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Abstract

The broad concept of emergence is instrumental in various of the most challenging open sci-

entific questions—yet, few quantitative theories of what constitutes emergent phenomena

have been proposed. This article introduces a formal theory of causal emergence in multi-

variate systems, which studies the relationship between the dynamics of parts of a system

and macroscopic features of interest. Our theory provides a quantitative definition of down-

ward causation, and introduces a complementary modality of emergent behaviour—which

we refer to as causal decoupling. Moreover, the theory allows practical criteria that can be

efficiently calculated in large systems, making our framework applicable in a range of sce-

narios of practical interest. We illustrate our findings in a number of case studies, including

Conway’s Game of Life, Reynolds’ flocking model, and neural activity as measured by

electrocorticography.

Author summary

Many scientific domains exhibit phenomena that seem to be “more than the sum of their

parts”; for example, flocks seem to be more than a mere collection of birds, and conscious-

ness seems more than electric impulses between neurons. But what does it mean for a

physical system to exhibit emergence? The literature on this topic contains various con-

flicting approaches, many of which are unable to provide quantitative, falsifiable state-

ments. Having a rigorous, quantitative theory of emergence could allow us to discover the

exact conditions that allow a flock to be more than individual birds, and to better under-

stand how the mind emerges from the brain. Here we provide exactly that: a formal theory

of what constitutes causal emergence, how to measure it, and what different “types” of
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emergence exist. To do this, we leverage recent developments in information dynamics—

the study of how information flows through and is modified by dynamical systems. As

part of this framework, we provide a mathematical definition of causal emergence, and

also practical formulae for analysing empirical data. Using these, we are able to confirm

emergence in the iconic Conway’s Game of Life, in certain flocking patterns, and in repre-

sentations of motor movements in the monkey’s brain.

Introduction

While most of our representations of the physical world are hierarchical, there is still no agree-

ment on how the co-existing “layers” of this hierarchy interact. On the one hand, reductionism
claims that all levels can always be explained based on sufficient knowledge of the lowest scale

and, consequently—taking an intentionally extreme example—that a sufficiently accurate the-

ory of elementary particles should be able to predict the existence of social phenomena like

communism. On the other hand, emergentism argues that there can be autonomy between lay-

ers, i.e. that some phenomena at macroscopic layers might only be accountable in terms of

other macroscopic phenomena. While emergentism might seem to better serve our intuition,

it is not entirely clear how a rigorous theory of emergence could be formulated within our

modern scientific worldview, which tends to be dominated by reductionist principles.

Emergent phenomena are usually characterised as either strong or weak [1]. Strong emer-
gence corresponds to the somewhat paradoxical case of supervenient properties with irreduc-

ible causal power [2]; i.e. properties that are fully determined by microscopic levels but can

nevertheless exert causal influences that are not entirely accountable from microscopic consid-

erations (the case of strong emergence most commonly argued in the literature is the one of

conscious experiences with respect to their corresponding physical substrate [3, 4]). Strong

emergence has been as much a cause of wonder as a perennial source of philosophical head-

aches, being described as “uncomfortably like magic” while accused of being logically inconsis-

tent [2] and sustained on illegitimate metaphysics [5].Weak emergence has been proposed as a

more docile alternative to strong emergence, where macroscopic features have irreducible

causal power in practice but not in principle. A popular formulation of weak emergence is due

to Bedau [5], and corresponds to properties generated by elements at microscopic levels in

such complicated ways that they cannot be derived via explanatory shortcuts, but only by

exhaustive simulation. While this formulation is usually accepted by the scientific community,

it is not well-suited to address mereological questions about emergence in scenarios where

parts-whole relationships are the primary interest.

Part of the difficulty in building a deeper understanding of strong emergence is the absence

of simple but clear analytical models that can serve the community to guide discussions and

mature theories. Efforts have been made to introduce quantitative metrics of weak emergence

[6], which enable fine-grained data-driven alternatives to traditional all-or-none classifica-

tions. In this vein, an attractive alternative comes from the work on causal emergence intro-

duced in Ref. [7] and later developed in Refs. [8, 9], which showed that macroscopic

observables can sometimes exhibit more causal power (as understood within the framework

of Pearl’s do-calculus [10]) than microscopic variables. However, this framework relies on

strong assumptions that are rarely satisfied in practice, which severely hinders its applicability

(this point is further elaborated in Section Relationship with other quantitative theories of
emergence).
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Inspired by Refs. [6, 7], here we introduce a practically useful and philosophically innocent

framework to study causal emergence in multivariate data. Building on previous work [11], we

take the perspective of an experimentalist who has no prior knowledge of the underlying phe-

nomenon of interest, but has sufficient data of all relevant variables that allows an accurate sta-

tistical description of the phenomenon. In this context, we put forward a formal definition of

causal emergence that doesn’t rely on coarse-graining functions as Ref. [7], but addresses the

“paradoxical” properties of strong emergence based on the laws of information flow in multi-

variate systems.

The main contribution of this work is to enable a rigorous, quantitative definition of down-
ward causation, and introduce a novel notion of causal decoupling as a complementary modal-

ity of causal emergence. Another contribution is to extend the domain of applicability of

causal emergence analyses to include cases of observational data, in which case causality ought

to be understood in the Granger sense, i.e. as predictive ability [12]. Furthermore, our frame-

work yields practical criteria that can be effectively applied to large systems, bypassing prohibi-

tive estimation issues that severely restrict previous approaches.

The rest of this paper is structured as follows. First, Section Fundamental intuitions dis-

cusses minimal examples of emergence. Then, Section A formal theory of causal emergence
presents the core of our theory, and Section Measuring emergence discusses practical methods

to quantify emergence from experimental data. Our framework is then illustrated on a number

of case studies, presented in Section Case studies. Finally, the Section Discussion concludes the

paper with a discussion of some of the implications of our findings.

Fundamental intuitions

To ground our intuitions, let us introduce minimal examples that embody a few key notions of

causally emergent behaviour. Throughout this section, we consider systems composed of n
parts described by a binary vector Xt ¼ ðX1

t ; . . . ;Xn
t Þ 2 f0; 1g

n
, which undergo Markovian

stochastic dynamics following a transition probability pXtþ1 jXt
. For simplicity, we assume that at

time t the system is found in an entirely random configuration (i.e. pXtðxtÞ ¼ 2� n). From there,

we consider three evolution rules.

Example 1. Consider a temporal evolution where the parity of Xt is preserved with probability
γ 2 (0, 1).Mathematically,

pXtþ1 jXt
ðxtþ1jxtÞ ¼

( g

2n� 1 if �n
j¼1
xjtþ1 ¼ �

n
j¼1
xjt;

1� g

2n� 1 otherwise;

for all t 2 N, where�n
j¼1
aj≔ 1 if

Pn
j¼1
aj is even and zero otherwise. Put simply: xt+1 is a random

sample from the set of all strings with the same parity as xt with probability γ; and is a sample
from the strings with opposite parity with probability 1 − γ.

This evolution rule has a number of interesting properties. First, the system has a non-trivial
causal structure, since some properties of the future state (its parity) can be predicted from the
past state. However, this structure is noticeable only at the collective level, as no individual vari-
able has any predictive power over the evolution of itself or any other variable (see Fig 1). Fur-
thermore, even the complete past of the system Xt has no predictive power over any individual
future Xj

tþ1. This case shows an extreme kind of causal emergence that we call “causal decou-
pling,” in which the parity predicts its own evolution but no element (or subset of elements) pre-
dicts the evolution of any other element.
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Example 2. Consider now a system where the parity of Xt determines X1
tþ1
(i.e.

X1
tþ1
¼ �n

i¼1
Xi
t), and X

j
tþ1 for j 6¼ 1 is a fair coin flip independent of Xt (see Fig 1). In this scenario

Xt predicts X1
tþ1
with perfect accuracy, while it can be verified that Xi

t⫫X1
tþ1
for all i 2 {1, . . ., n}.

Therefore, under this evolution rule the whole system has a causal effect over a particular ele-
ment, although this effect cannot be attributed to any individual part (for a related discussion,
see Ref. [13]), being a minimal example of downward causation.

Example 3. Let us now study an evolution rule that includes the mechanisms of both Exam-
ples 1 and 2. Concretely, consider

pXtþ1jXt
ðxtþ1jxtÞ ¼

0 ifx1
tþ1
6¼ �n

j¼1
xjt;

g

2n� 2
ifx1

tþ1
¼ �n

j¼1
xjt and �n

j¼1
xjtþ1 ¼ �

n
j¼1
xjt;

1 � g

2n� 2
otherwise:

8
>>>>>><

>>>>>>:

As in Example 1, the parity of Xt is transfered to Xt+1 with probability γ; additionally, it is
guaranteed that X1

tþ1
¼ �n

i¼1
Xi
t. Hence, in this case not only is there a macroscopic effect that

cannot be explained from the parts, but at the same time there is another effect going from the
whole to one of the parts. Importantly, both effects co-exist independently of each other.

The above are minimal examples of dynamical laws that cannot be traced from the interac-

tions between their elementary components: Example 1 shows how a collective property can

propagate without interacting with its underlying substrate; Example 2 how a collective prop-

erty can influence the evolution of specific parts; and Example 3 how these two kinds of phe-

nomena take place in the same system. All these issues are formalised by the theory developed

in the next section.

A formal theory of causal emergence

This section presents the main body of our theory of causal emergence. To fix ideas, we con-

sider a scientist measuring a system composed of n parts. The scientist is assumed to measure

the system regularly over time, and the results of those measurements are denoted by

Xt ¼ ðX1
t ; . . . ;Xn

t Þ, with Xi
t 2 X i corresponding to the state of the ith part at time t 2 N

with phase space X i. When referring to a collection of parts, we use the notation

Xa

t ¼ ðX
i1
t ; . . . ;XiK

t Þ for α = {i1, . . ., iK}�{1, . . ., n}. We also use the shorthand notation

[n] ≔ {1, . . ., n}.

Fig 1. Minimal examples of causally emergent dynamics. In Example 1 (left) the system’s parity tends to be

preserved while no interactions occur between low-level elements, which is an example of causal decoupling. In

Example 2 (right) the system’s parity determines one element only, corresponding to downward causation.

https://doi.org/10.1371/journal.pcbi.1008289.g001
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Supervenience

Our analysis considers two time points of the evolution of the system, denoted as t and t0, with

t< t0. The corresponding dynamics are encoded in the transition probability pXt0 jXtðxt0 jxtÞ. We

consider features Vt 2 V generated via a conditional probability pVt jXt that are supervenient on

the underlying system; i.e. that does not provide any predictive power for future states at times

t0 > t if the complete state of the system at time t is known with perfect precision. We formalise

this in the following definition.

Definition 1. A stochastic process Vt is said to be supervenient over Xt if Vt − Xt − Xt0 0 form a
Markov chain for all t00 6¼ t.

The above condition is equivalent to require Vt to be statistically independent of Xt0 0 when

Xt is given. The relationship between supervenient features and the underlying system is illus-

trated in Fig 2.

This formalisation of supervenience characterises features Vt that are fully determined by

the state of the system at a given time t, but also allows the feature to be noisy—which is not

critical for our results, but is useful for extending their domain of applicability to practical

scenarios. In effect, Definition 1 includes as particular cases deterministic functions F :
Qn

j¼1
X j ! V such that Vt = F(Xt), as well as features calculated under observational noise—

e.g. Vt = F(Xt) + νt, where νt is independent of Xt for all t. In contrast, features that are com-

puted using the values of Xt at multiple timepoints (e.g. the Fourier transform of Xt) generally

fail to be supervenient.

Partial information decomposition

Our theory is based on the Partial Information Decomposition (PID) framework [14], which

provides powerful tools to reason about information in multivariate systems. In a nutshell,

PID decomposes the information that n sources X = (X1, . . ., Xn) provide about a target vari-

able Y in terms of information atoms as follows:

IðX;YÞ ¼
X

α2A

Iα
@
ðX;YÞ ; ð1Þ

with A ¼ ffa1; . . . ; aLg : ai � ½n�; ai:⊄ aj8i; jg being the set of antichain collections [14].

Intuitively, Iα
@

for α = {α1, . . ., αL} represents the information that the collection of variables

Fig 2. Diagram of causally emergent relationships. Causally emergent features have predictive power beyond

individual components. Downward causation takes place when that predictive power refers to individual elements;

causal decoupling when it refers to itself or other high-order features.

https://doi.org/10.1371/journal.pcbi.1008289.g002
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Xa1 ; . . . ;XaL provide redundantly, but their sub-collections don’t. For example, for n = 2

source variables, α = {{1}{2}} corresponds to the information about Y that is provided by both

of them, α = {{i}} to the information provided uniquely by Xi, and, most interestingly, α =

{{12}} corresponds to the information provided by both sources jointly but not separately—

commonly referred to as informational synergy.
One of the drawbacks of PID is that the number of atoms (i.e. the cardinality of A) grows

super-exponentially with the number of sources, and hence it is useful to coarse-grain the

decomposition according to specific criteria. Here we introduce the notion of kth-order synergy
between n variables, which is calculated as

Syn
ðkÞðX;YÞ

X

α2SðkÞ

Iα
@
ðX;YÞ ;

with SðkÞ ¼ ffa1; . . . ; aLg 2 A : minjjajj > kg. Intuitively, Syn(k)(X;Y) corresponds to the

information about the target that is provided by the whole X but is not contained in any set of

k or less parts when considered separately from the rest. Accordingly, SðkÞ only contains collec-

tions with groups of more than k sources.

Similarly, we introduce the unique information of Xβ with β� [n] with respect to sets of at

most k other variables, which is calculated as

Un
ðkÞðXb;YjX� bÞ

X

α2UðkÞðbÞ

Iα
@
ðX;YÞ :

Above, U ðkÞðbÞ ¼ fα 2 A : b 2 α; 8a 6¼ b 2 α; a � ½n� b; jaj > kg, and X−β being all the

variables in X whose indices are not in β. Put simply, UnðkÞðXb

t ;YjX
� bÞ represents the informa-

tion carried by Xβ about Y that no group of k or less variables within X−β has on its own. Note

that these coarse-grained terms can be used to build a general decomposition of I(X, Y)

described in S1 Appendix (Section 1), the properties of which are proven in S1 Appendix (Sec-

tion 2).

One peculiarity of PID is that it postulates the structure of information atoms and the rela-

tions between them, but it does not prescribe a particular functional form to compute Iα
@

. In

fact, only one of the information atoms must be specified to determine the whole PID—usually

the redundancy between all individual elements [14]. There have been multiple proposals for

specific functional forms of Iα
@

in the PID literature; see e.g. Refs. [15–18]. A particular method

for fully computing the information atoms based on a recent PID [19] is discussed in Section

Measuring emergence via synergistic channels.
Conveniently, our theory doesn’t rely on a specific functional form of PID, but only on a

few basic properties that are precisely formulated in S1 Appendix (Section 2). Therefore, the

theory can be instantiated using any PID—as long as those properties are satisfied. Impor-

tantly, as shown in Section Practical criteria for large systems, the theory allows the derivation

of practical metrics that are valid independently of the PID chosen.

Defining causal emergence

With the tools of PID at hand, now we introduce our formal definition of causal emergence.

Definition 2. For a system described by Xt, a supervenient feature Vt is said to exhibit causal
emergence of order k if

Un
ðkÞðVt;Xt0 jXtÞ > 0 : ð2Þ
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Accordingly, causal emergence takes place when a supervenient feature Vt has irreducible

causal power, i.e. when it exerts causal influence that is not mediated by any of the parts of the
system. In other words, Vt represents some emergent collective property of the system if: 1)

contains information that is dynamically relevant (in the sense that it predicts the future evolu-

tion of the system); and 2) this information is beyond what is given by the groups of k parts in

the system when considered separately.

To better understand the implications of this definition, let us study some of its basic

properties.

Lemma 1. Consider a feature Vt that exhibits causal emergence of order 1 over Xt. Then,

1. The dimensionality of the system satisfies n� 2.

2. There exists no deterministic function g(�) such that Vt ¼ gðX
j
tÞ for any j = 1, . . ., n.

Proof. See S1 Appendix, Section 3.

These two properties establish causal emergence as a fundamentally collective phenomenon.

In effect, property (i) states that causal emergence is a property of multivariate systems, and

property (ii) that Vt cannot have emergent behaviour if it can be perfectly predicted from a sin-

gle variable.

In order to use Definition 2, one needs a candidate feature Vt to be tested. However, in

some cases there are no obvious candidates for an emergent feature, for which Definition 2

might seem problematic. Our next result provides a criterion for the existence of emergent fea-

tures based solely on the system’s dynamics.

Theorem 1. A system Xt has a causally emergent feature of order k if and only if

Syn
ðkÞðXt;Xt0 Þ > 0 : ð3Þ

Proof. See S1 Appendix, Section 2.

Corollary 1. The following bound holds for any supervenient feature Vt:
Un
ðkÞðVt;Xt0 jXtÞ � Syn

ðkÞðXt;Xt0 Þ.

This result shows that the capability of exhibiting emergence is closely related to how syner-

gistic the system components are with respect to their future evolution. Importantly, this result

enables us to determine whether or not the system admits any emergent features by just

inspecting the synergy between its parts—without knowing what those features might be. Con-

versely, this result also allows us to discard the existence of causal emergence by checking a sin-

gle condition: the lack of dynamical synergy. Furthermore, Corollary 1 implies that the

quantity Syn
ðkÞðXt;Xt0 Þ serves as a measure of the emergence capacity of the system, as it

upper-bounds the unique information of all possible supervenient features.

Theorem 1 establishes a direct link between causal emergence and the system’s statistics,

avoiding the need for the observer to propose a particular feature of interest. It is important to

remark that the emergence capacity of a system depends on the system’s partition into micro-

scopic elements—in fact, it is plausible that a system might have emergence capacity under

one microscopic representation, but not with respect to another after a change of variables.

Therefore, emergence in the context of our theory always refers to “emergence with respect to

a given microscopic partition.”

A taxonomy of emergence

Our theory, so far, is able to detect whether there is emergence taking place; the next step is to

be able to characterise which kind of emergence it is. For this purpose, we combine our
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feature-agnostic criterion of emergence presented in Theorem 1 with Integrated Information

Decomposition, FID, a recent extension of PID to multi-target settings [20].

Using FID, one can decompose a PID atom as

Iα
@
ðXt;Xt0 Þ ¼

X

β2A

Iα!β
@ ðXt;Xt0 Þ : ð4Þ

For example, if n = 2 then If1gf2g!f1gf2g@ represents the information shared by both time series

at both timesteps (for example, when X1
t ;X

2
t ;X

1
t0 ;X

2
t0 are all copies of each other); and If12g!f1g

@

corresponds to the synergistic causes in Xt that have a unique effect on X1
t0 (for example, when

X1
t0 ¼ X

1
t � X

2
t ). More details and intuitions on FID can be found in Ref. [20].

With the fine-grained decomposition provided by FID one can discriminate between dif-

ferent kinds of synergies. In particular, we introduce the downward causation and causal
decoupling indices of order k, denoted by DðkÞ and GðkÞ respectively, as

DðkÞðXt;Xt0 Þ≔
X

α 2 SðkÞ

β 2 A SðkÞ

Iα!β
@ ðXt;Xt0 Þ

; ð5Þ

GðkÞðXt;Xt0 Þ≔
X

α;β2SðkÞ

Iα!β
@ ðXt;Xt0 Þ : ð6Þ

From these definitions and Eq (4), one can verify that

Syn
ðkÞðXt;Xt0 Þ ¼ GðkÞðXt;Xt0 Þ þDðkÞðXt;Xt0 Þ : ð7Þ

Therefore, the emergence capacity of a system naturally decomposes in two different com-

ponents: information about k-plets of future variables, and information about future collective

properties beyond k-plets. The FID atoms that belong to these two terms are illustrated within

the FID lattice for two time series in Fig 3. The rest of this section shows that DðkÞ and GðkÞ are

natural metrics of downward causation and causal decoupling, respectively.

Downward causation. Intuitively, downward causation occurs when collective properties

have irreducible causal power over individual parts. More formally:

Definition 3. A supervenient feature Vt exhibits downward causation of order k if, for some α
with |α| = k:

Un
ðkÞðVt;X

a

t0 jXtÞ > 0 : ð8Þ

Note that, in contrast with Definition 2, downward causation requires the feature Vt to

have unique predictive power over the evolution of specific subsets of the whole system. In par-

ticular, an emergent feature Vt that has predictive power over e.g. Xj
t0 is said to exert downward

causation, as it predicts something about Xj
t0 that could not be predicted from any particular Xi

t

for i 2 [n]. Put differently, in a system with downward causation the whole has an effect on the

parts that cannot be reduced to low-level interactions. A minimal case of this is provided by

Example 2 in Section Fundamental intuitions.
Our next result formally relates downward causation with the index DðkÞ introduced in

Eq (5).

Theorem 2. A system Xt admits features that exert downward causation of order k iff
DðkÞðXt;Xt0 Þ > 0.

Proof. See S1 Appendix, Section 3.
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Causal decoupling. In addition to downward causation, causal decoupling takes place

when collective properties have irreducible causal power over other collective properties. In

technical terms:

Definition 4. A supervenient feature Vt is said to exhibit causal decoupling of order k if

Un
ðkÞðVt;Vt0 jXt;Xt0 Þ > 0 : ð9Þ

Furthermore, Vt is said to have pure causal decoupling if UnðkÞðVt;Xt0 jXtÞ > 0 and
Un
ðkÞðVt;X

a

t0 jXtÞ ¼ 0 for all α� [n] with |α| = k. Finally, a system is said to be perfectly decou-
pled if all the emergent features exhibit pure causal decoupling.

Above, the term Un
ðkÞðVt;Vt0 jXt;Xt0 Þ refers to information that Vt and Vt0 share that cannot

be found in any microscopic element, either at time t or t0 (note that UnðkÞðVt;Vt0 jXt;Xt0 Þ is

information shared between Vt and Vt0 that no combination of k or less variables from Xt or Xt0
has in its own).

Features that exhibit causal decoupling could still exert influence over the evolution of indi-

vidual elements, while features that exhibit pure decoupling cannot. In effect, the condition

UnðVt;X
j
t0 jXtÞ ¼ 0 implies that the high-order causal effect does not affect any particular

part – only the system as a whole. Interestingly, a feature that exhibits pure causal decoupling

can be thought of as having “a life of its own;” a sort of statistical ghost, that perpetuates itself

over time without any individual part of the system influencing or being influenced by it. The

system’s parity, in the first example of Section Fundamental intuitions, constitutes a simple

Fig 3. Integrated information decomposition (FID).FID lattice for n = 2 time series [20], with downward (D)

causation and causal decoupling (G) terms highlighted.

https://doi.org/10.1371/journal.pcbi.1008289.g003
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example of perfect causal decoupling. Importantly, the case studies presented in Section Case
studies show that causal decoupling can take place not only in toy models but also in diverse

scenarios of practical relevance.

We close this section by formally establishing the connection between causal decoupling

and the index GðkÞ introduced in Eq (6).

Theorem 3. A system possesses features that exhibit causal decoupling if and only if
GðkÞðXt;Xt0 Þ > 0. Additionally, the system is perfectly decoupled if GðkÞðXt;Xt0 Þ > 0 and
DðkÞðXt;Xt0 Þ ¼ 0.

Proof. See S1 Appendix, Section 3.

Measuring emergence

This section explores methods to operationalise the framework presented in the previous sec-

tion. We discuss two approaches: first, Section Practical criteria for large systems introduces

sufficiency criteria that are practical for use in large systems; then, Section Measuring emer-
gence via synergistic channels illustrates how further considerations can be made if one adopts

a specific method of computing FID atoms. The latter approach provides accurate discrimina-

tion at the cost of being data-intensive and hence only applicable to small systems; the former

can be computed in large systems and its results hold independently of the chosen PID, but is

vulnerable to misdetections (i.e. false negatives).

Practical criteria for large systems

While theoretically appealing, our proposed framework suffers from the challenge of estimat-

ing joint probability distributions over many random variables, and the computation of the

FID atoms themselves. As an alternative, we consider approximation techniques that do not

require the adoption of any particular PID orFID function and are data-efficient, since they

are based on pairwise distributions only.

As practical criteria to measure causal emergence of order k, we introduce the quantities

C
ðkÞ
t;t0 , D

ðkÞ
t;t0 , and G

ðkÞ
t;t0 . For simplicity, we write here the special case k = 1, and provide full formu-

lae for arbitrary k and accompanying proofs in S1 Appendix, Section 4:

C
ð1Þ

t;t0 ðVÞ≔ IðVt;Vt0 Þ �
X

j

IðXj
t;Vt0 Þ ; ð10aÞ

D
ð1Þ

t;t0 ðVÞ≔max
j

IðVt;X
j
t0 Þ �

X

i

IðXi
t;X

j
t0 Þ

 !

; ð10bÞ

G
ð1Þ

t;t0 ðVÞ≔max
j
IðVt;X

j
t0 Þ : ð10cÞ

Our next result links these quantities with the formal definitions in Section A formal theory
of causal emergence, showing their value as practical criteria to detect causal emergence.

Proposition 1.C
ðkÞ
t;t0 ðVÞ > 0 is a sufficient condition for Vt to be causally emergent. Similarly,

D
ðkÞ
t;t0 ðVÞ > 0 is a sufficient condition for Vt to exhibit downward causation. Finally, C

ðkÞ
t;t0 ðVÞ > 0

and GðkÞt;t0 ðVÞ ¼ 0 is sufficient for causal decoupling.
Proof. See S1 Appendix, Section 4.
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Although calculating whether a system has emergent features via Proposition 1 may

be computationally challenging, if one has a candidate feature V one believes may be

emergent, one can compute the simple quantities in Eq (10) which depend only on

standard mutual information and bivariate marginals, and scales linearly with system size

(for k = 1). These quantities are easy to compute and test for significance using standard

information-theoretic tools [21, 22]. Moreover, the outcome of these measures is valid for

any choice of PID and FID that is compatible with the properties specified in S1 Appendix,

Section 2.

In a broader context, C
ðkÞ
t;t0 and D

ðkÞ
t;t0 belong to the same whole-minus-sum family of measures

as the interaction information [14, 23], the redundancy-synergy index [24] and, more recently,

the O-information O [25]—which cannot measure synergy by itself, but only the balance

between synergy and redundancy. In practice, this means that if there is redundancy in the sys-

tem it will be harder to detect emergence, since redundancy will driveC
ðkÞ
t;t0 and D

ðkÞ
t;t0 more nega-

tive. Furthermore, by summing all marginal mutual informations (e.g. IðXj
t;Vt0 Þ in the case of

C
ð1Þ

t;t0 ), these measures effectively double-count redundancy up to n times, further penalising the

criteria. This problem of double-counting can be avoided if one is willing to commit to a par-

ticular PID or FID function, as we show next.

It is worth noticing that the value of k can be tuned to explore emergence with respect to

different “scales.” For example, k = 1 corresponds to emergence with respect to individual

microscopic elements, while k = 2 refers to emergence with respect to all couples—i.e. indi-

vidual elements and their pairwise interactions. Accordingly, the criteria in Proposition 1

are, in general, harder to satisfy for larger values of k. In addition, from a practical perspec-

tive, considering large values of k requires estimating information-theoretic quantities in

high-dimensional distributions, which usually requires exponentially larger amounts of

data.

Measuring emergence via synergistic channels

This section leverages recent work on information decomposition reported in Ref. [19], and

presents a way of directly measuring the emergence capacity and the indices of downward cau-

sation and causal decoupling. The key takeaway of this section is that if one adopts a particular

FID, then it is possible to evaluate DðkÞ and GðkÞ directly, providing a direct route to detect

emergence without double-counting redundancy, as the methods introduced in Section Practi-
cal criteria for large systems do. Moreover, additional properties may become available due to

the characteristics of the particular FID chosen.

Let us first introduce the notion of k-synergistic channels: mappings pV|X that convey infor-

mation about X but not about any of the parts Xα for all |α| = k. The set of all k-synergistic

channels is denoted by

CkðXÞ ¼ fpVjX j V⫫Xa; 8a � ½n�; jaj ¼ kg: ð11Þ

A variable V generated via a k-synergistic channel is said to be a k-synergistic observable.

With this definition, we can consider the kth-order synergy to be the maximum information

extractable from a k-synergistic channel:

Syn
ðkÞ
?
ðXt;Xt0 Þ≔ sup

pVjXt 2 CkðXtÞ :

V � Xt � Xt0

IðV;Xt0 Þ :
ð12Þ
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This idea can be naturally extended to the case of causal decoupling by requiring synergistic

channels at both sides, i.e.

GðkÞ
?
ðXt;Xt0 Þ≔ sup

pVjXt 2 CkðXtÞ;

pUjXt0 2 CkðXt0 Þ :

V � Xt � Xt0 � U

IðV;UÞ :
ð13Þ

Finally, the downward causation index can be computed from the difference

DðkÞ
?
ðXt;Xt0 Þ≔Syn

ðkÞ
?
ðXt;Xt0 Þ � GðkÞ

?
ðXt;Xt0 Þ : ð14Þ

Note that SynðkÞ
?
� GðkÞ

?
, which is a direct consequence of the data processing inequality

applied on V − Xt − Xt0 − U, and therefore DðkÞ
?
;GðkÞ

?
� 0.

By exploiting the properties of this specific way of measuring synergy, one can prove the

following result. For this, let us say that a feature Vt is auto-correlated if I(Vt;Vt0)>0.

Proposition 2. If Xt is stationary, all auto-correlated k-synergistic observables are kth-order
emergent.
Proof. See S1 Appendix, Section 4.

In summary, DðkÞ
?

and GðkÞ
?

provide data-driven tools to test—and possibly reject—hypothe-

ses about emergence in scenarios of interest. Efficient algorithms to compute these quantities

are discussed in Ref. [26]. Although current implementations allow only relatively small sys-

tems, this line of thinking shows that future advances in PID might make the computation of

emergence indices more scalable, avoiding the limitations of Eq (10).

Case studies

Let us summarise our results so far. We began by formulating a rigorous definition of emer-

gent features based on PID (Section Defining causal emergence), and then used FID to break

down the emergence capacity into the causal decoupling and downward causation indices

(Section A taxonomy of emergence). Although these are not straightforward to compute, the

FID framework allows us to formulate readily computable sufficiency conditions (Section

Practical criteria for large systems). This section illustrates the usage of those conditions in vari-

ous case studies. Code to compute all emergence criteria in Eq (10) is provided in an online

open-source repository (https://github.com/pmediano/ReconcilingEmergences).

Canonical examples of putative emergence

Here we present an evaluation of our practical criteria for emergence (Proposition 1) in two

well-known systems: Conway’s Game of Life (GoL) [27], and Reynolds’ flocking boids model

[28]. Both are widely regarded as paradigmatic examples of emergent behaviour, and have

been thoughtfully studied in the complexity and artificial life literature [29]. Accordingly, we

use these models as test cases for our methods. Technical details of the simulations are pro-

vided in S1 Appendix, Section 5.

Conway’s Game of Life. A well-known feature of GoL is the presence of particles: coher-

ent, self-sustaining structures known to be responsible for information transfer and modifica-

tion [30]. These particles have been the object of extensive study, and detailed taxonomies and

classifications exist [29, 31].

To test the emergent properties of particles, we simulate the evolution of 15x15 square cell

arrays, which we regard as a binary vector Xt 2 {0, 1}n with n = 225. As initial condition, we

consider configurations that correspond to a “particle collider” setting, with two particles of

known type facing each other (Fig 4). In each trial, the system is randomised by changing the
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position, type, and relative displacement of the particles. After an intial configuration has been

selected, the well-known GoL evolution rule [27] is applied 1000 times, leading to a final state

Xt0. Simulations showed that this interval is enough for the system to settle in a stable state

after the collision.

To use the criteria from Eq 10, we need to choose a candidate emergent feature Vt. In this

case, we consider a symbolic, discrete-valued vector that encodes the type of particle(s) present

in the board. Specifically, we consider V t ¼ ðV1
t ; . . . ;VL

t Þ, where Vj
t ¼ 1 iff there is a particle

of type j at time t—regardless of its position or orientation.

With these variables, we compute the quantities in Eq 10 using Bayesian estimators of

mutual information [32]. The result is that, as expected, the criterion for causal emergence is

met with C
ð1Þ

t;t0 ðVÞ ¼ 0:58� 0:02. Furthermore, we found that G
ð1Þ

t;t0 ðVÞ ¼ 0:009� 0:0002,

which is orders of magnitude smaller than I(Vt;Vt0) = 0.99±0.02. Errors represent the standard

deviation over surrogate data, as described in S1 Appendix, Section 5. Using Proposition 1,

these two results suggest that particle dynamics in GoL may not only be emergent, but causally

decoupled with respect to their substrate.

Reynolds’ flocking model. As a second test case, we consider Reynolds’ model of flocking

behaviour. This model is composed by boids (bird-oid objects), with each boid represented by

three numbers: its position in 2D space and its heading angle. As candidate feature for emer-

gence, we use the 2D coordinates of the center of mass of the flock, following Seth [6].

In this model boids interact with one another following three rules, each regulated by a sca-

lar parameter [6]:

• aggregation (a1), as they fly towards the center of the flock;

• avoidance (a2), as they fly away from their closest neighbour; and

• alignment (a3), as they align their flight direction to that of their neighbours.

Following Ref. [6], we study small flocks of N = 10 boids with different parameter settings

to showcase some properties of our practical criterion of emergence. Note that this study is

meant as an illustration of the proposed theory, and not as a thorough exploration of the

Fig 4. Causal emergence in Conway’s Game of Life. The system is initialised in a “particle collider” setting, and run

until a stable configuration is reached after the collision. Using particle type as a supervenient featureV, we find the

system meets our practical criterion for causal emergence.

https://doi.org/10.1371/journal.pcbi.1008289.g004
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flocking model, for which a vast literature exists (see e.g. the work of Vicsek [33] and refer-

ences therein).

Fig 5 shows the results of a parameter sweep over the avoidance parameter, a2, while keep-

ing a1 and a3 fixed. When there is no avoidance, boids orbit around a slowly-moving center of

mass, in what could be called an ordered regime. Conversely, for high values of a2 neighbour

repulsion is too strong for lasting flocks to form, and isolated boids spread across the space

avoiding one another. For intermediate values, the center of mass traces a smooth trajectory,

as flocks form and disintegrate. In line with the findings of Seth [6], our criterion indicates

that the flock exhibits causally emergent behaviour in this intermediate range.

By studying separately the two terms that make up C we found that the criterion of emer-

gence fails for both low and high a2, but for different reasons (see Fig 5). In effect, for high a2

the self-predictability of the center of mass (i.e. I(Vt;Vt0)) is low; while for low a2 it is high, yet

lower than the mutual information from individual boids (i.e.
P

iIðX
i
t;Vt0 Þ). These results sug-

gest that the low-avoidance scenario is dominated not by a reduction in synergy, but by an

increase in redundancy, which effectively increases the synergy threshold needed to detect

emergence. However, note that, due to the limitations of the criterion, the fact that C
ð1Þ

t;t0 < 0 is

inconclusive and does not rule out the possibility of emergence. This is a common limitation

of whole-minus-sum estimators like C; further refinements may provide bounds that are less

susceptible to these issues and perform accurately in these scenarios.

Mind from matter: Emergence, behaviour, and neural dynamics

A tantalising outcome of having a formal theory of emergence is the capability of bringing a

quantitative angle to the archetype of emergence: the mind-matter relationship [35, 36]. As a

Fig 5. Causal emergence in the flocking boids model. As the avoidance parameter is increased, the flock transitions

from an attractive regime (in which all boids orbit regularly around a stable center of mass), to a repulsive one (in

which boids spread across space and no flocking is visible). a) Our criterionC detects causal emergence in an

intermediate range of the avoidance parameter (error bars represent the standard deviation estimated over surrogate

data). b) Sample trajectories of boids (grey) and their center of mass (red).

https://doi.org/10.1371/journal.pcbi.1008289.g005

PLOS COMPUTATIONAL BIOLOGY An information-theoretic approach to identify causal emergence in multivariate data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008289 December 21, 2020 14 / 22

https://doi.org/10.1371/journal.pcbi.1008289.g005
https://doi.org/10.1371/journal.pcbi.1008289


first step in this direction, we conclude this section with an application of our emergence crite-

ria to neurophysiological data.

We study simultaneous electrocorticogram (ECoG) and motion capture (MoCap) data of

Japanese macaques performing a reaching task [34], obtained from the online Neurotycho

database. Note that the MoCap data cannot be assumed to be a supervenient feature of the

available ECoG data, since it doesn’t satisfy the conditional independence conditions required

by our definition of supervenience (see Section A formal theory of causal emergence). This is

likely to be the case, because the neural system is only partially observed—i.e. the ECoG does

not capture every source of relevant activity in the macaque’s cortex. Note that non-superve-

nient features are of limited interest within our framework, as they can satisfy Proposition 1 in

trivial ways (e.g. time series which are independent of the underlying system satisty C> 0 if

they are auto-correlated). Instead, we focus on the portion of neural activity encoded in the

ECoG signal that is relevant to predict the macaque’s behaviour, and conjecture this informa-

tion to be an emergent feature of the underlying neural activity (Fig 6).

To test this hypothesis, we take the neural activity (as measured by 64 ECoG channels dis-

tributed across the left hemisphere) to be the system of interest, and consider a memoryless

predictor of the 3D coordinates of the macaque’s right wrist based on the ECoG signal. There-

fore, in this scenario Xt 2 R
64

and Vt ¼ FðXtÞ 2 R
3
. To build Vt, we used Partial Least Squares

(PLS) and a Support Vector Machine (SVM) regressor, the details of which can be found in S1

Appendix, Section 6.

After training the decoder and evaluating on a held-out test set, results show that C > 0,

confirming our conjecture that the motor-related information is an emergent feature of

the macaque’s cortical activity. For short timescales (t0 − t = 8 ms), we find

G
ð1Þ

t;t0 ðVÞ ¼ 0:049� 0:002, which is orders of magnitude smaller than

C
ð1Þ

t;t0 ðVÞ ¼ 1:275� 0:002, suggesting that the behaviour may have an important component

decoupled from individual ECoG channels (errors are standard deviations estimated over

time-shuffled data). Furthermore, the emergence criterion is met for multiple timescales

Fig 6. Causal emergence in motor behaviour of an awake macaque monkey. a) Position of electrocorticogram (ECoG) electrodes used in the

recording (in blue) overlaid on an image of the macaque’s left hemisphere (front of the brain towards the top of the page). b) Sample time series from

the 64-channel ECoG recordings used, which correspond to the system of interest Xt 2 R
64. c) 3D position of the macaques’s wrist, as measured by

motion capture (blue) and as predicted by the regression model (orange), taken as a supervenient feature Vt 2 R
3
. d) Our emergence criterion yields

C
ð1Þ

t;t0 ðVÞ > 0, detecting causal emergence of the behaviour with respect to the ECoG sources. Original data and image from Ref. [34] and the

Neurotycho database.

https://doi.org/10.1371/journal.pcbi.1008289.g006
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t0 − t of up to�0.2s, beyond which the predictive power in Vt and individual electrodes

decrease and become nearly identical.

As a control, we performed a surrogate data test to confirm the results in Fig 6 were not

driven by the autocorrelation in the ECoG time series. To this end, we re-run the analysis

(including training and testing the PLS-SVM) using the same ECoG data, but time-shuffling

the wrist position—resulting in a Vt that does not extract any meaningful information from

the ECoG, but has the same properties induced by autocorrelation, filtering and regularisation.

As expected, the resulting surrogate C
ð1Þ

t;t0 is significantly lower than the one using the un-shuf-

fled wrist position, confirming the measured C
ð1Þ

t;t0 is positive and higher than what would be

expected from a similar, random projection of the ECoG (details in S1 Appendix, Section 6).

This analysis, while just a proof of concept, helps us quantify how and to what extent behav-

iour emerges from collective neural activity; and opens the door to further tests and quantita-

tive empirical explorations of the mind-matter relationship.

Discussion

A large fraction of the modern scientific literature considers strong emergence to be impossi-

ble or ill-defined. This judgement is not fully unfounded: a property that is simultaneously

supervenient (i.e. that can be computed from the state of the system) and that has irreducible

causal power (i.e. that “tells us something” that the parts don’t) can indeed seem to be an oxy-

moron [5]. Nonetheless, by linking supervenience to static relationships and causal power to

dynamical properties, our framework shows that these two phenomena are perfectly compati-

ble within the—admittedly counterintuitive – laws of multivariate information dynamics [20],

providing a tentative solution to this paradox.

Our theory of causal emergence is about predictive power, not “explicability” [3], and there-

fore is not related to views on strong emergence such as Chalmers’ [3]. Nevertheless, our

framework embraces aspects that are commonly associated with strong emergence—such as

downward causation—and renders them quantifiable. Our framework also does not satisfy

conventional definitions of weak emergence (systems studied in Section Fundamental intui-
tions are not weakly emergent in the sense of Bedau [5], being simple and susceptible to

explanatory shortcuts) but is compatible with more general notions of weak emergence, e.g.

the one introduced by Seth (see Section Relationship with other quantitative theories of emer-
gence). Hence, our theory can be seen as an attempt at reconciling these approaches [36],

showing how “strong” a “weak” framework can be.

An important consequence of our theory is the fundamental connection established

between causal emergence and statistical synergy: the system’s capacity to host emergent fea-

tures was found to be determined by how synergistic its elements are with respect to their

future evolution. Although previous ideas about synergy have been loosely linked to emer-

gence in the past [37], this is (to the best of our knowledge) the first time such ideas have been

formally laid out and quantified using recent advances in multivariate information theory.

Next, we examine a few caveats regarding the applicability of the proposed theory, its rela-

tion with prior work, and some open problems.

Scope of the theory

Our theory focuses on synchronic [38] aspects of emergence, analysing the interactions

between the elements of dynamical systems and collective properties of them as they jointly

evolve over time. As such, our theory directly applies to any system with well-defined dynam-

ics, including systems described by deterministic dynamical systems with random initial
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conditions [11] and stochastic systems described by Fokker-Planck equations [39]. In contrast,

the application of our theory to systems in thermodynamic equilibrium may not be straight-

forward, as their dynamics are often not uniquely specified by the corresponding Gibbs distri-

butions (for an explicit example, when considering the Ising model, Kawasaki and Glauber

dynamics are known to behave differently even when the system is in equilibrium [40]; and

thus may provide quite different values of the measures described in Section Measuring emer-
gence). Finding principled approaches to guide the application of our theory to those cases is

an interesting challenge for future studies.

In addition, given the breadth of the concept of “emergence,” there are a number of other

theories leaning more towards philosophy that are orthogonal to our framework. This

includes, for example, theories of emergence as radical novelty (in the sense of features not pre-

viously observed in the system) [41], most prominently encapsulated in the aphorism “more is

different” by Anderson—see Refs. [42, 43], particularly his approach to emergence in biology

(note that some of Anderson’s views, particularly the ones related to rigidity, are nevertheless

closely related to the approach developed by our framework), and also articulated in the work

of Kauffman [44, 45]. Also, contextual emergence emphasises a role for macro-level contexts

that cannot be described at the micro-level, but which impose constraints on the micro-level

for the emergence of the macro [46, 47]. These are valuable philosophical positions, which

have been studied from a statistical mechanics perspective in Ref. [46, 48]. Future work shall

attempt to unify these other approaches with our proposed framework.

Causality

The de facto way to assess the causal structure of a system is to analyse its response to con-

trolled interventions or to build intervention models (causal graphs) based on expert knowl-

edge, which leads to the well-known do-calculus spearheaded by Judea Pearl [10]. This

approach is, unfortunately, not applicable in many scenarios of interest, as interventions may

incur prohibitive costs or even be impossible, and expert knowledge may not be available.

These scenarios can still be assessed via the Wiener-Granger theory of statistical causation,

which studies the blueprint of predictive power across the system of interest by accounting

non-mediated correlations between past and future events [12]. Both frameworks provide sim-

ilar results when all the relevant variables have been measured, but can neverthelss differ radi-

cally when there are unobserved interacting variables [10]. The debate between the Wiener-

Granger and the Pearl schools has been discussed in other related contexts—see e.g. Refs. [49,

50] for a discussion regarding Integrated Information Theory (IIT), and Ref. [51] for a discus-

sion about effective and functional connectivity in the context of neuroimaging time series

analysis (in a nutshell, effective connectivity aims to uncover the minimal physical causal

mechanism underlying the observed data, while functional connectivity describes directed or

undirected statistical dependences [51]).

In our theory, the main object of analysis is Shannon’s mutual information, I(Xt;Xt0), which

depends on the joint probability distribution pXt ;Xt0 . The origin of this distribution (whether it

was obtained by passive observation or by active intervention) will change the interpretation

of the quantities presented above, and will speak differently to the Pearl and the Wiener-

Granger schools of thought; some of the implications of these differences are addressed when

discussing Ref. [7] below. Nonetheless, since both methods of obtaining pXt ;Xt0 allow synergy to

take place, our results are in principle applicable in both frameworks—which allows us to for-

mulate our theory of causal emergence without taking a rigid stance on a theory of causality

itself.
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Relationship with other quantitative theories of emergence

This work is part of a broader movement towards formalising theories of complexity through

information theory. In particular, our framework is most directly inspired by the work of Seth

[6] and Hoel et al. [7], and also related to recent work by Chang et al. [52]. This section gives a

brief account of these theories, and discusses how they differ from our proposal.

Seth [6] proposes that a process Vt is Granger-emergent (or G-emergent) with respect to Xt
if two conditions are met: (i) Vt is autonomous with respect to Xt (i.e. I(Vt;Vt0|Xt)>0), and (ii)

Vt is G-caused by Xt (i.e. I(Xt;Vt0|Vt)>0). The latter condition is employed to guarantee a rela-

tionship between Xt and Vt; in our framework an equivalent role is taken by the requirement

of supervenience. The condition of autonomy is certainly related with our notion of causal

decoupling. However, as shown in Ref. [14], the conditional mutual information conflates

unique and synergistic information, which can give rise to undesirable situations: for example,

it could be that I(Vt;Vt0|Xt)>0 while, at the same time, I(V;Vt0) = 0, meaning that the dynamics

of the feature Vt are only visible when considering it together with the full system Xt, but not

on its own. Our framework avoids this problem by refining this criterion via PID, and uses

only the unique information for the definition of emergence.

Our work is also strongly influenced by the framework put forward by Hoel and colleagues

in Ref. [7]. Their approach is based on a coarse-graining function F(�) relating a feature of

interest to the system, Vt = F(Xt), which is a particular case of our more general definition of

supervenience. Emergence is declared when the dependency between Vt and Vt0 is “stronger”

than the one between Xt and Xt0. Note that Vt − Xt − Xt0 − Vt0 is a Markov chain, and hence I
(Vt;Vt0)�I(Xt;Xt0) due to the data processing inequality; therefore, a direct usage of Shannon’s

mutual information would make the above criterion impossible to fulfill. Instead, this frame-

work focuses on the transition probabilities pVt0 jVt and pXt0 jXt , and hence the mutual informa-

tion terms are computed using maximum entropy distributions instead of the stationary

marginals. By doing this, Hoel et al. account not for what the system actually does, but for all

the potential transitions the system could do. However, in our view this approach is not well-

suited to assess dynamical systems, as it might account for transitions that are never actually

explored. The difference between stationary and maximum entropy distributions can be par-

ticularly dramatic in non-ergodic systems with multiple attractors—for a related discussion in

the context of Integrated Information Theory, see Ref. [50]. Additionally, this framework relies

on having exact knowledge about the microscopic transitions as encoded by pXt0 jXt , which is

not possible to obtain in most applications.

Finally, Chang et al. [4] consider supervenient variables that are “non-trivially information-

ally closed” (NTIC) to their corresponding microscopic substrate. NTIC is based on a division

of Xt into a subsystem of interest, Xa

t , and its “environment” given by X� at . Interestingly, a sys-

tem being NTIC requires Vt to be supervenient only with respect to Xa

t (i.e. Vt ¼ FðX
a

t Þ), as

well as information flow from the environment to the feature (i.e. IðX� at ;Vt0 Þ > 0) mediated

by the feature itself, so that Xt − Vt − Vt0 is a Markov chain. Hence, NTIC requires features that

are sufficient statistics for their own dynamics, which is akin to our concept of causal decou-

pling but focused on the interaction between a macroscopic feature, an agent, and its environ-

ment. Extending our framework to agent-environment systems involved in active inference is

part of our future work.

Limitations and open problems

The framework presented in this paper focuses on features from fully observable systems

with Markovian dynamics. These assumptions, however, often do not hold when dealing
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with experimental data—especially in biological and social systems. As an important exten-

sion, future work should investigate the effect of unobserved variables on our measures. This

could be done, for example, leveraging Takens’ embedding theorem [53–55] or other meth-

ods [56].

An interesting feature of our framework is that, although it depends on the choice of PID

and FID, its practical application via the criteria discussed in Section Practical criteria for large
systems is agnostic to those choices. However, they incur the cost of a limited sensitivity to

detect emergence due to an overestimation of the microscopic redundancy; so they can detect

emergence when it is substantial, but might miss it in more subtle cases. Additionally, these

criteria are unable to rule out emergence, as they are sufficient but not necessary conditions.

Therefore, another avenue of future work should search for improved practical criteria for

detecting emergence from data. One interesting line of research is providing scalable approxi-

mations for SynðkÞ
?

and GðkÞ
?

as introduced in Section Measuring emergence via synergistic chan-
nels, which could be computed in large systems.

Another open question is how the emergence capacity is affected by changes in the micro-

scopic partition of the system (c.f. Section Defining causal emergence). Interesting applications

of this includes scenarios where elements of interest have been subject to a mixing process,

such as the case of electroencephalography where each electrode detects a mixture of brain

sources. Other interesting questions include studying systems with non-zero emergence capac-

ity for all reasonable microscopic partitions, which may correspond to a stronger type of

emergence.

Conclusion

This paper introduces a quantitative definition of causal emergence, which addresses the

apparent paradox of supervenient macroscopic features with irreducible causal power using

principles of multivariate statistics. We provide a formal, quantitative theory that embodies

many of the principles attributed to strong emergence, while being measurable and compati-

ble with the established scientific worldview. Perhaps the most important contribution of

this work is to bring the discussion of emergence closer to the realm of quantitative, empiri-

cal scientific investigation, complementing the ongoing philosophical inquiries on the

subject.

Mathematically, the theory is based on the Partial Information Decomposition (PID)

framework [14], and on a recent extension, Integrated Information Decomposition (FID)

[20]. The theory allows the derivation of sufficiency criteria for the detection of emergence

that are scalable, easy to compute from data, and based only on Shannon’s mutual informa-

tion. We illustrated the use of these practical criteria in three case studies, and concluded that:

i) particle collisions are an emergent feature in Conway’s Game of Life, ii) flock dynamics are

an emergent feature of simulated birds; and iii) the representation of motor behaviour in the

cortex is emergent from neural activity. Our theory, together with these practical criteria,

enables novel data-driven tools for scientifically addressing conjectures about emergence in a

wide range of systems of interest.

Our original aim in developing this theory, beyond the contribution to complexity theory,

is to help bridge the gap between the mental and the physical, and ultimately understand how

mind emerges from matter. This paper provides formal principles to explore the idea that psy-

chological phenomena could emerge from collective neural patterns, and interact with each

other dynamically in a causally decoupled fashion—perhaps akin to the “statistical ghosts”

mentioned in Section Causal decoupling. Put simply: just as particles in the Game of Life have

their own collision rules, we wonder if thought patterns could have their own emergent
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dynamical laws, operating at a larger scale with respect to their underlying neural substrate

(similar ideas have been recently explored by Kent [57]). Importantly, the theory presented in

this paper not only provides conceptual tools to frame this conjecture rigorously, but also pro-

vides practical tools to test it from data. The exploration of this conjecture is left as an exciting

avenue for future research.

Supporting information

S1 Appendix. Provides the mathematical proofs of our results, and further details about

simulations and preprocessing pipelines.

(PDF)
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