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Parallel Approaches to the String Matching Problem on the
GPU

Saman Ashkiani
University of Californie_l, Davis
sashkiani@ucdavis.edu

ABSTRACT

We design a family of parallel algorithms and GPU imple-
mentations for the exact string matching problem, based on
Rabin-Karp (RK) randomized string matching. We describe
and analyze three primary parallel approaches to binary
string matching: cooperative (CRK), divide-and-conquer
(DRK), and a novel hybrid of both (HRK). The CRK is
most effective for large patterns (>8K characters), while the
DRK approach is superior for shorter patterns. We then
generalize the DRK to support any alphabet size without
loss of performance. Our DRK method achieves up to a
64 GB/s processing rate on 8-character patterns from an
8-bit alphabet on an NVIDIA Tesla K40c GPU. We next
demonstrate a novel parallel two-stage matching method
(DRK-2S), which first skims the text for a smaller subset of
the pattern and then verifies all potential matches in parallel.
Our DRK-2S method is superior for pattern sizes up to 64k
compared to the fastest CPU-based string matching imple-
mentations. With an 8-bit alphabet and up to 1k-character
patterns, we get a geometric mean speedup of 4.81x against
the best CPU methods, and can achieve a processing rate of
at least 53 GB/s.

1. INTRODUCTION

Classic PRAM algorithms are proving to be a fertile source
of ideas for GPU programs solving fundamental computa-
tional problems. But in practice, only certain PRAM algo-
rithms actually perform well on GPUs. The PRAM model
and the GPU programming model differ in important ways.
Particularly important considerations suggest choosing algo-
rithms where parallel threads perform uniform computation
without branching or waiting (“uniformity”); where memory
accesses across neighboring threads access neighboring mem-
ory locations (“coalescing”); and where the algorithm and
memory accesses can take advantage of the computational
and memory hierarchy of the modern GPU (“hierarchy”).
Although these choices are usually the foremost considera-
tions in GPU implementations, as in Schatz and Trapnell [1]
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and Lin et al. [2], they rarely play an important role in the
process of algorithm design. In other words, they are con-
sidered optimization opportunities for programmers rather
than desirable features of the algorithm itself.

In this paper we address this issue through a case study.
We consider the exact string matching problem, which is
interesting in that it admits several different styles of paral-
lelization. We focus on a classical PRAM algorithm of Karp
and Rabin [3]. Forty years of research into serial string match-
ing has resulted in a plethora of elegant serial algorithms
that perform very well in practice, but parallel algorithms
are less well explored, particularly in the context of newer
hierarchical parallel architectures like GPUs. We imple-
ment several variants of the Rabin-Karp algorithm (RK) on
NVIDIA GPUs using the CUDA programming environment.
Our experience leads us to believe that our general results
apply to a broader set of hierarchical parallel processors, with
either a compute hierarchy (multiple parallel processors, each
with multiple parallel cores or functional units), a memory
hierarchy (globally shared memory shared by all processors
and faster locally shared memory of limited size shared by all
cores within a processor), or both. Examples include other
GPUs, accelerators such as the Intel Xeon Phi, and parallel
multicore CPUs with vector instructions.

We begin with two main approaches to exploiting paral-
lelism: cooperative and divide-and-conquer. In the former,
all threads cooperate in computing a global solution, and
in the latter, the main task is divided into smaller pieces,
each piece is processed separately, and the results are com-
bined. Rabin-Karp makes a good test case because it can be
parallelized in both ways. In RK, the pattern of length m
and all text substrings of length m are hashed (e.g., into a
positive integer), and then the hashes are compared instead
of the strings. Sting matching is inherently amenable to
divide-and-conquer; the text can be divided into as many
parallel sub-texts as needed, and the only drawback is due
to overlap. RK is also amenable to cooperative paralleliza-
tion, as described in the original 1987 paper, because with a
wise choice of hash functions, the text can be hashed using
a cooperative algorithm based on scan (aka parallel-prefix)
operations. Fast implementation of scan operations has been
one of the great successes in GPU software development for
general computation. In both cases, the RK algorithm fits
well with the GPU model in terms of uniformity, coalescing,
and memory hierarchy. The downside of RK is that it always
reads the entire text, while the best sequential algorithms
are designed to skip as much as possible, so that they work



especially well on “real data”, such as natural language text,
genomics data, and internet traffic.

We experimented extensively with two different parallel
versions of RK, one with the cooperative strategy (CRK),
and the other on using a simple divide-and-conquer strategy
(DRK). We find that for short patterns (up to about 800
characters), DRK is much faster than leading sequential
codes running on an 8-core CPU. This is mostly because of its
uniform load balance, relatively cheap operations, and high
memory bandwidth due to coalesced memory accesses. The
performance gap is especially large for very short patterns
(e.g., 8 characters).

We then leverage the high performance of DRK’s short-
pattern matching to design a two-stage matching algorithm
for longer patterns. It does a first round of searching on
a small subset of the original pattern, and then groups of
threads cooperate to verify all the potential matches. This
new GPU-friendly algorithm outperforms the best multi-
core sequential codes for patterns of size up to almost 64k
characters. This approach opens up some very interesting
opportunities for skipping parts of the text and for doing
approximate matching.

Our work provides both good news and bad news for
parallel algorithm design. The good news is that parallel
algorithms that pay attention to memory access patterns
and load balancing can lead directly to high-performance
GPU implementations. The bad news is that although scan
operations can now be implemented very efficiently in the
GPU environment, complex scans are still not necessarily
competitive with more straightforward parallelization ap-
proaches.

We divide this paper into the following parts:

e We propose three major RK-based binary matching
algorithms: cooperative, divide-and-conquer, and a
combination of both (hybrid). Using both theoretical
demonstration and experimental validation, we address
the following question: for a given pattern and text size,
what is the best method to use and why? At a high level,
we show that the divide-and-conquer approach is better
for smaller patterns, while cooperative is superior for
very large patterns (Sections 3—4).

We provide several optimizations: both in terms of the
general algorithm and computations, as well as some
hardware specific ones (Section 6).

e We extend our RK-based algorithms to support char-
acters from any general alphabets (Section 7.1).

Using the divide-and-conquer approach, which is the
fastest we have found for processing short patterns, we
propose a novel two-stage matching method to process
patterns of any size efficiently. In this method, we first
skim the text for a random small subset of the main
pattern, and then verify all potential matches efficiently
in parallel (Section 7.2).

2. PRIOR WORK

A naive approach to solve the single-pattern scenario is
to compare all the possible strings of length m in our text
with our pattern (O(mn) time steps). There are several
methods proposed so far to improve such quadratic running

time. For instance, the KMP algorithm [4] saves work by
jumping to the next possible index in case of a mismatch.
The Boyer-Moore (BM) algorithm [5] is similar to KMP but
starts its comparison from right to left. Some algorithms
combine the existing tricks in other algorithms to enhance
their performance. For example, the HASHq algorithm [6]
hashes (similar to RK) all suffixes of shorter length (e.g., at
most of length 8) and performs the matching on them. In
case of a mismatch, like KMP, it shifts to the next potential
match and like BM, starts comparing from the rightmost
characters of each word. Faro and Lecroq’s survey provides
a comprehensive introduction and comparison between these
and other methods [7].

Some of the earliest parallel work was from Galil [8] and
Vishkin [9], who proposed a series of parallel string match-
ing methods over a concurrent-read-concurrent-write PRAM
memory model. The GPU literature features numerous pa-
pers that target related problems, but none of them ad-
dress the fundamental problem of matching a single non-
preprocessed pattern, implemented entirely on the GPU.
Both Lin et al. [2] and Zha and Sahni [10] target multiple
patterns (which is easier to parallelize) with an approach that
leverages offline pattern compilation; the latter paper con-
cludes that CPU implementations are still faster. Schatz and
Trapnell used a CPU-compiled suffix tree for their match-
ing [1]. Seamans and Alexander’s virus scanner targeted
multiple patterns with a two-step approach, but performed
the second step on the CPU [11]. Kouzinopoulos and Mar-
garitis [12] implement a brute-force non-preprocessed search
and compare it to preprocessed-pattern methods.

3. PRELIMINARIES

In this section we explain some of the basic algorithms
and primitive parallel operations. Readers familiar with the
graphics processing unit (GPU) terminology (Section 3.1),
the serial RK algorithm (Section 3.2), and its parallel formu-
lation (Section 3.3), can skip to Section 4.

In the basic scenario, X = zo...xm—1 is a binary pattern
of length m to be found in a binary text ¥ = yo...yn—1
of length n > m. If Y[r] = yryr+1...Yr+m—1, then our
objective is to find all indices r such that Y[r] = X for
0<r<n-—m+1. We will later generalize our results to
arbitrary alphabets.

3.1 Graphics Processing Units (GPUs)

The GPU is a highly parallel processor that features both
a computational hierarchy and a memory hierarchy. In this
work we use NVIDIA’s CUDA programming model and its
related terminology [13]; parenthetical values indicate specific
values for the NVIDIA Tesla K40c that we use in evaluat-
ing this work. NVIDIA GPUs have one or more parallel
cores (15 in the K40c, called “streaming multiprocessors” or
SMs). Within each core, the hardware runs a warp of 32
threads together as a single SIMD unit. These GPUs thus
exhibit parallelism across cores and within each core. Pro-
grammers express GPU programs as parallel threads that
are grouped into blocks (virtualized cores), and typical GPU
programs are run on many blocks at the same time. The
GPU hardware efficiently assigns blocks to cores as cores
become available. The memory hierarchy has three levels,
ordered from fastest/smallest to slowest/largest: registers,
local to each thread (up to 1 KB); locally shared memory,
shared by threads within a block (up to 48 KB); and globally



shared memory, available to all threads (12 GB). Bandwidth
to globally shared memory is maximized with coalesced mem-
ory accesses, where nearby threads access nearby memory
addresses.

3.2 Serial Rabin-Karp

The main idea of the RK algorithm is to hash the pattern
X and all the possible strings of length m in the text Y. The
hashes are known as fingerprints, and any two strings with
the same fingerprint match with high probability. Karp and
Rabin proposed two families of hash functions [3]. The first
produces integers as its fingerprints: for any X € {0,1}™:
F(X)= 2m ot 4222+ Tm—1. In order to avoid over-

flow, the result is computed modulo a random prime number

p € (1,nm?), so that F,(X) £ F(z). The second family of

fingerprints is defined as follows. Define two matrices,
1 0 1 1
ko= 9 ww=[} .

Then for any binary string X = zo ... Zm—1 € {0,1}™, we de-
fine its fingerprint to be the product K(X) = K(zo) ... K(Zm—
Again to avoid overflows, the result is computed modulo a
random prime number p € (1,mn?) (i.e., K,(X) = K(X)).
Regardless of which fingerprints we use, the RK algorithm
can then be summarized as (1) choose a random prime num-
ber p € (1,mn?); (2) compute all fingerprints (e.g., F(X),
and F,,(Y[r]) for r € [0,n —m + 1)); and (3) compare: e.g.,
if Fp(Y[r]) and Fp(X) are equal, then X and Y[r] are equal
with high probability, otherwise there is no match.

Step 2 can be done quite efficiently in a sequential man-
ner [3]. In case we use the first class of fingerprints, F,(Y[r+
1]) can be computed by using F,(Y[r]):

(1)

F,(Yr +1) £ 2 (Fp(Y[]) = 2" ') + yrimir- (2)

In case of the second class of fingerprints, we compute
K, (Y[r + 1]) based on K,(Y[r]) by a few operations:

P
K, (Y[r +1]) = Ap(yr) Kp (Y[r DKy (Yr+m+1),  (3)
where for any binary value z € {0,1}, A,(z) is defined as

the left inverse of K,(z) modulo p (i.e., Ay(2)Ky(z) = I
where I is an identity matrix). For each read text character,
equation (2) requires two multiplications (each can be done
by bitwise shift operation), two summations, and a modulo
operation. Equation (3), on the other hand, requires 16 inte-
ger multiplications, 8 summations and 4 modulo operations
per text character. As a result, the first class of fingerprints
are significantly simpler to compute. We refer to sequential
RK with first class of fingerprints as SRK algorithm. On the
other hand, the second class of fingerprints can be updated
using an associative operator, which can be leveraged in the
following parallel formulation.

3.3 Cooperative Rabin-Karp

Karp and Rabin showed that the second class of finger-
prints can be computed in parallel [3] using scan operations.
It is well known that the scan operation takes a vector of
input elements u and an associative binary operator &, and
returns an output vector v of the same size as u. In exclu-
sive (resp., inclusive) scan, v; = uo P -+ B u;—1 (resp., 0
to 7). A parallel scan on a vector of length n can be done
with O(logn) depth and in O(n) computations. With p
processors, it is easy to show that a scan can be computed

[un

in O(n/p + logp) time steps. On the GPU, there are now
highly optimized generic scan implementations that take an
arbitrary associative operator as an input.

Let K = [Kp(y:)]!, and A = [A,(y,)]"" represent
vectors of all the required fingerprints and their inverses. We
then define S and T vectors as follows:

S = [Kp(yo), Kp(¥0)Kp(y1), - -, Kp(yo) - - - Kp(yn-1)] s
T =1[1Ap(yo) Ap(y1)Ap(Y0), - - s Ap(yn—m) - - - Ap(yo)] -

So § is an inclusive scan over vector K with right matrix
multiplication modulo prime p as its associative operator.
Similarly, 7 is an exclusive scan over vector A with left matrix
multiplication modulo prime p as its associative operator.
Then, it is clear that for 0 <r <n—m+ 1:

K,Y[r]) = Tr|S[r+m —1]
= [Ap(yr—1) - Ap(yo)] %
Ky (o) - - - Kp(yr—1)Kp(yr) - - Kp(yrim-1)] (5
=Kp(yr) . Kp(yrim-1), (6)

Thus, after computing two scans (i.e., computing S and 7)),
we can compute any required fingerprint by computing a
single matrix multiplication (as in (4)). Based on Eq. (5),
it is important to use different matrix multiplications (i.e.,
left /right) for each operator in order that each pair of ma-
trices and their inverses correctly cancel each other out.
Throughout this paper, we refer to this method as Cooper-
ative Rabin-Karp (CRK), because scan operations can be
computed cooperatively by a set of independent threads or
processors.

Our cooperative implementation uses this second finger-
print, but we should point out that it might be possible to
improve the performance of the cooperative algorithm using
a variant of the first fingerprint. Blelloch [14] points out,
among many other things, that any sequential scan oper-
ation whose output can be represented by a recurrence of
the form z; = a;x;—1 + b;, where a; and b; are fixed input
arrays and can be computed by a scan operation. In our case,
a; = 2, we have b; = y; — 2™ ¥y;—m, which can be computed
in O(1) from the input y, and all operations are done mod-
ulo p. Specialized to this situation, Blelloch’s method is to
define an associative operator - on pairs ¢; = (a;, b;), where
ci-¢j = (asaj,b;a;+bj). He proves that this is an associative
operator on the set of pairs, and so it can be implemented
using a scan operation. In addition to requiring many fewer
operations than the second fingerprint, implementing this
would only require one scan operation, not two. In practice,
we have observed that this function produced more false
positives due to hash collisions than the matrix-fingerprint,
unless we used more expensive 64-bit operations. Thus our
initial attempt to implement this did not lead to much of an
improvement over our current CRK implementation. In any
case, we expect neither approach would compete with our
best methods, as we shall see in Section 8.

(4)

4. DIVIDE-AND-CONQUER STRATEGY

Cooperative RK (Section 3.3) elegant exploits parallelism
by having all of the processors cooperate through the two
large scan operations. These parallel scans require interme-
diate communication between different processors and cores
(threads from different blocks). However, CRK benefits little
from the computational or memory hierarchy in its imple-
mentation (all operations are device-wide and global), so we



also explored a straightforward divide-and-conquer approach.
Dealing with smaller subproblems gives us a lot of flexibility
in our design choices (e.g., work distribution among pro-
cessors/cores, and exploiting the memory hierarchy), which
allows us to tailor the computation to the GPU’s strengths.

Divide and conquer is a natural approach to string match-
ing; the easiest way to divide the work is to assign different
parts of the text to different processors and process each part
seperately. The final result is simply a union of matching
results for each subproblem. In order to maintain indepen-
dence between different subproblems, and to avoid extra
communication between processors, this division should be
done in an intelligent way. We must consider an overlap
of length m — 1 characters between consecutive subtexts to
avoid losing any potential matches at the boundaries. Let L
denote the number of subtexts, or equivalently, the granu-
larity of the divide-and-conquer approach. Then, if we show
each subtext as Y, for 0 < ¢ < L, the division process can
be shown as:

¥4
Y" = yegyeg i1 - Yegro—1Yet1)g - - - Yo+ g+m—1,  (7)

exclusive characters overlapped characters

where each subtext has g = (n — m + 1)/L exclusive
characters, plus m — 1 overlapped characters. For simplicity
we assume that (n —m + 1) is a multiple of L, otherwise we
can easily extend our text (increasing n with enough dummy
characters) to be such a number. Now, each of these subtexts
have n = g + m — 1 characters and are independent from
each other .

In general, the possible cases for the number of subtexts
is from 1 < L <n —m+ 1. We define Divide-and-conquer
RK (DRK) as a method in which each processor performs
the SRK on its own subtext individually. L = 1 corresponds
to SRK applied to the whole text. We can also combine
ideas of both the CRK and the DRK methods and form a
hybrid method. We define Hybrid RK (HRK) as a method
in which the main text is divided into subtexts (Eq. (7)) and
then each subtext is assigned to a group of processors, which
will perform CRK on it. If L = 1, HRK will be identical to
CRK. Figure 1 shows our four possible formulations—serial,
cooperative, divide-and-conquer, and hybrid—schematically.

Intuitively, a larger number of subtexts L (i.e., a finer
granularity) yields more parallelism. At the same time, it
means more potential overlaps and hence more redundant
work because the total number of overlapped characters is
L(m—1). One important question in this work is to determine
the optimal choice of L depending on the method and other
machine and problem characteristics.

4.1 Theoretical analysis with finite processors

In the following, we want to investigate each method’s
depth-work analysis under equal and finite number of p

LThis approach has commonality with stencil methods that
operate over a large domain on hierarchical parallel machines:
the domain is divided across cores and parallelism is exploited
within a core. Typically, each core is assigned not only its
own subdomain but also an overlapping region with its neigh-
bors (the “halo”). Larger halos result in less communication
at the cost of more redundant computation. In string match-
ing, the overlap size is fixed, but the total overlap (i.e., total
redundant work) is changed by the granularity of our division.
Our objective will then be reaching a trade-off between min-
imizing redundant work (overlap) and maximizing achieved
parallelism (maximizing the granularity).

Serial
Tonbuo))
7? IpIAI(T

PLqAH

Cooperative

Figure 1: Schematic view of the four approaches consid-
ered in this paper. The picture is simplified and shows the
work distribution in each method. Dashed lines indicate
subproblems.

Method Step complexity Work complexity
CRK O(n/p +logp) O(n)
DRK O((n+mL)/p) O(n+mL)
HRK O((n+mL)/p+ (L/p1)log p2) O(n+mL)

Table 1: Step-work complexity for our methods with p pro-
cessors (p1 groups with pa processors in each).

processors. We also assume that all processors have access
to a globally shared memory.

We know that scan operations can be done with O(n/p +
log p) depth complexity and O(n) work. The CRK method
requires two scan operations, followed by a constant round
of final multiplications and comparisons, and O(n) added
work. Overall, the CRK requires O(n) work and its running
time will be

Tcrk (n, p) = O(n/p + logp). (8)

In the DRK method, each subtext is assigned to a processor.
If we have L > p subtexts of length g + m — 1, each subtext
can be processed sequentially using SRK in O(g + m — 1)
time steps. Total work will be O(n + Lm). Since at most p
processors can be used at a time, Tprix (n, p) will be

Tork (n, p) = £O(g+m—1) :O(M)- )
p p

For the HRK, we assign each subtext to a group of pro-

cessors, and each group runs CRK with its processors. Here

we have a new degree of freedom: fewer groups of processors

with more processors per group or vice versa. We assume p;

groups and p2 processors per group, for a total of p = pip2

processors. Subtexts are assigned to groups (p1 at a time),

while each subtext can be processed in parallel as in CRK

with O((g + m — 1)/p2 + log p2). Overall, the running time
THRK (n,p) Wﬂl be

L -1
Turk (n,p) = —O(ig tm + log p2)
D1 D2
L L
— o2 L L o ). (10)
p b1

For a fixed n, m, L and p, the runtime component (L/p1) log p2
is minimized if po = 1 and p; = p. It is interesting to note
that in such case, HRK will be identical to the DRK method.
For HRK, then, it is better to have more groups with fewer
processors in each than fewer groups with more processors.
Also, total work will be O(n + Lm).
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Figure 2: Average running time (ms) versus pattern size m,
for a fixed binary text of size n = 2%5.

4.2 Theoretical Conclusions

Table 1 summarizes the step and work complexity for our
three parallel methods with an equal number of processors.
Although we have considered some simplifying assumptions
in the above analysis, we can make some interesting general
conclusions. First of all, since the sequential RK method
is linear in time, as text size increases we expect to see
an approximate linear increase in the running time of all
our parallel alternatives (because of the O(n/p) term in
Eq. (8), (9), and (10)).

As the pattern size m increases, more overlapped characters
are included in DRK and HRK. These overlaps are redundant
work and thus, there always exists a pattern size for which
CRK is superior to the other algorithms, and for all larger
patterns. This can also be seen in step complexities and the
fact that CRK does not have any factor of pattern size in
it. Also, with fixed number of processors (fixed p) and for
large sizes of text and pattern our asymptotic analysis gets
more accurate and hence we expect the DRK method to be
asymptotically superior to the HRK method. However, for
smaller text or pattern sizes, the order may differ.

S. SUMMARY OF RESULTS

At this point in the paper, we have introduced and ana-
lyzed three parallel algorithm formulations based on the RK
algorithm: cooperative (CRK), divide-and-conquer (DRK),
and hybrid (HRK). In Section 4.1 we analyzed the theoretical
behavior of these algorithms and in Section 4.2, predicted
their implementation behavior. Figure 2 shows the perfor-
mance of these three algorithms, all implemented on an
NVIDIA K40c GPU, with a fixed text size and varying pat-
tern sizes. We observe that DRK is superior to the other
methods for small patterns, but degrades as pattern size
increases. Because CRK’s performance is independent of
pattern size, we note a crossover point where for all larger
patterns the CRK method is superior. While HRK is better
than CRK for small patterns, it is always inferior to the
DRK method.

In the next three sections, we will build from the algo-
rithms we detailed above, both analyzing and improving
their performance as well as extending them to address prac-

tical concerns such as non-binary alphabets. We address the
following issues:

1. In Section 6, we provide implementation details for
each of our parallel algorithms and describe a series of
optimizations that improve their performance.

2. Karp and Rabin [3] only discussed binary alphabets and
at this point in the paper, so have we. In Section 7.1
we modify our algorithms to support any alphabet size.

3. Figure 2 demonstrates a large performance gap between
DRK and CRK: DRK is up to 65x faster than CRK for
small patterns. However, as pattern size increases, this
performance gap narrows. We wish to preserve DRK’s
high performance for any pattern size and in Section 7.2,
we propose a novel two-stage method (DRK-2S) based
on the original DRK method that achieves this goal.

4. In Section 8 we thoroughly analyze the performance of
all of our algorithms. Section 8.1 identifies the best par-
allel algorithm for any text and pattern size for binary
alphabets. Then in Section 8.2, we compare our binary
algorithms with the existing fastest CPU methods, and
in Sections 8.3 and 8.4, extend this comparison for
general alphabets. All our experiments up to this point
are on randomly generated texts. In Section 8.5, we
expand our performance analysis to real-world text.

6. IMPLEMENTATION DETAILS

In the previous sections, we concentrated on our theoretical
approach to parallel RK-based pattern matching. In this
section, we dive into our implementation strategy. Since all
our implementations are based on C, we assume that any
character has a size of one byte; binary strings are handled
as sequences of bytes. Throughout this section and beyond,
some of our decisions we make are influenced by the CUDA
programming model and GPU hardware.

6.1 Cooperative RK

For the CRK method we described in Section 3.3, we used
the second class of fingerprints. We begin by mapping the
input text to form the intermediate vectors K and A. Then
we perform two device-wide scan operations on these interme-
diate vectors to compute S and 7. In order to perform these
scans, we use the scan operations provided by the Thrust
library [15], with input and output stored in global memory
and left /right matrix multiplications modulo a given prime
number as their associative operators, respectively. All in-
termediate results are in the form of arrays of 2-by-2 integer
matrices (as shown in Section 3.3): K, A, S and T each
requires 16B per input character. As a result, our CRK im-
plementation not only uses the more computationally heavy
fingerprints (second class), but also requires more global
memory accesses per text character read.

6.2 Divide-and-Conquer RK

Our DRK implementations use the first class of fingerprints.
Modulo operators do not have hardware implementations on
current GPUs and hence are very slow compared to other
operations. The only reason that we need this operator
in equation (2) is to avoid overflows and hash the results;
however, we can avoid these operations by making sure that
an overflow never happens. For binary patterns of size less



than or equal to 32 characters, we can use 32-bit registers
(or 64-bit registers for m < 64) and guarantee no overflows.
This change can significantly improve the performance for
small patterns compared to the original updates. First, let
us consider the most general case. Consider equation (2) and
suppose we have previously computed 2! modulo prime p
and stored it in a register (called base). Then, if we denote
yr by y_old and yn+r—1 by y_new, the updated fingerprint
Fwillbe F < ((F + p - R) < 1) + y_new) % p, where
R < (base * y_old) % p.

For 32-bit registers, if p < 23°, then R and F never overflow
(base is itself modulo p). Originally we should have F-R in-
stead of F+p-R. But since F and R are both positive and less
than p, we add a p value (neutral to modulo operator) to as-
sure the result is positive before shifting (0 < F+p— R < 2p).
The choice of the maximum of 30 bits is required because
the result of both lines must not overflow before the modulo
operator. Now, for patterns smaller than 32 characters we
can have F <— ((F & mask) < 1) + y_new, where mask <
~(1 < m). Since we use the binary representation of charac-
ters as their fingerprints (exact hashing with theoretical zero
collision), we can mask out the effect of . by an AND opera-
tion and avoid using an extra subtraction here. mask can be
computed once, so on average we have one bitwise AND, one
shift and one summation per character in this case. We refer
to this version as DRK without modulo (DRK-WOM-32bit).
With minimal (but non-zero) performance degradation, we
can instead use 64-bit registers and support binary patterns
up to 64 characters (DRK-WOM-64bit).

In DRK (or DRK-WOM), each thread is supposed to pro-
cess g+m — 1 consecutive characters from the text and verify
whether or not there is a match for its g exclusive strings
(Section 4). This is not an ideal memory access pattern for
high-performance GPU implementation. We would instead
prefer coalesced accesses, where consecutive threads within a
warp access consecutive elements. To alleviate this problem,
with N threads per block, we initially load Nt consecutive
subtexts into each block’s shared memory in a coalesced
manner (total of gNt + m — 1 characters per block), and
then each thread reads its own subtext locally from much
faster shared memory (where coalescing is less important).
In GPUs, memory accesses are in 4B alignments. Therefore
we read elements as char4 vectors (4 consecutive characters)
to better exploit the available memory bandwidth?.

6.3 Hybrid RK

As discussed in Section 4, HRK assigns each subtext to
a group of processors, where a CRK method is performed
on each subtext. On the GPU, we assign each subtext to a
block, and threads within each block perform CRK on their
own subtext. We use a block-wide scan operation from the
CUB library [17]. In order to use CRK on each subtext,
we need to store intermediate vectors in shared memory (S
and 7 when using the second fingerprint). Current GPUs
have very limited shared memory of at most 48 KB per
block, so the extra storage forces us to either have fewer
threads per block (small Nt) or very small subtext sizes
(small g) and equivalently too many blocks (large L). In
neither scenario are we utilizing our hardware’s full potential,
and consequently our HRK implementation compares poorly
to our DRK- and CRK-based implementations.

2char4 is a built-in CUDA vector type with 4B alignment [16,
Ch. B.3].

7. EXPANDING BEYOND THE SIMPLE RK
7.1 General alphabets

In their original paper, Karp and Rabin only considered
binary alphabets [3]; we now extend this to general alphabets.
Suppose we have an alphabet set 3 such that each character
a € X requires at most ¢ = [logX] bits of information.

Then, for any arbitrary pattern X = zg...zm-1 € X,

we can extend our first class of fingerprints to be Fj,(X) Z
;’;61 2;2°(m~1 S0, for this first class of fingerprints, the

new update equation will be
Fp(YIr+1) 227 (B(Y ) =27 V) + g (11)

This update equation has a similar computational cost as
equation (2). Its implementation will also be similar to what
we outlined in Section 6.2. The base register we used in
Section 6.2 is now precomputed to be 2™~ modulo p. In
order to avoid overflows, with the same reasoning as we had
before, we should make sure that p < 23179, We also update
our DRK-WOM implementation to incorporate o: F <
((F & mask) < o) + y_new, where mask < ~(((1<K o)
- 1) < m). Here mask is intended to wipe out any possible
remainder from the oldest added character. By using 64-bit
registers, we can support pattern lengths of m < 64/0, i.e.,
up to eight 8-bit ASCII characters.

For the second class of fingerprints, we first identify our
fundamental fingerprints Ko ... Kass_1. Suppose we have
an arbitrary character z = ¢o—1...co where ¢; € {0,1}.
Then, K. = K¢, ; x -+ x K. Inverse fingerprints are
similarly defined as A,(z) = Ap(co) X -+ X Ap(co—1). These
fundamental fingerprints and their inverses can either be
precomputed and looked up from a table at runtime or else
can be computed on the fly. In either case, the amount of
computation can become up to o times more expensive and
not any better than the binary CRK method, and hence for
general alphabets, we prefer the first class of fingerprints and
the DRK method.

7.2 Two-stage matching

For small patterns, our DRK implementations outperform
our other methods on GPUs as well as the fastest CPU-based
codes (Section 8 has more details). DRK-WOM, for instance,
achieves up to a 66 GB/s processing rate. However, it works
only for fairly small patterns (up to 64/c characters if we use
our 64-bit version). As the pattern size increases, DRK is the
superior method up to almost 512 characters (for 1 < o <
8). However, DRK’s performance degrades gradually as the
pattern size increases for two reasons. 1) As m increases, the
total number of characters that each thread must read until
it can process g strings increases linearly (g + m — 1). 2) As
m increases, the total number of characters stored in shared
memory also increases (¢Nt + m — 1) and hence our device
occupancy (and overall performance) gradually decrease.

As we have discussed earlier in this paper, the RK algo-
rithm does not depend on the content of either the text or
the pattern. This is a desirable property: the performance of
RK implementations only depends on text and pattern sizes
(n and m). We make no runtime decisions (e.g., branches)
based on pattern or text content, which is beneficial for the
uniformity goal we outlined in the introduction. In practice,
most of our resources can be assigned statically at compile
time (like the amount of required shared memory per block).



But an RK-based implementation processes every possi-
ble substring of length m in the text. Many well-known
sequential matching algorithms (such as those introduced in
Section 2) use different techniques to avoid this unnecessary
work. In this subsection, we propose an algorithm that bal-
ances between the uniform workload of RK and avoids the
unnecessary work of checking every possible substring.

Our two-stage DRK matching method (DRK-2S) first
skims the text for a random small substring of the pat-
tern and then verifies the potential matches that we identify.
Suppose we search for a smaller substring of the pattern
(“subpattern”) of length m < m. This subpattern can be
chosen arbitrarily: it can be a prefix, a suffix, or any other
arbitrary alignment from the main pattern. We then search
our text using one of our DRK methods (preferably the
DRK-WOM). Each thread stores its potential matches, if
any, into a local register-level stack. We note that any se-
quential method could be used for the skimming stage, but
we focus on using one of our DRK methods because their
implementations on GPUs balance load efficiently across the
GPU.

For final verification, we expect that by choosing a large
enough subpattern size, the expected number of potential
matches will be much less than the text size n. As a result, we
group threads together to verify potential matches altogether
in parallel rather than individually and sequentially. In our
implementation, we use a warp (32 threads) as the primary
unit of verification. By doing so, we can have an efficient
implementation by using warp-synchronous programming
features and warp-wide voting schemes.

Initially we divide our pattern into several consecutive
chunks of 32 characters. For each chunk, we compute the
substring’s fingerprint as Fp(zo . .. x31) Z Zfio ;206170 by
using a random prime number p as before. For example, for
a pattern of length m = 128, we would compute 4 different
fingerprints: Fp(xo...x31),...,Fp(xos...x127). Now, we
should verify whether for each potential match beginning
at index 7, Fp(Yr ... Yr+31),- -+, Fp(Yrt96 ... Yrs+127) are all
equal to their pattern’s counterparts.

After the skimming stage, each thread has a local stack of
its own potential matches. Threads can find out about the
existence of any non-empty stack within their warp (using
a ballot). We start the verification based on threads’ lane
IDs (priority from 0 to 31). At this point all threads ask
about the beginning index (say r) of that specific potential
match (by using a shuffle) and then continue by coalesced
reading of a chunk of 32 consecutive characters (from y,
until yr431). Then, by using at most five rounds of shuffles
(performing a warp-wide reduction), we can compute the
fingerprint corresponding to that chunk and compare it to
that of the pattern’s. In case it does not match, that specific
potential match is not a final match and it is popped out
of its thread’s local stack. Otherwise, we continue to the
next chunk of characters until all chunks are verified. The
whole process is continued until all local stacks are empty.
Algorithm 1 shows the high-level procedure of the DRK-2S.

We expect the DRK-2S method will significantly outper-
form the DRK method in dealing with large patterns, because
we incur the cost of verifying a potential match (including
reading m characters from the text) only when we first iden-
tify a subpattern. Consequently, we significantly reduce the
memory bandwidth requirements compared to DRK, and

Algorithm 1 Two-stage matching method (DRK-2S)

1: for each warp w parallel do

2 for each thread ¢ within w parallel do

3 Search for subpattern of length m < m using DRK
4. St < potential matches

5: R: + beginning indices of Sy

6: end for

7 for each index r € J,¢,,{Rt} do

8: for 0 <k < [m/32] do

9: Compute F < Fp(Y(ri-32k) - - Y(r+31432k))
10: if F is not equal to Fp(z32k - - - T(32k431)) then
11: r is not a match
12: end if
13: end for
14: if all above k fingerprints matched then
15: r is a match
16: end if
17: end for
18: end for

as we will see in the next section, achieve large speedups in
practice.

8. PERFORMANCE EVALUATION

In this section, we experimentally assess the performance
of all our proposed algorithms. Unless otherwise stated
(Section 8.5), we use randomly generated texts and patterns
with arbitrary alphabet sizes®. All our parallel methods are
run on an NVIDIA Tesla K40c GPU, and compiled with
NVIDIA’s nvce compiler (version 7.5.17). All our sequential
codes are run on an Intel Xeon E5-2637 v2 3.50 GHz CPU,
with 16 GB of DDR3 DRAM memory. We used OpenMP
v3.0 to run our CPU codes in parallel over 8 cores (2 threads
per core). All parallel GPU implementations are by the
authors, while all CPU codes are from SMART library [18]
and run in a divide-and-conquer fashion over our multi-core
platform.

In this section, all our experiments are averaged over at
least 200 independent random trials. All results in this
section—average running times (ms) and processing rates
(GB/s)—are measured without considering the transfer time
(from disk or from CPU to GPU). In other words, for all GPU
methods we assume that text is already stored on the off-chip
DRAM memory of the device. As we will see shortly, our
processing rates are indeed currently much faster than PCle
3.0 transfer time. However, the recently announced CPU-
GPU NVLink would allow us to eliminate this bottleneck by
feeding the GPU at the rate of our fastest string matching
implementations.

All our GPU codes are run with Ny = 256 threads per
block. Based on the utilized number of registers per thread
and also the size of shared memory per block, this amount
of Nr has given us a very high occupancy ratio on our GPU
device. Another important parameter in our divide-and-
conquer methods is the total number of subtexts L, i.e., the
total number of launched threads. Instead of optimizing for
L, we instead optimize for g = (n—m+1)/L, since it directly
expresses the amount of work assigned to each thread, i.e., g
is the total number of exclusive characters in each subtext.
An advantage of RK-based methods is that by running a

3Because the RK algorithm is independent of the content of
the text or pattern, the runtime for any text or pattern for
a fixed (m,n) will be identical.
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few tests on randomly generated texts and patterns, we can
tune the optimum amount of g to fully exploit available
GPU resources. Our simulations showed that the range of
12 < g < 44 for 2 < m < 2'® achieves the best results.

8.1 Algorithm behavior in problem domains

In this part, we revisit the question of “which method is
best suited for text size n and pattern size m?” We begin
with a fixed text size n and varying pattern sizes m for
a binary alphabet. Based on our earlier discussions, we
expect all of our DRK family algorithms to perform better
than CRK and HRK because of 1) significantly cheaper
computations with the first class of fingerprints and 2) fewer
and coalesced global memory accesses. All DRK methods
only read text characters once and report results back to
global memory only if necessary; however, CRK (and to some
extent HRK) first process the text into 2-by-2 integer matrices
and perform several device-wide computations over these
intermediate vectors (requiring additional global memory
operations). However, we also predicted that as pattern size
becomes large, DRK methods fall behind CRK because of
1) excessive work due to overlap and 2) the limited capacity
of available per-block shared memory in current GPUs.

Figure 3a shows the average running time over 200 inde-
pendent random trials on texts with 32 M characters and
various pattern sizes (2 < m < 2'9). In this simulation, the
DRK methods are superior to CRK for m < 2'3. In addi-
tion, HRK performs better than CRK for m < 256 (because
most intermediate operations are performed locally in each
block), but it is never competitive to the DRK methods. All
DRK methods have similar memory access behavior; the only
difference is between their update costs. Consequently, on
pattern sizes where they are applicable, DRK-WOM-32bit is
better than DRK-WOM-64bit, and both are better than the
regular DRK method, because they avoid expensive modulo
operators.

We expected that all parallel algorithms would show lin-
ear performance with respect to text size (summarized in
Table 1). Figure 3b depicts average running time versus
varying text sizes and a fixed pattern size m = 16 for binary
characters. This expected linear behavior is evident after

we reach a certain text size, which is large enough to fully
exploit GPU resources under each scenario’s algorithmic and
implementation limitations.

Let’s turn from the above snapshots from the (m,n) prob-
lem domain to the overall behavior of our algorithms across
the whole problem domain. Figure 3c shows the superior
algorithms across the (m,n) space. As we expect, the DRK
family is superior for small patterns, and the CRK method
for larger patterns, but the crossover point differs based on
the text size. Within the DRK family, the DRK-WOM-32bit
has the cheapest computational cost and is hence dominant.
However, it can only be used for patterns with m < 32 char-
acters. The next best choice is the DRK-WOM-64bit, which
supports up to m < 64 characters. For larger patterns we
should choose the regular DRK method, per Section 6.2.

8.2 Binary sequential algorithms

Now that we have studied the competitive behavior of our
parallel algorithms with each other, we compare their perfor-
mance with the best sequential binary matching algorithms.
Faro and Lecroq’s comprehensive survey [7] covers the fastest
sequential methods. We begin with available source codes
from the SMART library [18]* and parallelize them in a
divide-and-conquer fashion (as described in Section 4) but
distributed over 8 CPU cores (total of 16 CPU threads). We
compile and run the results in parallel using OpenMP v3.0
with —~O3 optimizations. Figure 4a shows the average running
time of the best CPU implementations against our parallel
algorithms implemented on the GPU.

We note that the CPU algorithms perform better as the
pattern size increases. Most of these algorithms use different
techniques to avoid unnecessary processing of text based on
the content of read characters and the pattern (as we also
leverage in our DRK-2S from Section 7.2). As the pattern
size increases, this strategy avoids more work on average
(the methods can take larger jumps through the text). On
the other hand, as we noted previously, our DRK method

4We compare against all top-performing algorithms from Faro
and Lecroq’s survey [7] and SMART library [18] except for
SSEF, which in our experiments did not deliver competitive
performance.



Pattern size (m)

Algorithm 4 16 64 256 1024

SRK 0.95 1.11 1.15 1.16 1.16
o SA 1.57 3.41 4.1 4.09 4.01
A AOSO2 0.80 4.25 4.53 4.54 4.54
O HASH5 — 4.69 5.25 5.68 5.63

HASHS8 — 4.62 5.93 6.33 5.98

CRK 0.58 0.58 0.58 0.58 0.58
E DRK 38.5 34.91 24.75 12.98 4.86
U DRK-WOM-32bit 54.84 64.50

DRK-WOM-64bit 52.40 51.07 35.06 — —

Speedup (GPU/CPU)  34.9x  13.8x 5.9x 2.1x 0.8x

Table 2: Processing rate (throughput) in GB/s. Texts and
patterns are randomly chosen using a binary alphabet.

Pattern size (m)

Algorithm 4 16 64 256 1024
SA 3.96 4.20 4.92 4.91 5.26
E HASH3 2.24 9.69 11.16 12.89 12.08
O HASH5 7.22 10.29 11.63 12.21
HASHS8 — 7.33 11.56 10.69 12.18
FJS 4.27 5.80 7.13 6.95 7.7
SBNDM-BMH 4.82 5.22 6.90 7.03 7.80
GRASPm 3.89 5.69 7.32 7.01 8.25
FS 4.01 6.19 7.22 6.70 8.05
SSECP 7.66 9.43 9.32 9.71 9.87
EPSM 7.58 5.34 10.35 12.08 3.27
FSBNDM 7.71 11.00 12.55 12.92 14.59
EBOM 5.49 8.04 9.48 4.18 2.59
o  DRK 40.31 34.94 24.75 12.98 4.86
% DRK-2S 62.68 53.77 53.73 53.51 53.04
Speedup (GPU/CPU) 8.18x 4.89x 4.28x 4.14x 3.63x

Table 3: Processing rate (throughput) in GB/s. Text and
patterns are randomly chosen with alphabet o = 8 (8-bit
ASCII characters).

degrades as the pattern size increases. As a result, our DRK
family of implementations is superior to all binary CPU
methods for patterns up to almost 1024 characters. Table 2
reports processing rate (throughput) for some specific pattern
sizes measured over random texts with 22° binary characters.

8.3 General sequential algorithms

Except for very minor low-level differences, our DRK im-
plementations with any non-binary alphabet should perform
as well as our binary DRK implementation. Figure 4b shows
some of the fastest matching algorithms for o = 8 (based on
the survey from Faro and Lecroq [7]). As with our binary
sequential comparison, we parallelize codes from the SMART
library [18] across 8 CPU cores/16 threads. For the DRK-
2S method, we used the DRK-WOM-64bit as our matching
method for the skimming stage. Here, since we have o = 8,
we can use up to m = 8 characters for our subpatterns.

Table 3 summarizes our achieved processing rates on ran-
dom texts with 225 8-bit characters. Our DRK-2S method
achieves a geometric mean speedup of 4.81x over the fastest
CPU methods. Although we consider patterns up to 1024
characters in this table, the DRK-2S continues to be su-
perior to all the CPU methods up to patterns of almost
64k characters. For example, with 32k characters DRK-2S
achieves 9.19 GB/s while the best CPU method, the FS-
BNDM, achieves 5.89 GB/s. The main reason behind our
performance degradation for very large patterns is an in-
creased number of memory accesses for each potential match
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Figure 4: Average running time (ms) versus pattern size
m with fixed text size n = 2?° for (a) 0 = 1 and (b) 0 =
8. Solid and dashed lines correspond to CPU and GPU
implementations respectively.

(O(m/32) accesses). We could potentially address this issue
by modifying DRK-2S to consider chunks of 128 characters
(instead of 32) and use char4 memory accesses in its verifica-
tion stage as well; this would reduce the number of accesses
by a factor of 4. However, for realistic pattern sizes this mod-
ification would not significantly improve our performance.

8.4 Dependency on alphabet size

In the last two parts, we have evaluated our parallel GPU
methods against the best CPU methods for two cases of
binary characters (Section 8.2) and general 8-bit characters
(Section 8.3). In this section, we focus on the DRK-2S
method and continue our discussion over randomly generated
texts over various alphabet sizes (X = 27). Table 4 shows
the processing rate of the DRK-2S for 1 < ¢ < 8 and
4 < m < 1024. For the skimming stage, we use a subpattern
length of m = 16 for 1 < o < 4 and m = 8 otherwise.

It is interesting to note that with a fixed pattern size, our
performance increases as the alphabet size increases. This is
mainly due to the fact that for randomly generated texts and
with a fixed pattern size, as alphabet size increases, we get less
likely to visit a match in our skimming stage (probability of
o~ ™), and hence fewer verifications are required in the second
stage. It is also interesting to note the sudden performance
degradation for m > m with each alphabet size, which is



Pattern size (m)
4 8 16 32 64 256 1024

52.40 56.55 55.04 49.96 49.86 49.74 49.23
59.98 58.91 55.75 51.04 51.03 51.01 50.15
60.57 58.94 55.86 51.13 51.11 50.91 50.45
60.58 58.85 55.78 51.09 51.01 50.71  49.82
60.59 58.88 53.47 53.52 53.44 53.38 52.76
60.63 58.94 52.36 53.46 53.42 53.30 52.29
60.59 58.87 53.50 53.45 53.42 53.18 52.11
62.68 63.66 53.77 53.69 53.73 53.51 53.04

[ =N BN U RS Y

Table 4: Processing rate (throughput) in GB/s of our DRK-
2S method for various alphabet sizes (X = 27) and different
pattern lengths (m).

Pattern size (m)

Algorithm 4 8 16 32 64 256 1024
SA 16.68 17.23 17.51 17.19 15.08 16.20 15.67
HASH3 20.95 10.97 6.29 5.75 4.67 4.98 3.77
HASH5 - 14.56 7.40 5.99 5.32 4.96 5.77

HASHS - 49.15  10.00 5.97 5.46 5.57 5.31
FJS 12.98 9.80 7.95 6.50 6.31 7.58 4.82
SBNDM-BMH  10.19 9.88 7.73 6.53 6.22 6.16 6.78
GRASPm 13.17  9.31 7.04 6.41 6.20 6.78 6.60

FS 13.06 9.58 7.43 5.73 6.06 6.38 6.52
FSBNDM 8.51 6.31 5.21 4.92 4.97 4.61 5.16
EBOM 7.55 6.17 5.05 5.42 5.25 5.49 6.47
SSECP 5.35 6.97 6.27 6.23 6.99 7.05 5.81
EPSM 5.05 5.15 5.69 5.43 4.75 3.78 6.64
DRK 2.46 2.62 2.84 3.25 3.99 7.59 20.34
DRK-2S 1.58 1.63 1.88 1.84 1.84 1.84 1.83
Speedup 3.2x 3.16x  2.69x 2.67x 2.54x 2.05x 2.06x

Table 5: Average running time (ms) for finding patterns of
different sizes (m) on a sample text from Wikipedia with
100 M characters. The last row reports the achieved speedup
of our DRK-2S method over the best CPU method.

directly related to whether or not we have to perform the
verification stage. For m > m as the pattern size increases,
we witness a very mild rate decrease mainly due to the
number of times that a consecutive number characters are
verified (line 8 in Alg. 1). Overall, as we discussed earlier,
we do not expect our performance to be affected much by
change in alphabet size (evident in update equation (11)),
which is also clear from this table as well.

8.5 Real-world scenarios

So far, we have only used randomly generated texts and
patterns for our experiments, because all of our RK-based
methods have performance independence of the content of
the text and the pattern. For DRK-2S, however, the total
number of verifications directly depends on the number of
potential matches found in the skimming stage. As a result,
the algorithm is no longer data-independent. In this part,
we consider some real-world scenarios for evaluation:

Natural language text: Table 5 shows the average run-
ning time (ms) of the DRK-2S method as well as all the
high-performing CPU algorithms from Section 8.3 in finding
several patterns of different sizes in a 100 MB sample text
from Wikipedia®. Here DRK-2S achieves a geometric mean
speedup of 2.59x against the best CPU codes.

5The enwik8 dataset includes the first 100 MB text from
Wikipedia as of March 2006: http://prize.hutterl.net/.

Pattern size (m)

Algorithm 4 8 16 32 64 256 1024
SA 1.10 1.01 1.03 1.01 0.98 0.98 1.00
HASH3 1.35 0.80 0.60 0.52 0.49 0.46 0.52
HASH5 1.05 0.60 0.54 0.44 0.49 0.45
HASHS8 - 2.74 0.73 0.54 0.45 0.52 0.44
FJS 1.83 1.51 1.55 1.47 1.64 1.59 1.50
SBNDM-BMH 1.32 1.01 0.79 0.56 0.58 0.57 0.65
GRASPm 1.36 1.09 1.07 0.83 0.74 0.71 0.67
FS 1.37 1.16 1.07 1.02 0.90 0.82 0.72
FSBNDM 1.24 0.88 0.64 0.56 0.54 0.58 0.61
EBOM 0.96 0.92 0.74 0.65 0.61 0.82 1.21
SSECP 0.52 0.50 0.74 0.65 0.66 0.65 0.65
EPSM 0.54 0.76 0.50 0.61 0.50 0.48 0.67
DRK 0.162 0.121 0.137 0.175 0.264 0.855 0.954
DRK-28 0.075 0.077 0.093 0.093 0.093 0.093 0.098
Speedup 6.93x 6.49x 5.38x 5.59x 4.73x 4.94x 4.49x

Table 6: Average running time (ms) for finding patterns of
different sizes (m) on E. coli genome with 4.6M characters.
The last row reports the achieved speedup of our DRK-2S
method over the best CPU method.

Pattern size (m)

Algorithm 4 8 16 32 64 256 1024
SA 0.84 0.84 0.84 0.88 0.78 0.78 0.78
HASH3 1.18 0.67 0.49 0.43 0.44 0.44 0.43
HASH5 - 0.86 0.60 0.49 0.46 0.47 0.50
HASHS8 - 1.96 0.57 0.44 0.46 0.43 0.44
FJS 0.72 0.63 0.61 0.54 0.49 0.51 0.56
SBNDM-BMH 0.76 0.68 0.56 0.44 0.50 0.49 0.48
GRASPm 0.88 0.68 0.55 0.55 0.56 0.48 0.45
FS 0.79 0.60 0.54 0.51 0.46 0.46 0.49
FSBNDM 0.62 0.47 0.45 0.50 0.41 0.46 0.43
EBOM 0.51 0.48 0.53 0.55 0.53 0.63 1.46
SSECP 0.45 0.41 0.49 0.49 0.51 0.48 0.49
EPSM 0.56 0.53 0.55 0.50 0.46 0.53 0.66
DRK 0.080 0.086 0.098 0.125 0.188 0.609 0.684
DRK-28 0.053 0.055 0.065 0.065 0.065 0.065 0.071
Speedup 8.49x 7.45% 6.92x 6.61x 6.31x 6.62x 6.01x

Table 7: Average running time (ms) for finding patterns of
different sizes (m) on the Homo sapiens protein sequence
with 3.3M characters. The last row reports the achieved
speedup of our DRK-2S method over the best CPU method.

DNA sequences: Table 6 shows the average running
time (ms) of regular DRK and DRK-2S methods as well as
some of the best sequential algorithms over the E. coli genome
sequence®. This is a text with almost 4.6 million characters
drawn from four different possible characters (X = 4). The
DRK-2S method achieves a geometric mean speedup of 5.45x
against the best CPU codes.

Protein sequences: Table 7 shows the average running
time (ms) of our DRK-based methods compared to the best
CPU methods over processing of the Homo sapiens protein
sequence, with 3.3 million characters and alphabet of 19
characters®. The DRK-2S method achieves a geometric mean
speedup of 6.88x against the best CPU codes.

8.6 False positives

The RK algorithm, and hence all the proposed methods in
this article so far, are randomized algorithms whose random-
ness comes from our choice of prime number and hashing
process. While RK algorithms will always be successful in
finding matches, it is possible to have false positives, i.e.,
multiple strings that hash to the same value. In the original
RK algorithm, it is shown that if the chosen prime number

SData available in SMART library: http://www.dmi.unict.
it/~faro/smart/corpus.php




is less than n(n — m + 1)2, then the probability of error is
upper-bounded by 2.511/(n —m + 1) [3]. Even by using 64-
bit variables and operations, that leaves us with a non-zero
probability of false positives. On the other hand, all our DRK-
WOM methods assign a unique fingerprint to their strings,
and hence false positives are not possible. Our DRK-2S has
a great advantage here. First of all, by using a DRK-WOM
method in the skimming stage, we significantly reduce the
total number of potential matches. Secondly, DRK-2S di-
vides the pattern into multiple smaller-sized chunks of size
32 and hashes them with a random prime number. So for a
pattern to result in a false positive, all of its chunks should
independently hash to the same values as the original pat-
tern’s. So the probability is exponentially decreased. We did
not encounter any false positives in our experiments with
the DRK-2S. Still, we could arbitrarily decrease the false
positive probability even more by hashing each chunk with a
different prime number (or even using multiple prime num-
bers and multiple hashing per chunk). This would increase
our computational load in the verification stage, but since
the total number of potential matches after the skimming
stage is significantly fewer than n, the impact on the overall
performance would be negligible.

9. CONCLUSION

Our final outcome from this work is a novel two-stage
algorithm that addresses the string matching problem. The
DRK-2S algorithm fully exploits GPU computational and
memory resources in its skimming stage, where we efficiently
process the whole text to identify potential matches. We
then test these potential matches using cooperative groups
of threads. The result is a highly efficient string matching
algorithm for patterns of any size, which we believe to be
the fastest string-matching implementation on any commod-
ity processor for pattern sizes up to nearly 64k characters.
Though very efficient, our string matching method can only
be used for ezact matching of a single pattern (or at least
very few). We hope that this algorithm and the presented
ideas embodied in it can be used as a cornerstone for other
high-throughput string processing applications such as in
regular expressions and approximate matching algorithms, as
well as for multiple-pattern matching scenarios where a text
is matched against a dictionary of patterns (e.g., in intrusion
detection systems).
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