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Abstract

The Residual Finiteness of Triangle Artin Groups

by

Greyson Meyer

We prove that all triangle Artin groups of the form 𝐴2,3,2𝑛 where 𝑛 > 3 are residually finite.

To achieve this, we use the presentation for these groups previously employed by Wu and Ye to

establish that each of them splits as a graph of groups. Building on techniques developed by

Jankiewicz for other triangular subclasses of Artin groups, we adapt and extend these methods

to show residual finiteness in this setting. Additionally, we developed a Python program to assist

in specific computations for the case of 𝐴2,3,8.
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Chapter 1.

Introduction

Given a group 𝐺, asking whether the word problem is solvable in 𝐺 is a fundamental question

to ask about its structure. Artin groups are a class of groups for which the solvability of

the word problem is an open conjecture. There have been numerous efforts toward resolving

this conjecture, many of which have been successful for particular subclasses of Artin groups.

Squier proved algebraically that three triangle Artin groups split as graphs of free groups. These

splittings are such that the residual finiteness of these Artin groups is apparent from the splittings.

As will be proven later, residually finite groups have solvable word problem, making residual

finiteness a property that group theorists desire Artin groups to have.

Jankiewicz desired to extend this result to other triangle Artin groups, and in doing so found

that a similar procedure could be used to prove that certain classes of triangle Artin groups

are also residually finite [[1] [2] [3]]. The work contained in this dissertation documents and

continues this journey toward residual finiteness for the entire class of triangle Artin groups. The

methods used do not depend on any structure inherent to triangle Artin groups, and thus present

a hope for similar methods to be used to prove that other Artin groups, beyond the triangular

class, are residually finite and have solvable word problem as well.

Section 2.1 will introduce Artin groups, along with known results about their structure. In

order to understand and extend the work of Jankiewicz, we must introduce the fundamentals

of Bass-Serre Theory, which will be explored in Section 2.2. With Bass-Serre Theory at our

2



fingertips, we will then explore the concept of residual finiteness in more detail in Section 2.3.

Finally, in Section 2.4, we have enough tools to understand how previous residual finiteness

results were constructed in the context of triangle Artin groups.

Section 3 focuses on new results discovered by the author with the help of Jankiewicz. In

Section 3.1 we discuss the structure of a particular class of triangle Artin groups, namely those

of the form 𝐴2,3,2𝑛 for 𝑛 > 3. In Section 3.2 we develop the methodology used in Section 3.3

to prove that all Artin groups 𝐴2,3,2𝑛 for 𝑛 > 4 are residually finite. We end with Section 3.4 in

which we prove, using the tools from Section 3.2, that the anomalous 𝐴2,3,8 is residually finite

as well.

3



Chapter 2.

Preliminaries

§ 2.1. Artin Groups

The star of this dissertation is a peculiar class of groups called Artin groups.

Definition 2.1.1 ([4]). An Artin group is a group that admits a presentation ⟨𝑆|𝑅⟩ where every

relation in 𝑅 takes the form 𝑠𝑡𝑠... = 𝑡𝑠𝑡... and both sides of the equality are words of equal length.

Each pair {𝑠, 𝑡} ⊆ 𝑆 has at most one relation of this type in 𝑅.

Example 2.1.1. The Artin group 𝐴2,3,7 = ⟨𝑎, 𝑏, 𝑐|𝑎𝑐 = 𝑐𝑎, 𝑎𝑏𝑎 = 𝑏𝑎𝑏, 𝑏𝑐𝑏𝑐𝑏𝑐𝑏 = 𝑐𝑏𝑐𝑏𝑐𝑏𝑐⟩

Since these relations have such a predictable shape, it is common to refer to an Artin group

by its Coxeter diagram.

Definition 2.1.2 ([5]). The Coxeter diagram associated to an Artin group is a labeled graph

constructed in the following manner:

• One vertex for each generator,

• An unlabeled edge between vertices 𝑠 and 𝑡 when 𝑠𝑡𝑠 = 𝑡𝑠𝑡,

• A labeled edge between vertices 𝑠 and 𝑡 where 𝑠𝑡 ≠ 𝑡𝑠 and 𝑠𝑡𝑠 ≠ 𝑡𝑠𝑡 labeled by the length

of the relation involving the pair {𝑠, 𝑡} in 𝑅. If no such relation exists, the edge is labeled

with ∞.

4



§2.1. Artin Groups

Figure 2.1.: Coxeter diagram for 𝐴2,3,7

Due to the correspondence between the Artin relations and labelled graphs of this form, Artin

groups are often referred to as 𝐴(Γ) where Γ is the Coxeter diagram describing its relations.

Coxeter diagrams originated with regards to the class of groups that shares its namesake.

Definition 2.1.3 ([4]). A Coxeter group is a group that admits a presentation

⟨𝑠1, 𝑠2, ..., 𝑠𝑛 | (𝑠𝑖𝑠 𝑗)𝑚𝑖, 𝑗 = 1, 𝑚𝑖,𝑖 = 1⟩

The connection between Artin groups and Coxeter groups via Coxeter diagrams is no coin-

cidence. Artin groups were first introduced by Jacques Tits as a natural extension of Coxeter

groups. If you remove the requirement that Coxeter groups are generated by involutions,

then the resulting presentation is precisely an Artin presentation. Equivalently, every Artin

group has a Coxeter group associated to it that can be realized by performing the quotient

𝐴(Γ)/⟨⟨𝑠21, 𝑠
2
2, ..., 𝑠

2
𝑛⟩⟩ where 𝐴(Γ) has {𝑠1, 𝑠2, ..., 𝑠𝑛} as its generating set.

An important consequence of the association between Artin groups and Coxeter groups is the

ability to now classify Artin groups based on properties that their associated Coxeter groups

have. The first such subclass of Artin groups is called spherical Artin groups.

Definition 2.1.4 ([5]). An Artin group is called spherical if its associated Coxeter group is finite.

Unlike Artin groups which are always infinite (every generator has infinite order, for example),

there exist Coxeter groups that are finite. Spherical Artin groups are the most well understood

subclass of Artin groups. In modern terminology, spherical Artin groups are Garside groups [6].

A Garside group is the group of fractions of a Garside monoid. A Garside monoid is a monoid

that is finitely generated, cancellative, its partial order with respect to divisibility gives us a

lattice (gcd’s and lcm’s exist) and it contains a Garside element (an element whose left divisors

5



Chapter 2. Preliminaries

are the same as its right divisors). Garside used this structure to prove a number of results about

braid groups, and since then Artin group enthusiasts have applied similar approaches to spherical

Artin groups. The Garside structure of spherical Artin groups has allowed group theorists to

prove that spherical Artin groups have solvable word problem [6,7], solvable conjugacy problem

[8], and trivial torsion [9].

Unfortunately, non-spherical Artin groups, meaning Artin groups whose associated Coxeter

groups are infinite, are not Garside groups. The barrier keeping these groups from being Garside

groups is the lack of a Garside element. The Garside element arises from taking an element of

maximal length from the Coxeter group𝑊 and pulling it back along the quotient map 𝑞 : 𝐴 →𝑊

in order to obtain an element of the Artin group 𝐴. When the Coxeter group is infinite, no such

element of maximal length exists.

Another well-studied subclass of Artin groups are the Right Angled Artin Groups, or RAAGs

for short. RAAGs are the Artin groups in which each pair of generators either commutes or there

is no relation between them. They can also be thought of as Artin groups whose presentations

are in correspondence with an unlabeled graph without length-1 loops or multiedges. Given

such a graph Γ, we can construct a RAAG 𝐴Γ by defining the generating set to be the vertices,

and include a commuting relation between any two vertices that are joined by an edge. This

graph Γ can actually tell us information about the RAAG just from its shape. Some results of

this form are the following:

• A RAAG 𝐴Γ is a direct product if and only if Γ can be partitioned into disjoint sets 𝑈1 and

𝑈2 where there is an edge between every 𝑢1 ∈ 𝑈1 and 𝑢2 ∈ 𝑈2 (aka Γ is a join). [4]

• 𝐴Γ is a free product if and only if Γ is disconnected (this is immediately implied by the

lack of relations between the genrators of different connected components).

6



§2.1. Artin Groups

Figure 2.2.: 𝐴(Γ1) = ⟨𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5 |𝜎2𝜎5 = 𝜎5𝜎2⟩ × ⟨𝜎6, 𝜎7, 𝜎8, 𝜎9, 𝜎10⟩
& 𝐴(Γ2) = ⟨𝜎1, 𝜎3 |𝜎1𝜎3 = 𝜎3𝜎1⟩ ∗ ⟨𝜎2⟩ ∗ ⟨𝜎4, 𝜎5 |𝜎4𝜎5 = 𝜎5𝜎4⟩

Another surprising result about RAAGs is the following:

Theorem 2.1.1. [4] Every RAAG is isomorphic to a subgroup of finite index in some right-angled

Coxeter group.

Proof. In order to prove this theorem, we explicitly construct the embedding. Start with a

RAAG 𝐴Γ. Now construct a new graph Γ̃ so that each vertex 𝑠𝑖 ∈ 𝑉 (Γ) now corresponds to

two vertices 𝑠𝑖, 𝑠′𝑖 ∈ 𝑉 (Γ̃). Connect each 𝑠′
𝑖

to every other vertex except 𝑠𝑖. Now the embedding

𝜙 : 𝐴Γ → 𝑊Γ̃ comes from sending 𝑠𝑖 ↦→ 𝑠𝑖𝑠
′
𝑖
. By multiplying on the right by 𝑠′

𝑖
we have 𝑠𝑖𝑠

′
𝑖

being of infinite order since 𝑠𝑖 and 𝑠′
𝑖
do not commute.

Observe that 𝜙(𝑠𝑖𝑠 𝑗𝑠−1
𝑖
𝑠−1
𝑗
) = 𝑠𝑖𝑠

′
𝑖
𝑠 𝑗𝑠

′
𝑗
𝑠′−1
𝑖

𝑠−1
𝑖
𝑠′−1
𝑗
𝑠−1
𝑗

= 𝑠𝑖𝑠
′
𝑖
𝑠′−1
𝑖

𝑠−1
𝑖
𝑠 𝑗𝑠

′
𝑗
𝑠′−1
𝑗
𝑠−1
𝑗

= 𝑠𝑖𝑠
−1
𝑖
𝑠 𝑗𝑠

−1
𝑗

= 1

makes 𝜙 well-defined. Injectivity follows immediately from the fact that 𝜙 preserves the

commutativity of 𝐴Γ and 𝜙(𝑥) cannot contain any squares of generators of 𝑊Γ̃ by the definition

of 𝜙.

Figure 2.3.: Γ & Γ̃

7



Chapter 2. Preliminaries

Another fascinating class of Artin groups is the class of FC-type Artin groups. The definition

of this class of groups comes explicitly from a property of the Coxeter diagram.

Definition 2.1.5 ([10]). An FC-type Artin group 𝐴Γ is an Artin group where if 𝑇 is a subset of

the generating set 𝑆 where every 𝑡𝑖, 𝑡 𝑗 ∈ 𝑇 has a finite Artin relation 𝑅(𝑡𝑖, 𝑡 𝑗) in 𝐴Γ, then the Artin

subgroup 𝐴𝑇 ≤ 𝐴Γ is spherical.

It is easier to understand this definition by constructing an analogue Γ̃ of the Coxeter diagram

for 𝐴Γ. We again have a vertex in Γ̃ for every generator of 𝐴Γ, but now we include an edge between

two vertices if they have an Artin relation, including the case when the generators commute. We

then label all edges with the length of the corresponding Artin relation. So Γ̃ can have edges

labelled with 2 and 3, but no edges labelled with ∞. We can now rephrase Definition 2.1.5 by

saying that 𝐴Γ is FC-type if the Artin subgroup generated by every clique in Γ̃ is spherical. A

clique in a graph is a subgraph containing vertices that are all pairwise adjacent to each other.

Essentially, FC-type Artin groups are built from spherical Artin subgroups. Instead of requiring

the associated Coxeter group to be finite, we require that specific Artin subgroups have a finite

associated Coxeter group. FC-type Artin groups have a number of well-understood properties,

chief of which is that they have solvable word problem [10]. Figure 2.4 shows an example of a

graph whose corresponding Artin group is FC-type.

Figure 2.4.: Two maximal cliques in the diagram for an FC-type Artin group.

At the other end of the spectrum there is the class of 2-dimensional Artin groups.
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Definition 2.1.6 ([2]). 𝐴Γ is a 2-dimensional Artin group if no triple of its generators generates

a spherical Artin group.

Figure 2.5.: Diagram for a 2-Dimensional Artin Group

Every 2-dimensional Artin group is built from explicitly non-spherical Artin subgroups. The

Artin groups present in further sections will be primarily within the 2-dimensional class of Artin

groups, specifically 2-dimensional Artin groups with 3 generators.

We have now briefly introduced a couple of the more obscure classes of Artin groups, but

there are a number of other well known groups that exist under the Artin umbrella, namely: braid

groups, free groups and free Abelian groups. Not only are Artin groups a fascinating class of

groups in and of themselves, but they also count some of the most highly studied groups among

their ranks.

But even though some classes of Artin groups have been well-studied, Artin groups as a class

remain mysterious. Despite their pleasing and predictable group presentations, there are many

simple questions that one can ask about Artin groups that still do not have definitive answers.

Some of the big questions about Artin groups are the following:

• Are all Artin groups torsion-free?

• Which Artin groups have trivial center?

• Which Artin groups have solvable word & conjugacy problems?

• Isomorphism problem: When do two graphs Γ1 & Γ2 result in 𝐴Γ1
∼= 𝐴Γ2?

As of yet these questions do not have universal answers, though there are answers known for

certain classes of Artin groups. We will not be engaging with any of these questions directly for

9
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the remainder of the paper. Instead, we will be focusing on the concept of residual finiteness in

the class of triangle Artin groups.

Definition 2.1.7 ([1]). A triangle Artin group is an Artin group that has 3 generators in its

standard presentation.

Before we explore residual finiteness, we will take a brief detour into Bass-Serre Theory in

order to motivate the context in which residual finiteness will later appear.

§ 2.2. Bass-Serre Theory

We begin this section with The Fundamental Theorem of Bass-Serre Theory, seeing as it

beautifully encapsulates many of the concepts relevant for the later sections. We then will take

time to explain what all of the terms mean and give a sketch of the proof.

Theorem 2.2.1 (The Fundamental Theorem of Bass-Serre Theory [11]). Let (Γ, 𝐺) be a graph

of groups and 𝑣 ∈ Γ a vertex. Then there exists a group 𝐻 = 𝜋1(Γ, 𝐺, 𝑣) and a tree 𝑇 such that

𝐻 acts on 𝑇 without inversions and 𝑇/𝐻 ∼= (Γ, 𝐺).

In summation, The Fundamental Theorem of Bas-Serre Theory tells us that every graph of

groups comes with a tree (called the Bass-Serre tree) on which its fundamental group acts, and

the resulting quotient is the original graph of groups. Let us now break down each piece of the

theorem.

Definition 2.2.1. A graph of groups, typically denoted (Γ, 𝐺), consists of an underlying graph

Γ and a collection of groups 𝐺. The groups in 𝐺 are assigned to the vertices and edges of Γ such

that every edge group 𝐺𝑒 injects into its adjacent vertex group(s).

Figure 2.6 shows two examples of graphs of groups, albeit without specifying the edge-group

injections. We now have access to a mathematical object with the underlying structure of a

graph, but whose every component contains a group-theoretic companion.
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§2.2. Bass-Serre Theory

Figure 2.6.: Examples of graphs of groups.

Now that we understand the structure of graphs of groups, our next task is to understand how

to calculate the fundamental group of such an object. A path through a graph of groups is a path

through the underlying graph Γ, where at each vertex 𝑣 in the path we take an element from the

vertex group 𝐺𝑣 in order to make a word of the form 𝑔0𝑒0𝑔1𝑒1...𝑒𝑛𝑔𝑛. Here the 𝑔𝑖 are elements

from vertex groups and the 𝑒𝑖 keep track of the which edges have been traversed in Γ. So a loop

at a vertex 𝑣 in (Γ, 𝐺) would be a word that begins and ends with a group element from the same

vertex-group.

But fundamental groups are more than just groups built from loops in a space, they are

homotopy classes of loops. Notice that thus far we have not utilized any information about the

edge groups. Homotopies in graphs of groups are precisely where the edge groups are utilized.

A homotopy in a graph of groups consists of the application of the following:

• The addition or removal of a subpath of the form 𝜎𝜎−1.

• For all ℎ ∈ 𝐺𝑒, 𝑒𝜄𝑒(ℎ) = 𝜄𝑒(ℎ)𝑒.

The first bullet point is standard. You can of course always add or remove cancellable subpaths.

The second bullet point is the more interesting of the two. Here we have 𝜄𝑒 and 𝜄𝑒 denoting the

two injective group homomorphisms from 𝐺𝑒 to its adjacent vertex group(s). Such a homotopy

essentially allows the image of an element ℎ ∈ 𝐺𝑒 in one vertex group to slide across the edge 𝑒

to the other vertex group, changing from 𝜄𝑒(ℎ) to 𝜄𝑒(ℎ) in the process.

We could attempt to calculate the fundamental group of a graph of groups in this way, by

partitioning the loops into homotopy classes, but luckily there is a simpler way. Just like we
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can calculate the fundamental group of a graph by collapsing a maximal subtree and counting

the remaining loops, graphs of groups have an analogous procedure. We can choose a maximal

subtree 𝑇 ⊆ Γ and collapse it, but since there are algebraic objects involved with each vertex

and edge being collapsed, we need to be a little more careful. We start by fixing a basepoint 𝑣

and then choosing any edge 𝑒 in 𝑇 adjacent to 𝑣. We collapse 𝑒, identifying 𝑣′, the other vertex

adjacent to 𝑒, with 𝑣. In doing so, we now replace the vertex group 𝐺𝑣 with 𝐺𝑣 ∗𝐺𝑒 𝐺𝑣′ , the

amalgamated product of 𝐺𝑣 and 𝐺𝑣′ along 𝐺𝑒.

Definition 2.2.2 ([11]). The amalgamated product of two groups 𝐴 = ⟨𝑆𝐴 |𝑅𝐴⟩ and 𝐵 = ⟨𝑆𝐵 |𝑅𝐵⟩

along a common subgroup 𝐶 is a group denoted 𝐴 ∗𝐶 𝐵 with the presentation 𝐴 ∗𝐶 𝐵 =

⟨𝑆𝐴, 𝑆𝐵 |𝑅𝐴, 𝑅𝐵, 𝜙𝐴 (𝑐) = 𝜙𝐵 (𝑐)∀𝑐 ∈ 𝐶⟩ where 𝜙𝐴 : 𝐶 → 𝐴 and 𝜙𝐵 : 𝐶 → 𝐵 are embeddings of 𝐶

into 𝐴 and 𝐵 respectively.

Definition 2.2.3 ([11]). Let 𝐴 = ⟨𝑆𝐴 |𝑅𝐴⟩ and 𝐶 be groups with two injective group homomor-

phisms 𝜙1 : 𝐶 → 𝐴 and 𝜙2 : 𝐶 → 𝐴. The HNN extension of 𝐴 along 𝐶 is the group denoted

𝐴∗𝐶 with the presentation ⟨𝑆𝐴, 𝑡 |𝑅𝐴, 𝑡𝜙1(𝑐)𝑡−1 = 𝜙2(𝑐)∀𝑐 ∈ 𝐶⟩.

After collapsing 𝑇 edge by edge in the manner previously described, we are then left with a

graph consisting of one vertex 𝑣 and 𝑘 edges. The vertex group 𝐺𝑣 is a potentially complicated

amalgam of amalgamated products. The final step in computing 𝜋1(Γ, 𝐺) comes from the 2nd

form of homotopy. Let 𝑒 be one of the remaining edges.

𝑒𝜄𝑒(ℎ) = 𝜄𝑒(ℎ)𝑒 =⇒ 𝑒𝜄𝑒(ℎ)𝑒−1 = 𝜄𝑒(ℎ).

Notice that this looks identical to the new relation that arises in an HNN extension. To finish

the calculation, we take the HNN extension of 𝐺𝑣 along each 𝐺𝑒, introducing 𝑘 new variables

to 𝐺𝑣, corresponding to the remaining edges in Γ. At last we arrive at 𝜋1(Γ, 𝐺, 𝑣) as being

an iterated HNN extension of an iterated amalgam of amalgamated products. While this is

certainly complicated in abstract, the graphs of groups that we will be encountering in this paper
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are quite simple. In fact, their fundamental groups will simply be amalgamated products or

HNN extensions most of the time.

Figure 2.7.: Collapsing a maximal tree in a graph of groups.

Now that we understand the fundamental group that appears in the theorem, we move on to

discuss the tree 𝑇 on which this group will act. This tree is called the Bass-Serre tree of the

graph of groups (Γ, 𝐺) and is constructed in the following manner. Its vertices are in bijection

with
⋃

𝑣∈Γ 𝜋1((Γ, 𝐺))/𝐺𝑣. Similarly, its edges are in bijection with
⋃

𝑒∈Γ 𝜋1((Γ, 𝐺))/𝐺𝑒. Two

vertices 𝑔𝐺𝑣1 and 𝑔𝐺𝑣2 in 𝑇 are connected by the edge 𝑔𝐺𝑒 when 𝑣1 and 𝑣2 are connected by 𝑒 in

Γ.

The Bass-Serre tree is constructed in this way because we want the quotient of the action of

𝜋1((Γ, 𝐺)) on 𝑇 to result in (Γ, 𝐺). Consider a vertex 𝑣 ∈ Γ. Then there is a collection of vertices

in 𝑇 whose vertex cosets are in bijection with 𝜋1((Γ, 𝐺))/𝐺𝑣. The action of 𝜋1((Γ, 𝐺)) on 𝑇 will

permute this collection of vertices, allowing us to choose the vertex associated with 1𝐺𝑣 as the

quotient representative for this orbit. This is true for each 𝑣, resulting in the vertex sets of (Γ, 𝐺)

and 𝑇/𝜋1((Γ, 𝐺)) being in one-to-one correspondence. Similarly for the edges in 𝑇 .

The Fundamental Theorem of Bass-Serre Theory tells us that for each graph of groups (Γ, 𝐺),

we automatically get a tree 𝑇 on which it acts. One fascinating thing about Bass-Serre theory is

that it actually works the other way as well.

Theorem 2.2.2. [11] Let 𝐻 be a group acting on a tree 𝑇 without edge inversions. Then 𝑇/𝐻

is a graph of groups where for each vertex 𝑣 ∈ 𝑇/𝐻, 𝐻𝑣
∼= 𝑆𝑡𝑎𝑏(𝑣) and for each edge 𝑒 ∈ 𝑇/𝐻,

𝐻𝑒 ∼= 𝑆𝑡𝑎𝑏(𝑒).
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Moreover, in the case of 𝑇 already being known to be the Bass-Serre tree of a graph of groups

(Γ, 𝐺), the quotient 𝑇/𝐻 ∼= (Γ, 𝐺). When we discussed the intuition behind the construction of

the Bass-Serre tree, we mentioned the collection 𝜋1((Γ, 𝐺))/𝐺𝑣 for each 𝑣. The coset 1𝐺𝑣 ∼= 𝐺𝑣

is one such element, and clearly 𝑆𝑡𝑎𝑏(𝐺𝑣) = 𝐺𝑣. So if we choose 𝐺𝑣 to be the orbit representative

of 𝐻 · 1𝐺𝑣, then the quotient 𝑇/𝐻 must be precisely (Γ, 𝐺).

In many ways, Bass-Serre Theory is the study of the structures that arise from groups acting

on trees. While graphs of groups, amalgamated free products and Bass-Serre trees are the only

objects that we will really be using from Bass-Serre theory in the rest of the paper, we will take

time now to explore some of the consequences that arise from this beautiful area of study. We

begin with the following elegant and powerful theorem.

Theorem 2.2.3. If a group 𝐻 acts freely on a tree, then 𝐻 is a free group

Proof. Let 𝐻 act freely on a tree 𝑇 . Then we can quotient 𝑇 by 𝐻 to get a graph of groups

(Γ, 𝐺). By The Fundamental Theorem of Bass-Serre Theory, 𝐻 ∼= 𝜋1(Γ, 𝐺, 𝑣). Since the action

of 𝐻 on 𝑇 is free, there are no vertex stabilizers. So 𝑇/𝐻 will have a trivial group for each 𝐺𝑣

and 𝐺𝑒. So 𝐻 ∼= 𝜋1(Γ, 𝐺, 𝑣) ∼= 𝜋1(Γ, 𝑣) the fundamental group of a graph, which is of course a

free group.

For the rest of the paper, when a group 𝐺 is isomorphic to the fundamental group of a graph

of groups, we will say that 𝐺 splits as a graph of groups, or that the graph of groups is a splitting

of 𝐺. A nice property of groups that split as a graph of groups is that they have normal forms

for their elements [11]. A normal form is a standardized way of writing every element in your

group. When a group’s elements have a normal form, that normal form induces a solution to

the word problem. Indeed, when you have a normal form, all you have to do to check whether

two elements are equivalent in 𝐺 is to convert them each into their normal form and then

check whether or not the two normal forms are identical. In the context of graphs of groups,

the existence of a normal form allows us to see clearly that the vertex groups 𝐺𝑣 inject into

𝜋1((Γ, 𝐺)).
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We now give a brief synopsis of how Serre constructs the normal form of an element in an

amalgamated product 𝐺. We start with a family of groups 𝐺𝑖 with 𝑖 ∈ 𝐼 and a group 𝐶 that

injects into each of them. The normal form of 𝑔 ∈ 𝐺 looks like 𝑔 = 𝑓 (𝑐) 𝑓𝑖1 (𝑠1)... 𝑓𝑖𝑛 (𝑠𝑛) where

𝑓 : 𝐶 → 𝐺 and 𝑓𝑖 : 𝐺𝑖 → 𝐺 are the canonical injections and 𝑆𝑖 is a collection of fixed coset

representatives of 𝐶\𝐺𝑖. Basically the normal form is a word in the free product of the groups

with all of the 𝐶-related material at the front. The right coset representative part is what allows

us to slide our elements of 𝐶 along the word to the front. Consider an element 𝑥 in the word 𝑔.

Then 𝑥 is in some coset of 𝐶\𝐺𝑖, so 𝑥 = 𝑐𝑦 for some 𝑐 ∈ 𝐶. Now let’s say that the preceding

element was 𝑧. Now 𝑧𝑥 = 𝑧𝑐𝑦 and 𝑧𝑐 is also an element of a coset and can be written 𝑐′𝑧′ and

so on.

Another way of viewing a group that splits as a graph of groups is by viewing it as the

fundamental group of a graph of spaces. A graph of spaces is a geometric object constructed in

a similar manner as a graph of groups, except we now assign a connected CW-complex, instead

of a group, to every vertex and edge. Analogously to the construction of graphs of groups, we

require edge spaces to embed into their adjacent vertex space(s). To go from a graph of spaces

to a graph of groups, one must simply calculate the fundamental group of each vertex (resp.

edge) space and assign that group to the vertex (resp. edge). To go from a graph of groups

to a graph of spaces, for each vertex (resp. edge), simply assign a space whose fundamental

group is the vertex (resp. edge) group, ensuring that the edge spaces still satisfy the embedding

requirements.

Now that we have access to plentiful Bass-Serre theoretical tools, we can focus on the primary

algebraic property that we desire to extract from triangle Artin groups, namely residual finiteness.

§ 2.3. Residual Finiteness

There are many equivalent definitions for a group being residually finite. We enumerate some

of them in Definition 2.3.1.
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Definition 2.3.1 ([2]). A group 𝐺 is residually finite if any of the following hold:

1. For every nontrivial 𝑔 ∈ 𝐺, there exists a finite group 𝐹 and a surjective group homomor-

phism 𝜙 : 𝐺 → 𝐹 such that 𝜙(𝑔) ≠ 1𝐹 .

2. For every nontrivial 𝑔 ∈ 𝐺, there exists a finite index normal subgroup 𝑁𝑔⊴𝐺 with 𝑔 ∉ 𝑁𝑔.

3. The intersection of all finite index normal subgroups of 𝐺 is trivial.

4. The intersection of all finite index subgroups of 𝐺 is trivial.

Proof. We prove that the items in the list above are all equivalent.

• “1 =⇒ 2": By assumption, 𝑔 ∉ ker𝜙. By the First Isomorphism Theorem, 𝐺/ker𝜙 ∼=

𝐼𝑚𝜙. The map 𝜙 being surjective makes 𝐼𝑚𝜙 ∼= 𝐹. So [𝐺 : ker𝜙] = |𝐹 | < ∞, making

ker𝜙 a finite index normal subgroup not containing 𝑔.

• “2 =⇒ 3": The element 𝑔 being nontrivial and 𝑔 ∉ 𝑁𝑔 for some finite index 𝑁𝑔 ⊴ 𝐺

forces 𝑔 ∉
⋂

𝑁⊴ 𝑓 .𝑖𝐺
𝑁. So there can be no nontrivial elements in the intersection.

• “3 =⇒ 4": {finite index normal subgroups} ⊆ {finite index subgroups}, so
⋂

𝐻< 𝑓 .𝑖𝐺
𝐻 <⋂

𝑁⊴ 𝑓 .𝑖𝐺
𝑁 = {1}, forcing the intersection to be trivial.

• “4 =⇒ 1: Let 𝑔 ∈ 𝐺 be nontrivial. Definition 4 being
⋂

𝐻< 𝑓 .𝑖𝐺
𝐻 = {1} forces the

existence of a finite index subgroup 𝐻𝑔 < 𝐺 with 𝑔 ∉ 𝐻𝑔. We can use such an index-

𝑛 subgroup to define a map 𝜙 : 𝐺 → 𝑆𝑛 by mapping each ℎ ∈ 𝐺 to the permutation

𝐺/𝐻𝑔 → ℎ(𝐺/𝐻𝑔). This map is onto, making ker𝜙 ⊴ 𝐺 of finite index. Furthermore,

since 𝐻𝑔 = 𝑆𝑡𝑎𝑏(1𝐻𝑔), ker𝜙 ≤ 𝐻𝑔. Therefore ker𝜙 is a finite index normal subgroup

not containing 𝑔. So 𝐺/ker𝜙 is a finite group equipped with the standard projection map

𝑝 : 𝐺 → 𝐺/ker𝜙. Since 𝑔 ∉ ker𝜙, this forces 𝑝(𝑔) ≠ 1.
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Residual finiteness allows us to view a group in a locally finite fashion. A residually finite

group is a group where every nontrivial element corresponds to a nontrivial element in a finite

group, meaning that the group embeds in a product of finite groups. Residual finiteness can

also be seen as testing for linearity since every linear group is residually finite [12]. Braid

groups were proven to be linear independently by Krammer [13] and Bigelow [14], making

them residually finite as well. An example of a class of groups that are not residually finite is

the class of infinite simple groups. An infinite simple group is not residually finite since its lack

of nontrivial normal subgroups prohibits the existence of an 𝑁𝑔 defined in in Definition 2.3.1

(2). As mentioned in the preface, one main reason we care about residual finiteness is because

a group being residually finite means that it has solvable word problem.

Theorem 2.3.1. If a group 𝐺 is residually finite then 𝐺 has solvable word problem.

Proof. Let 𝑔 ∈ 𝐺. To decide whether 𝑔 = 1𝐺, we begin by enumerating all of the finite

index normal subgroups of 𝐺, beginning with the subgroups of lowest index. For each such 𝑁,

define 𝑞𝑁 : 𝐺 → 𝐺/𝑁 to be the quotient map. By definition, if 𝑤 ≠ 1𝐺, there exists a finite

index normal subgroup 𝑁𝑔 such that 𝑞𝑁𝑔 (𝑔) ≠ 1𝑁𝑔 . We therefore compute 𝑞𝑁 (𝑔) for all finite

index normal 𝑁 ⊴ 𝐺. If we compute 𝑞𝑁𝑔 (𝑔) ≠ 1𝑁𝑔 we have revealed that 𝑔 ≠ 1𝐺. If the process

continues indefinitely, meaning that 𝑞𝑁 (𝑔) = 1𝑁 for all 𝑁, then 𝑔 = 1𝐺.

A nice property of residual finiteness that we will exploit throughout the paper is the following.

Lemma 2.3.2. Let 𝐵 < 𝐴 be a finite index subgroup of 𝐴. If 𝐵 is residually finite, then 𝐴 is

residually finite as well.

Proof. Let 𝑔 ∈ 𝐴 be nontrivial. If 𝑔 ∈ 𝐴 − 𝐵, then 𝐵 is a finite index subgroup not containing

𝑔. If 𝑔 ∈ 𝐵, then there exists a finite index subgroup 𝐶 ≤ 𝐵 not containing 𝑔. Since 𝐶 is of finite

index in 𝐵 and 𝐵 is of finite index in 𝐴, 𝐶 is of finite index in 𝐴.

A simple example of how a class of groups can be found to be residually finite is as follows:

Property 2.3.2.1. Every finite rank free group 𝐹𝑘 is residually finite.
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Proof. Let 𝑔 ∈ 𝐹𝑘. We can represent 𝐹𝑘 as the fundamental group of the wedge of 𝑘 circles∨
𝑘 𝑆

1. Draw the path corresponding to 𝑔 in terms of oriented edges labeled according to the 𝑘

loops, as shown in the middle of Figure 2.8. In order for this graph to be a cover of
∨

𝑘 𝑆
1, we

need each of the 𝑘 edges to be entering and exiting every vertex in the path. To achieve this, we

complete the path to a cover of
∨

𝑘 𝑆
1 in the following way.

Let 𝑙𝑖 be a circle in
∨

𝑘 𝑆
1 and 𝑣 be a vertex in our 𝑔-path. If there are no 𝑙𝑖 edges adjacent

to 𝑣 attach an 𝑙𝑖 loop to 𝑣. If there is only one 𝑙𝑖 edge adjacent to 𝑣, and the edge is leaving 𝑣,

follow the path along the 𝑙𝑖 edges starting at 𝑣. The path will end at a vertex 𝑤. Attach an 𝑙𝑖 edge

from 𝑤 to 𝑣. Similarly, if there is only one 𝑙𝑖 edge adjacent to 𝑣, and it is entering 𝑣, follow the

𝑙𝑖 edges backwards. This path will terminate at some vertex 𝑤. Add an 𝑙𝑖-edge from 𝑣 to 𝑤.

This is a finite process since the 𝑔-path is finite and each step does not add any vertices. On

completion of this process, we will have a finite graph 𝑋 that covers
∨

𝑘 𝑆
1. Therefore𝜋1(𝑋) < 𝐹𝑘.

Since 𝑋 is a finite graph, it is therefore a finite cover of
∨

𝑘 𝑆
1, making [𝐹𝑘 : 𝜋1(𝑋)] < ∞. The

path 𝑔 is not a loop in 𝑋 by construction, making 𝜋1(𝑋) a finite index subgroup of 𝐹𝑘 that does

not contain 𝑔. Therefore 𝐹𝑘 is residually finite.

Figure 2.8.: Constructing a finite index subgroup of ⟨𝑥, 𝑦, 𝑧⟩ that does not contain the element
𝑦𝑥𝑧2.

In this paper we will be concerned with groups more complex than free groups, namely

amalgamated free products. It is unknown what properties are necessary and sufficient to

guarantee that a given amalgam is residually finite. However, there are cases in which properties

of the component groups in the amalgam do guarantee that the amalgam is residually finite.
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Theorem 2.3.3. If 𝐴, 𝐵, 𝐶 are finite groups with 𝐶 < 𝐴 and 𝐶 < 𝐵, then 𝐴 ∗𝐶 𝐵 is residually

finite.

Proof. Consider the finite group 𝐴 × 𝐵. There is a natural surjective group homomor-

phism 𝜙 : 𝐴 ∗𝐶 𝐵 → 𝐴 × 𝐵 defined by mapping 𝑔 = 𝑐𝑎1𝑏1...𝑎𝑛𝑏𝑛 in its normal form to

𝑔 ↦→ (𝑐𝑎1...𝑎𝑛, 𝑐𝑏1...𝑏𝑛). Let 𝐾 = ker𝜙. Since 𝐴 × 𝐵 is finite, [𝐴 ∗𝐶 𝐵 : 𝐾] < ∞. Since

𝜙|𝐴 : 𝐴 → 𝐴 × 𝐵 and 𝜙|𝐵 : 𝐵 → 𝐴 × 𝐵 are both injective by the construction of 𝜙, this

forces 𝐴 ∩ 𝐾 = 𝐵 ∩ 𝐾 = {1}. Since 𝐾 < 𝐴 ∗𝐶 𝐵, 𝐾 acts on the Bass-Serre tree 𝑇 of 𝐴 ∗𝐶 𝐵.

Recall that every vertex 𝑣 ∈ 𝑇 corresponds to a coset 𝑔𝐴 (resp. 𝑔𝐵) for some 𝑔 ∈ 𝐴 ∗𝐶 𝐵.

So the stabilizer of such a vertex would be 𝑔𝐴𝑔−1 (resp. 𝑔𝐵𝑔−1). Let 𝑔𝑎𝑔−1 ∈ 𝑔𝐴𝑔−1. Then

𝜙(𝑔𝑎𝑔−1) = 𝜙(𝑔)𝜙(𝑎)𝜙(𝑔)−1 = 1 forces 𝜙(𝑎) = 1, which makes 𝑎 ∈ 𝐾. But 𝐴 ∩ 𝐾 = {1}, so

this forces 𝑎 = 1 and 𝑔𝑎𝑔−1 = 1. So 𝑔𝐴𝑔−1 ∩ 𝐾 = {1} for all 𝑔. An identical procedure shows

that 𝑔𝐵𝑔−1 ∩ 𝐾 = {1} as well. In the context of Bass-Serre theory, this tells us that 𝐾 does

not contain any vertex-stabilizers of 𝑇 . Therefore the action of 𝐾 on 𝑇 is free. By Theorem

2.2.3, this makes 𝐾 a finite rank free group. By Property 2.3.2.1 this makes 𝐾 residually finite.

The subgroup 𝐾 is therefore finite index and residually finite, making 𝐴 ∗𝐶 𝐵 residually finite by

Lemma 2.3.2.

There are also examples of amalgamated products that are not residually finite, though these

are of a much more exotic variety than examples like the one above. Bhattacharjee constructed

the first example of a non-residually finite amalgam [15]. This amalgam surprisingly happens to

be the amalgam of two free groups along a common subgroup of finite index. Other examples

include lattices in the automorphism group of a product of two trees that split as twisted doubles

of free groups along a finite index subgroup [16, 17]. We will discuss twisted doubles shortly.
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§ 2.4. Residual Finiteness of Artin Groups

Now that we have a good amount of background knowledge built up, we will use this section to

summarize the findings & methodologies that led to the new results presented in the next section.

The journey begins with Craig C. Squier’s paper [18] in which he proves that the triangle Artin

groups 𝐴2,4,4, 𝐴3,3,3 and 𝐴2,3,6 all split as graphs of finite rank free groups. Squier begins his

proofs in [18] by mapping onto a dihedral Artin group, an Artin group with two generators, like

𝐵 = ⟨𝑎, 𝑏|𝑎𝑏𝑎𝑏 = 𝑏𝑎𝑏𝑎⟩.

This is precisely the dihedral Artin group that he maps

𝐴2,4,4 = ⟨𝑎, 𝑏, 𝑐|𝑎𝑐 = 𝑐𝑎, 𝑎𝑏𝑎𝑏 = 𝑏𝑎𝑏𝑎, 𝑏𝑐𝑏𝑐 = 𝑐𝑏𝑐𝑏⟩

onto via the map 𝜙 : 𝐴2,4,4 → 𝐵 defined by 𝑎 ↦→ 𝑎, 𝑏 ↦→ 𝑏, 𝑐 ↦→ 1. He designed this map so

as to make checking that 𝜙 is a group homomorphism a simple exercise. Also, the kernel can

be immediately seen to be 𝐾 = ⟨⟨𝑐⟩⟩. He uses this 𝐾 to create a specific group presentation for

𝐴2,4,4 which reveals a semidirect product structure.

To create the new presentation for 𝐴2,4,4, he begins by defining a new presentation for 𝐵,

writing 𝐵 = ⟨𝑎, 𝜋|𝑎𝜋2𝑎−1 = 𝜋2⟩ by identifying 𝜋 = 𝑎𝑏. Rewriting 𝐵 in this way gives 𝐵 a

familiar structure, that of an HNN extension. Indeed, this new presentation can be written as

𝐵 ∼= ⟨𝜋⟩∗⟨𝜋2 ⟩ with both injections being the inclusion map. How does splitting 𝐵 tell us anything

about 𝐴2,4,4? The answer comes from the following very useful lemma.

Lemma 2.4.1. 1. Let 𝑝 : 𝐺 → 𝐴 ∗𝐶 𝐵 be a surjective group homomorphism. Then 𝐺 ∼=

𝑝−1(𝐴) ∗𝑝−1 (𝐶) 𝑝
−1(𝐵).

2. Let 𝑝 : 𝐺 → 𝐴∗𝐶 be a surjective group homomorphism.

Then 𝐺 ∼= 𝑝−1(𝐴)∗𝑝−1 (𝐶) .

Proof. Let 𝐻 = 𝐴 ∗𝐶 𝐵 be an amalgamated product. Then 𝐻 acts on its Bass-Serre tree 𝑇 ,

and the quotient of this action is a graph with 2 vertices 𝑣1, 𝑣2, and one edge 𝑒. Then there
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are vertices 𝑣1 and 𝑣2 that are stabilized by 𝐴 and 𝐵 respectively. The edge between 𝑣1 and 𝑣2,

𝑒, is stabilized by 𝐶. The homomorphism 𝑝 : 𝐺 → 𝐻 induces a group action of 𝐺 on 𝑇 by

�̃� ↦→ 𝑝(𝑔) �̃� where 𝑔 ∈ 𝐺 and �̃� is an arbitrary vertex in 𝑇 . Therefore 𝑣1, 𝑒 and 𝑣2 are stabilized

by 𝑝−1(𝐴), 𝑝−1(𝐵) and 𝑝−1(𝐶), respectively, under this action. So 𝑇/𝐺 is the graph of groups

Γ with 2 vertices and one edge. The vertex groups of Γ are 𝑝−1(𝐴) and 𝑝−1(𝐵), and the edge

group is 𝑝−1(𝐶), making 𝑝−1(𝐻) ∼= 𝐺 ∼= 𝑝−1(𝐴) ∗𝑝−1 (𝐶) 𝑝
−1(𝐵). Similarly for 𝑝 : 𝐺 → 𝐴∗𝐶 .

We can now apply Lemma 2.4.1 to the map 𝜙 : 𝐴2,4,4 → 𝐵. Since 𝐵 splits as an HNN

extension and 𝜙 is surjective, we get that 𝐴2,4,4 splits as an HNN extension as well. Using

the kernel 𝐾 and an infinitely generated presentation for 𝐴2,4,4 that he uses to elucidate the

semidirect product structure, he proves that 𝐴2,4,4 ∼= ⟨𝑐, 𝑏𝑎⟩∗⟨𝑏𝑎𝑏𝑎,𝑐,𝑏𝑐𝑏−1 ⟩ , which is an explicit

description of the splitting of 𝐴2,4,4 as an HNN extension. Here, 𝑎 is the new variable included

in the HNN extension and the two injective maps are defined by 𝜙1(𝑏𝑎𝑏𝑎) = 𝜙2(𝑏𝑎𝑏𝑎) = 𝑏𝑎𝑏𝑎,

𝜙1(𝑐) = 𝜙2(𝑐) = 𝑐, 𝜙1(𝑏𝑐𝑏−1) = 𝑏𝑐𝑏−1 and 𝜙2(𝑏𝑐𝑏−1) = 𝑏𝑎𝑏𝑎𝑐𝑏𝑐𝑏−1𝑐−1𝑎−1𝑏−1𝑎−1𝑏−1.

Squier then moves on to perform a similar proof with the group

𝐴3,3,3 = ⟨𝑎, 𝑏, 𝑐|𝑎𝑐𝑎 = 𝑐𝑎𝑐, 𝑎𝑏𝑎 = 𝑏𝑎𝑏, 𝑏𝑐𝑏 = 𝑐𝑏𝑐⟩

In this case he chooses the dihedral Artin group 𝐴 = ⟨𝑎, 𝑏|𝑎𝑏𝑎 = 𝑏𝑎𝑏⟩. Again, we construct a

map 𝜙 : 𝐴3,3,3 → 𝐴 by mapping 𝑎 ↦→ 𝑎, 𝑏 ↦→ 𝑏, 𝑐 ↦→ 𝑏−1𝑎𝑏. Verifying that 𝜙 is well-defined is

as easy as checking that

𝜙(𝑐𝑎𝑐) = 𝑏−1𝑎𝑏𝑎𝑏−1𝑎𝑏 = 𝑏−1𝑏𝑎𝑏𝑏−1𝑎𝑏 = 𝑎2𝑏 = 𝑎𝑏−1𝑏𝑎𝑏 = 𝑎𝑏−1𝑎𝑏𝑎 = 𝜙(𝑎𝑐𝑎)

and

𝜙(𝑏𝑐𝑏) = 𝑏𝑏−1𝑎𝑏𝑏 = 𝑎𝑏2 = 𝑏−1𝑏𝑎𝑏2 = 𝑏−1𝑎𝑏𝑎𝑏 = 𝑏−1𝑎𝑏𝑏𝑏−1𝑎𝑏 = 𝜙(𝑐𝑏𝑐)

Once again, we focus on 𝐾 = ker𝜙 = ⟨⟨𝑏𝑐𝑏−1𝑎−1⟩⟩. Squier denotes this new generating

element 𝑥 = 𝑏𝑐𝑏−1𝑎−1 and conjugates 𝑥 by every element of 𝐴3,3,3 to obtain another infinitely

generated presentation for 𝐴3,3,3. The generating set is {𝑎, 𝑏, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝑢𝑛, 𝑣𝑛, 𝑤𝑛 |∀𝑛 ≥ 0, 𝑛 ∈ ℤ}
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where 𝑥0 = 𝑥. There are numerous relations that all come from conjugating each of the generators

by 𝑎 and 𝑏 respectively. Such conjugations result in the recurrence relations with which we define

the generators for each 𝑛. This {𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝑢𝑛, 𝑣𝑛, 𝑤𝑛} is a generating set for 𝐾 by construction,

and even makes 𝐾 a free group freely generated by {𝑥𝑛, 𝑦𝑛.𝑧𝑛, 𝑢𝑛, 𝑣𝑛, 𝑤𝑛}. This presentation

allows him to prove that 𝑇 is the semidirect product of 𝐾 with 𝐴.

He then splits 𝐴 as an amalgamated product by proving that

𝐴 ∼= ⟨𝜋 = 𝑎𝑏⟩ ∗⟨𝜋3=Δ2 ⟩ ⟨Δ = 𝑎𝑏𝑎⟩

which can easily be seen by the fact that 𝜋3 = (𝑎𝑏)3 = 𝑎𝑏𝑎𝑏𝑎𝑏 = (𝑎𝑏𝑎) (𝑏𝑎𝑏) = (𝑎𝑏𝑎) (𝑎𝑏𝑎) = Δ2

in 𝐴. Since 𝐴 splits as an amalgamated product, we can again apply Lemma 2.4.1 to the map 𝜙

to obtain that 𝐴3,3,3 indeed splits as an amalgamated product.

He then goes on to find the explicit free groups involved in the amalgam. Lemma 2.4.1

tells us that 𝐴3,3,3 ∼= ⟨𝜋, 𝐾⟩ ∗⟨Δ2,𝐾⟩ ⟨Δ, 𝐾⟩. It remains to show that the groups in the amalgam

are free groups. The generators of 𝐾 were constructed in such a way that conjugating 𝑥0,

𝑦0 and 𝑧0 by Δ allows one to generate all of the rest of the generators of 𝐾, thereby making

⟨Δ, 𝐾⟩ ∼= ⟨Δ, 𝑥0, 𝑦0, 𝑧0⟩ ∼= 𝐹4. Similarly, conjugating generators of 𝐾 by Δ2 reveals that ⟨Δ2, 𝐾⟩ ∼=

⟨Δ2, 𝑥0, 𝑦0, 𝑧0, 𝑢0, 𝑣0, 𝑤0⟩ ∼= 𝐹7. Unfortunately, such a simple process cannot be applied to ⟨𝜋, 𝐾⟩.

For this component of the amalgam, we have to use to a theorem of Stallings.

Theorem 2.4.2 ([19]). Let 𝐺 be a torsion-free group and 𝐻 < 𝐺 a finite index subgroup. If 𝐻 is

a free group, then so is 𝐺.

In our case we know that both 𝐴 and 𝐾 are torsion-free. Squier proves that 𝐴3,3,3 is the

semidirect product of 𝐴 and 𝐾, and since both of the components of the semidirect product are

torsion-free, this forces 𝐴3,3,3 to be torsion-free as well. Therefore ⟨𝜋, 𝐾⟩ < 𝐴3,3,3 forces ⟨𝜋, 𝐾⟩

to also be torsion-free. We have already proven that ⟨Δ2, 𝐾⟩ ∼= ⟨𝜋3, 𝐾⟩ is a free group, and is

clearly an index-3 subgroup of ⟨𝜋, 𝐾⟩, so Theorem 2.4.2 tells us that ⟨𝜋, 𝐾⟩ is a free group. But

what is its rank? To calculate its rank, Squier uses the following lemma.
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Lemma 2.4.3. [20] Let 𝐹 be a free group of rank 𝑟 and 𝐻 be a subgroup of index 𝑘 in 𝐹. Then

𝐻 is a free group of rank 𝑟𝑘 − 𝑘 + 1.

In our case we do not know the value of 𝑟, but we do know that ⟨𝜋3, 𝐾⟩ is an index-3 subgroup

of ⟨𝜋, 𝐾⟩ and that ⟨𝜋3, 𝐾⟩ is a free group of rank 7. Therefore 7 = 3𝑟 − 3 + 1 = 3𝑟 − 2, so 𝑟 = 3,

making ⟨𝜋, 𝐾⟩ ∼= 𝐹3. So 𝐴3,3,3 splits as 𝐹3 ∗𝐹7 𝐹4.

He then uses nearly the exact same process to split

𝐴2,3,6 = ⟨𝑎, 𝑏, 𝑐|𝑎𝑐 = 𝑐𝑎, 𝑎𝑏𝑎 = 𝑏𝑎𝑏, 𝑏𝑐𝑏𝑐𝑏𝑐 = 𝑐𝑏𝑐𝑏𝑐𝑏⟩

We start by mapping 𝜙 : 𝐴2,3,6 → 𝐴 = ⟨𝑎, 𝑏|𝑎𝑏𝑎 = 𝑏𝑎𝑏⟩ where 𝑎 ↦→ 𝑎, 𝑏 ↦→ 𝑏 and 𝑐 ↦→ 𝑎3.

Checking that 𝜙 is well-defined is again a simple exercise:

𝜙(𝑎𝑐) = 𝑎𝑎3 = 𝑎3𝑎 = 𝜙(𝑐𝑎)

and

𝜙(𝑏𝑐𝑏𝑐𝑏𝑐) = 𝑏𝑎3𝑏𝑎3𝑏𝑎3 = 𝑏𝑎2(𝑎𝑏𝑎)𝑎(𝑎𝑏𝑎)𝑎2 = 𝑏𝑎2(𝑏𝑎𝑏)𝑎(𝑏𝑎𝑏)𝑎2 = 𝑏𝑎(𝑎𝑏𝑎)𝑏𝑎𝑏(𝑎𝑏𝑎)𝑎 =

𝑏𝑎(𝑏𝑎𝑏)𝑏𝑎𝑏(𝑏𝑎𝑏)𝑎 = (𝑏𝑎𝑏)𝑎𝑏(𝑏𝑎𝑏)𝑏(𝑎𝑏𝑎) = (𝑎𝑏𝑎)𝑎𝑏(𝑎𝑏𝑎)𝑏(𝑏𝑎𝑏) = 𝑎𝑏𝑎(𝑎𝑏𝑎) (𝑏𝑎𝑏)𝑏𝑎𝑏 =

𝑎𝑏𝑎(𝑏𝑎𝑏) (𝑎𝑏𝑎)𝑏𝑎𝑏 = 𝑎(𝑏𝑎𝑏) (𝑎𝑏𝑎) (𝑏𝑎𝑏)𝑎𝑏 = 𝑎(𝑎𝑏𝑎) (𝑏𝑎𝑏) (𝑎𝑏𝑎)𝑎𝑏 = 𝑎2(𝑏𝑎𝑏)𝑎(𝑏𝑎𝑏)𝑎2𝑏 =

𝑎2(𝑎𝑏𝑎)𝑎(𝑎𝑏𝑎)𝑎2𝑏 = 𝑎3𝑏𝑎3𝑏𝑎3𝑏 = 𝜙(𝑐𝑏𝑐𝑏𝑐𝑏)

The exact same reasoning, albeit with a slightly different generating set for 𝐾 results in

𝐴2,3,6 ∼= ⟨𝜋, 𝐾⟩ ∗⟨𝜋3,𝐾⟩ ⟨Δ, 𝐾⟩ ∼= 𝐹3 ∗𝐹7 𝐹4

Squier’s splittings of these three Artin groups are interesting in their own right, but it was a

consequence of these results that sparked the inspiration for the new results presented in the next

section. Notice that 𝐴3,3,3 and 𝐴2,3,6 both split as amalgamated products where the amalgamating

subgroup is of finite index in each component. This allows us to construct the following short

exact sequence:
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1 → 𝐹7 → 𝐴2,3,6 → ℤ/3ℤ ∗ ℤ/2ℤ → 1

ℤ/3ℤ ∗ ℤ/2ℤ admits a standard projection map 𝜙 : ℤ/3ℤ ∗ ℤ/2ℤ → ℤ/3ℤ × ℤ/2ℤ given

by 𝜙(𝑎1𝑏1𝑎2𝑏2...𝑎𝑛𝑏𝑛) = (𝑎1𝑎2...𝑎𝑛, 𝑏1𝑏2...𝑏𝑛). Denote the surjective map in the short exact

sequence by 𝑝 : 𝐴2,3,6 → ℤ/3ℤ ∗ ℤ/2ℤ. Then ker𝜙 < ℤ/3ℤ ∗ ℤ/2ℤ and 𝑝−1(ker𝜙) < 𝐴2,3,6.

The group 𝐹7 injects into 𝑝−1(ker𝜙) since 𝑝(𝐹7) = 1 ∈ ker𝜙, so we get a new short exact

sequence of groups

1 → 𝐹7 → 𝑝−1(ker𝜙) → ker𝜙 → 1

We now analyze ker𝜙. Denote the generator of ℤ/3ℤ by 𝑎 and the generator of ℤ/2ℤ by 𝑏.

Then ker𝜙 ∼= ⟨⟨𝑎𝑏𝑎2𝑏, 𝑎2𝑏𝑎𝑏⟩⟩ since we need every element, pre-conjugation, to contain 3 𝑎s

and 2 𝑏s, and all such words of this type are conjugates of these two generating elements. To

show that ker𝜙 is a free group, it suffices to prove that the action of ker𝜙 on the Bass-Serre tree

𝑇 of ℤ/3ℤ ∗ ℤ/2ℤ is free.

Recall that the vertices of 𝑇 correspond to ((⟨𝑎⟩ ∗ ⟨𝑏⟩)/⟨𝑎⟩) ∪ ((⟨𝑎⟩ ∗ ⟨𝑏⟩)/⟨𝑏⟩). So each

vertex-stabilizer comes in the form 𝑔⟨𝑎⟩𝑔−1 or 𝑔⟨𝑏⟩𝑔−1 for some 𝑔 ∈ ⟨𝑎⟩ ∗ ⟨𝑏⟩. Every element

𝑔𝑎𝑘𝑔−1 (resp. 𝑔𝑏𝑘𝑔−1) is mapped to 𝑎𝑘 ∈ ℤ/3ℤ × ℤ/2ℤ (resp. 𝑏𝑘) by 𝜙, which is nontrivial in

the codomain precisely when 𝑎𝑘 (resp. 𝑏𝑘) is nontrivial in the domain. Therefore 𝑔⟨𝑎⟩𝑔−1 and

𝑔⟨𝑏⟩𝑔−1 must intersect ker𝜙 trivially. This proves that the action of ker𝜙 on 𝑇 is free, making

ker𝜙 a free group by Theorem 2.2.3. So by the First Isomorphism Theorem,

(ℤ/3ℤ ∗ ℤ/2ℤ)/ker𝜙 ∼= ℤ/3ℤ × ℤ/2ℤ, making [ℤ/3ℤ ∗ ℤ/2ℤ : ker𝜙] = 6.

Why did we expend effort towards proving that ker𝜙 is a finite index free subgroup of

ℤ/3ℤ ∗ ℤ/2ℤ? Well now if we inspect the short exact sequence above, we have a free group

as the rightmost component, which automatically makes the short exact sequence a split exact

sequence. This is due to the fact that defining a group homomorphism “backwards" along 𝑝

is now as simple as choosing a preimage element for each element in ker𝜙. Such a map is

well-defined because free groups have no relations. Since the short exact sequence is split exact,

this tells us that 𝑝−1(ker𝜙) ∼= 𝐹7 × ker𝜙, the direct product of free groups.
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Lemma 2.4.4. Let 𝐺 and 𝐻 be residually finite groups. Then 𝐺 × 𝐻 is residually finite.

Proof. Let (𝑔, ℎ) ∈ 𝐺×𝐻 be nontrivial. Consider the natural projection maps 𝑝𝐺 : 𝐺×𝐻 → 𝐺

and 𝑝𝐻 : 𝐺 × 𝐻 → 𝐻. Assume 𝑔 ≠ 1𝐺. Then 𝑝𝐺 (𝑔, ℎ) = 𝑔 is a nontrivial element of 𝐺. The

group 𝐺 is residually finite, so there exists a finite group 𝐹𝑔 and surjective homomorphism

𝜙𝑔 : 𝐺 → 𝐹𝑔 such that 𝜙𝑔 (𝑔) ≠ 1𝐹𝑔 . So 𝑓 = 𝜙𝑔 ◦ 𝑝𝐺 is a surjective group homomorphism to a

finite group such that 𝑓 (𝑔, ℎ) is nontrivial. Assume 𝑔 = 1𝐺. Then ℎ ≠ 1𝐻 and 𝑓 ′ = 𝜙ℎ ◦ 𝑝𝐻 is

the surjective homomorphism to a finite group such that 𝑓 ′(𝑔, ℎ) is nontrivial, since 𝐻 is also

residually finite.

So 𝑝−1(ker𝜙) ∼= 𝐹7×ker𝜙 is the direct product of residually finite groups, making 𝑝−1(ker𝜙)

residually finite. Furthermore, since 𝑝 is a surjection, we get that [𝐴2,3,6 : 𝑝−1(ker𝜙)] =

[ℤ/3ℤ ∗ ℤ/2ℤ : ker𝜙] = 6. So 𝑝−1(ker𝜙) is a finite index residually finite subgroup of 𝐴2,3,6,

making 𝐴2,3,6 residually finite by Lemma 2.3.2. The same holds for 𝐴3,3,3.

The subclass {𝐴2,4,4, 𝐴3,3,3, 𝐴2,3,6} is a special subclass of triangle Artin groups. These are

all of the Euclidean triangle Artin groups.

Definition 2.4.1. • A spherical triangle Artin group 𝐴𝑀,𝑁,𝑃 is a triangle Artin group satis-

fying 1
𝑀
+ 1

𝑁
+ 1

𝑃
> 1.

• A Euclidean triangle Artin group 𝐴𝑀,𝑁,𝑃 is a triangle Artin group satisfying 1
𝑀
+ 1
𝑁
+ 1
𝑃
= 1.

• A hyperbolic triangle Artin group 𝐴𝑀,𝑁,𝑃 is a triangle Artin group satisfying 1
𝑀
+ 1
𝑁
+ 1
𝑃
< 1.

We refer to such triangle Artin groups as “Euclidean" due to the fact that the triangle with

angles 2𝜋
𝑀
, 2𝜋
𝑁

and 2𝜋
𝑁

is a triangle in Euclidean space. The Coxeter group associated to a Euclidean

Artin group can therefore tile a Euclidean plane by taking said triangle as the fundamental domain

and assigning each Coxeter generator to be the reflection across the corresponding edge of the

triangle.

Definition 2.4.1 allows us to fully classify every triangle Artin group based on the type of

triangular tiling that results from such a process. Squier proved that Euclidean triangle Artin
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Figure 2.9.: Triangular tilings of ℍ2,ℝ2 & 𝑆2.

groups split as graphs of groups. It is natural to wonder whether the same holds for spherical

triangle Artin groups and hyperbolic triangle Artin groups.

We begin with spherical triangle Artin groups. Jankiewicz proved the following:

Theorem 2.4.5 ([1]). If 𝐴 is a spherical irreducible Artin group that splits as a graph of free

groups, then 𝐴 is dihedral or ℤ.

Proof. Every dihedral Artin group has the standard presentation

𝐴𝑀 = ⟨𝑎, 𝑏| (𝑎, 𝑏)𝑀 = (𝑏, 𝑎)𝑀⟩

When 𝑀 = 2𝑚, set 𝑥 = 𝑎𝑏 to get that 𝐴𝑀 ∼= ⟨𝑎, 𝑥 |𝑎𝑥𝑚𝑎−1 = 𝑥𝑚⟩ ∼= ⟨𝑥⟩∗⟨𝑥𝑚 ⟩ ∼= ℤ∗ℤ, which is

a splitting as a graph of free groups. When 𝑀 = 2𝑚 + 1, we set 𝑥 = 𝑎𝑏 and 𝑦 = (𝑎, 𝑏)𝑀 to get

that 𝐴𝑀 = ⟨𝑥, 𝑦 |𝑥𝑚 = 𝑦2⟩ ∼= ⟨𝑥⟩ ∗⟨𝑥𝑚 ⟩∼=⟨𝑦2 ⟩ ⟨𝑦⟩ ∼= ℤ ∗ℤ ℤ, which is again a splitting as a graph

of free groups.

Conversely, assume that an irreducible spherical Artin group 𝐴 splits as a nontrivial graph

of free groups. Then we can consider this graph of free groups as the fundamental group of a

graph of spaces 𝑋 , in which every space is a graph. The geometric realization of 𝑋 is therefore a

collection of graphs (corresponding to the vertex-spaces) with 2-cells used to join these graphs.

These 2-cells form cylinders between the loops identified by the edge-space embeddings. Let �̃�
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be the universal cover of 𝑋 . Then �̃� is a 2-dimensional CW complex, meaning that it has the

cellular chain complex

(2.4.1) ...
𝜕3−→ 𝐶2( �̃�)

𝜕2−→ 𝐶1( �̃�)
𝜕1−→ 𝐶0( �̃�) → 0

We would like to calculate 𝐻2( �̃�) ∼= ker 𝜕2
𝐼𝑚𝜕3

. Because �̃� is 2-dimensional, we know that

𝐶𝑘 ( �̃�) = 0 for 𝑘 ≥ 3 and thus 𝐼𝑚(𝜕3) = 0. By the construction of �̃� , every 2-cell has the

boundary ℓ1𝑡ℓ2𝑡 where ℓ1 and ℓ2 are nontrivial loops in the vertex-graphs in the graph of spaces

that were identified via the 2-cells. The loops ℓ1 and ℓ2 unfold into open paths in the universal

cover �̃� . We use 𝑡 and 𝑡 to denote preimages of the edge used to identify the basepoints in the

graph of spaces. Therefore ℓ1𝑡ℓ2𝑡 is a nontrivial loop in the 1-skeleton of �̃� . Since this 2-cell

was arbitrary, this proves that ker(𝜕2) = 0 and thus 𝐻2( �̃�) = 0.

By Hurewicz Theorem [21], �̃� being a universal cover and thus simply connected, forces the

Hurewicz homomorphism ℎ∗ : 𝜋2( �̃�) → 𝐻2( �̃�) to be an isomorphism. Therefore 𝜋2( �̃�) = 0

and we can iterate this process to get that 𝜋𝑛( �̃�) = 0 for all 𝑛 ≥ 0.

Consider the Serre fibration �̃� → 𝑋 . Every fiber 𝐹 is discrete, making 𝜋𝑛(𝐹) = 0 for all

𝑛 > 0. Putting this information into the long exact sequence induced by the fibration forces

𝜋𝑛(𝑋) ∼= 𝜋𝑛( �̃�) = 0 for all 𝑛 > 1. This makes 𝑋 aspherical and a 𝐾 (𝐴, 1) space by definition.

Therefore, by 𝐻𝑛(𝑋,ℤ) = 𝐻𝑛(𝐴,ℤ) for all 𝑛 > 0. Since 𝑋 is a 2-dimensional CW-complex,

𝐻𝑛(𝑋) = 0 when 𝑛 > dim 𝑋 = 2. Therefore the cohomological dimension of 𝐴 is at most 2.

But spherical Artin groups are known to have cohomological dimension equal to the number of

generators in their standard presentation [22]. Therefore 𝐴 is forced to have at most 2 generators,

which makes 𝐴 either dihedral or ℤ.

Now that we have successfully split every spherical Artin group that can be split as a graph

of free groups, it remains to split the hyperbolic triangle Artin groups. Jankiewicz successfully

split a significant portion of the hyperbolic triangle Artin groups by working with a different

presentation for Artin groups called the Brady-McCammond presentation.
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Definition 2.4.2 ([23]). For 𝑀, 𝑁, 𝑃 ≥ 3,

𝐴𝑀,𝑁,𝑃 ∼= ⟨𝑎, 𝑏, 𝑐, 𝑥, 𝑦, 𝑧 |𝑥 = 𝑎𝑏, 𝑦 = 𝑏𝑐, 𝑧 = 𝑐𝑎, 𝑟𝑀 (𝑎, 𝑏, 𝑥), 𝑟𝑁 (𝑏, 𝑐, 𝑦), 𝑟𝑃 (𝑐, 𝑎, 𝑧)⟩ where:

• 𝑟𝑀 (𝑎, 𝑏, 𝑥) =⇒ 𝑥𝑚 = 𝑏𝑥𝑚−1𝑎 when 𝑀 = 2𝑚 and

• 𝑟𝑀 (𝑎, 𝑏, 𝑥) =⇒ 𝑥𝑚𝑎 = 𝑏𝑥𝑚 for 𝑀 = 2𝑚 + 1

and similarly for 𝑟𝑁 (𝑏, 𝑐, 𝑦) and 𝑟𝑃 (𝑐, 𝑎, 𝑧).

The Brady-McCammond presentation originated in [23], in which they prove that triangle

Artin groups of large type (meaning that 𝑀, 𝑁, 𝑃 ≥ 3) are biautomatic through the use of the

presentation complexes associated to these presentations. Furthermore, they showed that these

presentation complexes are piecewise Euclidean and CAT(0).

This presentation comes from fixing an orientation on the variant of the Coxeter diagram in

which we allow edges to be labeled with 2s and 3s and remove edges labeled with ∞. We start

by partially orienting the Coxeter diagram Γ by orienting every edge with label ≥ 3. An example

is shown in Figure 2.10.

Figure 2.10.: Coxeter diagram & oriented Coxeter diagram for 𝐴4,5,5.

Definition 2.4.3 ([2]). Let Γ be a simple graph (no length-1 loops or multiedges) with a partial

orientation 𝜄 where 𝜄(𝑒) is the terminal vertex of the oriented edge 𝑒. A path 𝛾 of length ≥ 2 in Γ

is called misdirected if the partial orientation on 𝛾 induced by 𝜄 can be extended to an orientation

such that a maximal directed subpath of 𝛾 has length 1. A cycle 𝛾 is called almost misdirected

if ignoring one edge of 𝛾 makes the resulting path misdirected.
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Figure 2.11.: Example of a misdirected cycle and almost misdirected cycles with subpaths of
length 3 & 2 respectively

Definition 2.4.4 ([2]). A partial orientation 𝜄 on a simple graph Γ labelled with integers ≥ 2 is

called admissible if the only oriented edges are those with labels ≥ 3 and it does not contain any

almost misdirected cycles.

To obtain the Brady-McCammond presentation from the Coxeter diagram Γ of 𝐴Γ, we start

by fixing an admissible partial orientation 𝜄 on Γ. This 𝜄 allows us to define a new presentation

𝐴Γ
∼= ⟨𝑎 ∈ 𝑉 (Γ), 𝑥 ∈ 𝐸(Γ) |𝑥 = 𝑎𝑏, 𝑟𝑀𝑎𝑏

(𝑎, 𝑏, 𝑥) where 𝑥 = {𝑎, 𝑏} and either 𝑎 = 𝜄(𝑥) or 𝑀𝑎𝑏 = 2⟩

where 𝑀𝑎𝑏 is the label on the edge between 𝑎 and 𝑏. Here, 𝜄 is utilized to determine whether

𝑥 = 𝑎𝑏 or 𝑥 = 𝑏𝑎. Of course, if 𝑀𝑎𝑏 = 2, then 𝑎𝑏 = 𝑏𝑎 and such a 𝜄-based choice is irrelevant.

When Γ is a triangle, we can choose 𝜄 so that the resulting presentation is precisely the Brady-

McCammond presentation as previously described. In general, this presentation coming from

an admissible partial orientation results in the following theorem.

Theorem 2.4.6 ([2]). If Γ is bipartite with all labels even, then 𝐴Γ
∼= 𝐴∗𝐵 where 𝐴 and 𝐵

are finite-rank free groups. Otherwise, 𝐴Γ
∼= 𝐴 ∗𝐶 𝐵 where 𝐴, 𝐵, 𝐶 are finite rank free groups

with 𝑟𝑘(𝐴) = |𝐸(Γ) |, 𝑟𝑘(𝐵) = 1 − |𝑉 (Γ) | + 2|𝐸(Γ) | and 𝐶 is an index-2 subgroup of 𝐵 with

𝑟𝑘(𝐶) = 1 − 2|𝑉 (Γ) | + 4|𝐸(Γ) |.

To prove this theorem, we fix the 𝜄-induced presentation for 𝐴Γ and construct the presentation

complex of 𝐴Γ with respect to this presentation.
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Definition 2.4.5 ([23]). Given a group 𝐺 with presentation ⟨𝑆|𝑅⟩, the presentation complex 𝑋𝐺

is the 2 dimensional cell complex obtained in the following manner. First construct the wedge

of oriented circles with one circle for each 𝑠 ∈ 𝑆. Then, for each word 𝑟 ∈ 𝑅, construct a 2-cell

whose boundary is labelled with the word 𝑟, and attach each oriented edge to the corresponding

loop in the wedge of circles.

By construction, 𝜋1(𝑋𝐺) = ⟨𝑆|𝑅⟩. Clearly every loop in 𝑋𝐺 is homotopic to a combination of

loops in the wedge of circles, thereby making the generators of 𝜋1(𝑋𝐺) = 𝑆. The 2-cells allow

us to contract any loop on the boundary of a 2-cell through the interior of the 2-cell, thereby

making every relation in 𝜋1(𝑋𝐺) a word in 𝑅.

We now can use the presentation complex associated to the 𝜄-induced presentation of 𝐴Γ to

arrive at our desired splitting. The case in which Γ is bipartite with even labels is not relevant

to this paper since we will be focused on triangle Artin groups and Γ being a triangle precludes

it from being bipartite. When Γ is not a bipartite graph with all even labels, the 𝜄-induced

presentation for 𝐴Γ allows us to construct the relator polygons in an intentionally illuminating

way. Notice that the yellow, red and orange edges in the relator polygons in Figure 2.12 only

appear as vertical path-components of the boundaries, and that the green, purple & blue elements

appear only in the tops and bottoms of our relator polygons, oriented horizontally. This allows

us to apply Seifert Van Kampen’s theorem to the complex in a natural way, as shown in the

Figure 2.12.

We can then deformation retract the blue component 𝑈, the green component 𝑉, and the

turquoise component𝑈∩𝑉 to the graphs �̄�, �̄� and𝑈 ∩ 𝑉, resulting in 𝐴Γ
∼= 𝜋1(�̄�) ∗𝜋1 (𝑈∩𝑉 ) 𝜋1(�̄�).

Since �̄�, �̄� and 𝑈 ∩ 𝑉 are all graphs, their respective fundamental groups are all free groups. It

remains to calculate the ranks of these free groups.

Each portion of 𝑈 in a relator polygon deformation retracts naturally to the horizontal paths at

the nearest top/bottom of that relator polygon. Since all of the vertices in the relator polygons are

all identified in the presentation complex, we must also identify the vertices in the deformation
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Figure 2.12.: Seifert-Van Kampen’s Theorem applied to the presentation complex for 𝐴4,5,5

retract �̄�. This will result in the wedge of many length-one loops with potentially multiple loops

of the same color. Having multiple loops of the same color is redundant, so we identify these

loops to realize �̄� as the wedge of 𝑛 circles, one for each color present at the tops/bottoms of

the relator polygons. For example, in the case of 𝐴4,5,5, these loops correspond to the generators

𝑥, 𝑦, 𝑧, which are precisely the generators constructed from the oriented edges of the Coxeter

diagram Γ. By the construction of the Brady-McCammond complex, it will always be the case

that the loops in �̄� are in direct correspondence with these new generators added during the

construction of the Brady-McCammond presentation. Therefore 𝜋1(�̄�) is the free group on

𝐸(Γ), making 𝑟𝑘(𝜋1(�̄�)) = |𝐸(Γ) |.

When we deformation retract 𝑉 by compressing each portion of 𝑉 to its midline, we get a

graph with an edge coming from each relator polygon. Notice that the relations in a Brady-

McCammond presentation come in pairs: 2 relations for each edge in the Coxeter diagram Γ.

One of these relations is used to define the new generator coming from an oriented edge in

Γ, and the other relation is an analogue of the traditional Artin relation involving the pair of

traditional Artin-generators used to define the new orientation-induced generator. Therefore

|𝐸(�̄�) | = 2|𝐸(Γ) |. The endpoints of an edge in �̄� are vertices on a “vertical" edge of the relator
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polygon’s boundary. These vertical edges correspond to the generators coming from the usual

Artin presentation. These generators are represented in the Coxeter diagram Γ as vertices.

Therefore 𝑉 (�̄�) = 𝑉 (Γ) and 𝑟𝑘(𝜋1(�̄�)) = 1 − |𝑉 (�̄�) | + |𝐸(�̄�) | = 1 − |𝑉 (Γ) | + 2|𝐸(Γ) |.

In Figure 2.13 we can see that every edge in �̄� is double-covered by the two edges in 𝑈 ∩ 𝑉

above and below it in the relator polygon, making 𝑈 ∩ 𝑉 a double cover of �̄� and [𝜋1 (̄𝑉) :

𝜋1(𝑈 ∩ 𝑉)] = 2.

Figure 2.13.: 𝑈 ∩ 𝑉 ↬ �̄� for 𝐴4,5,5

We now use Lemma 2.4.3 by setting 𝐹 = 𝜋1(�̄�) and 𝐻 = 𝜋1(𝑈 ∩ 𝑉), which forces 𝑟 =

1 − |𝑉 (Γ) | + 2|𝐸(Γ) | and 𝑘 = 2. Putting this all together gives us that 𝑟𝑘(𝜋1(𝑈 ∩ 𝑉)) =

(1 − |𝑉 (Γ) | + 2|𝐸(Γ) |) (2) − 2 + 1 = 1 − 2|𝑉 (Γ) | + 4|𝐸(Γ) |.

Having calculated the groups that arise from the application of Seifert-Van Kampen’s Theorem

to the Brady-McCammond complex, it remains to show that the induced maps from 𝜋1(𝑈 ∩ 𝑉)

to 𝜋1(�̄�) and 𝜋1(�̄�) are injective. To do so, we must define an important class of combinatorial

maps that will play a major role throughout the rest of the paper.
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Definition 2.4.6 ([19]). A combinatorial map 𝑌 → 𝑋 between graphs 𝑌 and 𝑋 is a function that

maps every vertex to a vertex and every edge to an edge. A combinatorial immersion 𝜙 : 𝑌 ↬ 𝑋

is a locally injective combinatorial map.

Combinatorial immersions are important because every combinatorial immersion 𝜙 : 𝑌 ↬ 𝑋

induces an injective homomorphism 𝜋1(𝑌, 𝑦) ↩→ 𝜋1(𝑋, 𝑥) [19]. Equivalently, the existence

of a combinatorial immersion 𝜙 : 𝑌 ↬ 𝑋 guarantees that 𝑌 can be completed to a cover of 𝑋

by adding trees to the vertices in 𝑌 that are keeping 𝑌 from being a cover of 𝑋 . The copy of

𝑈 ∩ 𝑉 in Figure 2.13 combinatorially immerses into �̄� since it is already a cover. The homotopy

equivalent copy of 𝑈 ∩ 𝑉 that conforms to the deformation retract of �̄� is shown in Figure 2.14.

Notice that the three dashed edges get collapsed to vertices during the retraction.

Figure 2.14.: 𝑈 ∩ 𝑉 ↬ �̄�

This graph, after the collapsing of the three dashed edges, also combinatorially immerses into

�̄�, though it is not a cover. Infinite trees will have to be added to the five outer vertices for

those vertices to be preimages of the lone vertex in �̄�. Nevertheless, the fact that both homotopy

equivalent copies of 𝑈 ∩ 𝑉 combinatorially immerse into �̄� and �̄� guarantees that the edge maps

in the ensuing graph of groups will be injective. This makes our application of Seifert-Van

Kampen’s Theorem to the Brady-McCammond complex a splitting of each large-type Artin

group into a graph of finite-rank free groups.

Once these large-type Artin groups were split as graphs of free groups, Jankiewicz uses this
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information to prove that the triangle Artin groups 𝐴𝑀,𝑁,𝑃 where 𝑀, 𝑁, 𝑃 ≥ 4 and {𝑀, 𝑁, 𝑃} ≠

{2𝑚 + 1, 4, 4} for any 𝑚 ∈ ℕ are residually finite. To do this, Jankiewicz first defines an index-2

subgroup of 𝐴𝑀,𝑁,𝑃 ∼= 𝐴 ∗𝐶 𝐵 called the twisted double.

Definition 2.4.7 ([2]). Let 𝐴 and𝐶 be finite rank free groups and 𝛽 : 𝐶 → 𝐶 be an automorphism.

The double of 𝐴 along 𝐶 twisted by 𝛽, denoted 𝐷(𝐴, 𝐶, 𝛽), is the amalgam 𝐴 ∗𝐶 𝐴 where 𝐶 is

mapped into the leftmost 𝐴 via the inclusion map 𝜄, and is mapped into the rightmost 𝐴 via 𝜄 ◦ 𝛽.

We construct a twisted double 𝐷(𝐴, 𝐶, 𝛽) ∼= 𝐴 ∗𝐶 �̂�𝐴�̂�−1 in 𝐴𝑀,𝑁,𝑃 ∼= 𝐴 ∗𝐶 𝐵 by defining

𝛽 : 𝐶 → 𝐶 to be 𝛽(𝑐) = �̂�𝑐�̂�−1 where �̂� is a nontrivial coset representative of 𝐵/𝐶 ∼= {[1], [�̂�]}.

We can realize 𝐷(𝐴, 𝐶, 𝛽) as the kernel of the homomorphism 𝜙 : 𝐴 ∗𝐶 𝐵 → 𝐵/𝐶 ∼= ℤ/2ℤ.

The kernel is generated by all conjugates of 𝐴, which are simply 𝐴 and �̂�𝐴�̂�−1. Consider the

action of ker𝜙 = ⟨𝐴, �̂�𝐴�̂�−1⟩ on the Bass-Serre tree 𝑇 . The subgroup 𝐴 fixes a vertex in 𝑇 ,

as does �̂�𝐴�̂�−1. There are two edges between these vertices in 𝑇 , one that is fixed by 𝐶, the

other which is fixed by �̂�𝐶�̂�−1. Therefore, by The Fundamental Theorem of Bass-Serre Theory,

ker𝜙 = 𝐴 ∗𝐶∩�̂�𝐶�̂�−1=𝐶 �̂�𝐴�̂�
−1 where 𝐶 → 𝐴 is the inclusion map and 𝐶 → �̂�𝐴�̂�−1 is sent to �̂�𝐶�̂�−1,

making 𝐷(𝐴, 𝐶, 𝛽) = ker𝜙. Since𝜙 is obviously onto, this proves that [𝐴𝑀,𝑁,𝑃 : 𝐷(𝐴, 𝐶, 𝛽)] = 2.

So, by Lemma 2.3.2, if we can prove that 𝐷(𝐴, 𝐶, 𝛽) is residually finite, then we have proven

that 𝐴 ∗𝐶 𝐵 is residually finite. To prove that 𝐷(𝐴, 𝐶, 𝛽) is residually finite, Jankiewicz first

proves that it virtually splits as an algebraically clean graph of finite rank free groups.

Definition 2.4.8 ([24]). A graph of groups is algebraically clean if the vertex groups are free

and each edge group is a free factor in its adjacent vertex group(s).

Theorem 2.4.7 ([24]). If a group G splits as an algebraically clean graph of finite-rank free

groups, then G is residually finite.

Proof. Let (Γ, 𝐺) be a splitting of G as an algebraically clean graph of finite-rank free groups.

We begin our calculation of 𝜋1(Γ, 𝐺) by collapsing a maximal tree in Γ, and amalgamating

the identified vertex groups along their respective edge groups. Consider two vertices 𝑣 and 𝑤
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in Γ joined by an edge 𝑒. The edge group 𝐺𝑒 is a free factor in both 𝐺𝑣 and 𝐺𝑤, making the

amalgamated product 𝐺𝑣 ∗𝐺𝑒 𝐺𝑤 a free group. Therefore the iterated amalgam that appears as

the vertex group after the maximal tree has been collapsed is a free group as well. Denote this

collapsed version of (Γ, 𝐺) by (Γ̄, �̄�). This new graph of groups has one vertex and a collection

of loops based at that vertex, making 𝜋1(Γ̄, �̄�) is an iterated HNN extension of a free group.

Furthermore, each edge group 𝐸𝑖 is a free factor in the vertex group 𝑉 since each 𝐺𝑣 in (Γ, 𝐺) is

a free factor in 𝑉 and every 𝐸𝑖 is a free factor in some such 𝐺𝑣 by construction.

Our goal is to define a projection to the iterated HNN extension of a finite group for each

𝑔 ∈ G such that 𝑔 survives the projection. We begin by noting that iterated HNN extensions have

a normal form for each element element 𝑔 = 𝑓0𝑡
𝜖0
0 𝑓1𝑡

𝜖1
1 ... 𝑓𝑟𝑡

𝜖𝑟
𝑟 𝑓𝑟+1 where all 𝑓𝑖 ∈ 𝑉, 𝜖𝑖 ∈ {−1, 0, 1}

and 𝑡1, ..., 𝑡𝑟 are stable letters. Furthermore, we can assume that this normal form for 𝑔 is reduced,

meaning that no combination of relations can decrease its length. In particular, this means that

if 𝑔 contains a subword 𝑡𝑘 𝑓𝑘𝑡
−1
𝑘

(resp. 𝑡−1
𝑘
𝑓𝑘𝑡𝑘), then 𝑓𝑘 ∉ 𝐸𝑘 (resp. 𝑓𝑘 ∉ �̄�𝑘) where 𝐸𝑘 ∼= �̄�𝑘 is

the edge group that contributes the stable variable 𝑡𝑘 to the HNN extension. Consider the case

when 𝑔 contains a subword 𝑡𝑘 𝑓𝑘𝑡−1
𝑘

(resp. 𝑡−1
𝑘
𝑓𝑘𝑡𝑘) for some 𝑓𝑘 ∉ 𝐸𝑘 (resp. 𝑓𝑘 ∉ �̄�𝑘). In this case

we can explicitly construct a finite index subgroup 𝐿𝑘 < 𝑉 such that 𝐸𝑘 < 𝐿𝑘 (resp. �̄�𝑘 < 𝐿𝑘) and

𝑓𝑘 ∉ 𝐿𝑘. We construct such an 𝐿𝑘 using the following covering space argument.

The vertex group 𝑉 being a finitely generated free group means that we can represent 𝑉 ∼=

𝜋1(
∨

𝑖<∞ 𝑆1) = 𝜋1(V). The edge group 𝐸𝑘 being a finitely generated subgroup of 𝑉 forces

the existence of a cover E𝑘 of V with a finite core. We then attach a path to the basepoint of

E𝑘 whose edge labels form the word for 𝑔 in its normal form, and then perform any necessary

Stallings folds to identify redundant edges (see Figure 2.18 for examples of Stallings folds). We

now use the same algorithm as in the proof of Property 2.3.2.1 to complete this augmented E𝑘

to a finite cover L𝑘 of V. Therefore 𝜋1(L𝑘) = 𝐿𝑘 is a finite index subgroup of 𝑉 that does not

contain 𝑔 since 𝑔 is an open path in L𝑘. See Figure 2.15 for an example of such a construction.

For every other 𝑓𝑘 in the normal form of 𝑔 that is not conjugated by a stable variable, assign 𝐿𝑘
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to be the finite index subgroup of 𝑉 that does not contain 𝑓𝑘, whose existence is guaranteed by

the fact that 𝑉 is residually finite.

Figure 2.15.: The process of constructing a finite cover L𝑘 of 𝑆1 ∨ 𝑆1 ∨ 𝑆1 that contains E𝑘 and
𝑔 as an open path.

If 𝑔 = 𝑓0 ≠ 1 is in normal form, then 𝑔 ∈ 𝑉 and we choose 𝑁 to be the finite index subgroup

of 𝑉 guaranteed by the residual finiteness of 𝑉 to not contain 𝑔. Otherwise, let 𝑁 =
⋂𝑟+1

𝑘=1 𝐿𝑘.

Define 𝐶 =
⋂

𝜙∈𝐴𝑢𝑡 (𝑉 ) 𝜙(𝑁). This group 𝐶 is a finite index characteristic subgroup since

automorphisms preserve subgroup-index and the number of subgroups of a fixed finite index

in a finitely generated group is finite. The quotient 𝑝 : 𝑉 → 𝑉/𝐶 extends naturally (and well-

definedly) to a surjective map �̂� : (...((𝑉∗𝐸1)∗𝐸2)...∗𝐸𝑘) → (...((𝑝(𝑉)∗𝑝(𝐸1 ) )∗𝑝(𝐸2 ) )...∗𝑝(𝐸𝑘 ) ),

which is an iterated HNN extension of a finite group since 𝐶 is finite index and characteristic.

If 𝑔 ∈ 𝑉, then �̂�(𝑔) ≠ 1 by our choice of 𝐶. Consider 𝑔 ∉ 𝑉. Since every element 𝑓𝑘 that is

conjugated by a stable letter in 𝑔 is separated from the edge group corresponding to the stable

letter by 𝐿𝑘, none of the stable-letter-derived relations in the image can be used to reduce the

length of the normal form of �̂�(𝑔). Therefore �̂�(𝑔) is an element in its reduced normal form

of length 𝑟 > 1, making �̂�(𝑔) ≠ 1. All iterated HNN extensions of finite groups are virtually
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free (the free group generated by the stable letters is finite index), making it residually finite by

Property 2.3.2.1 and Lemma 2.3.2. Therefore �̂�(𝑔) will survive a further quotient to a finite

group, making G residually finite.

In order to prove that 𝐷(𝐴, 𝐶, 𝛽) splits as an algebraically clean graph of finite rank free

groups, Jankiewicz constructs a quotient of 𝐷(𝐴, 𝐶, 𝛽) with respect to an oppressive set for 𝐶 in

𝐴.

Definition 2.4.9 ([2]). Let 𝜌 : 𝑌 → 𝑋 be a covering map inducing the inclusion of a finite rank

free group 𝐻 ∼= 𝜋1(𝑌 ) → 𝜋1(𝑋) ∼= 𝐺. Let 𝐴𝜌 ⊆ 𝐺 consist of all 𝑔 ∈ 𝐺 represented by a cycle 𝛾

in 𝑋 such that 𝛾 = 𝛾1𝛾2 where

• 𝛾1 = 𝜌(𝜇1) where 𝜇1 is a nontrivial simple non-closed path in 𝑌 going from the vertex 𝑦0

to 𝑦1.

• 𝛾2 = 𝜌(𝜇2) and 𝜇2 is either trivial or a simple non-closed path in 𝑌 going from some

vertex 𝑦2 to 𝑦0 where 𝑦1 ≠ 𝑦2 ≠ 𝑦0.

We refer to 𝐴𝜌 as the oppressive set for 𝐻 in 𝐺 with respect to 𝜌.

In order for a graph of groups to be algebraically clean, we need the edge groups to be

free factors in the vertex groups, which requires every 𝑌 with 𝐺𝑒 ∼= 𝜋1(𝑌 ) to be an embedded

subgraph of 𝑋 where 𝜋1(𝑋) ∼= 𝐺𝑣. This requires every path in 𝑌 that maps to a loop in 𝑋 to

have been a loop in 𝑌 as well. The oppressive set for 𝐺𝑒 in 𝐺𝑣 is therefore the set of all elements

keeping 𝐺𝑒 from being a free factor in 𝐺𝑣. If we can find a quotient 𝜙 of 𝐺 such that the image

of our oppressive set is disjoint from 𝜙(𝐺𝑒), then 𝜙(𝐺𝑒) is a free factor in 𝜙(𝐺𝑣). Finding such

a quotient of 𝐷(𝐴, 𝐶, 𝛽) requires the use of the following lemmas.

Lemma 2.4.8. Let 𝐻 < 𝐺 be a free factor. Then for every finite index 𝐺′ < 𝐺, 𝐺′ ∩ 𝐻 is a free

factor in 𝐺′.

Proof. The subgroup 𝐻 < 𝐺 being a free factor in 𝐺, means that 𝐺 ∼= 𝐻 ∗ 𝐹 for some 𝐹 < 𝐺.

Consider the Bass-Serre tree 𝑇 of this splitting. The subgroup 𝐺′ < 𝐺 being of finite index
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means that the action of 𝐺′ on 𝑇 has a finite fundamental domain. If 𝐺′ ∩ 𝐻 is trivial, then

𝐺′ ∩ 𝐻 is trivially a free factor in 𝐺′. Assume 𝐺′ ∩ 𝐻 is nontrivial. Then we can choose the

finite fundamental domain of the action of 𝐺′ on 𝑇 to contain the vertex stabilized by 𝐻 under

the action of 𝐺 on 𝑇 . The stabilizer of this vertex under the action of 𝐺′ will therefore be 𝐺′ ∩ 𝐻.

The edge stabilizers of 𝑇 are trivial since our splitting is free. By The Fundamental Theorem

of Bass-Serre Theory, 𝐺′ ∼= 𝜋1(𝑇/𝐺′) with 𝑇/𝐺′ viewed as a graph of groups. Since the edge

stabilizers of 𝑇 are trivial, the edge groups in 𝑇/𝐺′ will be trivial. So when we amalgamate the

vertex groups in 𝑇/𝐺′, we get 𝐺′ = (𝐺′ ∩ 𝐻) ∗ 𝐿 where 𝐿 is the free product of the other vertex

groups in 𝑇/𝐺′ and the fundamental group of the underlying graph of 𝑇/𝐺′. Therefore, 𝐺′ ∩ 𝐻

is a free factor in 𝐺′.

Lemma 2.4.9. LetA𝜌 be an oppressive set for𝐶 in 𝐴 coming from the covering map 𝜌 : 𝑋𝐶 → 𝑋𝐴.

Suppose there exists a finite quotient Ψ : 𝐷(𝐴, 𝐶, 𝛽) → 𝐾 such that Ψ|𝐴 (A𝜌) ∩Ψ(𝐴) = ∅. Then

𝐷(𝐴, 𝐶, 𝛽) virtually splits as an algebraically clean graph of finite rank free groups. In particular,

𝐷(𝐴, 𝐶, 𝛽) is residually finite.

Proof. 𝐷(𝐴, 𝐶, 𝛽) is the fundamental group of a graph of groups and therefore inherits a

natural action on its Bass-Serre tree 𝑇 . The vertex-stabilizers of this action are conjugates of 𝐴,

and the edge-stabilizers are conjugates of 𝐶. Since 𝐾 is finite, ker Ψ is a finite index subgroup

of 𝐷(𝐴, 𝐶, 𝛽) forcing the action of ker Ψ on 𝑇 to have a finite fundamental domain. The vertex

stabilizers of the action of ker Ψ are conjugates of ker Ψ ∩ 𝐴 ∼= ker Ψ|𝐴, and the edge stabilizers

are conjugates of ker Ψ|𝐴 ∩𝐶. This information tells us that 𝑇/ker Ψ is the graph of groups with

vertex groups isomorphic to ker Ψ|𝐴 and edge groups isomorphic to ker Ψ|𝐴 ∩𝐶, and thus ker Ψ

splits as a graph of finite rank free groups. Our goal is to show that this splitting is algebraically

clean.

Consider the edge group ker Ψ|𝐴∩𝐶. Let 𝐶′ = Ψ|−1
𝐴 (Ψ|𝐴 (𝐶)). Since Ψ|𝐴 (𝐶) ∩Ψ|𝐴 (A𝜌) = ∅,

𝐶′ ∩ A𝜌 = ∅. Let 𝐶 be the cover of 𝑋𝐴 with 𝜋1(𝐶) = 𝐶′. Since 𝐶 < 𝐶′, there exists a cover

�̂� : 𝑋𝐶 → 𝐶 and 𝜌 factors through �̂�. The oppressive set A�̂� ⊆ A𝜌 ∩ 𝐶′ = ∅ because every path
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in 𝑋𝐶 that maps to a loop in 𝐶 must therefore also map to a loop in 𝑋𝐴, since 𝐶 is a cover of 𝑋𝐴.

This makes �̂� an embedding and 𝐶 a free factor in 𝐶′. By Lemma 2.4.8, since ker Ψ|𝐴 < 𝐶′,

𝐶 ∩ ker Ψ|𝐴 is a free factor in ker Ψ|𝐴. Conjugates of the intersection 𝐶 ∩ ker Ψ|𝐴 are the edge

groups in our splitting, making the graph of groups Γ with 𝜋1(Γ) ∼= ker Ψ algebraically clean.

So ker Ψ is a finite index residually finite subgroup of 𝐷(𝐴, 𝐶, 𝛽) by Theorem 2.4.7, making

𝐷(𝐴, 𝐶, 𝛽) residually finite by Lemma 2.3.2.

We now would like to use the above lemmas to show that our specific twisted double is

residually finite. In our case we will be constructing a quotient of 𝐴, so we utilize the following

theorem to give us the necessary ingredients to extend a quotient of 𝐴 to a separating quotient

of 𝐷(𝐴, 𝐶, 𝛽).

Theorem 2.4.10 ([2]). Suppose there exists a quotient 𝜙 : 𝐴 → �̄� with the following character-

istics:

1. �̄� is a virtually special hyperbolic group,

2. 𝐶 := 𝜙(𝐶) is malnormal and quasiconvex in �̄�,

3. 𝜙 separates 𝐶 from an oppressive set A of 𝐶 in 𝐴,

4. 𝛽 projects to an automorphism �̄� : 𝐶 → 𝐶.

Then 𝐷(𝐴, 𝐶, 𝛽) virtually splits as an algebraically clean graph of finite rank free groups. In

particular, 𝐷(𝐴, 𝐶, 𝛽) is residually finite.

Condition (4) allows us to extend 𝜙 to a projection Φ : 𝐷(𝐴, 𝐶, 𝛽) → 𝐷( �̄�, 𝐶, �̄�). Conditions

(1)-(3) allow us to construct a quotient Ψ : 𝐷( �̄�, 𝐶, �̄�) → 𝐾 for some finite group 𝐾 so that

Ψ ◦ Φ : 𝐷(𝐴, 𝐶, 𝛽) → 𝐾 separates A from 𝐶, giving us that 𝐷(𝐴, 𝐶, 𝛽) is residually finite. We

now set out to find such a quotient 𝜙. The most difficult condition for us to satisfy in Theorem

2.4.10 is condition (2).

Definition 2.4.10. A subgroup 𝐶 < 𝐺 is called malnormal if 𝑔𝐶𝑔−1 ∩ 𝐶 = {1} for all 𝑔 ∈ 𝐺.
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Thus far we have only discussed our vertex groups and subgroups of 𝐴𝑀,𝑁,𝑃 in terms of the

fundamental group of graphs. In order to explore malnormality in this fashion, we need to

understand what subgroup intersection and conjugation look like in terms of graphs.

Definition 2.4.11. Let 𝜙𝑖 : 𝑌𝑖 → 𝑋 be a combinatorial immersion for 𝑖 = 1, 2. The fiber product

of 𝑌1 and 𝑌2 over 𝑋 is the graph 𝑌1 ⊗𝑋 𝑌2 with vertex set

{(𝑣1, 𝑣2) ∈ 𝑉 (𝑌1) × 𝑉 (𝑌2) : 𝜙1(𝑣1) = 𝜙2(𝑣2)}

and edge set {(𝑒1, 𝑒2) ∈ 𝐸(𝑌1) × 𝐸(𝑌2) : 𝜙1(𝑒1) = 𝜙2(𝑒2)}.

There is a natural combinatorial immersion𝑌1⊗𝑋𝑌2 → 𝑋 , given by (𝑦1, 𝑦2) ↦→ 𝜙1(𝑦1) = 𝜙2(𝑦2).

Lemma 2.4.11 ([19]). Let 𝐻1, 𝐻2 ≤ 𝐺 ∼= 𝜋1(𝑋, 𝑣) where 𝑋 is a finite graph. For 𝑖 = 1, 2, let

(𝑌𝑖, �̂�𝑖) → (𝑋, 𝑣) be a cover of 𝑋 where 𝜋1(𝑌𝑖, �̂�𝑖) ∼= 𝐻𝑖. Then 𝐻1 ∩ 𝐻2 ∼= 𝜋1(𝑌1 ⊗𝑋 𝑌2, ( �̂�1, �̂�2)).

In our case, the graph 𝑋𝐴 that we will be computing fiber products over is the wedge of 3

circles. Since 𝑋𝐴 has only one vertex, the immersions 𝜙1 and 𝜙2 agree on every vertex. So the

vertex set of every fiber product for the rest of this paper will be 𝑉 (𝑌1) × 𝑉 (𝑌2). For example,

when we split 𝐴4,5,5 using Seifert-Van Kampen’s Theorem applied to the deformation retract of

the Brady McCammond presentation in Figure 2.13, we get 𝐴 ∗𝐶 𝐵 where 𝐴 = 𝜋1(�̄�), 𝐵 = 𝜋1(�̄�)

and 𝐶 = 𝜋1(𝑈 ∩ 𝑉). If we denote 𝑋𝐶 as the copy of 𝑈 ∩ 𝑉 that is combinatorially immersed into

�̄� then the computation 𝑋𝐶 ⊗�̄� 𝑋𝐶 results in the connected components shown in Figure 2.16.

Notice that every element of 𝑉 (𝑋𝐶) × 𝑉 (𝑋𝐶) is present in 𝑋𝐶 ⊗�̄� 𝑋𝐶 . There is a purple edge

(𝑎, 𝑏) → (𝑐, 𝑑) only when there is a purple edge 𝑎 → 𝑐 and a purple edge 𝑏 → 𝑑 in the

respective components of the fiber product. The same is true for blue and green edges. For

example, we have a purple edge (1, 2) → (2, 4) in the bottom connected component since there

is a purple edge 1 → 2 in the first copy of 𝑋𝐶 and a purple edge 2 → 4 in the second copy of

𝑋𝐶 . This example also demonstrates that fiber products need not be connected, making choice

of basepoint very important when calculating the fundamental group. We will be primarily

interested in cores of graphs, and thus will omit the trees needed to complete the connected
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Figure 2.16.: 𝑋𝐶 ⊗�̄� 𝑋𝐶

components of fiber products to actual covers, as well as any maximal acyclic paths that arise

during fiber product computations.

When we conjugate 𝐶 < 𝐴 by an element 𝑔 ∈ 𝐴, this naturally corresponds to translating the

basepoint 𝑏 along the path labelled by 𝑔−1 in 𝑋𝐶 to the vertex 𝑏𝑔. Such a path is incident with

every vertex in 𝑋𝐶 since 𝑋𝐶 is a cover of 𝑋𝐴. We will see that 𝑔𝐶𝑔−1 ∼= 𝜋1(𝑋𝐶 , 𝑏𝑔). Figure 2.17

demonstrates such a basepoint translation pictorially.

In Figure 2.17 we have initially chosen the basepoint of 𝑋𝐶 to be the vertex labeled 1. If

we conjugate 𝜋1(𝑋𝐶 , 1) by 𝑧 (the algebraic element corresponding to traveling once around the

purple loop in 𝐴), this corresponds to shifting the basepoint backwards along the purple edge to
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Figure 2.17.: Change of basepoint

the vertex labeled 8. This is because every loop that begins at 8 can be realized by first traversing

the purple edge to 1, performing a loop at 1, and then returning backwards along the same purple

edge back to 8. In the figure, a loop at 1 is shown in orange and the traversal of the purple path

is shown in black. This pictorially demonstrates that 𝑧𝜋1(𝑋𝐶 , 1)𝑧−1 ∼= 𝜋1(𝑋𝐶 , 8). We may also

translate the basepoint along a path that leaves the core, i.e. translating the basepoint 1 along

a blue edge in the tree (not shown in the figure) attached to 1. In both cases, translating the

basepoint does not affect the structure of the underlying graph itself.

Therefore if we want to find a quotient 𝜙 such that 𝜙(𝐶) is malnormal in 𝜙(𝐴), such a

quotient would have to introduce 2-cells to the graphs that arise as connected components of

fiber products so as to make them all contractible, thereby making 𝜙(𝐶𝑔 ∩ 𝐶) ∼= {1} as desired.

Theorem 2.4.12 ([2]). Suppose 𝑀, 𝑁, 𝑃 ≥ 4 with at least one of 𝑀, 𝑁, 𝑃 even. Then 𝐴𝑀,𝑁,𝑃 ∼=

𝐴 ∗𝐶 𝐵 for 𝐴, 𝐵, 𝐶 finite rank free groups with [𝐵 : 𝐶] = 2 and 𝐴 ∼= ⟨𝑥, 𝑦, 𝑧⟩. There exists a

quotient 𝜙 : 𝐴 → �̄� defined in the following way. Let �̄� =


𝑘
2 𝑘 even

𝑘 𝑘 odd

and �̄� = ⟨𝑥, 𝑦, 𝑧 |𝑥 �̄� , 𝑦 �̄� , 𝑧 �̄�⟩ ∼= ℤ/�̄�ℤ ∗ℤ/�̄�ℤ ∗ℤ/�̄�ℤ with the associated quotient 𝜙 : 𝐴 → �̄�.

The map 𝜙 is a projection that satisfies the four conditions in Theorem 2.4.10.
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The existence of such a quotient 𝜙 proves that 𝐷(𝐴, 𝐶, 𝛽) is residually finite by Theorem

2.4.10, and thus 𝐴𝑀,𝑁,𝑃 is residually finite as well by Lemma 2.3.2. This same method was

used to prove that 𝐴𝑀,𝑁,𝑃 is residually finite when (𝑀, 𝑁, 𝑃) = (2𝑚 + 1, 2𝑛 + 1, 2𝑝 + 1) with

𝑚, 𝑛, 𝑝 ≥ 2, albeit with a different quotient, owing to the fact that the graphs representing 𝐶𝑔 ∩𝐶

contain non-monochrome simple loops in those cases.

But what about 𝐴2,𝑁,𝑃? When 𝑀 = 2, the fourth relation in the Brady-McCammond pre-

sentation becomes 𝑥 = 𝑏𝑎, which results in a fourth triangle being present in the presentation

complex. When we deformation retract 𝑈 ∩ 𝑉 along the deformation retract of 𝑈, the vertices

𝑏+, 𝑐−, 𝑎− and 𝑐+ are all identified to one vertex. This four-fold identification forces multiple

closed Stallings folds to occur.

Stallings folds are an important part of the process of converting a graph into a cover of

another graph. In the case of �̄�, the deformation retract of 𝑈, there is only one vertex, and thus

any vertex in a cover of �̄� must locally look identical to this lone vertex. As discussed before, if

a vertex in a combinatorially immersed graph does not have the same edges adjacent to it as the

lone vertex in �̄�, we can simply attach an infinite tree to this vertex so that every vertex in the

tree has the same adjacent edges as the lone vertex in �̄�. But we also must consider the case in

which there are redundant edges entering or exiting a vertex. Stallings folds remedy precisely

these redundancies. Stallings folds come in two varieties, open and closed, as seen in Figure

2.18.

The Stallings fold at the top of Figure 2.18 is an example of an open Stallings fold. The other

two Stallings folds are examples of closed Stallings folds. A closed Stallings fold is a Stallings

fold that results in an entire loop being collapsed in the graph. In the context of constructing

amalgamated products, closed Stallings folds are to be avoided at all costs since they result in

the loss of a nontrivial loop, thereby creating a kernel in the induced map on the fundamental

groups of the graphs. If closed Stallings folds were to occur during the course of a deformation

retract like in the previous examples, then Seifert-Van Kampen’s theorem applied to the Brady-
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Figure 2.18.: Stallings Folds

McCammond complex cannot be an amalgamated free product. To remedy the occurrence of

closed Stallings folds when the previous procedures are applied to 𝐴2,𝑁,𝑃 , Jankiewicz defines

the new presentation for 𝐴2,𝑁,𝑃 described below.

Lemma 2.4.13 ([1]). 𝐴2,𝑁,𝑃 ∼= ⟨𝑏, 𝑥, 𝑦 |𝑟𝑁 (𝑏, 𝑥), 𝑟𝑃 (𝑏, 𝑦), 𝑏𝑥−1𝑦𝑏−1 = 𝑦𝑥−1⟩ where

• 𝑟𝑁 (𝑏, 𝑥) =⇒ 𝑏𝑥𝑛𝑏−1 = 𝑥𝑛 when 𝑁 = 2𝑛

• 𝑟𝑁 (𝑏, 𝑥) =⇒ 𝑏𝑥𝑛𝑏 = 𝑥𝑛+1 when 𝑁 = 2𝑛 + 1

and similarly for 𝑟𝑃 (𝑏, 𝑦).

To prove that this is indeed a valid presentation for 𝐴2,𝑁,𝑃 one only needs to identify 𝑥 = 𝑎𝑏

and 𝑦 = 𝑐𝑏. The presentation complex of 𝐴2,𝑁,𝑃 where 𝑁 > 3 and one of 𝑁, 𝑃 is odd is shown

in Figure 2.19.

We can again apply Seifert Van-Kampen’s theorem to this presentation complex, and then

deformation retract 𝑈, 𝑉 and 𝑈 ∩ 𝑉 to obtain the graphs in Figure 2.20.

The general form of these graphs can be used to prove that 𝐴2,𝑁,𝑃 ∼= 𝐹3 ∗𝐹7 𝐹4 when 𝑁 > 3

and one of 𝑁, 𝑃 is odd. An example of what the presentation complex of 𝐴2,𝑁,𝑃 when 𝑁 > 3 and

both 𝑁 and 𝑃 are even is shown in Figure 2.21.
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Figure 2.19.: Presentation complex for
𝐴2,4,5 = ⟨𝑏, 𝑥, 𝑦 |𝑏𝑥2𝑏−1 = 𝑥2, 𝑏𝑦2𝑏 = 𝑦3, 𝑏𝑥−1𝑦𝑏−1 = 𝑦𝑥−1⟩

Figure 2.20.: Deformation retracts of 𝑈, 𝑉 and 𝑈 ∩ 𝑉

In Figure 2.21 we attempt to apply Seifert Van-Kampen’s Theorem in the same way as in

the previous examples, but this unfortunately cannot be done since the blue regions are no

longer connected. Instead, we can forego using Seifert Van-Kampen’s Theoreom by instead

noticing that the presentation 𝐴2,2𝑛,2𝑝 = ⟨𝑏, 𝑥, 𝑦 |𝑏𝑥𝑛𝑏−1 = 𝑥𝑛, 𝑏𝑦 𝑝𝑏−1 = 𝑦 𝑝, 𝑏𝑥−1𝑦𝑏−1 = 𝑦𝑥−1⟩

is precisely that of an HNN extension with stable letter 𝑏. So 𝐴2,2𝑛,2𝑝 ∼= ⟨𝑥, 𝑦⟩∗⟨𝑥𝑛,𝑦𝑝,𝛼⟩ where

the two injective homomorphisms 𝜙1 : ⟨𝑥𝑛, 𝑦 𝑝, 𝛼⟩ → ⟨𝑥, 𝑦⟩ and 𝜙2 : ⟨𝑥𝑛, 𝑦 𝑝, 𝛼⟩ → ⟨𝑥, 𝑦⟩ are

defined by 𝜙1(𝛼) = 𝑥−1𝑦 and 𝜙2(𝛼) = 𝑦𝑥−1.

But when we impose Jankiewicz’s presentation on 𝐴2,3,2𝑚 with 2𝑚 ≥ 6, a closed Stallings

45



Chapter 2. Preliminaries

Figure 2.21.: An attempt at applying Seifert-Van Kampen’s Theorem to the presentation complex
of 𝐴2,4,4 = ⟨𝑏, 𝑥, 𝑦 |𝑏𝑥2𝑏−1 = 𝑥2, 𝑏𝑦2𝑏−1 = 𝑦2, 𝑏𝑥−1𝑦𝑏−1 = 𝑦𝑥−1⟩.

fold occurs, as seen in Figure 2.22. The final graph in Figure 2.22 has two orange paths of

length 𝑚 − 2 going between the topmost triangular vertices, which, after 𝑚 − 3 open Stallings

folds, will force a final closed Stallings fold to occur. This graph is the copy of 𝑈 ∩ 𝑉 that we

are attempting to complete to a combinatorial immersion into �̄�. The guaranteed presence of

this closed Stallings fold forces us to look for yet another presentation that we can use to split

𝐴2,3,𝑃 as an amalgamated product. Wu & Ye utilized the following presentation in [25] to prove

that 𝐴2,3,2𝑚 for 2𝑚 > 6 splits as a graph of free groups.

Theorem 2.4.14 ([25]). 𝐴2,3,2𝑚 ∼= ⟨𝑏, 𝑐, 𝑥, 𝑦, 𝑑, 𝛿|𝑑 = 𝑥𝑐, 𝑑 = 𝑏𝑥, 𝑦 = 𝑏𝑐, 𝑦𝑏 = 𝑐𝑦, 𝛿𝑏 = 𝑐𝛿, 𝛿 =

𝑑𝑥𝑚−2𝑑⟩ ∼= 𝐹3 ∗𝐹7 𝐹4 for 𝑚 > 3.

The details of the above isomorphism along with the presentation complexes associated to

these presentations are analyzed in detail in the next section. We have now split almost every

hyperbolic triangle Artin group. All that remain are 𝐴2,3,𝑃 for 𝑃 > 6 and odd. Wu & Ye proved

in [25] that such Artin groups actually cannot split as a graph of free groups.

Theorem 2.4.15 ([25]). When 𝑚 ≠ 3𝑘 + 1, 𝐴2,3,2𝑚+1 does not split as a graph of free groups.

Proof. The details of this proof will take us too far off course from the rest of the paper, but we

provide here a brief sketch of the foundational arguments. We begin by proving that every action
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Figure 2.22.: Stallings folds in the 𝐴2,3,2𝑚 case

by isometries of 𝐴2,3,2𝑚+1 on a simplicial tree 𝑇 either has a global fixed point or a geodesic

line that is invariant under that action. We prove this by assuming to the contrary that there

exists an action on a tree 𝑇 without a global fixed point or invariant geodesic line. This forces

the existence of a geodesic path with specially constructed vertex stabilizers that in turn forces

one of the generating elements 𝑎 ∈ 𝐴2,3,2𝑚+1 to have a nonempty fixed point set. This generator

𝑎 is special in that it commutes with 𝑐, and we use this nonempty fixed point set to prove that

𝐹𝑖𝑥 (𝑎) ≠ ∅ forces the existence of a global fixed point, providing us with a contradiction.

Now assume that 𝐴2,3,2𝑚+1 splits as a graph of free groups. Then 𝐴2,3,2𝑚+1 acts on the Bass-

Serre tree, 𝑇 , of this splitting. The elements that fix the vertices of 𝑇 are conjugates of the vertex

groups. If there were to be a global fixed point of the action on 𝑇 , this would force 𝐴2,3,2𝑚+1

to consist only of elements from a conjugate of a vertex group, which would make the splitting

trivial and 𝐴2,3,2𝑚+1 a free group, which it clearly is not. Therefore there must be a geodesic line

𝑙 in 𝑇 that is invariant under the action of 𝐴2,3,2𝑚+1.

The Artin group 𝐴2,3,2𝑚+1 acts on 𝑙 by translations, and translations of a line form a copy
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of ℤ. This allows us to define a map 𝑓 : 𝐴2,3,2𝑚+1 → ℤ that factors through 𝐴𝐴𝑏2,3,2𝑚+1. The

Abelianization 𝐴𝐴𝑏2,3,2𝑚+1 = ℤ due to the Artin relations and the newfound Abelian relations

forcing all of the generators to be identified. Therefore ker 𝑓 is the kernel of the Abelianization

map, which is the commutator subgroup, 𝐴, of 𝐴2,3,2𝑚+1. Therefore there is a vertex in 𝑙 with 𝐴

as its stabilizer. But the vertices in 𝑙 are also vertices in 𝑇 , meaning that the vertex stabilizers are

conjugates of free groups. If 𝐴 were to be free, then this would make 𝐴2,3,2𝑚+1 free-by-cyclic,

and thus also coherent [26]. A combination of results from [27] and [28] forces the only coherent

triangle Artin groups to be of the form 𝐴2,2,𝑛. Therefore 𝐴2,3,2𝑚+1 cannot be coherent and thus

cannot split as a graph of free groups.

The case when 𝑚 = 3𝑘 + 1 is proven in a similar fashion, except there is now a third condition

to consider where 𝐴2,3,6𝑘+3 has a vertex stabilizer that contains specific elements that keep the

vertex stabilizer from being a free group, and the group itself from splitting as a graph of free

groups. The goal of the next section is to use the splitting of Wu & Ye from Theorem 2.4.14

to prove that all Artin groups 𝐴2,3,2𝑛 for 𝑛 > 3 are residually finite using similar methods as

Jankiewicz.
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Main Work

§ 3.1. Splitting 𝐴2,3,2𝑛 For 𝑛 > 3

We begin by fixing the presentation of 𝐴2,3,2𝑛 from Lemma 2.4.14, which will be used to split

𝐴2,3,2𝑛 as a graph of free groups. An isomorphism between

𝐴2,3,2𝑛 = ⟨𝑎, 𝑏, 𝑐|𝑎𝑐 = 𝑐𝑎, 𝑏𝑐𝑏 = 𝑐𝑏𝑐, (𝑎𝑏)2𝑛 = (𝑏𝑎)2𝑛⟩

and the presentation in Lemma 2.4.14 can be defined by mapping, in one direction:

𝜙(𝑏) = 𝑏, 𝜙(𝑐) = 𝑐, 𝜙(𝑥) = 𝑐𝑏𝑎𝑐−1

𝜙(𝑦) = 𝑏𝑐, 𝜙(𝑑) = 𝑏𝑐𝑏𝑎𝑐−1, 𝜙(𝛿) = 𝑏𝑐(𝑏𝑎)𝑛

and in the other direction:

𝜓(𝑎) = 𝑏−1𝑐−1𝑥𝑐, 𝜓(𝑏) = 𝑏, 𝜓(𝑐) = 𝑐

The presentation complex associated with the presentation in Lemma 2.4.14 can be seen in

Figure 3.1. In order to realize 𝐴2,3,2𝑛 as an amalgamated product, we apply Seifert-Van Kampen’s

Theorem to 𝑋 as shown in Figure 3.2.

The red band, 𝑈, and the blue band, 𝑉, are path connected open subsets of 𝑋 with nonempty

intersection, namely the purple band. There is a natural deformation retract that we then perform
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on 𝑈 and 𝑉 respectively to obtain the graphs �̄� and �̄�, as shown in Figures 3.3 & 3.4.

Figure 3.1.: Presentation complex 𝑋

Figure 3.2.: Seifert Van Kampen’s Theorem applied to the 2-cells in 𝑋

Figure 3.3.: 𝑈 deformation retracts to the wedge of 3 circles, �̄�.
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Figure 3.4.: 𝑉 deformation retracts to the graph �̄� with 𝜋1(�̄�) ∼= 𝐹4.

Figure 3.5.: 𝑊′, the deformation retract of 𝑈 ∩ 𝑉 when viewed as a graph that can be combina-
torially immersed into �̄�.

Next, we deformation retract 𝑈 ∩𝑉 to the graph 𝑈 ∩ 𝑉 constructed from the purple horizontal

lines in Figures 3.5 & 3.6. We will soon see that the maps 𝑈 ∩ 𝑉 → �̄� and 𝑈 ∩ 𝑉 → �̄� are

combinatorial immersions.

Lemma 3.1.1. The induced map 𝑈 ∩ 𝑉 ↬ �̄� is a combinatorial immersion.

Proof. The graph 𝑊′ in Figure 3.5 is the image of 𝑈 ∩ 𝑉 under the composition 𝑈 ∩ 𝑉 ↩→

𝑈 ∩ 𝑉 ↩→ 𝑉 → �̄� where the final map is the deformation retract of 𝑉. The combinatorial

immersion from 𝑊′ ↬ �̄� is represented by the coloring of the edges in 𝑊′.

Notice further that 𝑊′ is a double cover of �̄�, making obvious the fact that 𝑊′ ↬ �̄� is a

combinatorial immersion. The mapping 𝑈 ∩ 𝑉 → �̄� is not as simple.

Lemma 3.1.2. The induced map 𝑈 ∩ 𝑉 ↬ �̄� is a combinatorial immersion.
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Figure 3.6.: 𝑊, the deformation retract of 𝑈 ∩𝑉 when viewed as a graph that can be combinato-
rially immersed into �̄�.

Proof. The graph 𝑊 in Figure 3.6 is the image of 𝑈 ∩ 𝑉 under the composition 𝑈 ∩ 𝑉 ↩→

𝑈 ∩ 𝑉 ↩→ 𝑈 → �̄�. The graph above 𝑊 is an intermediate step in the construction of 𝑊 where

the dashed edges are collapsed to vertices in 𝑊 under the deformation retract of �̄�. Once again,

the combinatorial immersion 𝑈 ∩ 𝑉 ↬ �̄� is defined by the coloring of the edges in 𝑊.

We utilize these combinatorial immersions to induce the injections 𝜋1(𝑊) ↩→ 𝜋1(�̄�) and

𝜋1(𝑊′) ↩→ 𝜋1(�̄�) respectively. Since we would need infinitely many vertices to complete 𝑊

to a cover of �̄�, this makes 𝜋1(𝑊) an infinite-index subgroup of 𝜋1(�̄�). Since 𝑊′ is a double

cover of �̄�, this makes 𝜋1(𝑊′), an index-2 subgroup of 𝜋1(�̄�). Both 𝜋1(𝑊) and 𝜋1(𝑊′) are

isomorphic to 𝐹7, making𝑊 and𝑊′ homotopy equivalent. We denote this homotopy equivalence

by 𝜎 : 𝑊′ → 𝑊. Intuitively, 𝜎 maps each edge in 𝑊′ to the closest horizontal component at the

top/bottom of the relator polygon from which that edge is derived. For details about the behavior

of 𝜎, see Figure 3.9. The deformation retracts, combinatorial immersions and 𝜎 all fit into the

following diagram that commutes up to homotopy:
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𝑊

�̄� 𝑊′ �̄�

𝑉 𝑈 ∩ 𝑉 𝑈

↫→

↫→

𝜎

This commutative diagram coming from Lemmas 3.1.1 & 3.1.2, along with Seifert-Van

Kampen’s Theorem being applied to the presentation complex for 𝐴2,3,2𝑛, proves the following

theorem.

Theorem 3.1.3. For 𝑛 ≥ 3, 𝐴2,3,2𝑛 ∼= 𝜋1(𝑈) ∗𝜋1 (𝑈∩𝑉 ) 𝜋1(𝑉) where

• 𝜋1(𝑈) = 𝜋1(�̄�) ∼= 𝐹3

• 𝜋1(𝑉) = 𝜋1(�̄�) ∼= 𝐹4

• 𝜋1(𝑈 ∩ 𝑉) = 𝜋1(𝑊) ∼= 𝜋1(𝑊′) ∼= 𝐹7

Since this graph of groups is a graph of free groups, the vertex and edge groups implicitly

satisfy the first 2 criteria in [29, Theorem 2.3], thereby reducing [29, Theorem 2.3] to the more

approachable theorem below.

Theorem 3.1.4 (Huang-Wise [29]). Let 𝐺 be a graph of finite rank free groups. If 𝐺 has finite

stature with respect to its vertex groups, then 𝐺 is residually finite.

We will discuss finite stature in greater detail in the following subsection. For now we end

this section with an explicit generating set for 𝜋1(𝑊, 1), which will be used in later sections.

Lemma 3.1.5. 𝜋1(𝑊, 1) = ⟨𝑥𝑛, 𝑦3, 𝑦𝛿−1, 𝑦(𝑦𝛿−1)𝑦−1, 𝛿−1𝑦, 𝑦𝑥, 𝑦(𝑦𝑥)𝑦−1⟩.

Proof. In order to see that this is a generating set for 𝜋1(𝑊, 1), collapse the maximal tree

shown in Figure 3.7. Recall that each red edge corresponds to the algebraic element 𝑥, each

green edge corresponds to 𝑦 and each yellow edge corresponds to 𝛿. The loops present after the

collapse of this maximal tree are in one-to-one correspondence with the generating set in the

lemma.
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Figure 3.7.: Collapsing the maximal tree.

§ 3.2. Finite Stature Procedure

In order to prove that 𝐴2,3,2𝑛 is residually finite, we first prove that 𝐴2,3,2𝑛 has finite stature with

respect to {𝜋1(�̄�), 𝜋1(�̄�)}, the vertex groups of the splitting.

Definition 3.2.1 ([29]). Let𝐺 be a group and {𝐻𝜆}𝜆∈Λ be a collection of subgroups of𝐺. Then𝐺

has finite stature with respect to {𝐻𝜆}𝜆∈Λ if for each 𝜇 ∈ Λ, there are finitely many 𝐻𝜇-conjugacy

classes of infinite subgroups of the form 𝐻𝜇 ∩ 𝐷 where 𝐷 is an intersection of 𝐺-conjugates of

elements in {𝐻𝜆}𝜆∈Λ.

In our case the set {𝐻𝜆}𝜆∈Λ is the set of vertex groups of our splitting, namely {𝜋1(�̄�), 𝜋1(�̄�)}.

Therefore each 𝐷 is an intersection of 𝐴2,3,2𝑛-conjugates of the vertex groups. Conjugates of

vertex groups are stabilizers of vertices in the Bass-Serre Tree 𝑇 associated with the graph

of groups. Therefore the intersection of conjugates of vertex groups is a group element that

stabilizes multiple vertices in 𝑇 . Since the action of elements of 𝐺 on 𝑇 preserves vertex-

adjacency, the action of 𝐷 on 𝑇 maps paths to paths. If 𝐷 fixes two vertices in 𝑇 , then the path

between the vertices is unique, forcing 𝐷 to fix the entire path in 𝑇 between the vertices. Edge

stabilizers in 𝑇 are conjugates of 𝜋1(�̄�) ∩ 𝜋1(�̄�) = 𝜋1(𝑊) ∼= 𝜋1(𝑊′). Therefore 𝐷 is either

𝜋1(�̄�), 𝜋1(�̄�) or the intersection of 𝐴2,3,2𝑛-conjugates of 𝜋1(𝑊) ∼= 𝜋1(𝑊′).

Thus far we have only discussed the groups in our graph of groups in terms of the fundamental

group of graphs. We would like to continue to proceed in this fashion. In order to do so, we need
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to understand what subgroup intersection and conjugation look like in the context of graphs.

3.2.1. Fiber Products

We will be performing fiber products of covers of 𝑊 ∼𝑊′ throughout the rest of the paper. We

choose to work with covers of𝑊 instead of𝑊′ since �̄� has only one vertex, guaranteeing that the

immersions 𝜙1 and 𝜙2 agree on every vertex. This results in 𝑉 (𝑌1) × 𝑉 (𝑌2) being the vertex set

of every fiber product for the rest of this paper. Figure 3.8 shows an example of a fiber product

calculation that will be used later on.

Figure 3.8.: 𝑊 ⊗�̄� 𝑊 for 𝐴2,3,8

Lemma 3.2.1. Let 𝑌1 ⊆ 𝑋1 and 𝑌2 ⊆ 𝑋2 be subgraphs. Then 𝑌1 ⊗�̄� 𝑌2 ⊆ 𝑋1 ⊗�̄� 𝑋2.

This lemma is immediate by the definition of fiber products. Also, algebraically, it is intuitive

that the intersection of subgroups will always be a subgroup of the intersection of the supergroups.

55



Chapter 3. Main Work

3.2.2. Basepoint Translation

We now must discuss how to understand conjugation of subgroups when our subgroups are

being considered as the fundamental group of graphs. We begin by exploiting the following

property of 𝐴2,3,2𝑛, 𝑛 > 3.

Lemma 3.2.2. Every element 𝑔 ∈ 𝐴2,3,2𝑛 with 𝑛 > 3 can be written as

𝑔 = 𝑔1𝑣𝑔2𝑣...𝑔𝑚−1𝑣𝑔𝑚 where 𝑔1, ..., 𝑔𝑘 ∈ 𝜋1(�̄�) and 𝑣 ∈ 𝜋1(�̄�) is a fixed coset representative

coming from 𝜋1(�̄�)/𝜋1(𝑊′) = {[1], [𝑣]}.

Proof. 𝐴2,3,2𝑛 ∼= 𝜋1(�̄�)∗𝜋1 (𝑊 )=𝜋1 (𝑊′ )𝜋1(�̄�) = (𝜋1(�̄�)∗𝜋1(�̄�))/(𝜋1(𝑊) = 𝜋1(𝑊′)). Therefore

every element 𝑔 = ℎ1𝑘1ℎ2𝑘2...ℎ𝑚−1𝑘𝑚−1ℎ𝑚 where each ℎ𝑖 ∈ 𝜋1(�̄�) and 𝑘𝑖 ∈ 𝜋1(�̄�). Since

𝜋1(𝑊′) is an index-2 subgroup of 𝜋1(�̄�), each 𝑘𝑖 = 𝑙𝑖𝑣 for some 𝑙𝑖 ∈ 𝜋1(𝑊′) = 𝜋1(𝑊).

Therefore 𝑔 = ℎ1𝑘1...ℎ𝑚−1𝑘𝑚−1ℎ𝑚 = ℎ1𝑙1𝑣ℎ2𝑙2𝑣...ℎ𝑚−1𝑙𝑚−1𝑣ℎ𝑚. Setting ℎ𝑖𝑙𝑖 = 𝑔𝑖 for 1 < 𝑖 < 𝑚

and ℎ𝑚 = 𝑔𝑚 results in the desired expansion of 𝑔.

Consider a subgroup 𝐻 < 𝜋1(𝑊). We can represent 𝐻 ∼= 𝜋1(𝑌, 𝑝) where 𝑌 ↬𝑊. By Lemma

3.2.2 it suffices to understand how conjugation by elements of 𝜋1(�̄�), and conjugation by the

coset representative 𝑣 ∈ 𝜋1(�̄�), affect 𝐻.

When we conjugate 𝐻 by an element 𝑔 ∈ 𝜋1(�̄�), this naturally corresponds to translating the

basepoint 𝑝 along the path labelled by 𝑔 in 𝑌 to the vertex 𝑝𝑔 just like Figure 2.18. But since

𝑣 ∉ 𝜋1(�̄�), we cannot represent conjugation by 𝑣 of a subgroup of 𝜋1(𝑊) < 𝜋1(�̄�) by simply

shifting the basepoint along a path in the corresponding cover of �̄�. Consider 𝑣−1𝜋1(𝑊′)𝑣. Since

𝜋1(𝑊′) ⊴ 𝜋1(�̄�), 𝑣−1𝜋1(𝑊′)𝑣 ∼= 𝜋1(𝑊′). Since 𝑊′ is a cover of �̄� and 𝑣 ∈ 𝜋1(�̄�), conjugating

𝜋1(𝑊′) by 𝑣 corresponds to shifting the basepoint of 𝑊′ along the path 𝑣. The basepoint of 𝑊′

being one of {𝑑+, 𝑑−, 𝑏+, 𝑏−, 𝑐+, 𝑐−} and 𝑣 being a loop in �̄� means that it must take the basepoint

to its partner, meaning 𝑑+ ↔ 𝑑−, 𝑏+ ↔ 𝑏− or 𝑐+ ↔ 𝑐− depending on the basepoint. This is

all to say that 𝜋1(𝑊′, 𝑝𝑣) ∼= 𝑣−1𝜋1(𝑊′, 𝑝)𝑣, and the isomorphism is defined on the vertices by

𝑑+ ↔ 𝑑−, 𝑏+ ↔ 𝑏−, 𝑐+ ↔ 𝑐−. This isomorphism extends naturally to the edges.
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Consider the homotopy equivalence 𝜎 : 𝑊′ → 𝑊 introduced in the previous section. Since

𝜎 is a homotopy equivalence, it extends naturally to all covers of 𝑊′ as well. Figure 3.9 shows

how 𝜎 behaves locally on edges. If we want to translate the basepoint of a cover 𝑌 of𝑊 by 𝑣, we

start by considering the graph 𝑌 ′ that is the cover of 𝑊′ such that 𝜎(𝑌 ′) = 𝑌 . The 𝑣-translated

copy of 𝑌 ′, (𝑌 ′)𝑣, is a cover of the 𝑣-translated copy of 𝑊′, which is a copy of 𝑊′ with + ↔ −

swapped in every superscript. Therefore (𝑌 ′)𝑣 must likewise be obtained by swapping + ↔ −

in the superscripts of every vertex in 𝑌 ′. Define �̄� : 𝑌 ′ → (𝑌 ′)𝑣 to be defined by this swapping

of superscripts.

Figure 3.9.: 𝛽 = 𝜎 ◦ �̄� applied to every applicable vertex & edge.

Putting these pieces together, we can calculate 𝑌 𝑣, for any cover 𝑌 of𝑊 by applying 𝛽 = 𝜎 ◦ �̄�

to 𝑌 ′. Pictorially, we can think of 𝛽(𝑌 ′) as swapping the tops and bottoms of the relator polygons

in the presentation complex. Figure 3.9 shows the details of how 𝛽 affects the vertices and edges

of the core of every cover of𝑊. In the figure, the dotted arrows are meant to represent edges that

are being mapped to a vertex by 𝜎. An example of a 𝛽 calculation can be found in Figure 3.13.

To recap, the basepoint translation of a graph 𝑌 ↬𝑊 can either result in:
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1. 𝑌 with a new basepoint chosen, when 𝑌 is basepoint translated by an element of 𝜋1(�̄�) or

2. A (potentially) new graph 𝛽(𝑌 ) with a (potentially) new basepoint, when 𝑌 is basepoint

translated by the nontrivial coset representative 𝑣 ∈ 𝜋1(�̄�).

3.2.3. Defining the Set 𝑆

Lemma 3.2.3. If there exists a finite set 𝑆 of finite cores of covers of 𝑊 such that 𝑆 contains:

• 𝑊

• Every connected component of every fiber product of elements in 𝑆

• The image under 𝛽 of every element in 𝑆

Then 𝐴2,3,2𝑛 has finite stature with respect to its vertex groups.

Proof. Such a set𝑆 corresponds to a collection of𝜋1(�̄�)-conjugacy classes &𝜋1(�̄�)-conjugacy

classes of subgroups of 𝜋1(𝑊), and these conjugacy classes are closed under intersection.

Therefore 𝑆 contains every graph 𝑌𝐷 corresponding to a subgroup 𝐷 as described in Definition

3.2.1. By construction, 𝜋1(�̄�) ∩ 𝜋1(�̄�) = 𝜋1(𝑊) ∼= 𝜋1(𝑊′). Assume 𝐷 ≇ 𝜋1(�̄�) or 𝜋1(�̄�).

Then 𝐷 < 𝜋1(𝑊) = 𝜋1(𝑊′) and 𝜋1(�̄�) ∩ 𝐷 ∼= 𝐷 < 𝜋1(�̄�). Similarly, 𝜋1(�̄�) ∩ 𝐷 ∼= 𝐷 < 𝜋1(�̄�).

Therefore, if there are finitely many elements in 𝑆, there are also finitely many subgroups

𝜋1(�̄�) ∩ 𝐷 and 𝜋1(�̄�) ∩ 𝐷. Since each 𝑌𝐷 has finitely many vertices in its core and 𝑌𝐷 is

closed under basepoint translation by all elements of 𝜋1(�̄�) and 𝜋1(�̄�), there are finitely many

conjugacy classes of 𝜋1(�̄�) ∩ 𝐷 and 𝜋1(�̄�) ∩ 𝐷. Therefore 𝐴2,3,2𝑛 has finite stature by definition.

Connected components coming from fiber products have tuples for vertex labels. The maps

𝜎 and 𝛽 are defined with respect to vertices that have integer labels. We will need to calculate 𝛽

of connected components coming from fiber products, so we choose to project each vertex-tuple

to its second component. This will allow us to apply 𝛽 to the connected component, and to
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decide which graph in 𝑆 (if any) that the connected component is a subgraph of. Because we

are making this choice, we must perform 𝐻 ⊗�̄� 𝐾 and 𝐾 ⊗�̄� 𝐻 for all pairs 𝐻, 𝐾 ∈ 𝑆, despite the

fact that (𝐻 ⊗�̄� 𝐾) ∼= (𝐾 ⊗�̄� 𝐻) by swapping the tuple-values at each vertex.

3.2.4. 𝑞-Contractibility

In Lemma 2.4.14, we fixed the presentation

𝜋1(𝑊, 1) = ⟨𝑥𝑛, 𝑦3, 𝑦𝛿−1, 𝑦(𝑦𝛿−1)𝑦−1, 𝛿−1𝑦, 𝑦𝑥, 𝑦(𝑦𝑥)𝑦−1⟩

Consider the quotient �̄� : 𝜋1(𝑊, 1) → 𝜋1(𝑊, 1)/⟨⟨𝑁⟩⟩ where

𝑁 = ⟨𝑥𝑛, 𝑦3, 𝑦𝛿−1, 𝑦2𝛿−1𝑦−1, 𝛿−1𝑦⟩

Definition 3.2.2. For every 𝐾 ↬ 𝑊, define 𝑞(𝐾) to be the minimal 2-complex with 𝐾 as its

1-skeleton and 2-cells attached to all simple loops whose edges form a word in ⟨⟨𝑁⟩⟩. The

complex 𝑞(𝐾) satisfies �̄�(𝜋1(𝐾)) = 𝜋1(𝑞(𝐾)).

Definition 3.2.3. Let 𝐾 be the core of a cover of 𝑊. The graph 𝐾 is 𝑞-fillable if every path in 𝐾

whose edges form a generator of 𝑁 with the above presentation is a simple loop.

A graph 𝐾 being 𝑞-fillable means that every loop in 𝐾 that corresponds to an element of 𝑁 is

built from simple loops, each of which corresponds to a generator of 𝑁.

Lemma 3.2.4. Suppose that 𝐻, 𝐾 ↬ 𝑊 are 𝑞-fillable. Then:

• 𝐻 ⊗�̄� 𝐾 is 𝑞-fillable,

• 𝛽(𝐻) is 𝑞-fillable.

Proof. Let 𝐿 be a connected component of 𝐻 ⊗�̄� 𝐾. Then 𝐿 combinatorially immerses into

both 𝐻 and 𝐾. Let ℓ be a path based at (ℎ, 𝑘) in 𝐿 whose edge labels form a generating element

of 𝑁. The fiber product definition allows us to view ℓ also as a path based at ℎ in 𝐻 and a path
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based at 𝑘 in 𝐾. Since 𝐻 and 𝐾 are 𝑞-fillable, this makes ℓ a simple loop in both 𝐻 and 𝐾.

Therefore the only vertex in 𝐻 reached twice by ℓ is ℎ and the only vertex in 𝐾 reached twice by

ℓ is 𝑘. Therefore the only vertex in 𝐿 reached twice by ℓ is (ℎ, 𝑘), making ℓ a simple loop in 𝐿

and 𝐻 ⊗�̄� 𝐾 𝑞-fillable by definition.

Let ℓ be a path in 𝛽(𝐻) whose edge labels form a generating element of 𝑁. Figure 3.10 shows

that 𝛽 maps every generator of 𝑁 to a generator of 𝑁. Therefore 𝛽−1(ℓ) is a collection of paths

in 𝐻 whose edge-labels form the same generating element of 𝑁. Since 𝐻 is 𝑞-fillable, this makes

every path in 𝛽−1(ℓ) a simple loop. Therefore ℓ itself is also forced to be a simple loop, making

𝛽(𝐻) 𝑞-fillable.

Lemma 3.2.5. Let 𝐻, 𝐾 be 𝑞-fillable graphs such that 𝑞(𝐾) is contractible. Then every connected

component of 𝐾 ⊗�̄� 𝐻 and 𝐻 ⊗�̄� 𝐾 is a subgraph of 𝐾.

Proof. Let 𝐿 be a connected component of 𝐾 ⊗�̄� 𝐻. Then there is a combinatorial immersion

𝜙 : 𝐿 → 𝐾. In order for 𝜙 to not be an embedding, there needs to exist an open path 𝑝 in 𝐿

such that 𝜙(𝑝) is a loop in 𝐾. Assume such an open path 𝑝 exists. Since 𝐾 is 𝑞-contractible, this

makes 𝜙(𝑝) a loop whose edge-labels form an element in 𝑁. Therefore 𝑝 is a path in 𝐿 whose

edge labels form an element in 𝑁. Lemma 3.2.4 guarantees that 𝐿 is 𝑞-fillable, forcing every

every path in 𝐿 whose edge labels form an element of 𝑁 to be a loop. Therefore 𝑝 is a loop,

forcing 𝜙 to be an embedding.

Lemma 3.2.6. Let 𝐾 be a 𝑞-fillable graph such that 𝑞(𝐾) is contractible. Then 𝑞(𝛽(𝐾)) is

contractible as well.

Proof. 𝑞(𝐾) contractible means that every loop in 𝐾 is a combination of path-translations

of red cycles of length 𝑛, green triangles and yellow-green bigons. As shown in Figure 3.10,

this collection of loops is closed under 𝛽. Therefore 𝛽(𝐾) also consists only of loops that arise

as combinations of path-translations of red cycles of length 𝑛, green triangles and yellow-green

bigons, making 𝑞(𝛽(𝐾)) contractible as well.
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Figure 3.10.: 𝛽 applied to the boundaries of the 2-cells.

§ 3.3. Residual Finiteness of 𝐴2,3,2𝑛 For 𝑛 > 4

The goal of this section is to prove the following theorem:

Theorem 3.3.1. 𝐴2,3,2𝑛 for 𝑛 > 4 is residually finite.

Combining Lemma 3.2.3 with Theorem 3.1.4 reduces the proof of this theorem to proving

that a finite set 𝑆, as described in Lemma 3.2.3, exists.

3.3.1. Iterative Construction of 𝑆

The general procedure for constructing 𝑆 is as follows. Begin with 𝑆 = {𝑊}, then:

• Perform 𝐻 ⊗�̄� 𝐻, 𝐻 ⊗�̄� 𝐾 and 𝐾 ⊗�̄� 𝐻 for each 𝐻, 𝐾 ∈ 𝑆. Project each vertex-tuple to its

second component and add to 𝑆 any resulting connected component that is not a subgraph

of an element already in 𝑆.

• Calculate 𝛽(𝐻) for every 𝐻 ∈ 𝑆. Add 𝛽(𝐻) to 𝑆 if it is not a subgraph of any element of

𝑆.

• Repeat the above two steps until no new graphs can be added to 𝑆 in this fashion.
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• Add all subgraphs of elements of 𝑆 to 𝑆.

We will prove that such a process will terminate, resulting in a finite set 𝑆 of finite graphs.

We begin with 𝑆 = {𝑊} since 𝑆 must, at minimum, contain 𝑊. Conjugating 𝑊 by any element

of 𝜋1(�̄�) does not change 𝑊, it just shifts the basepoint. Also, since 𝜋1(𝑊) ∼= 𝜋1(𝑊′) and

𝜋1(𝑊′) ⊴ 𝜋1(�̄�), 𝑣𝜋1(𝑊)𝑣−1 ∼= 𝑣𝜋1(𝑊′)𝑣−1 ∼= 𝜋1(𝑊′) ∼= 𝜋1(𝑊). Pictorially, this is shown in

Figure 3.11.

Figure 3.11.: 𝛽(𝑊) ∼= 𝑊

We end this subsection with the statement of Lemma 3.3.2, which we will spend the remainder

of the section proving.

Lemma 3.3.2. The set 𝑆 is finite for 𝐴2,3,2𝑛 with 𝑛 > 4.

So far 𝑆 = {𝑊} is closed under basepoint translation, but we also 𝑆 need to be closed under

fiber product.

Lemma 3.3.3. For 𝐴2,3,2𝑛 with 𝑛 > 4, 𝑊 ⊗�̄� 𝑊 has the following connected components:

• One copy of 𝑊
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• 𝑛 − 5 copies of an 𝑛-gon with red edges

• One of each of the graphs in Figure 3.12, to be denoted henceforth by 𝑋1 (leftmost) and

𝑋2 (rightmost).

Figure 3.12.: 𝑋1 & 𝑋2

Proof. 𝑊 has three yellow edges, three green edges and 𝑛 red edges. Therefore 𝑊 ⊗�̄� 𝑊

must have nine yellow edges, nine green edges and 𝑛2 red edges. By direct computation, these

yellow edges and green edges arise as the triangles (1, 1) → (3, 3) → (2, 2) → (1, 1) in the

copy of 𝑊, (1, 2) → (3, 1) → (2, 3) → (1, 2) and (1, 3) → (3, 2) → (2, 1) → (1, 3). After

projecting to the second component of each tuple, these triangles become the triangles present

in 𝑋1 and 𝑋2 respectively. The placement of the red edges in 𝑊, 𝑋1 and 𝑋2 follow directly from

these vertex-labelings. 𝑊 has 𝑛 vertices, 𝑋1 has 2𝑛 vertices and 𝑋2 has 2𝑛 vertices. Therefore

there are 𝑛2 − 5𝑛 vertices unaccounted for. Since we have identified all of the yellow and green

edges in𝑊 ⊗�̄�𝑊, only red edges can connect the remaining 𝑛2 − 5𝑛 vertices. Every vertex in𝑊

is contained in a red loop of length 𝑛, therefore every vertex in 𝑊 ⊗�̄� 𝑊 must also be contained

in a red loop of length 𝑛. Therefore the remaining 𝑛2 − 5𝑛 vertices must occur in 𝑛− 5 red loops

of length 𝑛.

3.3.2. The Proof of Lemma 3.3.2

Proof. Lemma 3.3.3 describes the connected components of 𝑊 ⊗�̄� 𝑊 as being a copy of 𝑊, 𝑋1

and 𝑋2, along with a collection of red 𝑛-cycles. These red 𝑛-cycles are all subgraphs of 𝑊, and
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so by Lemma 3.2.1 they are only capable of producing subgraphs of fiber products involving𝑊

to 𝑆. At the end we will include all unique subgraphs of elements of 𝑆, but for the first two steps

of our construction we are focused on new maximal elements of 𝑆.

So far 𝑆 = {𝑊, 𝑋1, 𝑋2}. We need 𝑆 to be closed under 𝛽, so we must calculate 𝛽(𝑋1) and

𝛽(𝑋2). These calculations are carried out in Figures 3.13 & 3.14 by applying �̄� and 𝜎 to each

edge and referring to Figure 3.9 for the image of each edge. These calculations result in two new

graphs that must be included in 𝑆. The vertices 1̄ (resp. 2̄) in 𝛽(𝑋1) and 𝛽(𝑋2) is a preimage of

the vertex labelled 1 (resp. 2) in 𝑊, and the notation is used to differentiate the two preimages

for ease of computation later on.

We now have 𝑆 = {𝑊, 𝑋1, 𝑋2, 𝛽(𝑋1), 𝛽(𝑋2)}, a set closed under 𝛽. It remains to show that

every connected component of each pairwise fiber product of elements in this set is either a

subgraph of a graph in 𝑆 or is 𝑞-contractible. To prove this claim we proceed in a similar fashion

as in Lemma 3.3.3. As 𝑛 increases, the number of red edges increases, but the number of yellow

and green edges remains the same, so it suffices to focus on how the yellow and green edges are

dispersed among the connected components. The collection of connected components of a fiber

product that contain yellow & green edges will be termed the relevant portion for the remainder

of the proof. The other connected components will be dealt with at the end of the proof.

Figure 3.13.: 𝛽(𝑋1)

64



§3.3. Residual Finiteness of 𝐴2,3,2𝑛 For 𝑛 > 4

Figure 3.14.: 𝛽(𝑋2)

All fiber products involving only 𝑊, 𝑋1 and 𝑋2

We begin by calculating the relevant portion of 𝑊 ⊗�̄� 𝑋1. By direct computation, these com-

ponents are two copies of 𝑋1 and a graph that is 𝑞-contractible, as seen in Figure 3.15. The

presence of 𝑞-contractible graphs in the fiber product computations will be addressed at the end

of the proof. For now, we focus on adding to 𝑆 only the non 𝑞-contractible graphs that arise.

Figure 3.15.: The relevant portion of 𝑊 ⊗�̄� 𝑋1

We compute the relevant portion of 𝑋1 ⊗�̄� 𝑊 by swapping the entries in each vertex-tuple in

Figure 3.15, resulting in 𝑋1, 𝑋2 and a 𝑞-contractible graph.

The fiber products used to build 𝑆 are with respect to �̄�, meaning that we view each component

of the fiber product as being combinatorially immersed in �̄�. The graph �̄� has only one vertex, so

the vertex labellings of the graphs in 𝑆 are therefore irrelevant in the fiber product calculations.
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Notice that 𝑋1 and 𝑋2 are identical graphs when the vertices are not labelled. We denote this

property by 𝑋1 ∼= 𝑋2. Since 𝑋1 ∼= 𝑋2, the connected components that arise from 𝑌 ⊗�̄� 𝑋1 (resp.

𝑋1 ⊗�̄� 𝑌 ) will be the same graphs, up to vertex relabelling, as the connected components in

𝑌 ⊗�̄� 𝑋2 (resp. 𝑋2 ⊗�̄� 𝑌 ) for all 𝑌 ↬ �̄�.

In particular, the connected components of𝑊 ⊗�̄� 𝑋2 are identical to the connected components

of 𝑊 ⊗�̄� 𝑋1 up to vertex labels. Since a graph is 𝑞-contractible regardless of its vertex labels, it

suffices to calculate the other two relevant connected components of 𝑊 ⊗�̄� 𝑋2. This results in

two copies of 𝑋2 as seen in Figure 3.16.

Figure 3.16.: The non 𝑞-contractible relevant portion of 𝑊 ⊗�̄� 𝑋2

To calculate the non 𝑞-contractible relevant portion of 𝑋2 ⊗�̄� 𝑊, we swap the tuple-entries at

each vertex in Figure 3.16, resulting in a copy of 𝑋2 and 𝑋1.

The relevant portion of 𝑋1 ⊗�̄� 𝑋2 is 2 𝑞-contractible graphs and 𝑋2, as seen in Figure 3.17.

Figure 3.17.: The relevant portion of 𝑋1 ⊗�̄� 𝑋2

To obtain the non 𝑞-contractible relevant portion of 𝑋2 ⊗�̄� 𝑋1, we swap the tuple-entries at

every vertex in the rightmost graph in Figure 3.17, resulting in a copy of 𝑋1.

Since 𝑋1 ∼= 𝑋2, there is only one non 𝑞-contractible relevant connected component in both

𝑋1 ⊗�̄� 𝑋1 and 𝑋2 ⊗�̄� 𝑋2 respectively. For 𝑋1 ⊗�̄� 𝑋1, that connected component is the copy of 𝑋1
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shown in Figure 3.18.

Figure 3.18.: The non 𝑞-contractible relevant portion of 𝑋1 ⊗�̄� 𝑋1

For 𝑋2 ⊗�̄� 𝑋2 the non 𝑞-contractible relevant connected component is the copy of 𝑋2 shown in

Figure 3.19.

Figure 3.19.: The non 𝑞-contractible relevant portion of 𝑋2 ⊗�̄� 𝑋2

𝑍 ⊗�̄� 𝛽(𝑋1) where 𝑍 ∈ {𝑊, 𝑋1, 𝑋2}

The relevant portion of𝑊 ⊗�̄� 𝛽(𝑋1) is a copy of 𝛽(𝑋1), two 𝑞-contractible graphs and a subgraph

of 𝑋2, as shown in Figure 3.20.

Figure 3.20.: The relevant portion of 𝑊 ⊗�̄� 𝛽(𝑋1)

Swapping the tuple-values at each vertex in leftmost and rightmost graphs in Figure 3.20

results in the non 𝑞-contractible relevant portion of 𝛽(𝑋1) ⊗�̄� 𝑊 being 𝛽(𝑋1) and a subgraph of

67



Chapter 3. Main Work

𝑋1. The relevant portion of 𝑋1 ⊗�̄� 𝛽(𝑋1) consists of 4 𝑞-contractible connected components and

a subgraph of 𝑋2 as shown in Figure 3.21.

Figure 3.21.: The relevant portion of 𝑋1 ⊗�̄� 𝛽(𝑋1)

Swapping the tuple-entries at each vertex in the rightmost graph in Figure 3.21 results in the

only non 𝑞-contractible relevant component of 𝛽(𝑋1) ⊗�̄� 𝑋1 being a subgraph of 𝑋1.

Since 𝑋1 ∼= 𝑋2, we know from the above calculations that there is only one non 𝑞-contractible

relevant component of 𝑋2 ⊗�̄� 𝛽(𝑋1). This component is the subgraph of 𝑋2 shown in Figure

3.22. Swapping the tuple-entries at each vertex leaves the labels unchanged, so the only non

𝑞-contractible relevant component of 𝛽(𝑋1) ⊗�̄� 𝑋2 is the same subgraph of 𝑋2.

Figure 3.22.: The relevant portion of both 𝑋2 ⊗�̄� 𝛽(𝑋1) & 𝛽(𝑋1) ⊗�̄� 𝑋2

𝑍 ⊗�̄� 𝛽(𝑋2) where 𝑍 ∈ {𝑊, 𝑋1, 𝑋2}

The relevant portion of𝑊 ⊗�̄� 𝛽(𝑋2) is a copy of 𝛽(𝑋2), a subgraph of 𝑋1 and two 𝑞-contractible

graphs as shown in Figure 3.23.

68



§3.3. Residual Finiteness of 𝐴2,3,2𝑛 For 𝑛 > 4

Figure 3.23.: The relevant portion of 𝑊 ⊗�̄� 𝛽(𝑋2)

Swapping the tuple-entries at each vertex of the two leftmost graphs in Figure 3.23 results in

the non 𝑞-contractible relevant portion of 𝛽(𝑋2) ⊗�̄� 𝑊 being 𝛽(𝑋2) and a subgraph of 𝑋2.

The relevant portion of 𝑋1 ⊗�̄� 𝛽(𝑋2) consists of 4 𝑞-contractible graphs and a subgraph of 𝑋1

as shown in Figure 3.24.

Figure 3.24.: The relevant portion of 𝑋1 ⊗�̄� 𝛽(𝑋2)

Swapping the tuple-entries at each vertex in the rightmost graph in Figure 3.24 results in the

same graph being the only non 𝑞-contractible relevant component of 𝛽(𝑋2) ⊗�̄� 𝑋1.

Since 𝑋1 ∼= 𝑋2, the only non 𝑞-contractible relevant component of 𝑋2 ⊗�̄� 𝛽(𝑋2) is the subgraph

of 𝑋1 shown in Figure 3.25.

Swapping the tuple-entries at each vertex in the graph in Figure 3.25 results in the only non

𝑞-contractible relevant component of 𝛽(𝑋2) ⊗�̄� 𝑋2 being a subgraph of 𝑋2.

𝛽(𝑋1) ⊗�̄� 𝛽(𝑋1), 𝛽(𝑋1) ⊗�̄� 𝛽(𝑋2) and 𝛽(𝑋2) ⊗�̄� 𝛽(𝑋2)

The relevant portion of 𝛽(𝑋1) ⊗�̄� 𝛽(𝑋1) consists of a copy of 𝛽(𝑋1) and 6 𝑞-contractible graphs

as shown in Figure 3.26.
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Figure 3.25.: The relevant portion of 𝑋2 ⊗�̄� 𝛽(𝑋2)

Figure 3.26.: The relevant portion of 𝛽(𝑋1) ⊗�̄� 𝛽(𝑋1)

The relevant portion of 𝛽(𝑋1) ⊗�̄� 𝛽(𝑋2) is a subgraph of 𝑋1 and 6 𝑞-contractible graphs as

shown in Figure 3.27.

Figure 3.27.: The relevant portion of 𝛽(𝑋1) ⊗�̄� 𝛽(𝑋2)

Swapping the tuple-entries of the leftmost graph in Figure 3.27 results in the only non 𝑞-

contractible relevant component of 𝛽(𝑋2) ⊗�̄� 𝛽(𝑋1) being a subgraph of 𝑋2.

The relevant portion of 𝛽(𝑋2) ⊗�̄� 𝛽(𝑋2) is a copy of 𝛽(𝑋2) and 6 𝑞-contractible graphs shown

in Figure 3.28.

Assembling the Pieces To Finalize 𝑆

We now have a complete enumeration of every relevant connected component in every fiber

product coming from pairs of graphs in 𝑆 = {𝑊, 𝑋1, 𝑋2, 𝛽(𝑋1), 𝛽(𝑋2)}. Every such component
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Figure 3.28.: The relevant portion of 𝛽(𝑋2) ⊗�̄� 𝛽(𝑋2)

is either a subgraph of a graph in 𝑆 = {𝑊, 𝑋1, 𝑋2, 𝛽(𝑋1), 𝛽(𝑋2)} or is 𝑞-contractible. In each fiber

product computed in the last subsection, there are also non-relevant connected components that

arise, consisting of unaccounted for vertices and red edges. Note that every red edge in every

graph in 𝑆 = {𝑊, 𝑋1, 𝑋2, 𝛽(𝑋1), 𝛽(𝑋2)} is contained in a red cycle of length 𝑛, which forces

every red edge in every fiber product to also be contained in a red cycle of length 𝑛. Therefore

the remaining vertices and red edges in each of the fiber products must arise as connected

components consisting solely of one cycle of length 𝑛, which is a subgraph of 𝑊, and will

therefore be included in the final step in the construction of 𝑆.

If a graph 𝐾 ∈ 𝑆 is 𝑞-contractible, Lemma 3.2.5 tells us that every connected component of

𝐾 ⊗�̄� 𝐻 and 𝐻 ⊗�̄� 𝐾 is a subgraph of 𝐾 for all 𝐻 ∈ 𝑆. While 𝛽(𝐾) may not already be in 𝑆

(in which case we add 𝛽(𝐾) to 𝑆), 𝛽(𝐾) also has 𝑞(𝛽(𝐾)) contractible by Lemma 3.2.6, and

therefore every connected component of 𝛽(𝐾) ⊗�̄� 𝐻 and 𝐻 ⊗�̄� 𝛽(𝐾) is a subgraph of 𝛽(𝐾) for

all 𝐻 ∈ 𝑆 as well. Since 𝛽2 = 1, this guarantees that any 𝑞-contractible 𝐾 can contribute at most

one new maximal graph to 𝑆, namely 𝛽(𝐾). In the above calculations we encountered a finite

number of 𝑞-contractible relevant graphs, so including these graphs and their images under 𝛽

in 𝑆 allows 𝑆 to remain finite. Finally, since every element of 𝑆 is finite, each graph contains

finitely many subgraphs. We include all subgraphs of every element of 𝑆 to finalize our set 𝑆

guaranteeing that it is both finite and satisfies the properties described in Lemma 3.2.3.
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§ 3.4. Residual Finiteness of 𝐴2,3,8

Theorem 3.4.1. 𝐴2,3,8 is residually finite.

The goal of this section is to prove Theorem 3.4.1 in a similar manner as the proof of Theorem

3.3.1. To do so, we will again construct a finite set 𝑆 that will satisfy Lemma 3.2.3.

Proof. The reason that 𝐴2,3,8 is a special case comes from the very first calculation,𝑊 ⊗�̄� 𝑊.

This calculation is carried out in Figure 3.8 and results in two connected components. The first

connected component is, of course, a copy of 𝑊 with vertices (1, 1), (2, 2), (3, 3) and (4, 4).

The second connected component is shown in Figure 3.29, and will be denoted 𝑌1.

Figure 3.29.: 𝑌1

So far 𝑆 = {𝑊,𝑌1}. The next step is to compute 𝛽(𝑌1). This calculation is performed in

Figure 3.30.

Since 𝛽(𝑌1) is a new graph, we include 𝛽(𝑌1) in 𝑆 and proceed by performing the fiber product

of every pair in 𝑆 = {𝑊,𝑌1, 𝛽(𝑌1)}. A full enumeration of all of the connected components

that appear in these fiber product computations is shown in Table 3.1 at the end of the section.

Readers who would like to perform the fiber product computations should refer to the GitHub

link at the end of the paper for a Python program that will aid in these calculations. Here we

describe the new graphs that arise from these fiber products. One of the connected components

of 𝑊 ⊗ 𝛽(𝑌1) is a new graph that we will denote 𝑌2 and is shown in Figure 3.31. One of the

connected components of 𝛽(𝑌1) ⊗𝑊 is a new graph that we will denote 𝑌3 and is shown in Figure

3.32.
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Figure 3.30.: 𝛽(𝑌1)

Figure 3.31.: 𝑌2

Figure 3.32.: 𝑌3
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Again, we need 𝑆 to be closed under 𝛽, so we must compute 𝛽(𝑌2) and 𝛽(𝑌3). These

calculations are shown in Figures 3.33 & 3.34. Luckily, 𝛽(𝑌2) is a rotated copy of 𝑌2, so 𝛽(𝑌3)

is the only other new graph that we must add to 𝑆 after this step. Table 3.1 contains information

about every connected component that arises from the fiber products of every pair of graphs

in 𝑆 = {𝑊,𝑌1, 𝛽(𝑌1), 𝑌2, 𝑌3, 𝛽(𝑌3)}. We use 𝑌4 = 𝑌2 ⊔ 𝑌3 ⊔ 𝛽(𝑌3) to streamline computations.

Some connected components that arise over the course of these computations are subgraphs of

multiple of 𝑊,𝑌1, 𝛽(𝑌1), 𝑌2, 𝑌3, 𝛽(𝑌3). In these situations, a choice was made regarding which

column this component is counted in. This choice is arbitrary and does not affect the finiteness

of 𝑆.

Figure 3.33.: 𝛽(𝑌2) ∼= 𝑌2
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Figure 3.34.: 𝛽(𝑌3)

Number of Subgraphs of Connected Components In 𝑆
𝑊 𝑌1 𝛽(𝑌1) 𝑌2 𝑌3 𝛽(𝑌3) 𝑞-contractible

𝑊 ⊗�̄� 𝑊 1 1 0 0 0 0 0
𝑊 ⊗�̄� 𝑌1 0 2 0 0 0 0 2
𝑊 ⊗�̄� 𝛽(𝑌1) 0 2 1 1 0 0 0
𝑊 ⊗�̄� 𝑌4 0 0 0 2 2 2 12
𝑌1 ⊗�̄� 𝑊 0 2 0 0 0 0 2
𝑌1 ⊗�̄� 𝑌1 0 2 0 0 0 0 14
𝑌1 ⊗�̄� 𝛽(𝑌1) 0 4 0 2 0 0 6
𝑌1 ⊗�̄� 𝑌4 0 0 0 2 2 2 72
𝛽(𝑌1) ⊗�̄� 𝑊 0 2 1 0 1 0 0
𝛽(𝑌1) ⊗�̄� 𝑌1 0 4 0 1 1 0 6
𝛽(𝑌1) ⊗�̄� 𝛽(𝑌1) 0 2 1 1 0 0 8
𝛽(𝑌1) ⊗�̄� 𝑌4 0 0 0 3 1 1 68
𝑌4 ⊗�̄� 𝑊 0 0 0 2 3 1 12
𝑌4 ⊗�̄� 𝑌1 0 0 0 2 3 1 72
𝑌4 ⊗�̄� 𝛽(𝑌1) 0 0 0 4 0 1 68
𝑌4 ⊗�̄� 𝑌4 0 0 0 6 3 4 512

Table 3.1.: An enumeration of the connected components that occur in the fiber products in the
construction of 𝑆 for 𝐴2,3,8.
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Applying the same reasoning as in the end of the proof in Section 3.3.3 to the above table

proves that 𝑆 is finite. By Lemma 3.2.3, this proves that 𝐴2,3,8 has finite stature with respect to

its vertex groups. Therefore, by Theorem 3.1.4, 𝐴2,3,8 is residually finite.
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The program used to analyze the connected components that arise in the 𝐴2,3,8 fiber products

is available at

https://github.com/GreysonPMeyer/Triangle-Artin-Groups

The program is written in Python, and you will need a Python interpreter to run it. These

interpreters are available, for free and for almost all platforms, from http://python.org. To build

any of the graphs in the code, use the “build_F3" function. To view the connected components

of a fiber product, use the “check_fiber" function and follow the prompts. To verify the rows in

the table, use the “check_row" function. The 𝑌4 ⊗�̄� 𝑌4 calculation takes a lot of time, so the full

dictionary containing the connected components of this calculation is included at the end of the

code. Checking the 𝑌4 ⊗�̄� 𝑌4 row of the table can be done by applying the “check_row_Y4xY4"

function to the “Y4_x_Y4" dictionary.
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