL on two fundamental categories of machine learning

tasks: image classification with CIFAR-10 [90], CIFAR-100 [90], MNIST [95], and natural

language inference with MNLI [209]. We simulate quantity skew where strong devices possess

a dominant amount of data, as it often occurs in realistic resource-skewed environments. We

allocate 50% of the entire dataset to the strong devices, while the weak devices evenly share the

remaining half. This ensures the total amount of the data owned by weak devices is comparable

to that owned by strong devices, making it possible for weak devices to contribute to the model

enhancement of strong devices. Note that we conduct exploration studies in Section 4.5.5 to

investigate the impact of data ratio by changing this configuration. To simulate non-IID client

distributions, we follow the prior work [64, 82] and employ Dirichlet distribution Dir(α = 0.5)
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Table 4.2. Federated learning configurations.

Dataset
# of devices Data allocation

Large model
# of parameters

Pretrained?
Strong Weak Strong Weak Original Depth-scaled Width-scaled

CIFAR-10 1 5 50% 10% ResNet-18 11M 450K 444K ✗

CIFAR-100 1 50 50% 1% DenseNet-121 1M 258K 276K ✗

MNIST 2 500 25% 0.1% LeNet-5 44K 5.6K (scaled in depth & width) ✗

MNLI 1 20 50% 2.5% BERT 110M 67M (DistilBERT) ✓

to sample the class distribution for every client. For the strong device, we assume it follows the

universal distribution due to its substantial data volume.

Model architectures. To evaluate the robustness of our method, we experiment with var-

ious popular neural network architectures. The large models include ResNet-18 [61], DenseNet-

121 [66], LeNet-5 [95] and BERT [32]. Our method is compatible with different ways of model

scaling and we test all three scaling strategies shown in Figure 4.4. For depth-scaling, we

follow [82] and regard the first block of ResNet-18 and DenseNet-121 as the small models. For

width-scaling, we follow [33] and shrink the channels and hidden layers of the large model based

on a scaling ratio. In order to achieve comparable model sizes with depth-scaling, we carefully

set the scaling ratio for width-scaling by comparing the parameters in the depth-scaled models to

those in the large models. In addition, we craft a smaller version of LeNet-5 which reserves the

first block of LeNet-5 and scales the rest layers along the width. By doing this, we enable both

depth- and width-wise aggregation for the comparison of existing methods. For architecture-wise

scaling, We use DistilBERT [165] as the smaller version of BERT.

Enabling fine-tuning from pretrained models. RECIPFL can support fine-tuning by

inserting adapters [63], a small set of new parameters, and classification heads into pretrained

models. During training, only the adapters and classification heads are updated and commu-

nicated between the server and clients, while the other layers are fixed at local. We initialize

BERT1 and DistilBERT2 with pretrained weights provided by HuggingFace.

1https://huggingface.co/bert-base-uncased
2https://huggingface.co/distilbert-base-uncased
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Compared methods. First, we construct two naive baselines based on the classical

federated learning algorithm FedAvg [138]:

• AllSmall: All clients deploy the small models to compromise the smallest running capacity

and conduct federated learning.

• ExclusiveFL: Clients with the same level of capacity are equipped with the same model, i.e.,

strong devices deploy large models while weak devices deploy small models. Each type of

device performs weight aggregation exclusively.

The performance of weak devices under AllSmall and that of strong devices under ExclusiveFL

serve as reference points for assessing whether a method enhances the performance of weak or

strong devices. We then compare RECIPFL with state-of-the-art methods for federated learning

with heterogeneous models:

• HeteroFL [33] adopts width-scaling where channels and hidden layers are scaled according

to a fixed ratio. The global layer updates a subset of parameters correspondingly from scaled

layers and all parameters from unscaled layers by weight averaging.

• FlexiFed [200] identifies common base layers across client models and clusters personal layers

into groups. The same group of personal layers have identical operations and sizes. Then, it

fuses the knowledge contained in common base layers and clustered personal layers by weight

averaging.

• InclusiveFL [127] adopts depth scaling. The shared layers are aggregated via weight averaging.

It also distills knowledge from the classifier of the large model to its shallow counterpart by

calculating a gradient momentum as the average over updates of the deep layers (pruned in the

small model) in the large model and injecting it to the last encoding layer in the small model.

• DepthFL [82] scales the large model along the depth and creates local models with multiple

classifiers at different depths. The shared layers are averaged for aggregation. It is further
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equipped with a self-distillation strategy to transfer knowledge among deep and shallow

classifiers if available at local. For inference, the client uses the ensemble of all internal

classifiers.

Table 4.1 showcases the downscaling strategies that prior methods are designed for. For

architecture-wise scaling, these methods identify common layers (e.g. classification heads) for

aggregation.

Federated learning configuration. We evaluate each client model on its respective test

data drawn from the client’s data distribution. To achieve personalization, for all methods, we

fine-tune client models on their local training dataset for one round after receiving parameters

from the server. Communication rounds T are set based on the convergence rate of each task.

Specifically, we set T = 50 rounds for CIFAR-10 and MNLI, T = 100 rounds for MNIST, and

T = 500 rounds for CIFAR-100. At each round, the server randomly selects |St |= min(M,10)

clients. Since RECIPFL trains both small and large models on strong devices for knowledge

transfer, we also train both types of models on strong devices for compared methods (i.e.,

FlexiFed, HeteroFL, InclusiveFL, and DepthFL) to ensure a fair comparison. During evaluation,

only the target client model is evaluated. The experiments are repeated 5 times. Following [113],

we report the average accuracy and standard deviations of the last 20% rounds for strong and

weak devices respectively.

4.5.2 Main Results and Analysis

The experiment results are presented in Table 4.3. Note that the average accuracy on

weak devices may appear higher than that on strong devices since the evaluation is based on every

client’s data distribution and the weak devices may only have a small subset of classes, making it

easier to get higher accuracy. We observe that no scaling strategy consistently outperforms others.

For example, width-scaling works better than depth-scaling on CIFAR-10 and CIFAR-100

with the ResNet and DenseNet architectures but it (i.e., the result of HeteroFL) lags depth-

scaling on MNIST with LeNet. With architecture-wise scaling on the MNLI dataset, HeteroFL
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Table 4.3. Experiment results (average accuracy and standard deviation). RECIPFL consistently
outperforms the compared methods across all datasets and model scaling strategies, benefiting
both strong and weak devices.

Scaling Method
CIFAR-10 CIFAR-100

Strong Weak Strong Weak

Depth

AllSmall 64.34±2.14 68.50±3.42 17.86±2.56 25.56±3.11
ExclusiveFL 84.85±1.85 59.11±4.22 32.21±3.81 19.22±2.07

FlexiFed [200] 82.86±1.77 67.66±3.93 28.60±3.48 27.84±2.98
InclusiveFL [127] 83.22±0.47 67.66±3.14 18.98±3.49 28.71±2.87
DepthFL [82] 73.90±1.49 78.16±1.48 22.08±3.58 36.83±2.87

RECIPFL 85.28±0.22 78.65±1.35 41.63±2.24 45.52±3.12

Width

AllSmall 82.86±1.77 78.90±2.87 29.80±3.32 37.90±2.83
ExclusiveFL 83.96±1.97 70.65±3.99 32.22±6.66 24.49±3.52
HeteroFL [33] 84.76±1.19 77.93±2.92 26.51±2.70 39.05±2.82

RECIPFL 85.06±0.13 82.88±1.29 43.64±2.84 42.00±3.88

Method
MNIST MNLI

Strong Weak Strong Weak

AllSmall 91.73±3.94 77.05±7.47 73.47±0.52 82.13±2.89
ExclusiveFL 92.97±1.98 77.85±5.14 80.20±0.20 70.52±6.04

FlexiFed [200] 92.70±2.72 73.89±8.08 79.65±0.18 82.31±6.15
InclusiveFL [127] 84.77±3.12 75.72±6.27 79.87±0.30 81.17±4.31
DepthFL [82] 94.33±1.95 78.39±7.52 77.11±0.90 80.92±6.64
HeteroFL [33] 89.53±3.22 75.95±8.01 79.65±0.18 82.31±6.15

RECIPFL 97.07±1.87 86.36±6.60 82.78±0.57 83.37±4.72

and FlexiFed become equivalent, since the fine-tuning layers, which are positionally aligned

across models, have identical sizes (i.e., their scaling ratio is 1). RECIPFL outperforms the

compared methods across all datasets, regardless of the model scaling strategies, demonstrating

its capability to generalize knowledge across different model architectures. Notably, RECIPFL

shows its ability to improve the model performance on both strong devices and weak devices.

Moreover, RECIPFL also outperforms the baselines in fine-tuning from the pre-trained weights

of BERT and DistilBERT. Figure 4.5 shows the performance of all compared methods with the

increase in communication round. We observe that RECIPFL often achieves higher accuracy in

fewer rounds compared to the baseline methods.

4.5.3 Ablation Study

In Section 4.3.3, we introduced the knowledge transfer mechanism within our RECIPFL

method to enhance the performance of weak devices. To assess its effectiveness, we craft an

ablated version of RECIPFL without knowledge transfer, denoted as RECIPFL w/o KT, and

evaluate the model performance on weak devices across four datasets. The CIFAR datasets are

tested under the depth scaling setting as examples. We compare the performance of RECIPFL,

RECIPFL w/o KT, AllSmall, and DepthFL (the best-performing baseline with depth scaling).

As shown in Figure 4.6, RECIPFL w/o KT already exhibits significant improvements over
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Figure 4.5. Performance w.r.t. communication round.

the naive baseline AllSmall, and it can often outperform the state-of-the-art method DepthFL.

However, the comparison between RECIPFL and RECIPFL w/o KT indicates that integrating

knowledge transfer leads to even better small models. The knowledge (i.e., prediction and feature

distribution) from strong devices contribute to this improvement.

4.5.4 More Diverse Device Capacities

RECIPFL is not limited to the setup of one large and one small model architecture and can

work with diverse device capacities. To support this claim, we conduct an experiment involving

a more heterogeneous set of network architectures: 16 small clients training LeNet-5, three
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Figure 4.6. Ablation study: performance of weak devices.

Table 4.4. Performance with more diverse device capacities.

Method Small (LeNet-5) Medium (ResNet-101) Large (VGG-16)

AllSmall 69.22±2.16 66.58±1.84 59.06±1.41
ExclusveFL 46.00±3.71 72.38±3.80 79.86±2.52
RECIPFL 70.12±2.33 86.37±1.72 81.23±0.41

medium clients training ResNet-101, and one large client training VGG-16. With RECIPFL,

strong and medium clients conduct knowledge transfer for models smaller than their respective

capacities. We use the CIFAR-10 dataset as an example, with data partitioning of 15% to small

clients, 35% to medium clients, and 50% to the large client. The non-IID data on small and

medium clients are sampled using Dirichlet distributions Dir(α = 0.5). As shown in Table 4.4,

RECIPFL improves performance on each type of device compared to AllSmall and ExclusiveFL.

4.5.5 Exploratory Studies

To get deeper insights into the performance of the federated systems under various

resource skew conditions, we conduct exploratory studies using the MNIST dataset with LeNet

models.

Impact of data ratio between two types of devices. We aim to understand how much

data on weak devices is necessary to help improve strong devices. We vary the ratio of data

allocated to each type of device to the entire dataset among {0.1, 0.5, 0.9}. The number of

devices remains the same as in the main experiment, i.e., 500 weak devices and 2 strong devices.

Results are presented in Figure 4.7a. On both weak and strong devices, models perform better
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Figure 4.7. Exploratory studies. RECIPFL exhibits superior scalability and robustness across
a range of resource skew scenarios compared to the baselines, consistently enhancing the
performance of both strong and weak devices.

with higher data ratios. It is worth noting that with less than 50% data allocated to strong devices,

the performance gap between RECIPFL and ExclusiveFL becomes more evident. This suggests

when weak devices hold comparable data amounts to strong devices, they are more likely to

contribute significantly to strong devices.

Scalability and skewness. To evaluate the scalability of the federated systems, we first

vary the number of weak devices among {250, 500, 750}. The number of strong devices and the

data ratio are kept the same as in the main experiments, where the two large devices own 50%

of the whole dataset and the weak devices share the rest. The results are shown in Figure 4.7b.

When increasing the number of weak devices, the strong devices get selected for local updates

less frequently. Consequently, within the same communication rounds, the performance of large

models degrades. Meanwhile, with fewer data allocated per weak device (as all weak devices

collectively share 50% of the dataset), the performance of small models also declines. Despite

these challenges, RECIPFL demonstrates an impressive ability to memorize model parameters

and generalize them across different architectures. As a result, even with reduced client sampling

ratios, clients still achieve better performance compared to AllSmall and ExclusiveFL. This

suggests RECIPFL is more scalable than the baselines. Then, we increase the number of strong

devices from 2 to 5 and 50 while keeping weak devices at 500. The strong devices equally

share 50% of the entire dataset. As shown in Figure 4.7c, RECIPFL always achieves better

performance than the two baselines on both strong and weak devices. These results highlight the

robustness of RECIPFL in different levels of skewness.
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4.6 Related Work

Federated learning with heterogeneous models. Traditional federated learning meth-

ods [88, 89, 111, 80, 236] have primarily focused on homogeneous models across devices.

These methods often fail to address the inherent system heterogeneity found in real-world

edge computing environments. Recent studies of federated learning in the context of diverse

computational capacities have proposed novel approaches that facilitate collaboration among

heterogeneous models [237, 103, 39, 4], focusing on two directions: (1) how to scale the large

model and (2) how to effectively aggregate the models with different sizes. In the first direction,

methods are proposed to prune the model along depth by pruning the deepest layers [127, 82]

or along layer width by scaling the width of hidden channels [102, 147, 33]. In the second

direction, typical practices [200] are to identify shared patterns (e.g., layers) in local models and

aggregate the common parts. Recent methods like InclusiveFL [127] and DepthFL [82] further

leverage knowledge distillation for transferring knowledge among deeper layers and shallow

layers to enhance the performance of small models. These approaches have shown promise in

accommodating device-specific requirements and resource constraints. However, the reliance on

a particular scaling strategy and the naive weight averaging-based aggregation constrain model

performance in the presence of resource skew. Our work introduces a more effective way to

generalize knowledge across different models by training a graph hypernetwork.

Hypernetworks in Federated Learning. Hypernetworks [56] have demonstrated the

potential in meta-learning scenarios [193], facilitating fast adaptation to new tasks, as they

capture the common knowledge among tasks via the weight generation mechanism. Prior

work [170] has explored its use in federated learning by training a hypernetwork at the server to

generate personalized model weights while preserving the effective parameter-sharing feature of

hypernetworks. This previous work uses a linear-structured hypernetwork that only works with

homogeneous model architectures. Graph hypernetwork [227, 85] was originally proposed for

neural architecture search as it can effectively encode the computational graph information of
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various neural networks. There has been an initial try on leveraging graph hypernetworks for

generating weights across different client models [122]. However, the prior work trains local

hypernetworks at clients and aggregates them by weight averaging at the server following a typical

federated training process which requires high computational budgets at clients and is impractical

for resource-constrained devices. In contrast, RECIPFL equips the graph hypernetwork at the

server and we design ways to update the graph hypernetwork based on predicted weights and

clients’ feedback. The computations of hypernetwork are executed only by the server and

therefore do not add any additional overhead to the edge devices.

4.7 Summary

We study the problem of federated learning in the presence of resource skew among

devices, specifically, when the majority are weak devices and there are only limited (1 or 2)

strong devices. We show that existing methods do not guarantee performance improvement

for both types of devices. We propose RECIPFL, training a central graph hypernetwork that

enables the collaboration of clients with heterogeneous model architectures to fit specific running

capacities. RECIPFL is agnostic to model scaling strategies and can generalize knowledge about

model weights across different neural network architectures. RECIPFL outperforms state-of-

the-art methods with significant margins and demonstrate that even weak devices can contribute

effectively to the learning system, providing both devices with an incentive to participate. In

future work, we plan to design mechanisms to adaptively adjust the model size in response to

the dynamic changes in the running capacity of devices caused by user usage. This will enable

efficient utilization of computing resources during learning. Together with our proposed method,

we anticipate our solutions will create a viable, more powerful, and useable alternative to current

large model services, alleviating privacy and efficiency concerns by facilitating edge-based

learning without the need to transmit user input to central servers.

Chapter 4 incorporates material from the publication “How Few Davids Improve One
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Goliath: Federated Learning in Resource-Skewed Edge Computing Environments”, by Jiayun

Zhang, Shuheng Li, Haiyu Huang, Zihan Wang, Xiaohan Fu, Dezhi Hong, Rajesh K. Gupta,

Jingbo Shang, published in Proceedings of the ACM Web Conference 2024. The dissertation

author was the primary investigator and the lead author of this paper.
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Chapter 5

Asynchronous Aggregation for Efficient
Learning

In this chapter, we adress system heterogeneity from another aspect—synchronization.

While the previous chapter enables collaboration among devices with varying model architectures,

the distributed nodes still exhibit significant divergences in training speed, leading to considerable

idle time and inefficient resource utilization. To mitigate this issue, we introduce an asynchronous

federated learning approach that allows nodes to contribute updates at their own pace without

waiting for slower participants. This approach accelerates the training process, enhancing

efficiency and scalability in distributed environments.

Asynchronous federated learning mitigates the inefficiency of conventional synchronous

aggregation by integrating updates as they arrive and adjusting their influence based on staleness.

Due to asynchrony and data heterogeneity, learning objectives at the global and local levels

are inherently inconsistent—global optimization trajectories may conflict with ongoing local

updates. Existing asynchronous methods simply distribute the latest global weights to clients,

which can overwrite local progress and cause model drift. In this work, we propose ORTHOFL,

an orthogonal weight calibration mechanism that decouples global and local learning progress

and adjusts global shifts to minimize interference before merging them into local models.

In ORTHOFL, clients and the server maintain separate model weights. Upon receiving a

client update, the global weights are updated via a moving average. For client weights, the
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Figure 5.1. Time synchrony in federated learning. Asynchronous methods reduce idle time and
improve resource utilization, suited for large-scale heterogeneous environments.

server calculates the global weight shift accumulated during the client’s delay and removes

the components aligned with the direction of the received update. The resulting parameters

lie in a subspace orthogonal to the client update and preserve the maximal information from

the asynchronous global progress. The calibrated global shift is then merged into the client’s

model weights for further training. Extensive experiments on multiple tasks show that ORTHOFL

improves accuracy by 9.6% over synchronous methods and achieves a 12× speedup. Moreover,

ORTHOFL consistently outperforms state-of-the-art asynchronous baselines under various delay

patterns and heterogeneity scenarios.

5.1 Introduction

The most widely adopted federated learning protocols [138, 111, 80, 109, 199, 236, 231]

follow a synchronous update procedure. In each round, the server waits for all selected clients to

finish local training before aggregating their updates. This synchronization becomes inefficient

under heterogeneous resource conditions, where clients differ in computational power, network

bandwidth, and data volumes, due to distinct device configurations and user-system interaction

patterns. Therefore, synchronous aggregation can lead to poor resource utilization and extended

convergence time.

Asynchronous federated learning offers an alternative approach that aggregates client
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updates as they arrive (illustrated in Figure 5.1), reducing idle time caused by slower clients. In

this setting, when a client is performing local training, the server continuously aggregates updates

from other clients, shifting the global model to new states. By the time the client’s update reaches

the server, it may be stale. Existing methods manage such staleness by applying a decay factor

to updates before aggregating them into the global model [213, 125, 226, 179]. The updated

global model is directly returned to the clients for further training. Although down-weighting a

stale update reduces its negative impact on global progress, it also diminishes the integration of

meaningful knowledge from the client. Moreover, due to data heterogeneity, the optimization

objectives of the global and client models are inherently inconsistent—while the global model

aims to optimize for the overall data distribution, individual clients minimize loss on their local

data. Distributing the latest global parameters to clients for subsequent training can introduce

conflicts with their local optimization steps, potentially reversing local gains and leading to

oscillations in training.

To address the challenge, we propose to decouple global and local learning progress

and calibrate the directions of weight shifts to reduce interference during client weight merging.

The key insight is that, in the high-dimensional parameter space of neural networks, there are

multiple viable directions for effective optimization [211]. Some of these directions severely

disrupt performance on previously learned distributions, while others have little impact. This

opens an opportunity to avoid disruptive components in asynchronous update directions and

preserve both global progress and client-specific contributions.

We introduce ORTHOFL, an orthogonal weight calibration mechanism for asynchronous

federated learning. Our design is motivated by two goals: (1) minimizing interference between

global and local optimization by sharing information from the global weight shift perpendicular to

client updates and (2) selecting the most informative direction within the orthogonal hyperplane

to maximize knowledge sharing. Specifically, ORTHOFL maintains separate global and client

model weights to accommodate their distinct optimization objectives. When the server receives

a client’s update, the global weights are updated via a moving average with an adaptive decay
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factor accounting for staleness. For client model aggregation, ORTHOFL identifies the global

weight shift (induced by other clients) during the client’s delay. It projects this shift onto the

direction of the received client update and subtracts this projected component. The remaining

parameters lie in a subspace orthogonal to the client’s update. Through analysis, we show that

this orthogonal calibration strategy keeps maximal global progress while minimizing interference

with the client’s local update. The calibrated global shift is then merged with the client model for

local training.

We evaluate ORTHOFL on five datasets of different application scenarios including image

classification, text classification, and human activity recognition. Our evaluations incorporate

realistic delay distributions to reflect the heterogeneous nature of real-world deployments. Results

show that ORTHOFL achieves an averaged 9.6% accuracy improvement across the datasets

compared to the synchronous methods within the same training time and a 12× speedup in

reaching a target accuracy. Moreover, it outperforms state-of-the-art asynchronous baselines. We

also perform exploratory studies with various simulated delay distributions and data heterogeneity

levels to understand their impact on model performance and convergence speed. In summary,

our contributions are as follows:

• We analyze the key challenges of asynchronous federated learning—the inconsistency of global

and local objectives and the detrimental effect of stale updates in heterogeneous environments.

• We propose a novel orthogonal calibration method, ORTHOFL, that maintains separate global

and local model weights. It projects global shifts onto orthogonal subspaces of local updates

before sharing them with clients. This approach reduces interference, preserves meaningful

contributions from both global progress and local updates, and enhances knowledge sharing.

• We demonstrate the effectiveness and robustness of ORTHOFL through comprehensive experi-

ments on multiple datasets and various delay scenarios, providing insights on practical design

considerations for large-scale federated learning systems.
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5.2 Preliminaries

In this section, we define the asynchronous system architecture and present a motivating

study to analyze the key challenges.

5.2.1 Asynchronous System Architecture

In an asynchronous federated learning setup, a central server coordinates the training of a

global model W using data distributed across M clients. Each client m ∈ {1,2, . . . ,M} possesses

its own local dataset Dm. The data distribution of client m is denoted as Pm. The objective is to

train a global model W that generalizes well across the combined data distribution of all clients.

Formally, we aim to solve the following optimization problem:

W ∗ = argmin
W

1
M

M

∑
m=1

E(x,y)∼Pmℓ( f (x;W ),y) , (5.1)

where W denotes the global weights, ℓ the loss function, and f (x;W ) the prediction of the model

on data x with model weights W .

Clients perform local training and communicate their updates to the central server at

different times. Let T be the number of global rounds. For t ∈ {1, . . . ,T}, denote mt ∈ {1, . . . ,M}

as the client that communicates with the server at the t-th round, and τt as the round when client

mt last communicated with the server. We define the staleness of the client update as follows:

Definition 1 (Staleness). Staleness quantifies the delay between a client’s updates, representing

the number of global rounds since the client last communicated with the server. Formally, let t

be the current global round, and τt the global round when the server last received updates from

client mt . The staleness of client mt is defined as t− τt , where t− τt ≥ 1, with a staleness of 1

indicating no delay.

For simplicity, we will drop the subscripts on mt and τt with no ambiguity from now on.
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Figure 5.2. A motivating study with a fast client (10s latency) and a slow client (30/60/100s)
assigned non-overlapping classes. Objective inconsistency causes fluctuations in global accuracy
and oscillations in weight update directions.

5.2.2 A Motivating Study

We conduct an experiment on MNIST [31] with a LeNet5 [95] model to analyze the

challenges in asynchronous federated learning. We simulate the scenario with two clients: one

with a 10-second latency and the other with 30, 60, or 100 seconds. We adopt the asynchronous

method, FedAsync [213], where client updates are aggregated with decay factors based on

latency. Let W (t) denote the global weights at t-th round before aggregation, and W (t+) the global

weights after aggregation. Similarly, let W (t)
m represent the model weights of client m at t-th

round. The aggregation follows:

βt = (t− τ)−a ·β , (5.2)

W (t+) = (1−βt)W (t)+βtW
(t)
m (5.3)

where β and a are hyperparameters set to β = 0.6 and a = 0.5 as reported in FedAsync. To

create non-IID data, each client is assigned a non-overlapping half of the MNIST classes.

The global performance is shown in Figure 5.2a, where markers represent updates from

the “slow” client with longer latency. We observe an increase in accuracy when the server
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aggregates updates from the slow client, as these updates introduce knowledge of previously

unseen classes. However, this gain is gradually lost, with accuracy declining to around 0.5

after several updates from the faster client. This suggests the fast client’s updates override the

contributions of the slower client. Moreover, as the latency of the slower client increases, the

decay factor βt for integrating its updates decreases. This weakens its contribution to the global

model and slows convergence, especially under non-IID data, as valuable knowledge from the

slower client is not fully utilized.

Figure 5.2b visualizes changes in global model weights in the final hidden layer before

the classifier in the case where the latency of the two clients is 10 and 100 seconds respectively.

The y-axis represents neurons, and the x-axis represents the number of updates. The color

indicates the direction and degree of global weight changes, with red representing an increase

and blue a decrease. We observe abrupt shifts occur when switching between clients. Updates

from the slow client often decrease the neuron weights (blue), while subsequent updates from

the fast client increase the weight values (red), pulling the model in opposite directions. The

antagonistic behavior is due to objective inconsistency—while the global model optimizes for

the overall distribution, client updates follow distinct local objectives, driving oscillations in

weight aggregation.

5.3 Methodology

In this section, we introduce our ORTHOFL algorithm, present the mathematical intuition

for orthogonalization, and visualize an example of the optimization trajectories for illustration.

5.3.1 ORTHOFL Algorithm

Once receiving a client update, ORTHOFL immediately integrates it into the global model.

ORTHOFL maintains separate variables for global and client models. Before merging global

weight shift to the client model, the server orthogonalizes the global shift against the received

client update. This orthogonality allows the client to incorporate global progress while continuing
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Algorithm 4: Pseudo-code of ORTHOFL Algorithm
Input :Total number of updates T , local training epochs E, initial global model

weights W (0).
Output :Global model weights W (T+).

1 Server execution:
2 Send W (0) to all available clients;
3 for t = 1, . . . ,T do
4 Receive update from a client;
5 Calculate delay t− τ;
6 Compute global weight shift: ∆W =W (t)−W (τ+) ;

7 Compute client weight change: ∆Wm =W (t)
m −W (τ+)

m ;

8 Orthogonalize each layer: ∆W l⊥ = ∆W l− ∆W l ·∆W l
m

∆W l
m·∆W l

m
∆W l

m;

9 Merge weights for client: W (t+)
m =W (t)

m +∆W⊥;

10 Update global model: W (t+) = (1−βt)W (t)+βtW
(t)
m ;

11 ClientUpdate(m, W (t+)
m )

12 return W (T+);
13 ClientUpdate(m, W̃ ):
14 Initialize local model: Wm← W̃ ;
15 for e = 1, . . . ,E do
16 Partition Dm into mini-batches

⋃ jm
i=1 B(m)

i ;
17 for i = 1, . . . , jm do
18 Update local weights: Wm←Wm−ηc∇WmLm(Wm;B(m)

i ) ;

19 return Wm to server;

its local optimization without disruption. The pseudo-code is presented in Algorithm 4.

Global Aggregation via Moving Average. Denote W (t) as the global model weights

at the t-th round before client update and W (t+) after update. Similarly, let W (t)
m be the client

mt’s local model weights at the t-th round before update and W (t+)
m after update. Note that

W (t+1) :=W (t+) as the global model weights stay unchanged after communication with a client

before the next client update. We update the global model with a moving average:

W (t+) = (1−βt)W (t)+βtW
(t)
m , (5.4)

where βt controls the contribution of client m’s update to the global model. We let βt :=
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sa(t−τ) ·β with β ∈ (0,1) and sa(x) = x−a for some a > 0 so that update with a larger staleness

has a smaller contribution to global weight update, and thereby decreasing the influence of client

update with long delay.

Calibration on Client Updates. To minimize interference caused by asynchronous

updates, we orthogonalize the global weight change that occurs between the client’s successive

updates against client’s local udpate before sending it to the client for the next round of training.

Formally, when the server receives an update from client m, if the staleness t−τ > 1, it calculates

the local weight change from its last update to its current update:

∆Wm =W (t)
m −W (τ+)

m . (5.5)

Similarly, the server calculates the global weight shift due to aggregating updates from

other clients during this period:

∆W =W (t)−W (τ+). (5.6)

To update client m with global progress, the server computes the orthogonal component

of ∆W with respect to ∆Wm. The orthogonalization is done for the weight of each layer through

removing the component that is parallel to ∆Wm. Let ∆W l and ∆W l
m be the change in the layer l

of the global weights and the local weights respectively. The component of ∆W l orthogonal to

∆W l
m is:

∆W l⊥ = ∆W l−proj∆W l
m
(∆W l) = ∆W l− ∆W l ·∆W l

m

∆W l
m ·∆W l

m
∆W l

m. (5.7)

Let ∆W⊥ represent the aggregation of ∆W l⊥ across all layers. This orthogonal component

∆W⊥ ensures that the updates from the other clients during delay t− τ do not interfere with the

client’s local progress, as it removes any component of the global weight change during delay

along the direction of the local update. ∆W⊥ is then sent to current client m to form the new
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client model weight for the subsequent round of local training on client m:

W (t+)
m =W (t)

m +∆W⊥. (5.8)

5.4 Analysis

5.4.1 Mathematical Basis of Orthogonalization

A gradient update orthogonal to previously accumulated gradients helps preserve ex-

isting model behavior and minimizes unintended changes to its outputs [42]. Due to the high-

dimensional parameter space of neural networks, there are multiple directions that are orthogonal

to the stale local weight update. We have the following lemma showing that the orthogonalization

strategy in ORTHOFL preserves the maximal information from the global weight shift vectors

perpendicular to the local update direction.

For v,w ∈ Rd , let ⟨v,w⟩ := ∑
d
i=1 viwi be the standard inner product on Rd .

Lemma 5.4.1. Let v ∈ Rd and U = {u1, · · · ,uk} be an orthonormal set for some k < d. Then

for any w ∈ (spanU )⊥,

∥v− v⊥∥ ≤ ∥v−w∥, (5.9)

where v⊥ := v−∑
k
i=1⟨v,ui⟩ui denote the component of v orthogonal to U . Moreover, the angle

between v and v⊥ is less than any angle between v and w for w ∈ (spanU )⊥.

The proof is given in Appendix. We apply the above lemma in our case when v=∆W l and

U = {∆W l
m}. It implies ∆W l⊥ in equation (5.7) is the unique vector among those perpendicular

to ∆W l
m with the smallest magnitude of ∥∆W l−∆W l⊥∥ and the smallest angle with ∆W l . This

allows the server to pass the maximum knowledge from other clients to client m without

interfering with its most recent learning progress.
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Figure 5.3. Optimization trajectories. Shaded regions represent iso-loss contours for client
A (yellow) and other clients (gray). Deeper colors indicate lower loss. ORTHOFL removes
conflicting components via orthogonalization, merging updates with minimal interference.

5.4.2 Visualization of Optimization Trajectories

We illustrate the advantage of our method by visualizing an example of optimization

trajectories. As shown in Figure 5.3, client A begins local training from the global state W (t=0)
global .

Before A’s update arrives, the server aggregates two updates from other clients into the global

model. Consequently, just before aggregating A’s update at t = 3, the global model has evolved

to W (t=3)
global . Meanwhile, client A finishes local training and submits the updated parameters

W (t=3)
A . The shaded regions show the iso-loss contours for client A (yellow) and the collective

optimization space of other clients (gray). Deeper colors indicate lower loss areas.

The global weight is updated via a moving average and becomes W (t=3+)
global . In conventional

asynchronous methods, this global weight is directly assigned to client A (blue dashed line). This

would push the model farther from A’s optimization objective than W (t=3)
A , reversing A’s learning

progress. ORTHOFL mitigates this by removing the component of the global weight shift that

is parallel to ∆WA. This ensures that the calibrated parameters are orthogonal to A’s update

direction. Finally, the calibrated global shift is merged into A’s model, which becomes W (t=3+)
A .

This way, ORTHOFL reduces interference due to staleness and objective inconsistencies while

preserving meaningful contributions at both global and local levels.
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5.5 Experiments

We evaluate ORTHOFL in terms of accuracy and speed. We also examine its sensitivity

to hyperparameters and robustness under varying delay patterns and data heterogeneity.

5.5.1 Experiment Setup

Compared Methods. We consider the following baselines:

• FedAvg [138]: The classical synchronous algorithm where the server selects a subset of

clients to conduct training in each round and synchronizes updates from these clients before

aggregation.

• FedProx [111]: A synchronous method that addresses data heterogeneity by incorporating

L2 regularization during local training to constrain the divergence between global and client

models.

• FedAdam [160]: A synchronous algorithm that integrates Adam optimizer for the server. It

adapts learning rates for each parameter using first- and second-moment estimates, improving

convergence and accelerating training under data heterogeneity.

• FedAsync [213]: A fully-asynchronous method that lets the server immediately aggregate

the client updates into the global model upon receipt. It uses a weighting mechanism as in

Equation 5.3 to account for the staleness of the updates.

• FedBuff [146]: A semi-asynchronous method that introduces a buffered aggregation strategy.

It maintains a buffer to collect client updates. Once the buffer is full, the server aggregates the

client updates in the buffer and updates the global model.

• CA2FL [204]: Another semi-asynchronous method based on buffered aggregation. It caches

the latest update from every client on the server and uses them to estimate the clients’ contribu-

tion to the update of the current round and calibrate global updates.
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Datasets and Models. We conduct experiments on five datasets spanning three appli-

cations: image classification, text classification, and human activity recognition. To assess the

robustness of our method across different neural network architectures, we pair each dataset with

a model suited to its data type. Table 5.1 summarizes the setups. The details are as follows:

1. Image Classification. We evaluate our method on three widely used image datasets:

MNIST [31], CIFAR-10, and CIFAR-100 [90]. For MNIST, we use LeNet5 [95], a lightweight

convolutional network. For CIFAR-10, we adopt VGG11 [176], a deeper convolutional archi-

tecture. For CIFAR-100, we employ MobileNetV2 [164], a compact and efficient model ideal

for large-scale image classification tasks.

2. Text Classification. We experiment with the 20 Newsgroups dataset [94], a benchmark dataset

for multi-class text categorization. We adopt DistillBERT [165], a small transformer model

suitable for resource-constrained devices. To evaluate ORTHOFL’s performance in parameter-

efficient fine-tuning (PEFT) settings [60], we employ a pretrained DistilBERT [165] from

Hugging Face1 for evaluations with the 20 Newsgroups dataset and fine-tune it using Low-

Rank Adaptation (LoRA) [65], which reduces the number of trainable parameters.

3. Human Activity Recognition. We use the HAR [6] dataset, which contains time-series

sensor data for different physical activities. We adopt the 1D version of ResNet18 [61], a

modified ResNet architecture for processing 1D sequential data.

Data Heterogeneity. For the HAR dataset, clients are naturally divided based on the

individual subjects, as each subject represents a distinct client. For the other datasets, we set

the number of clients equal to the number of classes in each dataset. To create non-IID client

distributions, we follow prior work [64] and use a Dirichlet distribution Dir(α = 0.1) to derive

class distribution.

Delay Simulation. To ensure controlled evaluation and avoid variability in federated

learning deployments, we simulate client delays using measurements (including communication
1https://huggingface.co/distilbert/distilbert-base-uncased
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Table 5.1. Datasets and models in the experiments. The datasets cover 3 different applications,
and we evaluate both full-weight training and parameter-efficient fine-tuning (PEFT).

Datasets Clients Avg. |Dm| Model PEFT? Data Type

CIFAR-10 10 4000 VGG11 ✗ image
MNIST 10 6000 LeNet5 ✗ image
20 Newsgroups 20 566 DistilBERT ✓ text
HAR 21 350 ResNet18 ✗ time-series
CIFAR-100 100 400 MobileNetV2 ✗ image

CIFAR-100

2

Ti
m

e 
(h

)

CIFAR-1000

2

MNIST0.00

0.05

HAR0.0

0.1

20 Newsgroups0

25

Computation Communication

Figure 5.4. Average latency per round across clients. For 20 Newsgroups, the converted
computational time is sufficiently long, making communication time negligible.

and computational latency) from prior work [222], which were collected using Raspberry Pi (RPi)

devices in different home environments with wireless connectivity. To account for differences

in the size of models and datasets, we use an RPi 4B which has comparable computational

capabilities as the reported ones to measure latency for training one round under each model

and dataset configuration. Each configuration is tested five times to derive the average training

time. The computational latency for each dataset is then adjusted based on the ratio between

our measured time and the computation latency in [222]. Similarly, communication latency

was scaled based on the model size in bytes compared to the model used in the original delay

collection. Figure 5.4 presents the average communication and computation latency on Raspberry

Pis scaled for the dataset and model configuration in our experiments. Using these measurements,

we calculate the mean and variance of latency for each device. During simulations, we assign the

statistics to each client randomly and sample latency for each round from a Gaussian distribution

parameterized by the assigned statistics. For fair comparisons, the order of client updates is kept

consistent with a fixed set of random seeds. Besides these real-world measurements, we also

investigate model performance under additional delay distributions in Section 5.5.5.
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Table 5.2. Summary of main experiment results including average accuracy, standard deviation,
and time relative to FedAvg. ORTHOFL reaches the target accuracy more quickly and achieves
better final accuracy.

Methods
MNIST CIFAR-10 20 Newsgroups HAR CIFAR-100

Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time

FedAvg [138] 0.9215±0.0107 1× 0.7376±0.0235 1× 0.5810±0.0313 1× 0.8422±0.0061 1× 0.2216±0.0035 1×
FedProx [111] 0.9052±0.0092 1.09× 0.7333±0.0217 0.90× 0.5855±0.0305 0.98× 0.8401±0.0094 0.98× 0.2040±0.0055 1.18×
FedAdam [160] 0.9379±0.0234 0.91× 0.7457±0.0147 0.78× 0.5894±0.0176 1.08× 0.8707±0.0333 0.68× 0.4211±0.0100 0.36×

FedAsync [213] 0.9536±0.0070 0.39× 0.7426±0.0108 0.48× 0.6183±0.0376 0.27× 0.8764±0.0190 0.26× 0.4791±0.0088 0.20×
FedBuff [146] 0.9359±0.0211 0.46× 0.7356±0.0322 0.55× 0.6206±0.0204 0.34× 0.8741±0.0104 0.30× 0.6227±0.0045 0.12×
CA2FL [204] 0.9611±0.0141 0.30× 0.6973±0.0804 0.60× 0.6567±0.0158 0.24× 0.8784±0.0192 0.29× 0.6112±0.0071 0.09×

OrthoFL (ours) 0.9818±0.0029 0.18× 0.7653±0.0326 0.19× 0.6615±0.0126 0.09× 0.8974±0.0101 0.23× 0.6297±0.0056 0.03×
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Figure 5.5. Accuracy w.r.t. training time.

Federated Learning Configuration. The number of local training epochs E = 5. For

the FedAvg algorithm, the number of sampled clients at each round is 10. The aggregation

hyperparameters in Equation 5.4 are set to β = 0.6 and a = 0.5, following the values used in prior

work [213]. The learning rate for local training at all clients is 5×10−5 for the 20 Newsgroups

dataset and 0.01 for the other datasets.

Evaluation Metrics. We report accuracy after training for sufficient clock cycles to

ensure the method reaches stable performance. For a fair comparison, we fix the same training

time across all methods. In addition, we compare the time spent in reaching a target accuracy—

set as the 95% of the lowest final accuracy among all compared methods. FedAvg serves as the

baseline of time consumption (i.e., 1×), and we report the relative time for other methods.

5.5.2 Main Experiment Results

Table 5.2 summarizes the results. ORTHOFL consistently outperforms the compared

methods across all datasets—it not only converges faster but also achieves better final accuracy.
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Table 5.3. Aggregation time of ORTHOFL.

Dataset Model Train Params Time

MNIST LeNet5 44K 0.003s
HAR ResNet18 119K 0.199s
20 Newsgroups DistilBERT 753K 0.110s
CIFAR-10 VGG11 9.2M 0.188s
CIFAR-100 MobileNetV2 2.4M 0.512s

Notably, the advantage becomes increasingly obvious in the setting with a larger number of

clients, as seen in CIFAR-100. This is because, for synchronous methods, the client sampling rate

decreases as the number of clients increases (e.g., only 10 out of 100 clients are sampled in each

round), leading to longer wait times and slower convergence. Similarly, for baseline asynchronous

methods, although their aggregation mechanisms are designed to mitigate the effects of model

staleness, they fail to effectively address the challenges posed by data heterogeneity. In contrast,

the orthogonal calibration mechanism in ORTHOFL mitigates both the impact of stale model

updates and the model divergence caused by data heterogeneity, ensuring faster convergence and

improved performance.

Figure 5.5 presents the accuracy over training time. ORTHOFL demonstrates reduced

fluctuations in accuracy over time. These fluctuations, observed in baseline methods, are caused

by conflicting updates from clients with highly divergent data distributions.

5.5.3 Overhead Analysis

Compared to baseline methods, ORTHOFL does not introduce any additional communi-

cation overhead. The extra computational overhead occurs on the server during the orthogonal-

ization process.

The overhead of orthogonal aggregation depends on the model size, as orthogonalization

is performed through matrix operations on the weight changes of each layer. As shown in

Table 5.3, for the model configurations used in our experiments, the orthogonalization operation

adds between 3 ms (for MNIST) and 512 ms (for CIFAR-100) when running aggregation on a
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Figure 5.6. Ablation studies. ORTHOFL w/o Calib. corresponds to FedAsync, as it represents
an ablation without calibration.

server equipped with an AMD EPYC 7713 64-Core Processor (3.72 GHz max clock) and 3.9

TiB RAM. This additional computation time for weight aggregation is negligible compared to

the computational and communication latency on clients, as illustrated in Figure 5.4.

5.5.4 Ablation Studies

We conduct ablation studies to evaluate our key design choices. First, we set FedAsync as

a baseline, denoted as ORTHOFL w/o Calib., since it can be viewed as our ablation without client

calibration. Second, we assess the role of global aggregation by removing the moving average

and directly loading the calibrated client weight into the global model, denoted as ORTHOFL

w/o MA. Furthermore, we investigate an alternative orthogonalization strategy which projects the

incoming client update onto the orthogonal subspace of the most recent updates from all other

clients, denoted as ORTHOFL-Pairwise Proj.. The orthogonality is achieved through the same

process (i.e., removing parallel components) as in ORTHOFL.

We observe performance decreases when clients and the global model share the same

weights (ORTHOFL w/o Calib. and ORTHOFL w/o MA). ORTHOFL w/o MA performs partic-

ularly poorly as the absence of a global moving average causes overfitting to individual client

distributions. These results emphasize the need to decouple global and local learning to address

objective inconsistencies. Furthermore, ORTHOFL-pairwise Proj. achieves performance com-

parable to ORTHOFL, suggesting that effective orthogonal calibration can be realized through

multiple viable approaches. We expect that fine-tuning the orthogonalization strategy could
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Figure 5.8. Performance with different delay distributions.

further improve the performance. We leave the exploration for future work.

5.5.5 Exploratory Studies

How do algorithms perform under different delay distributions? Since real-world deploy-

ment of federated learning may present diverse delay patterns, we explore other possible delay

distributions in real-world setups, such as following log-normal, half-normal [180] and uniform

distributions [146]. The derivations of these delay distributions are as follows:

• Lognormal distribution: The parameters µ (mean) and σ (standard deviation) of the natural

logarithm of delays are derived from the measurements on Raspberry Pis. Specifically, µR and
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σR represent the arithmetic mean and standard deviation of the measured delays for all rounds,

respectively.

σ =

√
ln
(

σ2
R

µ2
R
+1
)
, µ = ln(µR)−

σ2

2

Then, the latency for each client is sampled from the lognormal distribution to capture skewed

and heavy-tailed delays.

• Half-normal distribution: The mean and standard deviation of the delays (i.e., µR and σR)

are calculated from the delay measurements on Raspberry Pis. Then, for each client, its latency

is sampled from the half-normal distribution, ensuring non-negative values and a skewed

distribution toward smaller delays.

• Uniform distribution: Client latency is sampled from a uniform distribution with bounds set

between the 5th and 95th percentiles of the measurements from Raspberry Pis. This ensures

outliers are excluded while covering the majority of the observed range.

Figure 5.7 shows the simulated latency for 100 clients, each running CIFAR-100 with

MobileNetV2 over 10,000 rounds. The real-world measured RPi distribution exhibits discrete

peaks and high variability. The half-normal distribution has a long tail and a peak at low

latency. The lognormal distribution has a heavier tail and its concentration is closer to zero,

reflecting occasional large latency. The uniform distribution assumes equal probability within a

bounded range. Figure 5.8 presents the accuracy curves for each algorithm under different delay

distributions. With real-world measured RPi latency, some clients experience substantially longer

latencies, causing synchronous methods like FedAvg to converge more slowly as the server

waits for stragglers. In this case, asynchronous methods generally have better performance than

synchronous ones. Under the lognormal, half-normal, and uniform delay distributions, extreme

latencies are less common, so the performance gap between synchronous and asynchronous

methods narrows. However, the two buffer-based semi-asynchronous methods are sensitive to

the delay patterns as they show lower performance under half-normal and uniform latency. In
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Figure 5.9. Performance under varying data heterogeneity.

general, ORTHOFL performs the best across all scenarios, demonstrating its robustness against

different delay patterns.

How does data heterogeneity impact performance? To control the level of data heterogeneity,

we change α for Dirichlet distribution from {0.01,0.1,0.5,104}, where α = 104 simulates the

IID case. We present experiments on MNIST and CIFAR-10 as shown in Figure 5.9. As the

client data distribution becomes more heterogeneous (i.e., lower values of α), we observe the

performance of baseline methods has more fluctuations and decreases in final accuracy. This

is because client models trained on non-IID data distributions have larger divergences in their

weights. Aggregating divergent updates amplifies inconsistencies, leading to slower convergence

and lower accuracy for baseline methods. By contrast, ORTHOFL exhibit stable performance

across all settings. In the IID case, where data is uniformly distributed across clients, ORTHOFL

still outperforms the compared methods. This can be attributed to ORTHOFL’s ability to address

model staleness through orthogonal calibration.

5.5.6 Sensitivity Analyses

Aggregation Hyperparameter. The parameter β in Equation 5.4 acts as a smoothing

factor that balances the contribution of client updates to the global model and the retention
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Figure 5.10. Sensitivity analysis of aggregation hyperparameter β . ORTHOFL is robust to β ,
maintaining higher accuracy than FedAvg and a low relative time.

of the global model’s weights from the previous round. A larger β allows the global model

to incorporate more of the client updates, potentially accelerating learning, while a smaller β

preserves more of the global model’s previous state, enhancing stability. We vary the value of β

from {0.2,0.4,0.6,0.8}. As shown in Figure 5.10, ORTHOFL is robust to different β values and

always achieves higher accuracy than FedAvg after a fixed training time, and the relative time of

ORTHOFL is low.

Number of Local Training Epochs. The number of local training epochs E determines

how much information is learned during a round and impacts the overall convergence speed. A

larger E allows clients to learn more information from their local data, potentially improving

local model performance. However, it has the risk of larger divergence among client models and

global models. On the other hand, setting a smaller E ensures closer alignment between client

and global models but comes at the cost of higher communication latency due to more frequent

synchronization. We vary the value of E from {1,5,10} and show the results in Figure 5.11.

The upper row shows the final accuracy after a fixed training time and the bottom row presents

the relative time to reach 95% of FedAvg’s target accuracy when E = 5. We observe that when

E = 1, both ORTHOFL and FedAvg reach lower accuracy compared to larger E. This is due
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Figure 5.11. Sensitivity analysis of the number of local training epochs E. An appropriately
chosen E improves accuracy within the same training duration and expedites convergence.

to insufficient local learning, requiring more communication rounds to achieve comparable

performance. ORTHOFL achieves similar final accuracy when E = 5 and E = 10. Notably,

ORTHOFL outperforms FedAvg across different E values. The speedup of ORTHOFL is more

obvious at smaller E values (e.g., E = 1).

5.6 Related Works

Federated Learning and Heterogeneity Problem. Federated learning [138] is a dis-

tributed learning paradigm that allows multiple parties to jointly train machine learning models

without data sharing, preserving data privacy. Despite the potential, it faces significant challenges

due to heterogeneity among participating clients, which is typically classified into two main

categories: data heterogeneity and system heterogeneity. Data heterogeneity appears as clients

own non-IID (independent and identically distributed) data [111, 80, 199, 236]. The difference

in data distribution causes the local updates to deviate from the global objective, making the

aggregation of these models drift from the global optimum and deteriorating convergence. Sys-

tem heterogeneity refers to variations in client device capabilities, such as computational power,

network bandwidth, and availability [199, 237, 103, 39, 4, 231]. These disparities lead to uneven
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progress among clients, and the overall training process is delayed by slow devices. Traditional

federated learning approaches rely on synchronization for weight aggregation [138, 111, 160],

where the server waits for all clients selected in a round to complete and return model updates

before proceeding with aggregation. This synchronization leads to inefficient resource utiliza-

tion and extended training times, particularly in large-scale deployments involving hundreds or

thousands of clients. Addressing the heterogeneity issues is a critical problem for improving the

scalability and efficiency of federated learning systems in real-world deployment.

Asynchronous Federated Learning. Much of the asynchronous federated learning

literature focuses on staleness management by assigning weights for aggregating updates ac-

cording to factors including staleness [213], divergence from the global model [179, 226] and

local losses [125]. For example, [213] lets the server immediately aggregate client updates

into the global model with a weight determined by staleness. Another line of research caches

client updates at the server and reuses them to calibrate global updates [51, 204]. For example,

[204] maintains the latest update for every client to estimate their contribution to the current

aggregation and calibrate global update. Furthermore, semi-asynchronous methods [146, 226]

balance between efficiency and training stability. For example, [146] buffers a fixed number of

client updates before aggregation. We select representative methods from each category for our

comparisons. Besides, some works improve efficiency from a different perspective—through

enhanced parallelization. Methods include decoupling local computation and communication [8]

and parallelizing server-client computation [228]. In addition, asynchronous architectures have

been explored in other paradigms such as vertical [239] and clustered [123] federated learning.

While these directions complement our work, they fall outside the scope of this study.

Asynchronous Stochastic Gradient Descent. Asynchronous stochastic gradient descent

(SGD) is closely related to asynchronous federated learning and has provided theoretical and

empirical foundations for scalable distributed training. Early studies analyzed error-runtime

trade-offs, showing that incorporating stale gradients can alleviate system bottlenecks without

significantly compromising accuracy [38]. Subsequent work refined convergence bounds based
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on maximum [177] or average [87] delay and demonstrated that asynchronous SGD can converge

faster than traditional minibatch SGD [141]. To tackle challenges such as gradient staleness,

communication delays, and convergence guarantees, various strategies have been proposed, such

as filtering out outlier gradients [214, 29], adjusting update steps according to delay [142, 9],

and approximating gradients to compensate for delayed information [247]. However, unlike

federated learning, most asynchronous SGD formulations do not explicitly address non-i.i.d.

data distributions or the strict data privacy constraints inherent in federated settings, which limits

their direct applicability.

5.7 Summary

We introduce ORTHOFL, an orthogonal calibration mechanism for asynchronous fed-

erated learning. ORTHOFL exploits the high-dimensional parameter space of neural networks

and projects the global weight shift during a client’s delay onto a subspace orthogonal to its

stale update. This projection ensures global progress is integrated into client models without

disrupting local learning. Experiments demonstrate that ORTHOFL consistently outperforms

state-of-the-art synchronous and asynchronous baselines, achieving notable gains in accuracy,

convergence speed, and robustness under diverse delay patterns and data heterogeneity.

Chapter 5 incorporates material from the publication “Orthogonal Calibration for Asyn-

chronous Federated Learning”, by Jiayun Zhang, Shuheng Li, Haiyu Huang, Xiaofan Yu, Rajesh

K. Gupta, Jingbo Shang, published as Preprint arXiv:2502.15940, 2025. The dissertation author

was the primary investigator and the lead author of this paper.
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Part III

Deriving Auxiliary Knowledge for Bridging

Distributed Domains
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Chapter 6

Contextual Inference Under Minimal Su-
pervision

In Part I and Part II, contextual knowledge, such as domain semantics, temporal signals,

prior knowledge about class distributions, are used as a crucial input to the learning algorithms

for understanding correlations among domains (e.g., clients, users) in distributed environments.

However, in practice, such information is often sparsely collected, limiting its direct applicability.

In this chapter, we address this challenge by introducing methods to infer contextual information

from sparsely-labeled data. By enriching the available context, our approach enhances the

quality of training in heterogeneous distributed systems. Specifically, we explore demographic

inference from mobility data as a case study, since mobility data is commonly seen in many

mobile applications.

The context about trips and users from mobility data is valuable for mobile service

providers to understand their customers and improve their services. Existing inference methods

require a large number of labels for training, which is hard to meet in practice. In this work, we

study a more practical yet challenging setting—contextual inference using mobility data with

minimal supervision (i.e., a few labels per class and massive unlabeled data). A typical solution

is to apply semi-supervised methods that follow a self-training way to bootstrap a model based on

all features. However, using a limited labeled set brings a high risk of overfitting to self-training,

leading to unsatisfactory performance. We propose a novel collaborative distillation method

115



STCOLAB. It sequentially trains spatial and temporal modules at each iteration following the

supervision of ground-truth labels. In addition, it distills knowledge to the module being trained

using the logits produced by the latest trained module of the other modality, thereby mutually

calibrating the two modules and combining the knowledge from both modalities. Extensive

experiments on two real-world datasets show STCOLAB achieves significantly more accurate

contextual inference than various baselines.

6.1 Introduction

The prevalence of location-based mobile services offers new opportunities for businesses

to better understand the context of trips (e.g., transportation mode and purpose) and their cus-

tomers (e.g., ethnicity, disability, and socioeconomic status). Such information can facilitate

a wide spectrum of mobile applications, including human mobility recovery [40], urban plan-

ning [130], and personalized location recommendation [203]. In practice, given the sensitive

nature, very few users would share the contextual information, especially at the beginning of

the business [167, 156, 173]. As such, we study the problem of contextual inference from

mobility data under minimal supervision, which is an extreme case of semi-supervised learning

when using a few labels (e.g., 10) per class. Specifically, we study the inference of people’s

demographic attributes.

Related work on demographics inference from human mobility [202, 249, 215, 196]

requires a large number (e.g., tens of thousands) of users to share labels for training and is prone

to overfitting in the minimally-supervised setting. To mitigate the label scarcity problem, existing

semi-supervised methods [23, 98, 114] typically follow a self-training approach that bootstraps

a single model using all features at once. However, for mobility data, simple concatenation of

spatial and temporal features does not always guarantee improvement in predictions. Due to

different network sizes for different modalities, the model inference might lean heavily on one of

the modalities [45]. Especially when training data is limited, the model does not have enough
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supervision to find the optimal combination of different modalities, leading to unsatisfactory

performance and poor generalization.

To better learn with limited supervision, we propose to alternatingly train two separate

modules—one for spatial and one for temporal information—and then let them iteratively distill

knowledge from each other following a novel collaborative distillation method STCOLAB (see

Figure 6.1).

Instead of building one large model that fuses the spatial and temporal modules, we

separate the training of the two modules to sufficiently learn features of both modalities with

supervision and avoid one modality dominating the learning. Both modules in STCOLAB are

supervised by the limited labeled data for contextual inference in an alternating manner—the

spatial module first learns geographic features from maps describing where a user has visited;

the temporal module then utilizes the features extracted by the trained spatial module and learns

cyclic temporal patterns.

In addition to training each module using labeled data, we propose a novel collaborative

distillation method that combines the knowledge of spatial and temporal modules to improve

model generalization in an iterative manner. We use the latest trained spatial and temporal

modules as the teacher model to guide the training of the current spatial/temporal module.

Specifically, we construct guidance based on the unlabeled data for which the latest trained

modules have consistent and confident predictions. We regulate the learning of the module being

trained at each iteration by forcing it to approximate the logits produced by the teacher model on

such selected unlabeled data. The two modules give complementary supervision from different

views to each other and calibrate the predictions. This way, we combine spatial and temporal

information to improve model generalization.

We conduct extensive experiments on two real-world mobility datasets collected from

two metropolitan cities in different countries: Chicago in the United States and Brasilia in

Brazil. We show that with a small number of labeled samples per class (e.g., 10), STCOLAB

can infer important demographic attributes about users with reasonable accuracy, significantly
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Figure 6.1. Overview of STCOLAB. It consists of two modules: the spatial module takes a
map and learns spatial features; the temporal module then utilizes the spatial features and learns
temporal patterns in trajectories to make predictions. A collaborative distillation process distills
knowledge from the latest trained modules to guide the training of both. The process iterates in
self-training cycles.

outperforming the state-of-the-art methods. To the best of our knowledge, we are the first to

address the contextual inference problem using mobility data with minimal supervision. We

make the following contributions:

• We study the problem of contextual inference from mobility data under the challenging yet

practically important minimally supervised setting, where only a few annotated samples are

available per class.

• We propose a novel method called STCOLAB, which learns from spatial and temporal modali-

ties iteratively and distills knowledge from both modalities collaboratively to improve general-

ization using unlabeled data.

• We conduct extensive experiments on two real-world mobility datasets to predict demographic

attributes. Results show STCOLAB can predict such information with reasonable accuracy,

improving upon state-of-the-art methods.
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6.2 Preliminaries

6.2.1 Concepts

Definition 2 (Region). A region is a geographic unit with a corresponding polygon in the

coordinates, denoted as l.

The two datasets we used in the experiments divide cities into regions according to

certain criteria. In the Chicago dataset, the city is divided into 866 census tracts, each of which

is defined for the purpose of taking a census. In the Brasilia dataset, the city is divided into

233 micro zones, which is defined by the government for statistical purposes. The divisions are

shown as grey grids in Figure 6.2a. Note that STCOLAB can also deal with location data of other

forms such as fine-grained GPS coordinates. The format of location data is flexible and driven

by the available dataset.

Definition 3 (Daily Mobility Record). An entry of mobility records is a triplet (u, l, t), which

denotes user u visits region l during time period t in the day. By sorting the records of user u by

time, we get a sequence of time-location pairs:

Su = [(l0, t0),(l1, t1), . . . ,(lQ, tQ)],

where Q is the total number of records of user u and lq and tq are the region and time period of

the q-th record. The time range of each mobility record from a user is one day.

Figure 6.2a shows the daily mobility records of three random users from the Chicago

dataset in different colors. For example, the yellow trajectory shows the user stays at l1 during t1

(9:45 a.m. - 11:10 a.m.) and stays at l2 during t2 (12:35 p.m. - 8:50 a.m.).

6.2.2 Problem Definition

We aim to predict demographic attributes from people’s mobile data under minimal

supervision. This is an extreme case of semi-supervised learning, where the number of labeled
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Figure 6.2. Examples of mobility records and visualized maps: (a) mobility records of three
random people in Chicago; (b) visualized hour maps and day map generated from a person’s
mobility records.

data is very limited. For each class of a demographic attribute, only a few (e.g. 10) ground truth

labels are available.

The number of samples known in each class is denoted as k. The training dataset

D consists of two parts: the labeled set Dlb = {(x,y)|x ∈X ,y ∈ C } and the unlabeled set

Dul = {x|x ∈X }, where x and y denote the input features and the label of a sample, X is the set

of mobility data and C is the set of classes. The total number of labeled samples |Dlb|= k ∗ |C |.

|Dul| ≫ |Dlb|. We aim to learn a model for each prediction task to assign an attribute class label

a to each person u given the daily mobility records.

6.3 Methodology

As shown in Figure 6.1, STCOLAB consists of two modules—a spatial module and a

temporal module—to learn from different modalities. We design a collaborative distillation

process to combine knowledge from both modules in a self-training manner. The pseudo code is

presented in Algorithm 5.
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Algorithm 5: Iterative Collaborative Distillation
Require : labeled set Dlb, unlabeled set Dul

1 Initialize iteration t← 1;
2 while t ≤MaxIteration do
3 Train spatial model f (t)S according to Eq. 6.3;
4 if t > 1 then
5 Construct distillation dataset D̃

(t)
S using f (t−1)

S and f (t−1)
T based on voting

ensemble;

6 Distill knowledge to f (t)S using f (t−1)
T as teacher according to Eq. 6.2.

7 Train temporal model f (t)T according to Eq. 6.4;
8 if t > 1 then
9 Construct distillation dataset D̃

(t)
T using f (t)S and f (t−1)

T based on voting
ensemble;

10 Distill knowledge to f (t)T using f (t)S as teacher according to Eq. 6.2.

11 t← t +1;

6.3.1 Iterative Collaborative Distillation

Conventional methods for integrating spatial and temporal information involve fusing

features from two sources within one large model, or ensembling the predictions of the spatial

and temporal modules. However, training a model with data from spatial and temporal sources

in a single pass is likely to bias the model to one modality [45]. To sufficiently learn features

from both modalities, we propose an iterative learning process that alternates the training of the

spatial and temporal modules in several iterations.

The small training set shows very limited information about the data distribution so the

model is prone to overfitting. While labels are hard to collect, the unlabeled data itself provides

valuable information for model generalization. Moreover, the spatial and temporal modules

learn from two different views of the data. By utilizing the knowledge learned by both modules,

they can reduce confirmation bias [7] and mutually calibrate each other. Thus, we design a

novel collaborative distillation process to distill knowledge between the two modules by using

unlabeled samples.

121



Iteration

voting ensemble
knowledge distillation

…

…

…

…

!#(&)!#(&(")

!!(&(")

!#(&(")

!!
(&(")!!(&) !!(&)

"!(&) "#(&)

Iteration

modules finished training

modules under training

① Distillation for Spatial Module ② Distillation for Temporal Module

distillation 
dataset

Spatial

Temporal

Figure 6.3. Collaborative distillation in a self-training cycle. At iteration t (t ≥ 2), 1⃝ for spatial
module f (t)S , we use f (t−1)

S and f (t−1)
T to form distillation dataset via voting ensemble and use

f (t−1)
T as teacher for distillation. Then, 2⃝ for temporal module f (t)T , we use f (t−1)

T and f (t)S for

voting ensemble and use f (t)S as teacher.

In the conventional form of knowledge distillation, knowledge is distilled to the new

model by training it to approximate the output of a teacher model on a distillation dataset [62].

However, the model trained on a very small training set is likely to make random predictions on

unseen data, which causes knowledge given by the teacher model to be noisy. Iterative learning

from such noisy knowledge can act like a negative feedback loop and degrade performance [7].

To increase the chance that the teacher model gives correct predictions, we design a voting

ensemble method by evaluating the consistency and confidence of its predictions to select

samples.

Figure 6.3 explains the iterative collaborative distillation process. In the first iteration,

both modules are trained using only the labeled training data. Starting from the second iteration,

in addition to training with ground-truth data, we further use the latest trained models from both

modalities to conduct a voting ensemble for constructing a distillation dataset and use the latest

trained model as the teacher model for distilling knowledge to the current module. Denote the

spatial model and temporal model at iteration t as f (t)S and f (t)T respectively. Without loss of

generality, we illustrate the process of distillation for the temporal model f (t)T .

Voting Ensemble. There is a higher chance that the modules give a correct prediction if

122



both modules give the same prediction to one sample, compared to the case when the two modules

disagree on the prediction. Thus, we use f (t−1)
T and f (t)S to make predictions on all unlabeled

samples and only select those for which the two modules give the same predictions. In addition,

the predicted probability can be regarded as the prediction confidence which indicates how

certain the model thinks the prediction is correct. We further use percentile scores and choose a

subset of the unlabeled samples whose prediction probabilities given by f (t)S are above the r-th

percentile. The threshold of the prediction confidence of class a is T(t)
a = percentile( f (t)S,a(∗),r),

where f (t)S,a(∗) are the prediction confidence of all unlabeled samples with respect to class a given

by f (t)S . Combined with the voting condition, the selected unlabeled set at the t-th iteration is:

D̃
(t)
Tul
←{xi| f (t)S,a(ui)≥ T(t)

a and ŷS
i,a = ŷT

i,a = 1}a∈C , (6.1)

where xi is the input of user ui. We do upsampling to get a balanced distillation dataset. Denote

the number of samples in D̃
(t)
Tul

that are predicted to be class a (i.e., ŷS
i,a = 1) as N̂a. For each class

a, we randomly sample max{N̂m}m∈C − N̂a samples from the original training set, making all

classes have the same amount of samples. Denoted the labeled dataset sampled from the original

training set as D̃
(t)
Tlb

. The resulting balanced distillation dataset D̃
(t)
T = D̃

(t)
Tul
∪ D̃

(t)
Tlb

.

Knowledge Distillation. We use the latest trained model f (t)S as the teacher to make

predictions on the unlabeled set D̃
(t)
Tul

. Denote f (t)S (ui) as the predicted probability of user ui

given by f (t)S . We let f (t)T approximate the predicted probabilities of samples in D̃
(t)
Tul

and the

ground-truth of samples in D̃
(t)
Tlb

. The distillation loss is:

L̃
(t)

T =− 1

|D̃ (t)
Tul
|
∑

i
f (t)S (ui) log p(t)i −

1

|D̃ (t)
Tlb
|
∑

j
y j log p(t)j , (6.2)

where p(t)i is the predicted probability of user ui given by f (t)T . In this way, the knowledge from

the latest spatial model f (t)S is distilled to the temporal model f (t)T . A similar process applies to

the distillation for spatial model f (t+1)
S , which uses f (t)T and f (t)S for voting ensemble and f (t)T as

123



the teacher for distilling knowledge.

6.3.2 Spatial Module

To utilize spatial information, we visualize the mobility records as visualized maps.

The maps contain rich information about the spatial structure. Even with minimal supervision,

locations that are not present in the labeled set may still have a similar geographical distribution

on a map. This enables the model to better generalize to unseen locations. A visualized map is a

one-channel image M showing the regions that the user has been to during a time period. Given

the set of regions L that a user has been to during time period t, we visualize the regions on

the map of the city by highlighting the regions in L in white and marking the others in black.

The images are rendered using the GeoPandas Library [76]. The maps of two time periods t1

and t2 can be aggregated by taking the maximum in each entry of the two maps, describing

the regions that the user has been to during t1 and t2. In STCOLAB, we leverage maps of two

different temporal granularities: hour map and day map. The hour map includes the locations

visited in each hour and the day map is the aggregated map of the 24 hours. Figure 6.2b gives

examples of the visualized maps generated from a random person’s daily mobility records in the

Brasilia dataset.

The spatial module learns spatial features, such as the geographic location and distance of

people’s daily trajectories, from the visualized map M. The spatial module performs convolution

operation upon M as c = conv(Wc,M)+ bc, where Wc is the weight matrix and bc is the bias

term. We use Parametric ReLU (PReLU) as the activation function and use max pooling after

the convolution operations. Then, a Fully-Connected (FC) Layer is applied to generate vector

z ∈Rd representing the spatial features learned from the map image.

To train the spatial module, we aggregate the visualized maps of each hour to get the day

map Mday
i . The spatial module extracts spatial features zday

i from Mday
i and applies an FC layer

to make predictions. We denote pspatial
i as the spatial module’s predicted probability and yi as the
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ground truth. The learning objective is to minimize the cross entropy loss:

LS =−1/|Dlb|∑i yi log pspatial
i . (6.3)

6.3.3 Temporal Module

The temporal module takes the sequence of spatial features in each hour of the day as

inputs and is equipped with convolution layers with different filters sliding over the sequence to

extract temporal features within different time periods.

Let z j
i ∈Rd be the spatial representation vector corresponding to the j-th hour of user ui.

The input to the temporal module is a sequence of the spatial features of each hour. We denote

the concatenation of the spatial features from the j-th to the ( j+h)-th hours of user ui as z j: j+h
i .

A convolution filter of size h×d moves along the time dimension and is applied to a window of

h hours to produce a new feature e j: j+h each time. For example, a feature e j is generated from

a window (of size h) of spatial features z j: j+h
i by e j =We · z j: j+h

i +be, where We is the weight

matrix of filter kernel and be ∈ R is the bias term. This filter is applied to each possible window

of spatial features in the sequence.

A person’s temporal mobile pattern can be represented as a cyclic ring, where the

beginning and the end of a day are continuous and connected to each other. To capture the cyclic

patterns, we employ periodic convolution operations through circular padding. Specifically,

the start of the sequence is padded with features from the end of the sequence, and vice versa.

Figure 6.4 illustrates how periodic convolution works.
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We use PReLU as the activation function and apply a max-pooling operation over the

spatial features to get the features corresponding to a particular filter. The module uses N f filters

(with varying window sizes) to obtain multiple features and then concatenates them together to

get the temporal features. An FC Layer is applied to make predictions. We denote ptemporal
i as the

temporal module’s predicted probability. The learning objective is to minimize the cross-entropy

loss:

LT =−1/|Dlb|∑i yi log ptemporal
i . (6.4)

6.4 Experiments

6.4.1 Experimental Setup

Datasets and Prediction Tasks. We conduct experiments on Chicago Dataset1 and

Brasilia Dataset2. They collect mobility data in two cities in the United States and Brazil. We

remove visits outside of the designated city and filter out users whose mobility records span less

than 12 hours. For the Chicago dataset, we predict employment status (i.e., employed or not)

and ethnicity (i.e., Caucasian, African American, or others). For the Brasilia dataset, we predict

employment status, education level (i.e., whether the person has a college degree), and age group

(i.e., ≤ 17, 18-59, or ≥ 60).

Implementation Details. The dimension of spatial features d = 64. The filter sizes

in the temporal module are [3,5,12]. The convolution layers in the spatial module output 32

channels. The maximum number of iterations is 5. All experiments are repeated 5 times with a

fixed set of random seeds.

Metrics. Due to label imbalance, we adopt macro- and micro-F1 scores to evaluate the

performance. For all compared methods, we rank the prediction probabilities of the test data and

assign classes according to label distribution [139, 225]. The label distributions are estimated by

randomly sampling Nest = 100 pieces of data from the training set and calculating the ratio of

1https://datahub.cmap.illinois.gov/dataset/traveltracker0708
2https://metro.df.gov.br/?page id=47685
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each class. We show STCOLAB is robust to Nest via sensitivity analysis.

6.4.2 Compared Methods

We compare STCOLAB with the state-of-the-art methods designed for demographic

inference from mobility data and for general-purpose spatio-temporal tasks.

• L2P [249] is a tensor factorization-based method for demographic inference from location

check-ins. It extracts spatial and temporal semantics from check-ins and mines location

knowledge from social networks and customer reviews. User representations are obtained by

tensor factorization and are used to train classifiers.

• SUME [215] is an embedding-based method that learns mobility patterns by modeling a

heterogeneous network that describes relations among users and locations. SVM is adopted

for classification with learned embeddings.

• Transformer [192] is a neural network model which learns temporal patterns from sequential

data and utilizes multi-head attention mechanism to select important inputs. We organize the

data of each user into a sequence of location IDs, showing the main locations where the person

stays during each hour of the day.

• ConvLSTM [175] is a recurrent neural network for spatio-temporal prediction. It receives a

sequence of visualized maps as input, uses the convolutional networks to extract features from

the maps, and feeds the features into the LSTM networks in chronological order.

We also craft two strong baselines by using some modules in STCOLAB. For a fair comparison

with the state-of-the-art methods, the modules in both baselines are combined through late

fusion by taking the average of the outputs as the final prediction and are updated together in

back-propagation.

• CNN+Transformer uses convolutional networks for the spatial module (same as STCOLAB)

and Transformer for the temporal module to learn patterns from location IDs.

• CNN+PeriodicCNN (our ablation) is equipped with the same spatial and temporal modules

in STCOLAB.
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Table 6.1. Experimental results averaged over 5 runs. The first section of the table compares
different neural architectures. The second section focuses on different fusion solutions. The third
section shows different self-training methods. We use ∗ to mark the ablations of STCOLAB.

Method Comment

Chicago Brasilia

Employment Ethnicity Employment Education Age

Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

L2P [249]
baseline models for
demographic
inference and
general-purpose
spatio-temporal tasks

49.70 61.40 25.80 54.50 49.70 69.10 49.20 50.30 31.12 55.54
SUME [215] 50.40 59.30 37.20 46.10 41.00 70.00 51.20 52.50 30.85 54.71
Transformer [192] 50.42 62.51 30.20 40.89 50.36 67.79 50.05 51.11 28.14 51.43
ConvLSTM [175] 53.10 64.10 48.37 59.54 52.87 69.45 50.72 52.16 29.06 53.55
CNN+Transformer 53.30 64.71 53.67 65.28 50.56 67.97 50.39 51.48 29.91 50.53
CNN+PeriodicCNN∗ 54.82 65.82 54.46 66.71 52.54 69.24 48.83 49.93 29.20 52.14

S+T late fusion 54.82 65.82 54.46 66.71 52.54 69.24 48.83 49.93 29.20 52.14
STFC intermediate fusion 53.34 64.67 54.06 65.93 51.76 68.73 51.48 52.54 30.48 52.10
ST∗ alternating training 55.68 65.61 56.08 68.97 52.43 69.13 52.97 54.06 30.75 54.52

ST w/ CL [23]
w/ self-training

54.85 65.79 54.66 65.92 54.76 70.62 49.98 51.07 33.25 55.46
STCOLAB 56.47 67.02 58.87 75.27 54.77 70.67 59.34 60.21 35.64 59.37

Additionally, we use the same spatial and temporal modules in STCOLAB and compare different

ways to combine them.

• STFC adopts intermediate fusion: the last hidden outputs of the two modules are concatenated

and an FC layer is applied toward the concatenated features to make predictions.

• S+T adopts the late fusion which takes the average of the outputs given by the two modules as

the final prediction.

• ST (our ablation) follows the alternating training in STCOLAB and is trained for only one

iteration.

We denote our proposed method as STCOLAB. We compare STCOLAB with a state-of-the-art

self-training method by pairing it with the same base model as in STCOLAB.

• ST w/ CL adopts curriculum labeling (CL) [23]. It uses a self-paced curriculum and re-

initializes the model at each round to avoid concept drift.

6.4.3 Main Experimental Results and Analysis

The results are shown in Table 6.1. Overall, STCOLAB performs the best compared to all

the baseline models. The existing methods for demographic inference from mobility data and for
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general-purpose spatial-temporal tasks show inferior performance in the minimally-supervised

setting. The performance of L2P, SUME, and Transformer indicates the limitation of these

methods in capturing the geographic distribution. By comparison, the models which learn from

visualized maps (i.e., ConvLSTM, CNN+Transformer, and CNN+PeriodicCNN) show better

results.

The comparison among STFC, S+T and ST shows the advantage of alternating training

over using conventional ways of modal fusion. Simply combining the predictions or intermediate

hidden features of the two modules together does not fully leverage their respective strengths

and may even yield worse results than using either module alone.

Finally, the comparison among ST, ST w/ CL, and STCOLAB shows the effectiveness

of iterative collaborative distillation. Applying CL does not guarantee improvement and even

causes performance degradation on some tasks. This suggests that, in the minimally-supervised

setting, iteratively guiding the model with pseudo labels generated by the same model, hence the

same view, may harm model performance. By comparison, STCOLAB provides guidance from

two different views, which lets the two modules give complementary supervision for each other

and mutually enhance themselves.

6.4.4 Ablation Studies and Sensitivity Analysis

More Comparisons with State-of-the-Art Self-Training Method. We further compare

STCOLAB with ST w/ CL by applying them to three different model architectures. (1) CNN &

Transformer uses convolutional networks as the spatial module (same as STCOLAB) and uses

Transformer as the temporal module to learn temporal patterns from location IDs. The average

of the predictions given by the two modules is taken as the final results. (2) CNN & LSTM

uses convolutional networks to process the visualized maps and uses LSTM as the temporal

module to process the spatial features of each hour generated by the convolutional networks in

chronological order. (3) CNN & PeriodicCNN is the architecture in STCOLAB. As shown in

Figure 6.5, STCOLAB is robust to different model architectures and always brings improvement
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Figure 6.5. Performance of STCOLAB and ST w/ CL applied to different model architectures.
Base models without applying self-training strategies are denoted as vanilla. (CHI: Chicago, BR:
Brasilia)

to the vanilla models, while applying CL to the models may lead to worse performance.

Key Designs in Iterative Collaborative Distillation. We examine three ablations of

STCOLAB. (1) STCOLAB w/o vote removes the voting ensemble strategy and uses all unlabeled

samples as the distillation set. (2) STCOLAB w/ union uses the union of the prediction

probabilities from both the latest trained spatial and temporal models to distill knowledge at

every distillation process. (3) STCOLAB w/o balance removes the upsampling for getting

a balanced distillation dataset and uses the dataset selected by the voting ensemble directly.

The results are shown in Table 6.2. We notice performance degradation after replacing the

key designs with the ablations, which indicates the importance of these designs. The voting

ensemble helps the model choose the appropriate distillation set, giving better guidance during

distillation. Moreover, by letting two modules alternate as teachers, the student model acquires

complementary knowledge from the other modality and avoids confirmation bias. Furthermore,

the balancing strategy ensures the number of samples for each class is the same and does not

affect learning.

Contributions of Spatial and Temporal Modules. We conduct experiments on the

model with spatial module only (denoted as Spatial), and the model with temporal module only
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Table 6.2. Ablation studies on the contributions of the key designs in iterative collaborative
distillation and the spatial and temporal modules.

Method

Chicago Brasilia

Employment Ethnicity Employment Education Age

Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

Spatial 54.56 65.62 55.33 68.50 50.42 67.86 49.85 50.93 29.69 52.58
Temporal 53.00 64.51 53.03 64.92 51.64 68.76 52.95 53.98 30.13 53.03
ST 55.68 65.61 56.08 68.97 52.43 69.13 52.97 54.06 30.75 54.52

SCOLAB 54.10 65.31 56.28 70.47 50.57 67.92 56.39 57.32 33.63 56.43
TCOLAB 53.75 65.07 52.38 68.11 52.62 68.54 58.93 59.85 35.00 57.61

STColab w/o vote 56.08 66.77 57.35 70.21 51.67 68.63 59.18 60.05 32.99 55.02
STCOLAB w/ union 55.92 66.64 57.84 71.74 51.70 68.71 58.61 59.50 33.50 56.92
STCOLAB w/o balance 56.00 66.68 56.06 73.01 52.67 69.32 50.43 51.50 28.94 51.91
STCOLAB 56.47 67.02 58.87 75.27 54.77 70.67 59.34 60.21 35.64 59.37

which is trained from scratch including the spatial feature extractor (denoted as Temporal). The

models are trained for only one pass without knowledge distillation. We also examine the single

modules with knowledge distillation. We use the latest trained model at the previous iteration to

construct the distillation dataset based on percentile score and to distill knowledge at the current

iteration. TCOLAB and SCOLAB are the ablations of STCOLAB with only the temporal module

and only the spatial module respectively. As shown in Table 6.2, removing either module will

cause performance degradation. The performance of ST is slightly better than that of Temporal.

This indicates the spatial features extracted by the pretrained spatial model are label-indicative,

which improves the inference ability. By comparing SCOLAB, TCOLAB, and STCOLAB, we

observe that knowledge distillation with a single module does not guarantee better performance.

This again demonstrates the importance of the proposed collaborative distillation strategies for

combining the modalities.

Number of Labeled Samples. We evaluate the system performance with even less label

information. To do so, we decrease the number of training samples per class k and compare the

performance of ST, ST w/ CL, and STCOLAB. The results are shown in Figure 6.6. In general,

STCOLAB outperforms the vanilla model and the model applying CL.

Robustness of Class Distribution Estimation.. The parameter Nest is used when
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Figure 6.6. Performance of ST, ST w/ CL and STCOLAB w.r.t the number of labeled samples
per class. (CHI: Chicago, BR: Brasilia)
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randomly selecting training samples for estimating the class ratio. To test the robustness of

STCOLAB with respect to this parameter, we change Nest to different values. As shown in

Figure 6.7, the differences in performance are small when increasing or decreasing Nest , which

shows that STCOLAB is robust to Nest .

6.5 Related Work

Contextual Inference from Human Mobility. Our work studies one of the important

lines in contextual inference—inferring the demographic attributes of mobile users. The demo-

graphic inference problem has been studied with the support of abundant behavioral data from

various fields, such as web and social media activities [16, 30, 206], transactions [201, 83, 235]

and ratings [171]. Mobile data, which is ubiquitous in life, has been proven to have correlations

with people’s demographics [131, 238]. Several methods have been proposed for demographic
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inference from human mobility including tensor factorization-based methods, [249, 143] and

network embedding-based method [215]. These studies typically require a large number (e.g.,

thousands) of users to share labels for model training. By contrast, we seek to develop a data-

efficient method that can achieve meaningful results with a very small amount of annotated data.

To the best of our knowledge, we are the first to address the contextual inference problem using

mobility data with minimal supervision.

Minimally Supervised Classification. Minimally supervised classification is an extreme

case of semi-supervised learning. It is a challenging problem due to the scarcity of labeled

training data. The problem has recently received much attention [245, 241]. A similar setting

is few-shot learning which focuses on learning from limited data samples. The key difference

between the two settings is that few-shot learning does not consider the availability of unlabeled

data. Common solutions for few-shot classification such as metric learning [86] and meta-

learning [43] are not ideal for our scenario, as they do not utilize underlying data distribution

from massive unlabeled data. Self-training is arguably the most popular semi-supervised method

for mitigating label scarcity. Self-training strategies [23, 114, 174] achieve remarkable results by

iteratively utilizing the predictions of unlabeled data from previous rounds to augment the training

set and support subsequent rounds of training. Mobility data usually consists of information from

two different modalities. Traditional self-training solutions that bootstrap a single model using

all features at once would incur a high risk of overfitting. Different from traditional methods,

we propose collaborative distillation between the spatial and temporal modules in self-training

cycles, which fuses information and improves generalization.

6.6 Summary

We studied the problem of contextual inference in the context of minimal supervision.

We proposed STCOLAB and demonstrated its capability in predicting demographic attributes

from human mobility. STCOLAB learns mobility features from spatial and temporal information
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alternatingly and adopts iterative collaborative distillation to enhance model generalization in

self-training cycles. STCOLAB achieves reasonable accuracy with only a small amount of

annotated data (i.e., 10 samples per class), outperforming the state-of-the-art methods.

Chapter 6 incorporates material from the publication “Minimally Supervised Contextual

Inference from Human Mobility: An Iterative Collaborative Distillation Framework”, by Jiayun

Zhang, Xinyang Zhang, Dezhi Hong, Rajesh K. Gupta, and Jingbo Shang, published in Proceed-

ings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI), 2023.

The dissertation author was the primary investigator and the lead author of this paper.
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Chapter 7

Conclusion and Future Works

7.1 Summary of Contributions

This dissertation explores methods for effective learning in distributed environments and

addresses the heterogeneity problem in terms of data and computation. In particular, we focus

on federated learning and pretraining with fine-tuning paradigms.

In the first part, we leverage semantic class names and contextual information to align

and adapt models across nodes with varying data distributions. These strategies enhance the

robustness of machine learning models in non-IID settings. In the second part, we incorporate

graph hypernetwork to facilitate collaboration among heterogeneous models across nodes and

design an asynchronous method to accelerate training while maintaining convergence quality.

These approaches accommodate diverse computing resources and varying network conditions,

improving learning efficiency. In the third part, we further study methods to retrieve auxiliary

contextual information that can be integrated with prior methods. This contextual knowledge

could bridge heterogeneous sources and environments across distributed nodes, enhancing model

quality.

These methods are generally model-agnostic, making them applicable to different model

architectures that can handle various data types including image, language, and time-series data.

Through theoretical analyses and extensive experiments, we demonstrate that these approaches

show effective across diverse real-world applications, including healthcare, activity recognition,
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language modeling, network anomaly monitoring.

7.2 Limitations and Future Directions

This dissertation addresses effectiveness in three key aspects: robustness, scalability, and

quality. However, this is not the definitive form of an effective learning framework. Several open

challenges remain from different perspectives. Below, we outline potential directions for future

research.

Heterogeneous Modalities. This dissertation mainly focuses on unified feature structures

across distributed nodes such as textual, image, or sensor data. However, many practical

applications involve multi-modal inputs (e.g., images, audio, and text combined) [230, 223, 79,

149, 110]. In a distributed setting, individual nodes may only collect a subset of certain modalities,

and the subsets vary across nodes [246]. This increases the complexity of data alignment and

model aggregation. We plan to develop multi-modal fusion methods for incomplete modalities

across different nodes to reduce the requirement for unified modality collection and enhance the

robustness of learning.

Dynamic Node Participation. In distributed machine learning systems, it is common

for new nodes to join the training process [150] or for previous nodes to leave the network

over time [218, 220, 133, 36]. Scalability to new clients and tasks is essential for long-term

performance. Ensuring that models adapt effectively to these changing conditions while retaining

prior knowledge remains a significant challenge. We plan to extend our methods with lifelong

learning [193, 218, 220, 133, 36, 150] to accommodate the joining and leaving of nodes without

disrupting the learning progress made before.

Failure Handling. Training in a large-scale network faces a high risk of client or

system failures due to issues such as out-of-memory (OOM) errors during training, hardware

malfunctions, or network interruptions [69, 54, 71, 208]. As model sizes and the number

of participants grow, so do the computational and communication demands, alongside the
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probability of failures. The ability to effectively handle these failures is critical for ensuring

robust and reliable training in distributed environments. We plan to integrate fault-tolerant

mechanisms that gracefully recover from node disconnections or system crashes, reducing stall

time due to failure.

Diverse Network Connectivity Structures. The methods presented in this dissertation

are based on a star topology, where a central coordinator collects and distributes information

to all nodes. In practice, however, there are various network connectivity structures, such as

peer-to-peer or hierarchical topologies [222], each having unique communication and synchro-

nization patterns. We plan to investigate these additional network topologies and generalize our

aggregation strategies to be more flexible in these conditions.

Privacy and Security Considerations. Deploying machine learning on distributed nodes

often requires advanced privacy-preserving and secure aggregation mechanisms [145]. For future

research, we plan to combine differential privacy or homomorphic encryption with the proposed

techniques to protect sensitive data, and develop adversarially robust models to counter malicious

participants or data injections.

In conclusion, this dissertation makes important strides in addressing the core challenges

of effective learning in heterogeneous distributed environments. By uniting strategies that tackle

statistical and system heterogeneity and introducing auxiliary methods for extracting contextual

information, we lay a strong foundation for the development of scalable, reliable, and high-

quality distributed machine learning systems. As the field continues to evolve, we anticipate that

further exploration of the outlined directions will bring up models capable of more dynamically

adapting to real-world constraints and maintaining strong performance in an ever-expanding

range of applications.
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Appendix A

Theoretical Derivations and Proofs

A.1 Chapter 2: FEDALIGN

Notations. Let f : X →Z be a representation function that maps inputs to features,

and g : X →{0,1} be a ground-truth labeling function that maps input to output space. For the

global domain, denote D as the global distribution over the input space X , and D̃ as the induced

global distribution over the feature latent space Z . For the m-th local domain, denote Dm as the

local distribution and D̃m be the induced image of Dm over Z . A hypothesis h : Z →{0,1} is

a function that maps features to predicted labels. Let g̃ be the induced image of g over Z . The

expected risk of hypothesis h on distribution D is defined as follows:

L (h) = Ez∼D̃ [Ey∼g̃(z)[y ̸= h(z)]].

Let λm denote the risk of the optimal hypothesis over hypothesis class H that has

minimum risk on both D and Dm distributions, i.e., λm = minh∈H(L (h)+Lm(h)).

We define distance functions for measuring the divergence between two distributions

with respect to the hypothesis class. First, given a feature space Z and a collection of measurable

subsets A of Z , define A -distance between two distributions D̃ and D̃ ′ on Z as:

dA (D̃ ,D̃ ′) = 2 sup
A∈A
|PrD̃(A)−PrD̃ ′(A)|.
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Now, fix a particular hypothesis class H, for any given h∈H, define Zh = {z∈Z |h(z) =

1} and AH = {Zh|h ∈H}. Define the H-divergence between two distributions D̃ and D̃ ′ on Z

as:

dH(D̃ ,D̃ ′) = dAH(D̃ ,D̃ ′).

Furthermore, given a particular hypothesis class H, define AH∆H = {Zh∆Zh′|h,h′ ∈H},

where ∆ operation is the symmetric difference in the sense of set operation. Define the H∆H-

divergence between two distributions D̃ and D̃′ on Z as:

dH∆H(D̃ ,D̃ ′) = dAH∆H(D̃ ,D̃ ′).

Theorem A.1.1 (Generalization Bound of Federated Learning1). Assume there are M clients in

a federated learning system. Let H be the hypothesis class with VC-dimension d. The global

hypothesis is the aggregation of hm, i.e., h = 1
M ∑m∈[M] hm. With probability at least 1−δ , for

∀h ∈H:

L (h)≤ 1
M ∑

m∈[M]

L̂m(hm)+
1
M ∑

m∈[M]

[dH∆H(D̃m,D̃)+λm]

+

√
4
N
(d log

2eN
d

+ log
4M
δ

),

where L̂m(hm) is the empirical risk on the m-th client given N observed samples, e is the base of

the natural logarithm.

Corollary A.1.1.1 (Generalization Bound of Federated Learning with Mix-up Distributions).

Let D ′m denote the distribution added for adapting the m-th client. Define the new distribution

D∗m to be a mixture of the original local distribution and the adaptation distribution, i.e.,

D∗m = αDm +(1−α)D ′m, where α ∈ [0,1] is the weight of the original distribution decided by

the number of empirical samples added. Let H be the hypothesis class with VC-dimension d.

The global hypothesis is the aggregation of hm, i.e., h = 1
M ∑m∈[M] hm. With probability at least

1Proof can be found in prior work [152, 251, 120].
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1−δ , for ∀h ∈H:

L (h)≤ 1
M ∑

m∈[M]

L̂m(hm)

+
1
M ∑

m∈[M]

[αdH∆H(D̃m,D̃)+(1−α)dH∆H(D̃
′
m,D̃)+λm]

+

√
4

N∗
(d log

2eN∗

d
+ log

4M
δ

),

where L̂m(hm) is the empirical risk on the m-th client given N∗ (N∗ > N) observed samples, e is

the base of the natural logarithm.

Proof. Apply Theorem A.1.1 to the mix-up distribution D∗m, we have that with probability at

least 1−δ , for ∀h ∈H:

L (h)≤ 1
M ∑

m∈[M]

L̂m(hm)+
1
M ∑

m∈[M]

[dH∆H(D̃
∗
m,D̃)+λm]

+

√
4

N∗m
(d log

2eN∗m
d

+ log
4M
δ

).

We derive the upper bound of H∆H-divergence between the mix-up distribution D∗m and

the global distribution D as follows:

dH∆H(D̃
∗
m,D̃) = 2 sup

A∈AH∆H

|PrD̃∗m(A)−PrD̃(A)|

= 2 sup
A∈AH∆H

|Pr
αD̃m+(1−α)D̃ ′m

(A)−PrD̃(A)|

= 2 sup
A∈AH∆H

|αPrD̃m
(A)+(1−α)PrD̃ ′m(A)−PrD̃(A)|

≤ 2α sup
A∈AH∆H

|PrD̃m
(A)−PrD̃(A)|

+2(1−α) sup
A∈AH∆H

|PrD̃ ′m(A)−PrD̃(A)|

= αdH∆H(D̃m,D̃)+(1−α)dH∆H(D̃
′
m,D̃).
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The inequality is derived using the triangle inequality. Replace the A -distance dH∆H(D̃
∗
m,D̃)

with its upper bound derived above, we get the upper bound of L (h).

If dH∆H(D̃
′
m,D̃)< dH∆H(D̃m,D̃), then we have:

dH∆H(D̃
∗
m,D̃)≤ αdH∆H(D̃m,D̃)+(1−α)dH∆H(D̃

′
m,D̃)

< dH∆H(D̃m,D̃).

Furthermore, with added empirical samples from D′m, we have N∗ > N, and:

√
4

N∗
(d log

2eN∗

d
+ log

4M
δ

)<

√
4
N
(d log

2eN
d

+ log
4M
δ

).

Therefore, the upper bound of the expected risk with the mix-up distribution is lowered.

A.2 Chapter 3: REACT

We provide convergence analysis of REACT on linear models under the premise of

Theorem 3.5.1, that the models h and f admit the form (3.4), the adaptive weights are updated

by exactly solving Eq. (3.1), and relevant datasets are sampled at the beginning of the algorithm

and fixed throughout the iterations.

Based on Eq. (3.4), we consider the following objective function:

L ( f (X ;θmeta,θadapt)) =
1
2
∥ f (X ;θmeta,θadapt)−Y∥2 +

λ

2
∥θadapt∥2,

which consists of a mean squared error and an L2 regularization for the adaptive weights (see

Section 3.4.4). Y is the target associated with the loss function. It can have different forms

according to the underlying target model. For example, it can be the input data for reconstruction

loss, center of samples for methods like DeepSVDD, or labels in cases of supervised or semi-

supervised learning.
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Without loss of generality we set θ ∈ Rd1 and φ ∈ Rd2 for some d1,d2 > 0. Notice

that this assumption can be generalized by considering vectorization of the matrix product and

hence our results can easily be extended to more generic output spaces. We also note that the

assumption that the datasets have uncorrelated constant variance, i.e. (X i)⊤(X i) = σiI is to

simplify computations in the proof. The proof can be relaxed to bounded norm, i.e. ∥X i∥2 ≤ σi

where ∥.∥2 is L-2 norm on the matrix space.

We restate the theorem below:

Theorem A.2.1. Consider REACT on the linear model in (3.4) with Eq. (3.1) being solved exactly.

Let X i
s and X i

q satisfy (X i
s)
⊤X i

s = (X i
q)
⊤X i

q = σiI for each task i ∈ {1, ...,M}, where σi are the

variances and I is the identity matrix. Learning rates are chosen as ηmeta <
1

∑
M
i=1 σiλ/(σi+λ )

and

ηh <
1

max
(

∑
nh
j=1 σ j(σ j+λ ),∥Xs∥

) where Xs = ∑
M
j=1 σ j(X

j
s )
⊤. Then, for any ε > 0, there exists

K = O
(

log1/ρmeta
(1/ε)+ log1/ρh

(1/ε)
)

where ρmeta = 1−ηmeta ∑
M
i=1 σiλ/(σi +λ ) and ρh = 1−ηh ∑

M
j=1 σ j(σ j +λ ) such that the K-

iteration of Algorithm 2 satisfies

∥θ K−θ
∗∥ ≤ ε, and ∥φ K−φ

∗∥ ≤ ε,

where θ ∗ and φ∗ are stationary points of the algorithm.

Proof. We prove the result following the steps in Algorithm 2. Let θ
i,k
adapt be the fine-tuned

adaptive weights of task i at the k-th iteration of REACT and similarly, let φ k denote the

hypernetwork parameters and θ k
meta be the meta weights at iteration k.

Task fine-tuning. The exact intermediate updates defined in (3.1) can be rewritten as

follows:

θ
i,k+1
adapt = argmin

θ

1
2
∥X i

s(θ
k
meta +θ)−Y i

s∥2 +
λ

2
∥θ∥2.
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Setting gradient to zero, we have

0 =
(
X i

s
)⊤

X i
s

(
θ

i,k+1
adapt +θ

k
meta

)
−
(
X i

s
)⊤

Y i
s +λθ

i,k+1
adapt ,

where 0 is the vector of all zeros. This implies

θ
i,k+1
adapt =

1
σi +λ

(
X i

s
)⊤

Y i
s −

σi

σi +λ
θ

k
meta, (A.1)

where we used the fact that
(
X i

s
)⊤X i

s = σiI.

Meta weight update. Next, we consider the gradient update of meta weight in (2). The

gradient with respect to θmeta is

∇θmeta ∑x∈Di
query

L
(

f
(

x;θmeta ,θ
i,k+1
adapt

))∣∣∣
θ k

meta

=
(
X i

q
)⊤X i

q

(
θ k

meta +θ
i,k+1
adapt

)
−
(
X i

q
)⊤Y i

q

= σi

(
λ

σi+λ
θ k

meta + 1
σi+λ

(
X i

s
)⊤Y i

s

)
−
(
X i

q
)⊤Y i

q,

where the last equality is given by (5) and the assumption in data covariance matrix. Therefore,

the gradient update step is

θ
k+1
meta =θ

k
meta −ηmeta

M

∑
i=1

∑
x∈Di

query

∇θmeta L
(

f
(

x;θ
k
meta ,θ

i,k+1
adapt

))
=θ

k
meta −ηmeta

M

∑
i=1

σi

(
λ

σi +λ
θ

k
meta +

1
σi +λ

(
X i

s
)⊤

Y i
s

)
−
(
X i

q
)⊤

Y i
q

=

(
1−ηmeta

M

∑
i=1

σiλ

σi +λ

)
θ

k
meta

−ηmeta

M

∑
i=1

σi

σi +λ

(
X i

s
)⊤

Y i
s −
(
X i

q
)⊤

Y i
q.

Let us introduce ρmeta = 1−ηmeta ∑
M
i=1 σiλ/(σi +λ ), and choose learning rate 0 <
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ηmeta < 1/∑
M
i=1 σiλ/(σi +λ ) so that 0 < ρmeta < 1.

The stationary point θ ∗meta should satisfy

θ
∗
meta =

(
1−ηmeta

M

∑
i=1

σiλ

σi +λ

)
θ
∗
meta

−ηmeta

M

∑
i=1

σi

σi +λ

(
X i

s
)⊤

Y i
s −
(
X i

q
)⊤

Y i
q.

Thus, we obtain

(
θ

k+1
meta −θ

∗
meta

)
= ρmeta

(
θ

k
meta −θ

∗
meta

)
,

yielding,

∥∥∥θ
k+1
meta −θ

∗
meta

∥∥∥≤ ρmeta

∥∥∥θ
k
meta −θ

∗
meta

∥∥∥≤ ·· · ≤ ρ
k+1
meta

∥∥θ
0
meta −θ

∗
meta

∥∥ . (A.2)

Hypernetwork update. Lastly, the gradient of the objective function update with respect

to φ k is

∇φ ∑
x∈D j

query

L
(

f
(

x;θ
k+1
meta ,h

(
X j

s ;φ
)))∣∣∣∣∣∣

φ k

=
(
X j

q X j
s
)⊤(

X j
q X j

s φ
k +X j

q θ
k+1
meta

)
−
(
X j

q X j
s
)⊤

Y j
q +λ

(
X j

s
)⊤

X j
s φ

k

= σ j
(
σ j +λ

)
φ

k +σ j
(
X j

s
)⊤

θ
k+1
meta −

(
X j

q X j
s
)⊤

Y j
q

Thus, the update (3.3) can be written as

φ
k+1 =φ

k−ηh

nh

∑
j=1

∑
x∈D j

query

∇φL
(

f
(

x;θ
k+1
meta ,h

(
X j

s ;φ
)))

=

(
1−ηh

M

∑
j=1

σ j
(
σ j +λ

))
φ

k

−ηh

(
M

∑
i=1

σ j
(
X j

s
)⊤)

θ
k+1
meta +ηh

M

∑
i=1

(
X j

q X j
s
)⊤

Y j
q ,
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where the last equality follows from
(

X j
q

)⊤
X j

q =
(

X j
s

)⊤
X j

s = σ jI.

Notice that the learning rate ηh implies 0 < ηh < 1/max
(

∑
nh
j=1 σ j

(
σ j +λ

)
,∥Xs∥

)
so

that the rate ρh and Xs satisfy 0 < ρh < 1 and 0 < ηh ∥Xs∥< 1. On the other hand, the stationary

points φ∗ and θ ∗ satisfy

φ
∗ = ρhφ

∗−ηhXsθ
∗
meta +ηh

M

∑
i=1

(
X j

q X j
s
)⊤

Y j
q ,

yielding

φ
k+1−φ

∗ = ρh

(
φ

k−φ
∗
)
−ηhXs

(
θ

k+1
meta −θ

∗
meta

)
and ∥∥∥φ

k+1−φ
∗
∥∥∥≤ ρh

∥∥∥φ
k−φ

∗
∥∥∥+ηh ∥Xs∥

∥∥∥θ
k+1
meta −θ

∗
meta

∥∥∥ (A.3)

Convergence. With Eq. (A.2), we can show that for k ≥ Kmeta = log1/ρm
(1/ε) +

log1/ρm

(∥∥θ 0
meta −θ ∗meta

∥∥), we have

∥∥∥θ
k
meta −θ

∗
meta

∥∥∥≤ ε

Similarly, from Eq. (A.3), we get

∥∥∥φ
k−φ

∗
∥∥∥≤ ρh

∥∥∥φ
k−1−φ

∗
∥∥∥+ηh ∥Xs∥

∥∥∥θ
k
meta −θ

∗
meta

∥∥∥
≤ ρh

∥∥∥φ
k−1−φ

∗
∥∥∥+ηh ∥Xs∥ρ

k
meta

∥∥θ
0
meta −θ

∗
meta

∥∥
≤ ρ

2
h

∥∥∥φ
k−2−φ

∗
∥∥∥+ηh ∥Xs∥

∥∥θ
0
meta −θ

∗
meta

∥∥[ρk
meta +ρhρ

k−1
meta

]
· · ·

≤ ρ
k
h

∥∥φ
0−φ

∗∥∥+ ρmeta ηh ∥Xs∥
∥∥θ 0

meta −θ ∗meta
∥∥

ρmeta −ρh

(
ρ

k
meta −ρ

k
h

)
,

where we used (6) in the second inequality. Therefore, for any k satisfies
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k ≥Kh

= log1/ρh
(2/ε)+ log1/ρh

(∥∥φ
0−φ

∗∥∥)
+ log1/ρh

(4/ε)+ log1/ρh

(
ρmeta ηh ∥Xs∥

∥∥θ 0
meta −θ ∗meta

∥∥
|ρmeta −ρh|

)

+ log1/ρmeta
(4/ε)+ log1/ρmeta

(
ρmeta ηh ∥Xs∥

∥∥θ 0
meta −θ ∗meta

∥∥
|ρmeta −ρh|

)
,

we have

∥∥∥φ
k−φ

∗
∥∥∥≤ ε

2
+

ε

4
+

ε

4
= ε.

Therefore, we can choose

K = max(Kmeta ,Kh) = O
(

log1/ρmeta
(1/ε)+ log1/ρh

(1/ε)
)

This completes the proof.

A.3 Chapter 4: RECIPFL

Notations. We will give the proof of Theorem 4.4.1 using the results of Baxter [12]. Let

us introduce the notations and definitions before we state a key theorem from Baxter (Theorem

18 and Corollary 19) from which the main results of the paper are derived.

Let X be the input space and Y be the output space. Let P1, . . . ,PM be M probability

measures on X ×Y . For every m = 1, . . . ,M, sample (x(m),y(m)) from the distribution Pm, and

abbreviate Lm(φ) = ℓ
(

fm

(
x(m);GHN(Gm,am;φ)

)
,y(m)

)
, where φ represents the parameters

of the graph hypernetwork. Define a metric dP on Rd:

dP(φ ,φ ′) =
1
M
E(xxx,yyy)∼P

∣∣∣∣∣ M

∑
m=1

Lm(φ)−
M

∑
m=1

Lm(φ
′)

∣∣∣∣∣ , (A.4)
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where P = P1×·· ·×PM is the product probability measure, and (xxx,yyy) = ((x(1),y(1)), . . . ,

(x(M),y(M))). Define the covering number of a subset E of Rd by closed ball of radius ε with

respect to the metric dP :

N (ε,E,dP) = inf{n : ∃φ1, · · · ,φn,∀φ ∈ E,∃ j, dP(φ ,φ j)≤ ε} (A.5)

and the capacity of E ⊂ Rd by

C (ε,E) = sup
P

N (ε,E,dP), (A.6)

where the supremum is taken over all product probability measures on (X ,Y )M. The capacity

measures the complexity of the hypothesis space in much the same way as the VC-dimension

measures the complexity of a set of Boolean functions. Here our hypothesis space is indexed by

φ ∈ Rd . Now we are ready to state the theorem from Baxter applied in our RECIPFL method.

Theorem A.3.1. Let DDD = {DDDm}M
m=1 be generated by N independent trials from (X ×Y )M

according to some product probability measure P = P1×·· ·×PM. If

N ≥max

{
4

Mε2 log
4C
(

ε

4 ,R
d)

δ
,

1
ε2

}
, (A.7)

then

P

(
DDD : sup

φ

|L (φ)− L̂ (φ ,DDD)|> ε

)
≤ δ . (A.8)

Proof of Theorem 4.4.1. It suffices to bound C
(

ε

4 ,R
d). Notice that by the Lipschitz assumption

on the loss function l, |Lm(φ)−Lm(φ
′)| ≤ K∥φ −φ ′∥ for all m = 1, · · · ,M. This implies by

(A.4), for all φ ,φ ′ ∈ Rd ,

dP(φ ,φ ′)≤ 1
M

M

∑
m=1

∣∣Lm(φ)−Lm(φ
′)
∣∣≤ K∥φ −φ

′∥. (A.9)
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So ∥φ −φ ′∥ ≤ ε

K implies dP(φ ,φ ′) ≤ ε . Now take an integer p > RK
√

d/ε and decompose

[−R,R]d as the union of pd congruent cubes by dividing [−R,R] into p pieces of equal length. The

side length of these cubes is 2R/p and so each cube is contained in a ball of radius R
√

d/p < ε

K

centered at the center of the cube. This proves the covering number N (ε,E,dP)≤ ⌈RK
√

d/ε⌉d

for all P . So, C
(

ε

4 ,R
d)≤ ⌈4RK

√
d/ε⌉d .

A.4 Chapter 5: ORTHOFL

In this section, we prove that the orthogonalization strategy in ORTHOFL preserves the

maximal information from the global weight shift vectors perpendicular to the local update

direction.

For v,w ∈ Rd , let ⟨v,w⟩ := ∑
d
i=1 viwi be the standard inner product on Rd . We restate the

Lamma as follows:

Lemma A.4.1. Let v ∈ Rd and U = {u1, · · · ,uk} be an orthonormal set for some k < d. Then

for any w ∈ (spanU )⊥,

∥v− v⊥∥ ≤ ∥v−w∥, (A.10)

where v⊥ := v−∑
k
i=1⟨v,ui⟩ui denote the component of v orthogonal to U . Moreover, the angle

between v and v⊥ is less than any angle between v and w for w ∈ (spanU )⊥.

Proof. Extend U to an orthonormal basis B := {u1, · · · ,uk,

uk+1, · · · ,ud} on Rd . Write w = ∑
d
i=1 wiui and v = ∑

d
i=1 viui, where wi := ⟨w,ui⟩ and vi := ⟨v,ui⟩

denote the coordinates of w and v with respect to the basis B respectively. Since w ∈ (spanU )⊥,
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wi = 0 for 1≤ i≤ k. It follows from Pythagorean theorem that

∥v−w∥2 =

∥∥∥∥∥ d

∑
i=1

(vi−wi)ui

∥∥∥∥∥
2

=

∥∥∥∥∥ k

∑
i=1

viui +
d

∑
j=k+1

(v j−w j)u j

∥∥∥∥∥
2

=

∥∥∥∥∥ k

∑
i=1

viui

∥∥∥∥∥
2

+

∥∥∥∥∥ d

∑
j=k+1

(v j−w j)u j

∥∥∥∥∥
2

≥

∥∥∥∥∥ k

∑
i=1

viui

∥∥∥∥∥
2

.

(A.11)

Taking square root of both sides and noting that by definition v−v⊥ = ∑
k
i=1 viui, equation (A.10)

follows. As for the second claim, let θ(v,w) denote the angle between v and w, θ(v,v⊥) the

angle between v and v⊥. By the Cauchy-Schwarz inequality,

⟨v,w⟩=

〈
v,

d

∑
j=k+1

w ju j

〉

=
d

∑
j=k+1

w j⟨v,u j⟩

≤

(
d

∑
j=k+1

w2
j

)1/2

·

(
d

∑
j=k+1

v2
j

)1/2

= ∥w∥ · ∥v⊥∥.

(A.12)

It follows that

cosθ(v,w) :=
⟨v,w⟩
∥v∥∥w∥

≤ ∥v
⊥∥
∥v∥

=
⟨v,v⊥⟩
∥v∥∥v⊥∥

= cosθ(v,v⊥). (A.13)

Since the consine function is monotonically decreasing on [0,π], θ(v,w)≥ θ(v,v⊥) as claimed.
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Appendix B

Notations

B.1 Chapter 2: FEDALIGN

• C, Cm, Cm: C represents the universal set of classes, Cm is the set of classes identified on

client m, and Cm = C\Cm is the set of classes not observed by client m.

• X , Y , Z : the input space, the output space, and the latent feature space, respectively.

• W : the set of natural language label names.

• Dm: the local training dataset on client m.

• D′(t)m : the augmented dataset for alignment at communication round t.

• xi, yi: an input sample and its binary label vector.

• [yi,c]c∈C: the labels corresponding to each class c in C.

• ỹ(t)i,c : the pseudo-label for class c assigned at round t based on anchor-guided alignment.

• f (·;θ): the data encoder parameterized by θ , mapping input data to latent space Z .

• h(·;ζ ): the classifier parameterized by ζ , transforming latent features into prediction

logits.

• γ(·;ω): the label encoder parameterized by ω , mapping classes into latent space Z .
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• g(·;θ ,ζ ): The global classification model combining the data encoder and classifier to

predict class probabilities.

• g(xi;θ ,ζ )c: predicted probability that the input xi belongs to class c.

• ℓ, ℓ′: loss functions used for training (ℓ) and alignment (ℓ′).

• M: the total number of clients.

• T : the total number of communication rounds.

• E: the number of local training epochs per client per round.

• St : a subset of clients selected randomly in communication round t.

• θ
(t)
m , ω

(t)
m : the parameters of local data encoder (θ ) and label encoder (ω) parameters for

client m at round t.

• d(t)
i,c : cosine distance between the data representation of sample xi and class anchor c at

round t.

• τ̂
(t)
c , τ̌

(t)
c : thresholds for annotating positive and negative samples for class c based on

distance from the anchor.

• η : learning rate for parameter updates during local training.

• D , Dm, D̃ , D̃m: D is the global data distribution, Dm is the local distribution at client m,

and D̃ , D̃m are the corresponding distributions in the latent feature space Z .

• D ′m, D∗m: D ′m is the augmented distribution for alignment on client m, and D∗m is a mixture

of Dm and D ′m.

• α: weight factor controlling the mixture of original and augmented distributions.
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• H, hm, h: H is the hypothesis class with VC-dimension d, hm denotes the local hypothesis

on client m, and h is the global hypothesis obtained by aggregating local models.

• L (h): expected risk (or loss) of the global hypothesis h over the global data distribution.

• dH∆H: A -distance measuring divergence between distributions with respect to the hypoth-

esis class H.

• λm: risk of the optimal hypothesis concerning the distributions D and Dm for client m.

• N, N∗: N is the number of observed samples on client m, and N∗ represents the total

number of samples after augmentation.

B.2 Chapter 3: REACT

• P(x), P(y|x): marginal feature distribution and conditional distribution of labels given

features, respectively.

• x, y: input data sample and its corresponding category or label.

• f (·;θ): threat detection model parameterized by θ .

• D, D′: original unlabeled dataset drawn from distribution P , and a small dataset from

distribution P ′.

• θ , θ ′: model parameters before and after adaptation to the new distribution.

• L : loss function used for model optimization.

• Ti, Pi: a meta-learning task and its associated distribution.

• θ ∗i : optimal model parameters for task Ti.

• Di: dataset of task Ti.
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• Di
support, Di

query: support set and query set used of task i in meta-learning.

• h(·;φ): a hypernetwork parameterized by φ .

• Vi: task representation of task i used by the hypernetwork.

• θmeta, θadapt: meta weights and adaptive weights.

• St : a subset of selected clients at round t in meta learning.

• ci: contextual information associated with task Ti.

• ηmeta, ηh: learning rates for updating meta weights and hypernetwork parameters.

• λ : the regularization parameter for controlling adaptive weight norms.

• φ∗, θ ∗: stationary points of the hypernetwork and meta weights after convergence.

• Xi, Xi
s, Xi

q: data matrix for task i, and its corresponding support and query splits.

• σi: variance parameter for the dataset Xi.

• ρmeta, ρh: convergence rates for meta weights and hypernetwork during training.

• M: number of tasks sampled in each meta-training iteration.

• E: number of fine-tuning epochs on support data.

• k: the size of the support set for a given task.

• |D′|: Number of observed samples from the new distribution for adaptation.

• t1: run time for hypernetwork forward pass.

• t2: run time for fine-tuning steps during adaptation.
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B.3 Chapter 4: RECIPFL

• M: total number of clients in the federated learning system.

• Gm: the customized model architecture for client m.

• Dm =
{(

x(m)
i ,y(m)

i

)}Nm

i=1
: the training dataset on client m, where x(m)

i is the input and y(m)
i

is the corresponding label.

• Pm: data distribution for client m.

• ℓ: loss function used for training the client models.

• fm(·;θm): the personalized model for client m parameterized by θm.

• θθθ = {θ1, . . . ,θM}: the set of model parameters for all clients.

• St : the subset of clients selected at communication round t.

• E: number of local training epochs for each client per communication round.

• ηc, ηs: learning rates for local client updates and server updates respectively.

• φ : parameters of the graph hypernetwork (GHN) on the server.

• θ̃m: model weights generated by the graph hypernetwork for client m.

• ∆θm: difference between updated client weights and initial weights generated by GHN.

• G (V ,E ): the directed acyclic graph (DAG) representation of a neural network, where V

is the set of nodes (operations) and E is the set of directed edges (computation flows).

• hv: the feature vector for node v in the computational graph.

• lv: the one-hot encoding of the operation type performed by node v.

• qv: the parameters of the operator associated with node v.
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• m(t)
v : the message passed to node v at step t during graph propagation.

• am: the client descriptor for client m (e.g., class distribution or client ID embedding).

• f S
m, f L

m: the small and large models on strong device m, respectively.

• θ S
m, θ L

m: the parameters of the small and large models on strong device m.

• pS
i , pL

i : the softmax probabilities from the small and large models for input xi.

• CE(·): cross-entropy loss function.

• DKL(·∥·): Kullback-Leibler divergence for aligning feature distributions.

• T : total number of communication rounds.

• L (φ), L̂ (φ ,D): expected loss and empirical loss of the graph hypernetwork.

• N: number of training samples per client used in the generalization bound analysis.

• R: upper bound on the values of hypernetwork parameters φ .

• K: Lipschitz constant of the loss function ℓ with respect to φ .

• ε , δ : error margin and probability confidence used in generalization bounds.

• α: parameter for the Dirichlet distribution used to simulate non-IID data distributions.

B.4 Chapter 5: ORTHOFL

• M: the total number of clients participating in federated learning.

• W : the global model weights maintained by the server.

• Wm: the local model weights for client m.

• Dm: the local dataset held by client m.
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• Pm: the data distribution corresponding to client m’s dataset.

• ℓ: loss function used for optimization during training.

• f (·;W ): the model parameterized by weights W .

• T : the total number of global communication rounds.

• mt : index of the client that communicates with the server at round t.

• τt : the last global round when client mt communicated with the server.

• t− τ: number of rounds since the last communication from client mt , i.e., staleness.

• βt : delay-adaptive factor for aggregation, calculated as βt = (t− τ)−a ·β .

• a: the hyperparameter controlling the decay factor of the staleness.

• sa(x): scaling function for the staleness factor, defined as sa(x) = x−a.

• ∆W : the global weight shift since the last update from client m, i.e., W (t)−W (τ+).

• ∆Wm: the change in client m’s local model weights from its last communication.

• ∆W l , ∆W l
m: the change in weights for layer l of the global model and client model,

respectively.

• ∆W l⊥: the orthogonal component of global weight shift for layer l with respect to ∆W l
m.

• E: number of local training epochs per communication round.

• ηc: the learning rate for local training updates on each client.

• Lm(W ): the local objective function for client m based on its dataset.

• proj∆W l
m
(∆W l): the projection of ∆W l onto the direction of ∆W l

m.
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• v⊥: the orthogonal component of vector v with respect to a subspace.

• ⟨v,w⟩: the inner product between vectors v and w.

• α : the parameter for the Dirichlet distribution to control data heterogeneity across clients.

• µ , σ : the mean and standard deviation used in the delay distributions for simulating client

latency.

• B(m)
i : the mini-batch i from client m’s local dataset.

B.5 Chapter 6: STCOLAB

• l: a region defined as a geographic unit represented by a polygon in the coordinates.

• u: a user whose mobility data is being tracked.

• t: a specific time period in a day.

• (u, l, t): a daily mobility record entry representing user u’s visit to region lduring t.

• Su: the sequence of time-location pairs for user u.

• Q: the total number of records for user u.

• D , Dlb, Dul: the entire training dataset, its labeled subset and unlabeled subset, respec-

tively.

• x, y: the input features corresponding to mobility data, and the ground-truth label.

• C : the set of all possible classes for a demographic attribute.

• k: number of labeled samples available per class.

• a: the attribute class assigned to user u.

• f (t)S : the spatial model at iteration t.
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• f (t)T : the temporal model at iteration t.

• D̃
(t)
S , D̃

(t)
T : the distillation dataset at iteration t for the spatial and the temporal model,

respectively.

• r: the percentile score threshold for selecting confident predictions.

• T(t)
a : the confidence threshold for class aat iteration t.

• M: the one-channel image representing the visualized map of mobility data.

• z: the spatial feature vector learned from the map.

• pspatial
i , ptemporal

i : the prediction probability for user ui given by the spatial and the temporal

module, respectively.

• LS, LT : the loss function for training the spatial and the temporal module, respectively.

• h: the window size for temporal convolution.

• d: the dimension of spatial feature vectors.

• e j: the temporal feature extracted from a window of size h.

• N f : number of filters in the temporal convolution.

• Nest : number of samples used for estimating class distribution.

• L
(t)

T : the distillation loss for the temporal model at iteration t.

• D̃
(t)
Tul

: the selected unlabeled distillation dataset for the temporal model at iteration t.

• D̃
(t)
Tlb

: the balanced labeled dataset used in distillation at iteration t.

• ŷS
i,a, ŷT

i,a: the predicted label (1 if true, 0 otherwise) for class a at iteration t given by the

spatial and the temporal model, respectively.

• N̂a: mumber of samples in D̃
(t)
Tul

predicted as class a.
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[95] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based Learning
Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

166



[96] Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolutional networks and
applications in vision. In Proceedings of 2010 IEEE international symposium on circuits
and systems, pages 253–256. IEEE, 2010.

[97] Chung-Wei Lee, Wei Fang, Chih-Kuan Yeh, and Yu-Chiang Frank Wang. Multi-Label
Zero-Shot Learning with Structured Knowledge Graphs. In CVPR, pages 1576–1585,
2018.

[98] Dong-Hyun Lee et al. Pseudo-Label: The Simple and Efficient Semi-Supervised Learning
Method for Deep Neural Networks. In Workshop on Challenges in Representation
Learning, ICML, volume 3, page 896, 2013.

[99] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. BioBERT: a pre-trained biomedical language representation model for
biomedical text mining. Bioinformatics, 36(4):1234–1240, 2020.

[100] Jimmy Lei Ba, Kevin Swersky, Sanja Fidler, et al. Predicting Deep Zero-Shot Con-
volutional Neural Networks using Textual Descriptions. In ICCV, pages 4247–4255,
2015.

[101] Omer Levy and Yoav Goldberg. Linguistic Regularities in Sparse and Explicit Word
Representations. In CoNLL, pages 171–180, 2014.

[102] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen. Hermes: An Efficient
Federated Learning Framework for Heterogeneous Mobile Clients. In MobiCom, pages
420–437, 2021.

[103] Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen. FedMask: Joint
Computation and Communication-Efficient Personalized Federated Learning via Hetero-
geneous Masking. In SenSys, pages 42–55, 2021.

[104] Aodong Li, Chen Qiu, Marius Kloft, Padhraic Smyth, Maja Rudolph, and Stephan Mandt.
Zero-shot anomaly detection via batch normalization. Advances in Neural Information
Processing Systems, 36, 2024.

[105] Chenglin Li, Di Niu, Bei Jiang, Xiao Zuo, and Jianming Yang. Meta-HAR: Federated
Representation Learning for Human Activity Recognition. In WWW, pages 912–922,
2021.

[106] Heng Li, Shiyao Zhou, Wei Yuan, Xiapu Luo, Cuiying Gao, and Shuiyan Chen. Robust
android malware detection against adversarial example attacks. In Proceedings of the Web
Conference 2021, pages 3603–3612, 2021.

[107] Hongyu Li, Liang Ding, Meng Fang, and Dacheng Tao. Revisiting catastrophic forgetting
in large language model tuning. arXiv preprint arXiv:2406.04836, 2024.

167



[108] Liang Li, Dian Shi, Ronghui Hou, Hui Li, Miao Pan, and Zhu Han. To talk or to
work: Flexible communication compression for energy efficient federated learning over
heterogeneous mobile edge devices. In INFOCOM, pages 1–10. IEEE, 2021.

[109] Qinbin Li, Bingsheng He, and Dawn Song. Model-Contrastive Federated Learning. In
CVPR, pages 10713–10722, 2021.

[110] Shuheng Li, Jiayun Zhang, Xiaohan Fu, Xiyuan Zhang, Jingbo Shang, and Rajesh K.
Gupta. Matching skeleton-based activity representations with heterogeneous signals for
har, 2025.

[111] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated Optimization in Heterogeneous Networks. MLSys, 2:429–450, 2020.

[112] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the
Convergence of FedAvg on Non-IID Data. In ICLR, 2019.

[113] Xin-Chun Li and De-Chuan Zhan. FedRS: Federated Learning with Restricted Softmax
for Label Distribution Non-IID Data. In KDD, pages 995–1005, 2021.

[114] Xinzhe Li, Qianru Sun, Yaoyao Liu, Qin Zhou, Shibao Zheng, Tat-Seng Chua, and Bernt
Schiele. Learning to Self-Train for Semi-Supervised Few-Shot Classification. Advances
in Neural Information Processing Systems, 32:10276–10286, 2019.

[115] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence
neural networks. arXiv preprint arXiv:1511.05493, 2015.

[116] Yuxin Li, Wenchao Chen, Bo Chen, Dongsheng Wang, Long Tian, and Mingyuan Zhou.
Prototype-oriented unsupervised anomaly detection for multivariate time series. In Inter-
national Conference on Machine Learning, pages 19407–19424. PMLR, 2023.

[117] Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. Copod: copula-based
outlier detection. In 2020 IEEE international conference on data mining (ICDM), pages
1118–1123. IEEE, 2020.

[118] Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George H Chen. Ecod:
Unsupervised outlier detection using empirical cumulative distribution functions. IEEE
Transactions on Knowledge and Data Engineering, 35(12):12181–12193, 2022.

[119] Feng Liang, Weike Pan, and Zhong Ming. FedRec++: Lossless Federated Recommenda-
tion with Explicit Feedback. In AAAI, volume 35, pages 4224–4231, 2021.

[120] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. Ensemble Distillation for
Robust Model Fusion in Federated Learning. NeurIPS, 33, 2020.

[121] Xinyang Lin, Hanting Chen, Yixing Xu, Chao Xu, Xiaolin Gui, Yiping Deng, and Yunhe
Wang. Federated Learning with Positive and Unlabeled Data. In ICML, pages 13344–
13355. PMLR, 2022.

168



[122] Or Litany, Haggai Maron, David Acuna, Jan Kautz, Gal Chechik, and Sanja Fidler.
Federated Learning with Heterogeneous Architectures using Graph HyperNetworks. arXiv
preprint arXiv:2201.08459, 2022.

[123] Boyi Liu, Yiming Ma, Zimu Zhou, Yexuan Shi, Shuyuan Li, and Yongxin Tong. Casa:
Clustered federated learning with asynchronous clients. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1851–1862, 2024.

[124] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee
international conference on data mining, pages 413–422. IEEE, 2008.

[125] Ji Liu, Juncheng Jia, Tianshi Che, Chao Huo, Jiaxiang Ren, Yang Zhou, Huaiyu Dai, and
Dejing Dou. Fedasmu: Efficient asynchronous federated learning with dynamic staleness-
aware model update. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 13900–13908, 2024.

[126] Liu Liu, Olivier De Vel, Chao Chen, Jun Zhang, and Yang Xiang. Anomaly-based insider
threat detection using deep autoencoders. In 2018 IEEE international conference on data
mining workshops (ICDMW), pages 39–48. IEEE, 2018.

[127] Ruixuan Liu, Fangzhao Wu, Chuhan Wu, Yanlin Wang, Lingjuan Lyu, Hong Chen, and
Xing Xie. No One Left Behind: Inclusive Federated Learning over Heterogeneous Devices.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 3398–3406, 2022.

[128] Shuchang Liu, Shuyuan Xu, Wenhui Yu, Zuohui Fu, Yongfeng Zhang, and Amelie Marian.
FedCT: Federated Collaborative Transfer for Recommendation. In SIGIR, pages 716–725,
2021.

[129] Xiaofeng Liu, Chaehwa Yoo, Fangxu Xing, Hyejin Oh, Georges El Fakhri, Je-Won Kang,
Jonghye Woo, et al. Deep unsupervised domain adaptation: A review of recent advances
and perspectives. APSIPA Transactions on Signal and Information Processing, 11(1),
2022.

[130] Yanchi Liu, Chuanren Liu, Xinjiang Lu, Mingfei Teng, Hengshu Zhu, and Hui Xiong.
Point-of-Interest Demand Modeling with Human Mobility Patterns. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 947–955, 2017.

[131] Feixiong Luo, Guofeng Cao, Kevin Mulligan, and Xiang Li. Explore spatiotemporal and
demographic characteristics of human mobility via Twitter: A case study of Chicago.
Applied Geography, 70:11–25, 2016.

[132] Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. No Fear of
Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data. NeurIPS,
34, 2021.

169



[133] Yuhang Ma, Zhongle Xie, Jue Wang, Ke Chen, and Lidan Shou. Continual federated
learning based on knowledge distillation. In IJCAI, pages 2182–2188, 2022.

[134] Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson.
Parameter-efficient multi-task fine-tuning for transformers via shared hypernetworks.
arXiv preprint arXiv:2106.04489, 2021.

[135] Yuren Mao, Yaobo Liang, Nan Duan, Haobo Wang, Kai Wang, Lu Chen, and Yunjun Gao.
Less-forgetting multi-lingual fine-tuning. Advances in Neural Information Processing
Systems, 35:14917–14928, 2022.

[136] Moe Matsuki, Paula Lago, and Sozo Inoue. Characterizing Word Embeddings for Zero-
Shot Sensor-Based Human Activity Recognition. Sensors, 19(22):5043, 2019.

[137] Geoffrey J McLachlan. Iterative Reclassification Procedure for Constructing an Asymp-
totically Optimal Rule of Allocation in Discriminant Analysis. Journal of the American
Statistical Association, 70(350):365–369, 1975.

[138] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-Efficient Learning of Deep Networks from Decentralized Data.
In AISTATS, pages 1273–1282. PMLR, 2017.

[139] Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing He, Peter Brusilovsky, and Yu Chi.
Deep Keyphrase Generation. arXiv preprint arXiv:1704.06879, 2017.

[140] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. Distributed
Representations of Words and Phrases and their Compositionality. NeurIPS, 26, 2013.

[141] Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake E Woodworth. Asyn-
chronous sgd beats minibatch sgd under arbitrary delays. Advances in Neural Information
Processing Systems, 35:420–433, 2022.

[142] Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A
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