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Abstract

The Residual Finiteness of Triangle Artin Groups

by

Greyson Meyer

We prove that all triangle Artin groups of the form A; 32, where n > 3 are residually finite.
To achieve this, we use the presentation for these groups previously employed by Wu and Ye to
establish that each of them splits as a graph of groups. Building on techniques developed by
Jankiewicz for other triangular subclasses of Artin groups, we adapt and extend these methods
to show residual finiteness in this setting. Additionally, we developed a Python program to assist

in specific computations for the case of A3 3.
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Residual Finiteness of Triangle Artin Groups



Chapter 1.

Introduction

Given a group G, asking whether the word problem is solvable in G is a fundamental question
to ask about its structure. Artin groups are a class of groups for which the solvability of
the word problem is an open conjecture. There have been numerous efforts toward resolving
this conjecture, many of which have been successful for particular subclasses of Artin groups.
Squier proved algebraically that three triangle Artin groups split as graphs of free groups. These
splittings are such that the residual finiteness of these Artin groups is apparent from the splittings.
As will be proven later, residually finite groups have solvable word problem, making residual
finiteness a property that group theorists desire Artin groups to have.

Jankiewicz desired to extend this result to other triangle Artin groups, and in doing so found
that a similar procedure could be used to prove that certain classes of triangle Artin groups
are also residually finite [[1] [2] [3]]. The work contained in this dissertation documents and
continues this journey toward residual finiteness for the entire class of triangle Artin groups. The
methods used do not depend on any structure inherent to triangle Artin groups, and thus present
a hope for similar methods to be used to prove that other Artin groups, beyond the triangular
class, are residually finite and have solvable word problem as well.

Section 2.1 will introduce Artin groups, along with known results about their structure. In
order to understand and extend the work of Jankiewicz, we must introduce the fundamentals

of Bass-Serre Theory, which will be explored in Section 2.2. With Bass-Serre Theory at our



fingertips, we will then explore the concept of residual finiteness in more detail in Section 2.3.
Finally, in Section 2.4, we have enough tools to understand how previous residual finiteness
results were constructed in the context of triangle Artin groups.

Section 3 focuses on new results discovered by the author with the help of Jankiewicz. In
Section 3.1 we discuss the structure of a particular class of triangle Artin groups, namely those
of the form Aj 32, for n > 3. In Section 3.2 we develop the methodology used in Section 3.3
to prove that all Artin groups A 32, for n > 4 are residually finite. We end with Section 3.4 in
which we prove, using the tools from Section 3.2, that the anomalous Aj 3 g is residually finite

as well.



Chapter 2.

Preliminaries

§ 2.1. Artin Groups

The star of this dissertation is a peculiar class of groups called Artin groups.

Definition 2.1.1 ([4]). An Artin group is a group that admits a presentation (S|R) where every
relation in R takes the form sts... = tst... and both sides of the equality are words of equal length.

Each pair {s, t} C S has at most one relation of this type in R.
Example 2.1.1. The Artin group A>3 7 = (a, b, clac = ca, aba = bab, bcbcbeb = cbebebe)

Since these relations have such a predictable shape, it is common to refer to an Artin group

by its Coxeter diagram.

Definition 2.1.2 ([5]). The Coxeter diagram associated to an Artin group is a labeled graph

constructed in the following manner:
* One vertex for each generator,
* An unlabeled edge between vertices s and t when sts = tst,

* A labeled edge between vertices s and t where st # ts and sts # tst labeled by the length
of the relation involving the pair {s, t} in R. If no such relation exists, the edge is labeled

with oco.
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Figure 2.1.: Coxeter diagram for A 3 7

Due to the correspondence between the Artin relations and labelled graphs of this form, Artin
groups are often referred to as A(T') where T is the Coxeter diagram describing its relations.

Coxeter diagrams originated with regards to the class of groups that shares its namesake.

Definition 2.1.3 ([4]). A Coxeter group is a group that admits a presentation
(51,52, -0s Sl (5i5)™ = 1,my; = 1)

The connection between Artin groups and Coxeter groups via Coxeter diagrams is no coin-
cidence. Artin groups were first introduced by Jacques Tits as a natural extension of Coxeter
groups. If you remove the requirement that Coxeter groups are generated by involutions,
then the resulting presentation is precisely an Artin presentation. Equivalently, every Artin
group has a Coxeter group associated to it that can be realized by performing the quotient
A(F)/((s%, s%, ...,52)) where A(T) has {s1, 52, ..., 5, } as its generating set.

An important consequence of the association between Artin groups and Coxeter groups is the
ability to now classify Artin groups based on properties that their associated Coxeter groups

have. The first such subclass of Artin groups is called spherical Artin groups.
Definition 2.1.4 ([5]). An Artin group is called spherical if its associated Coxeter group is finite.

Unlike Artin groups which are always infinite (every generator has infinite order, for example),
there exist Coxeter groups that are finite. Spherical Artin groups are the most well understood
subclass of Artin groups. In modern terminology, spherical Artin groups are Garside groups [6].
A Garside group is the group of fractions of a Garside monoid. A Garside monoid is a monoid
that is finitely generated, cancellative, its partial order with respect to divisibility gives us a

lattice (gcd’s and lem’s exist) and it contains a Garside element (an element whose left divisors
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are the same as its right divisors). Garside used this structure to prove a number of results about
braid groups, and since then Artin group enthusiasts have applied similar approaches to spherical
Artin groups. The Garside structure of spherical Artin groups has allowed group theorists to
prove that spherical Artin groups have solvable word problem [6, 7], solvable conjugacy problem
[8], and trivial torsion [9].

Unfortunately, non-spherical Artin groups, meaning Artin groups whose associated Coxeter
groups are infinite, are not Garside groups. The barrier keeping these groups from being Garside
groups is the lack of a Garside element. The Garside element arises from taking an element of
maximal length from the Coxeter group W and pulling it back along the quotient mapq : A — W
in order to obtain an element of the Artin group A. When the Coxeter group is infinite, no such
element of maximal length exists.

Another well-studied subclass of Artin groups are the Right Angled Artin Groups, or RAAGs
for short. RAAGs are the Artin groups in which each pair of generators either commutes or there
is no relation between them. They can also be thought of as Artin groups whose presentations
are in correspondence with an unlabeled graph without length-1 loops or multiedges. Given
such a graph T', we can construct a RAAG Ar by defining the generating set to be the vertices,
and include a commuting relation between any two vertices that are joined by an edge. This
graph I" can actually tell us information about the RAAG just from its shape. Some results of

this form are the following:

* A RAAG Ar is adirect product if and only if ' can be partitioned into disjoint sets U; and

U, where there is an edge between every u; € U; and up € U, (aka T is a join). [4]

* Ar is a free product if and only if T is disconnected (this is immediately implied by the

lack of relations between the genrators of different connected components).
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Figure 2.2.: A(T1) = (01, 02, 03, 04, 05|0205 = 0502) X (06, 07, 08, 09, O10)
& A(T,) = (01, 03|0103 = 0301) * (02) * {04, 050405 = 0504)

Another surprising result about RAAGs is the following:

Theorem 2.1.1. [4] Every RAAG is isomorphic to a subgroup of finite index in some right-angled

Coxeter group.

Proof. In order to prove this theorem, we explicitly construct the embedding. Start with a
RAAG Ar. Now construct a new graph I so that each vertex s; € V(I') now corresponds to
two vertices s;, s € V(T'). Connect each s; to every other vertex except s;. Now the embedding
¢ : Ar — Wy comes from sending s; +— s;s;. By multiplying on the right by s we have s;s;
being of infinite order since s; and s! do not commute.

1 -1

Observe that <;b(sisjsi_lsj_1) = sis;s s'si s lgr=1g

-1 rt=1=1o . rr—1.-1 -1
J°j°1 i j j

= Sisis; S, 8jSS s, = sis; s]sj_1 =1
makes ¢ well-defined. Injectivity follows immediately from the fact that ¢ preserves the
commutativity of Ar and ¢ (x) cannot contain any squares of generators of Wy by the definition

ofd. M

S1

Figure 2.3.:T & T
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Another fascinating class of Artin groups is the class of FC-type Artin groups. The definition

of this class of groups comes explicitly from a property of the Coxeter diagram.

Definition 2.1.5 ([10]). An FC-type Artin group Ar is an Artin group where if T is a subset of
the generating set S where every t;, t; € T has a finite Artin relation R(t;, t;) in Ar, then the Artin

subgroup Ar < Ar is spherical.

It is easier to understand this definition by constructing an analogue T' of the Coxeter diagram
for Ar. We again have a vertex in T for every generator of A, but now we include an edge between
two vertices if they have an Artin relation, including the case when the generators commute. We
then label all edges with the length of the corresponding Artin relation. So I can have edges
labelled with 2 and 3, but no edges labelled with co. We can now rephrase Definition 2.1.5 by
saying that Ar is FC-type if the Artin subgroup generated by every clique in T is spherical. A
clique in a graph is a subgraph containing vertices that are all pairwise adjacent to each other.
Essentially, FC-type Artin groups are built from spherical Artin subgroups. Instead of requiring
the associated Coxeter group to be finite, we require that specific Artin subgroups have a finite
associated Coxeter group. FC-type Artin groups have a number of well-understood properties,
chief of which is that they have solvable word problem [10]. Figure 2.4 shows an example of a

graph whose corresponding Artin group is FC-type.

Figure 2.4.: Two maximal cliques in the diagram for an FC-type Artin group.

At the other end of the spectrum there is the class of 2-dimensional Artin groups.
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Definition 2.1.6 ([2]). Ar is a 2-dimensional Artin group if no triple of its generators generates

5 4 2
24’5
2 2 5

Figure 2.5.: Diagram for a 2-Dimensional Artin Group

a spherical Artin group.

Every 2-dimensional Artin group is built from explicitly non-spherical Artin subgroups. The
Artin groups present in further sections will be primarily within the 2-dimensional class of Artin
groups, specifically 2-dimensional Artin groups with 3 generators.

We have now briefly introduced a couple of the more obscure classes of Artin groups, but
there are a number of other well known groups that exist under the Artin umbrella, namely: braid
groups, free groups and free Abelian groups. Not only are Artin groups a fascinating class of
groups in and of themselves, but they also count some of the most highly studied groups among
their ranks.

But even though some classes of Artin groups have been well-studied, Artin groups as a class
remain mysterious. Despite their pleasing and predictable group presentations, there are many
simple questions that one can ask about Artin groups that still do not have definitive answers.

Some of the big questions about Artin groups are the following:

* Are all Artin groups torsion-free?
* Which Artin groups have trivial center?
* Which Artin groups have solvable word & conjugacy problems?

* Isomorphism problem: When do two graphs I't & I result in Ar, = Ar,?

As of yet these questions do not have universal answers, though there are answers known for

certain classes of Artin groups. We will not be engaging with any of these questions directly for

9
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the remainder of the paper. Instead, we will be focusing on the concept of residual finiteness in

the class of triangle Artin groups.

Definition 2.1.7 ([1]). A triangle Artin group is an Artin group that has 3 generators in its

standard presentation.

Before we explore residual finiteness, we will take a brief detour into Bass-Serre Theory in

order to motivate the context in which residual finiteness will later appear.

§ 2.2. Bass-Serre Theory

We begin this section with The Fundamental Theorem of Bass-Serre Theory, seeing as it
beautifully encapsulates many of the concepts relevant for the later sections. We then will take

time to explain what all of the terms mean and give a sketch of the proof.

Theorem 2.2.1 (The Fundamental Theorem of Bass-Serre Theory [11]). Let (T, G) be a graph
of groups and v € T a vertex. Then there exists a group H = m1(T, G, v) and a tree T such that

H acts on T without inversions and T/H = (T, G).

In summation, The Fundamental Theorem of Bas-Serre Theory tells us that every graph of
groups comes with a tree (called the Bass-Serre tree) on which its fundamental group acts, and
the resulting quotient is the original graph of groups. Let us now break down each piece of the

theorem.

Definition 2.2.1. A graph of groups, typically denoted (T, G), consists of an underlying graph
I and a collection of groups G. The groups in G are assigned to the vertices and edges of ' such

that every edge group G, injects into its adjacent vertex group(s).

Figure 2.6 shows two examples of graphs of groups, albeit without specifying the edge-group
injections. We now have access to a mathematical object with the underlying structure of a

graph, but whose every component contains a group-theoretic companion.

10
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F2 Z F2
f Z Z Z
o—o
F3 Fy
Fy Fy

Figure 2.6.: Examples of graphs of groups.

Now that we understand the structure of graphs of groups, our next task is to understand how
to calculate the fundamental group of such an object. A path through a graph of groups is a path
through the underlying graph I', where at each vertex v in the path we take an element from the
vertex group G, in order to make a word of the form goeogie;...engn. Here the g; are elements
from vertex groups and the e; keep track of the which edges have been traversed in I'. So a loop
at a vertex v in (T, G) would be a word that begins and ends with a group element from the same
vertex-group.

But fundamental groups are more than just groups built from loops in a space, they are
homotopy classes of loops. Notice that thus far we have not utilized any information about the
edge groups. Homotopies in graphs of groups are precisely where the edge groups are utilized.

A homotopy in a graph of groups consists of the application of the following:

» The addition or removal of a subpath of the form co~".

e Forall h € G, et.(h) = iz(h)e.

The first bullet point is standard. You can of course always add or remove cancellable subpaths.
The second bullet point is the more interesting of the two. Here we have (. and (z denoting the
two injective group homomorphisms from G, to its adjacent vertex group(s). Such a homotopy
essentially allows the image of an element h € G, in one vertex group to slide across the edge e
to the other vertex group, changing from ¢, (h) to (z(h) in the process.

We could attempt to calculate the fundamental group of a graph of groups in this way, by

partitioning the loops into homotopy classes, but luckily there is a simpler way. Just like we

11
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can calculate the fundamental group of a graph by collapsing a maximal subtree and counting
the remaining loops, graphs of groups have an analogous procedure. We can choose a maximal
subtree T C I" and collapse it, but since there are algebraic objects involved with each vertex
and edge being collapsed, we need to be a little more careful. We start by fixing a basepoint v
and then choosing any edge e in T adjacent to v. We collapse e, identifying v’, the other vertex
adjacent to e, with v. In doing so, we now replace the vertex group G, with G, *g, G,/, the

amalgamated product of G, and G,» along G,.

Definition 2.2.2 ([11]). The amalgamated product of two groups A = (Ss|Ra) and B = (Sg|Rp)
along a common subgroup C is a group denoted A *c B with the presentation A *¢ B =
(Sa,SB|Ra, Rp, pa(c) = ¢pp(c)Vc € C) where ¢4 : C — A and ¢p : C — B are embeddings of C

into A and B respectively.

Definition 2.2.3 ([11]). Let A = (S4|R4) and C be groups with two injective group homomor-
phisms ¢; : C — A and ¢ : C — A. The HNN extension of A along C is the group denoted

Axc with the presentation (Sa, t|Ra, teh1 (c)t™! = ¢ (c)¥c € C).

After collapsing T edge by edge in the manner previously described, we are then left with a
graph consisting of one vertex v and k edges. The vertex group G, is a potentially complicated
amalgam of amalgamated products. The final step in computing 7 (T, G) comes from the 2nd

form of homotopy. Let e be one of the remaining edges.
ete(h) = 1z(h)e = et(h)e™! = z(h).

Notice that this looks identical to the new relation that arises in an HNN extension. To finish
the calculation, we take the HNN extension of G, along each G., introducing k new variables
to Gy, corresponding to the remaining edges in I'. At last we arrive at 7 (T, G, v) as being
an iterated HNN extension of an iterated amalgam of amalgamated products. While this is

certainly complicated in abstract, the graphs of groups that we will be encountering in this paper

12
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are quite simple. In fact, their fundamental groups will simply be amalgamated products or

HNN extensions most of the time.

RN

F 7 Fyxgls F (Fy %z Fy) %7 F3  ((Fa %z F2) xg F3) %z F

Figure 2.7.: Collapsing a maximal tree in a graph of groups.

Now that we understand the fundamental group that appears in the theorem, we move on to
discuss the tree T on which this group will act. This tree is called the Bass-Serre tree of the
graph of groups (T, G) and is constructed in the following manner. Its vertices are in bijection
with ([, er 71 ((T, G))/G,. Similarly, its edges are in bijection with | J,cr 71 ((T, G))/Ge. Two
vertices gG,, and gG,, in T are connected by the edge gG. when v and v, are connected by e in
.

The Bass-Serre tree is constructed in this way because we want the quotient of the action of
71((T,G)) onT toresultin (T, G). Consider a vertex v € I'. Then there is a collection of vertices
in T whose vertex cosets are in bijection with 71 ((T', G))/G,. The action of 7t ((T', G)) on T will
permute this collection of vertices, allowing us to choose the vertex associated with 1G, as the
quotient representative for this orbit. This is true for each v, resulting in the vertex sets of (T, G)
and T /7 ((T, G)) being in one-to-one correspondence. Similarly for the edges in T.

The Fundamental Theorem of Bass-Serre Theory tells us that for each graph of groups (T, G),
we automatically get a tree T on which it acts. One fascinating thing about Bass-Serre theory is

that it actually works the other way as well.

Theorem 2.2.2. [11] Let H be a group acting on a tree T without edge inversions. Then T /H
is a graph of groups where for each vertex v € T/H, H, = Stab(v) and for each edge e € T/H,

H, = Stab(e).

13
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Moreover, in the case of T already being known to be the Bass-Serre tree of a graph of groups
(T, G), the quotient T/H = (T, G). When we discussed the intuition behind the construction of
the Bass-Serre tree, we mentioned the collection 7 ((T, G))/G, for each v. The coset 1G, = G,
is one such element, and clearly Stab(G,) = G,. So if we choose G, to be the orbit representative
of H - 1G,, then the quotient T/H must be precisely (T, G).

In many ways, Bass-Serre Theory is the study of the structures that arise from groups acting
on trees. While graphs of groups, amalgamated free products and Bass-Serre trees are the only
objects that we will really be using from Bass-Serre theory in the rest of the paper, we will take
time now to explore some of the consequences that arise from this beautiful area of study. We

begin with the following elegant and powerful theorem.
Theorem 2.2.3. If a group H acts freely on a tree, then H is a free group

Proof. Let H act freely on a tree T. Then we can quotient T by H to get a graph of groups
(T, G). By The Fundamental Theorem of Bass-Serre Theory, H = 71 (T, G, v). Since the action
of H on T is free, there are no vertex stabilizers. So T/H will have a trivial group for each G,
and G.. So H = 71 (T, G, v) = m1(T,v) the fundamental group of a graph, which is of course a
free group. N

For the rest of the paper, when a group G is isomorphic to the fundamental group of a graph
of groups, we will say that G splits as a graph of groups, or that the graph of groups is a splitting
of G. A nice property of groups that split as a graph of groups is that they have normal forms
for their elements [11]. A normal form is a standardized way of writing every element in your
group. When a group’s elements have a normal form, that normal form induces a solution to
the word problem. Indeed, when you have a normal form, all you have to do to check whether
two elements are equivalent in G is to convert them each into their normal form and then
check whether or not the two normal forms are identical. In the context of graphs of groups,

the existence of a normal form allows us to see clearly that the vertex groups G, inject into

71 ((T, G)).
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We now give a brief synopsis of how Serre constructs the normal form of an element in an
amalgamated product G. We start with a family of groups G; with i € I and a group C that
injects into each of them. The normal form of g € G looks like g = f(c) fi, (s1)...fi,(sn) Where
f:C — G and f; : G; — G are the canonical injections and S; is a collection of fixed coset
representatives of C\G;. Basically the normal form is a word in the free product of the groups
with all of the C-related material at the front. The right coset representative part is what allows
us to slide our elements of C along the word to the front. Consider an element x in the word g.
Then x is in some coset of C\G;, so x = cy for some ¢ € C. Now let’s say that the preceding
element was z. Now zx = zcy and zc is also an element of a coset and can be written ¢’z” and
SO on.

Another way of viewing a group that splits as a graph of groups is by viewing it as the
fundamental group of a graph of spaces. A graph of spaces is a geometric object constructed in
a similar manner as a graph of groups, except we now assign a connected CW-complex, instead
of a group, to every vertex and edge. Analogously to the construction of graphs of groups, we
require edge spaces to embed into their adjacent vertex space(s). To go from a graph of spaces
to a graph of groups, one must simply calculate the fundamental group of each vertex (resp.
edge) space and assign that group to the vertex (resp. edge). To go from a graph of groups
to a graph of spaces, for each vertex (resp. edge), simply assign a space whose fundamental
group is the vertex (resp. edge) group, ensuring that the edge spaces still satisfy the embedding
requirements.

Now that we have access to plentiful Bass-Serre theoretical tools, we can focus on the primary

algebraic property that we desire to extract from triangle Artin groups, namely residual finiteness.

§ 2.3. Residual Finiteness

There are many equivalent definitions for a group being residually finite. We enumerate some

of them in Definition 2.3.1.
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Definition 2.3.1 ([2]). A group G is residually finite if any of the following hold:

1. For every nontrivial g € G, there exists a finite group F and a surjective group homomor-

phism ¢ : G — F such that ¢(g) # 1r.
2. For every nontrivial g € G, there exists a finite index normal subgroup N, <G with g € Ng.
3. The intersection of all finite index normal subgroups of G is trivial.
4. The intersection of all finite index subgroups of G is trivial.
Proof. We prove that the items in the list above are all equivalent.

* “1 = 2": By assumption, g ¢ ker ¢p. By the First Isomorphism Theorem, G/ker ¢ =
Im¢. The map ¢ being surjective makes Im¢ = F. So [G : ker ¢] = |F| < oo, making

ker ¢ a finite index normal subgroup not containing g.

e “2 = 3": The element g being nontrivial and g ¢ N, for some finite index N, I G

forces g ¢ (ya,,c N. So there can be no nontrivial elements in the intersection.

* “3 = 4": {finite index normal subgroups} C {finite index subgroups}, so [\ qcH<

MNn< 6N = {1}, forcing the intersection to be trivial.

*“4 = 1 Let g € G be nontrivial. Definition 4 being (\y., cH = {1} forces the
existence of a finite index subgroup Hy < G with ¢ ¢ H;. We can use such an index-
n subgroup to define a map ¢ : G — S, by mapping each h € G to the permutation
G/Hg — h(G/Hg). This map is onto, making ker ¢ <I G of finite index. Furthermore,
since Hy = Stab(1Hy), ker¢ < H,. Therefore ker ¢ is a finite index normal subgroup
not containing g. So G/ker ¢ is a finite group equipped with the standard projection map

p:G — G/ker¢. Since g ¢ ker ¢, this forces p(g) # 1.
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Residual finiteness allows us to view a group in a locally finite fashion. A residually finite
group is a group where every nontrivial element corresponds to a nontrivial element in a finite
group, meaning that the group embeds in a product of finite groups. Residual finiteness can
also be seen as testing for linearity since every linear group is residually finite [12]. Braid
groups were proven to be linear independently by Krammer [13] and Bigelow [14], making
them residually finite as well. An example of a class of groups that are not residually finite is
the class of infinite simple groups. An infinite simple group is not residually finite since its lack
of nontrivial normal subgroups prohibits the existence of an N, defined in in Definition 2.3.1
(2). As mentioned in the preface, one main reason we care about residual finiteness is because

a group being residually finite means that it has solvable word problem.
Theorem 2.3.1. If a group G is residually finite then G has solvable word problem.

Proof. Let g € G. To decide whether g = 15, we begin by enumerating all of the finite
index normal subgroups of G, beginning with the subgroups of lowest index. For each such N,
define gy : G — G/N to be the quotient map. By definition, if w # 1g, there exists a finite
index normal subgroup N, such that qn,(g) # ly,. We therefore compute qy(g) for all finite
index normal N < G. If we compute gy, (g) # 1y, we have revealed that g # 1. If the process
continues indefinitely, meaning that qy(g) = 1y for all N, then g = 1. ¥

A nice property of residual finiteness that we will exploit throughout the paper is the following.

Lemma 2.3.2. Let B < A be a finite index subgroup of A. If B is residually finite, then A is

residually finite as well.

Proof. Let g € A be nontrivial. If g € A — B, then B is a finite index subgroup not containing
g. If g € B, then there exists a finite index subgroup C < B not containing g. Since C is of finite
index in B and B is of finite index in A, C is of finite index in A. M

A simple example of how a class of groups can be found to be residually finite is as follows:
Property 2.3.2.1. Every finite rank free group Fy is residually finite.
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Proof. Let g € Fi. We can represent Fi as the fundamental group of the wedge of k circles
\/ S'. Draw the path corresponding to g in terms of oriented edges labeled according to the k
loops, as shown in the middle of Figure 2.8. In order for this graph to be a cover of \/, S', we
need each of the k edges to be entering and exiting every vertex in the path. To achieve this, we
complete the path to a cover of \/, S! in the following way.

Let I; be a circle in \/, S and v be a vertex in our g-path. If there are no [; edges adjacent
to v attach an [; loop to v. If there is only one [; edge adjacent to v, and the edge is leaving v,
follow the path along the [; edges starting at v. The path will end at a vertex w. Attach an [; edge
from w to v. Similarly, if there is only one [; edge adjacent to v, and it is entering v, follow the
[; edges backwards. This path will terminate at some vertex w. Add an [;-edge from v to w.

This is a finite process since the g-path is finite and each step does not add any vertices. On
completion of this process, we will have a finite graph X that covers \/, S'. Therefore 7r; (X) < Fy.
Since X is a finite graph, it is therefore a finite cover of \/, S', making [Fy : m;(X)] < co. The
path g is not a loop in X by construction, making sr1(X) a finite index subgroup of Fy that does

not contain g. Therefore Fy is residually finite.

@

[ ] L J *—>—0 >0

ol

Figure 2.8.: Constructing a finite index subgroup of (x, y, z) that does not contain the element

yxz2.

In this paper we will be concerned with groups more complex than free groups, namely
amalgamated free products. It is unknown what properties are necessary and sufficient to
guarantee that a given amalgam is residually finite. However, there are cases in which properties

of the component groups in the amalgam do guarantee that the amalgam is residually finite.
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Theorem 2.3.3. If A, B, C are finite groups with C < A and C < B, then A ¢ B is residually

finite.

Proof. Consider the finite group A X B. There is a natural surjective group homomor-
phism ¢ : A %¢c B — A X B defined by mapping g = ca;b;...ayb, in its normal form to
g — (cajy...ap, cby...by). Let K = ker¢. Since A X B is finite, [A *¢ B : K] < oo. Since
¢la : A > AXBand ¢|p : B — A X B are both injective by the construction of ¢, this
forces ANK = BN K = {1}. Since K < A ¢ B, K acts on the Bass-Serre tree T of A ¢ B.
Recall that every vertex v € T corresponds to a coset gA (resp. gB) for some g € A ¢ B.
So the stabilizer of such a vertex would be gAg~' (resp. gBg™'). Let gag™' € gAg~!. Then
d(gag™") = p(9)p(a)p(g)~! =1 forces ¢p(a) = 1, which makes a € K. But ANK = {1}, so
this forces a = 1 and gag™! = 1. So gAg~! N K = {1} for all g. An identical procedure shows
that gBg~! N K = {1} as well. In the context of Bass-Serre theory, this tells us that K does
not contain any vertex-stabilizers of T. Therefore the action of K on T is free. By Theorem
2.2.3, this makes K a finite rank free group. By Property 2.3.2.1 this makes K residually finite.
The subgroup K is therefore finite index and residually finite, making A ¢ B residually finite by
Lemma 2.3.2. M

There are also examples of amalgamated products that are not residually finite, though these
are of a much more exotic variety than examples like the one above. Bhattacharjee constructed
the first example of a non-residually finite amalgam [15]. This amalgam surprisingly happens to
be the amalgam of two free groups along a common subgroup of finite index. Other examples
include lattices in the automorphism group of a product of two trees that split as twisted doubles

of free groups along a finite index subgroup [16, 17]. We will discuss twisted doubles shortly.
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§ 2.4. Residual Finiteness of Artin Groups

Now that we have a good amount of background knowledge built up, we will use this section to
summarize the findings & methodologies that led to the new results presented in the next section.
The journey begins with Craig C. Squier’s paper [18] in which he proves that the triangle Artin
groups Az a4, A333 and A 3¢ all split as graphs of finite rank free groups. Squier begins his
proofs in [18] by mapping onto a dihedral Artin group, an Artin group with two generators, like
B = (a, blabab = baba).

This is precisely the dihedral Artin group that he maps
Az 44 =(a, b, clac = ca, abab = baba, bcbc = cbcb)

onto via the map ¢ : Ay 44 — B defined by a — a,b — b,c — 1. He designed this map so
as to make checking that ¢ is a group homomorphism a simple exercise. Also, the kernel can
be immediately seen to be K = ({(c)). He uses this K to create a specific group presentation for
Aj 4 4 which reveals a semidirect product structure.

To create the new presentation for Aj 44, he begins by defining a new presentation for B,
writing B = {(a, mlar’a”' = x?) by identifying 7 = ab. Rewriting B in this way gives B a
familiar structure, that of an HNN extension. Indeed, this new presentation can be written as
B = (7 )* 42y with both injections being the inclusion map. How does splitting B tell us anything

about Aj 4 4?7 The answer comes from the following very useful lemma.

Lemma 2.4.1. 1. Let p : G — A x¢ B be a surjective group homomorphism. Then G =

p~H(A) )10 p~!(B).

2. Let p: G — Ax¢ be a surjective group homomorphism.

Then G = p_l(A)*p—l(C).

Proof. Let H = A *¢ B be an amalgamated product. Then H acts on its Bass-Serre tree T,

and the quotient of this action is a graph with 2 vertices vy, v, and one edge e. Then there
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are vertices U1 and U that are stabilized by A and B respectively. The edge between v] and v,
é, is stabilized by C. The homomorphism p : G — H induces a group action of G on T by
U +— p(g)D where g € G and ¥ is an arbitrary vertex in T. Therefore v, é and v, are stabilized
by p~!(A), p~1(B) and p~!(C), respectively, under this action. So T/G is the graph of groups
I' with 2 vertices and one edge. The vertex groups of T are p~'(A) and p~'(B), and the edge
group is p~!(C), making p~'(H) =G = p~1(A) *p-1(C) p~'(B). Similarly for p : G — Asxc. M

We can now apply Lemma 2.4.1 to the map ¢ : A44 — B. Since B splits as an HNN
extension and ¢ is surjective, we get that A 44 splits as an HNN extension as well. Using
the kernel K and an infinitely generated presentation for A 44 that he uses to elucidate the
semidirect product structure, he proves that Ay 44 = (c, ba)* papa,cper-1)» Which is an explicit
description of the splitting of A3 4 4 as an HNN extension. Here, a is the new variable included
in the HNN extension and the two injective maps are defined by ¢; (baba) = ¢, (baba) = baba,
$1(c) = pa(c) =c, p1(bcb™!) = beb™! and ¢ (bcb™!) = babacbeb~'c~la~ b~ la~ b~

Squier then moves on to perform a similar proof with the group
Az33 =(a,b,claca = cac, aba = bab, bcb = cbc)

In this case he chooses the dihedral Artin group A = (a, blaba = bab). Again, we construct a
map ¢ : A333 — A by mapping a — a,b — b,c — b~ lab. Verifying that ¢ is well-defined is

as easy as checking that
¢(cac) = b~ 'abab~'ab = b~'babb~'ab = a*b = ab~'bab = ab~'aba = ¢p(aca)
and
¢(bcb) = bb~'abb = ab®> = b~'bab® = b~'abab = b~'abbb~'ab = ¢(cbc)

Once again, we focus on K = ker¢ = ((bcb~'a™!)). Squier denotes this new generating
element x = beb~'a™! and conjugates x by every element of A3 33 to obtain another infinitely

generated presentation for A3 3 3. The generating setis {a, b, Xn, Yn, Zn, Un, Un, wWn|Vn > 0,n € Z}
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where xo = x. There are numerous relations that all come from conjugating each of the generators
by a and b respectively. Such conjugations result in the recurrence relations with which we define
the generators for each n. This {x,, ¥n, 2n, Un, Un, Wy } is a generating set for K by construction,
and even makes K a free group freely generated by {xp, ¥n.2n, Un, Un, Wn}. This presentation
allows him to prove that T is the semidirect product of K with A.

He then splits A as an amalgamated product by proving that
A Z (= ab) *(z3-p2y (A = aba)

which can easily be seen by the fact that 7° = (ab)® = ababab = (aba)(bab) = (aba)(aba) = A?
in A. Since A splits as an amalgamated product, we can again apply Lemma 2.4.1 to the map ¢
to obtain that A3 3 3 indeed splits as an amalgamated product.

He then goes on to find the explicit free groups involved in the amalgam. Lemma 2.4.1
tells us that A333 = (m, K) (A2 K) (A, K). It remains to show that the groups in the amalgam
are free groups. The generators of K were constructed in such a way that conjugating x,
¥o and zo by A allows one to generate all of the rest of the generators of K, thereby making
(A, K) = (A, x0, Yo, 20) = F4. Similarly, conjugating generators of K by A? reveals that (A%, K) =
(A2, x0, Yo, 20, U, Vo, Wo) = Fq. Unfortunately, such a simple process cannot be applied to (i, K).

For this component of the amalgam, we have to use to a theorem of Stallings.

Theorem 2.4.2 ([19]). Let G be a torsion-free group and H < G a finite index subgroup. If H is

a free group, then so is G.

In our case we know that both A and K are torsion-free. Squier proves that A3 33 is the
semidirect product of A and K, and since both of the components of the semidirect product are
torsion-free, this forces Aj 3 3 to be torsion-free as well. Therefore (, K) < A3 33 forces (x, K)
to also be torsion-free. We have already proven that (A%, K) = (x>, K) is a free group, and is
clearly an index-3 subgroup of (i, K), so Theorem 2.4.2 tells us that (x, K) is a free group. But

what is its rank? To calculate its rank, Squier uses the following lemma.
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Lemma 2.4.3. [20] Let F be a free group of rank r and H be a subgroup of index k in F. Then

H is a free group of rank rk — k + 1.

In our case we do not know the value of r, but we do know that (7r*, K) is an index-3 subgroup
of {rr, K) and that (3, K) is a free group of rank 7. Therefore 7 =3r —3+1=3r—2,s0r =3,
making (7, K) = F3. So A3 33 splits as F3 #p, Fy.

He then uses nearly the exact same process to split
Ar36 =(a,b,clac = ca, aba = bab, bcbcbc = cbebeb)

We start by mapping ¢ : Ay36 — A = (a,blaba = bab) where a — a, b +— b and ¢ — @’

Checking that ¢ is well-defined is again a simple exercise:
¢(ac) = aa® = a®a = Pp(ca)
and

¢(bebebe) = ba’ba’ba® = ba®(aba)a(aba)a® = ba*(bab)a(bab)a® = ba(aba)bab(aba)a =

ba(bab)bab(bab)a = (bab)ab(bab)b(aba) = (aba)ab(aba)b(bab) = aba(aba)(bab)bab =

aba(bab)(aba)bab = a(bab)(aba)(bab)ab = a(aba)(bab)(aba)ab = a*(bab)a(bab)a®*b =
a*(aba)a(aba)a’b = a’ba*ba’b = ¢(cbcbeb)

The exact same reasoning, albeit with a slightly different generating set for K results in
Az36 = (1, K) #(y5 gy (A, K) = F3 #p, Fy

Squier’s splittings of these three Artin groups are interesting in their own right, but it was a
consequence of these results that sparked the inspiration for the new results presented in the next
section. Notice that A3 3 3 and Aj 3 ¢ both split as amalgamated products where the amalgamating
subgroup is of finite index in each component. This allows us to construct the following short

exact sequence:
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1 - F; — Ar36 — 7|37 «7]27 — 1

737 x Z |27 admits a standard projection map ¢ : Z/37Z « 7|27 — Z |37 X Z/2Z given
by ¢(ajbjazb;...anby) = (ajaz...an, bibs...b,). Denote the surjective map in the short exact
sequence by p : Ay36 — Z/3Z « Z/2Z. Thenker ¢ < Z/3Z « Z/2Z and p~! (ker ) < Az ;6.
The group F7 injects into p~!(ker ¢) since p(F7) = 1 € ker¢, so we get a new short exact

sequence of groups
1 - F; —» pl(ker¢p) = kerdp — 1

We now analyze ker ¢p. Denote the generator of Z/3Z by a and the generator of Z/2Z by b.
Then ker ¢ = ((aba’b, a’bab)) since we need every element, pre-conjugation, to contain 3 as
and 2 bs, and all such words of this type are conjugates of these two generating elements. To
show that ker ¢ is a free group, it suffices to prove that the action of ker ¢» on the Bass-Serre tree
Tof Z/3Z « 727 is free.

Recall that the vertices of T correspond to (({a) * (b))/{a)) U (({a) = {b))/(b)). So each

Uor g(b)g~! for some g € (a) * (b). Every element

vertex-stabilizer comes in the form g{a)g~
gakg™! (resp. gb*g™!) is mapped to aX € Z/3Z x Z/2Z (resp. b¥) by ¢, which is nontrivial in
the codomain precisely when a* (resp. b*) is nontrivial in the domain. Therefore g{a)g~' and
g(b)g~! must intersect ker ¢ trivially. This proves that the action of ker ¢ on T is free, making
ker ¢ a free group by Theorem 2.2.3. So by the First Isomorphism Theorem,
(Z]3Z«2]2Z)]kerp = Z[3Z X Z[27Z, making [Z/3Z « Z]2Z : ker p] = 6.

Why did we expend effort towards proving that ker¢ is a finite index free subgroup of
737 « 7]27Z? Well now if we inspect the short exact sequence above, we have a free group
as the rightmost component, which automatically makes the short exact sequence a split exact
sequence. This is due to the fact that defining a group homomorphism “backwards" along p
is now as simple as choosing a preimage element for each element in ker¢p. Such a map is

well-defined because free groups have no relations. Since the short exact sequence is split exact,

this tells us that p~! (ker ¢) = F; X ker ¢, the direct product of free groups.

24



§2.4. Residual Finiteness of Artin Groups

Lemma 2.4.4. Let G and H be residually finite groups. Then G X H is residually finite.

Proof. Let (g, h) € GXxH be nontrivial. Consider the natural projection maps pg : GXH — G
and py : G X H — H. Assume g # 1. Then pg(g, h) = g is a nontrivial element of G. The
group G is residually finite, so there exists a finite group Fy and surjective homomorphism
¢y : G — Fg such that ¢g(g) # 15, So f = ¢, o pg is a surjective group homomorphism to a
finite group such that f(g, h) is nontrivial. Assume g = lg. Then h # 1y and f’ = ¢y o py is
the surjective homomorphism to a finite group such that f’(g, h) is nontrivial, since H is also
residually finite. N

So p~!(ker ¢p) = F7xKker ¢ is the direct product of residually finite groups, making p~! (ker ¢)
residually finite. Furthermore, since p is a surjection, we get that [A>36 : p~'(ker¢)] =
(Z/3Z + 727 : ker ] = 6. So p~! (ker ¢) is a finite index residually finite subgroup of A; 3 6,
making A 3 ¢ residually finite by Lemma 2.3.2. The same holds for A3 3 3.

The subclass {A244,A333,A23,6} s a special subclass of triangle Artin groups. These are

all of the Euclidean triangle Artin groups.

Definition 2.4.1. * A spherical triangle Artin group Ay n p is a triangle Artin group satis-

fying -+ + + 5 > 1.

* A Euclidean triangle Artin group Ay v p is a triangle Artin group satisfying % + ﬁ + 113 =1.

Litel<l,

* Ahyperbolic triangle Artin group Ay np is a triangle Artin group satisfying 12+ +5

We refer to such triangle Artin groups as “Euclidean" due to the fact that the triangle with

angles ZM’T, ZW” and ZW” isatriangle in Euclidean space. The Coxeter group associated to a Euclidean
Artin group can therefore tile a Euclidean plane by taking said triangle as the fundamental domain
and assigning each Coxeter generator to be the reflection across the corresponding edge of the
triangle.

Definition 2.4.1 allows us to fully classify every triangle Artin group based on the type of

triangular tiling that results from such a process. Squier proved that Euclidean triangle Artin
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(%, %, %)-triangle tiling (5, %, 7)-triangle tiling

Figure 2.9.: Triangular tilings of H?, R? & S2.

groups split as graphs of groups. It is natural to wonder whether the same holds for spherical
triangle Artin groups and hyperbolic triangle Artin groups.

We begin with spherical triangle Artin groups. Jankiewicz proved the following:

Theorem 2.4.5 ([1]). If A is a spherical irreducible Artin group that splits as a graph of free

groups, then A is dihedral or Z.

Proof. Every dihedral Artin group has the standard presentation
Ay =(a, bl(a,b)y = (b, a)m)

When M = 2m, set x = ab to get that Ay, = (a, x|ax™a~! = x™) = (x)*(emy = Zxz, which is
a splitting as a graph of free groups. When M = 2m + 1, we set x = ab and y = (a, b)y to get
that Ay = (x, y|x™ = y?) = (x) *xmyz(y2y (¥) = Z *z Z, which is again a splitting as a graph
of free groups.

Conversely, assume that an irreducible spherical Artin group A splits as a nontrivial graph
of free groups. Then we can consider this graph of free groups as the fundamental group of a
graph of spaces X, in which every space is a graph. The geometric realization of X is therefore a
collection of graphs (corresponding to the vertex-spaces) with 2-cells used to join these graphs.

These 2-cells form cylinders between the loops identified by the edge-space embeddings. Let X
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be the universal cover of X. Then X is a 2-dimensional CW complex, meaning that it has the

cellular chain complex
93 ~ ¥ ~ 9 -
2.4.1) . > 0(X) 5 C1(X) > Cp(X) >0

We would like to calculate H»(X) = ]%gf Because X is 2-dimensional, we know that
Cx(X) = 0 for k > 3 and thus Im(d3) = 0. By the construction of X, every 2-cell has the
boundary ¢;tf>t where €| and ¢, are nontrivial loops in the vertex-graphs in the graph of spaces
that were identified via the 2-cells. The loops ¢; and ¢, unfold into open paths in the universal
cover X. We use t and f to denote preimages of the edge used to identify the basepoints in the
graph of spaces. Therefore £tf,t is a nontrivial loop in the 1-skeleton of X. Since this 2-cell
was arbitrary, this proves that ker(d,) = 0 and thus H,(X) = 0.

By Hurewicz Theorem [21], X being a universal cover and thus simply connected, forces the
Hurewicz homomorphism h, : m(X) — H(X) to be an isomorphism. Therefore 75(X) = 0
and we can iterate this process to get that r,(X) = 0 for all n > 0.

Consider the Serre fibration X — X. Every fiber F is discrete, making s, (F) = 0 for all
n > 0. Putting this information into the long exact sequence induced by the fibration forces
a(X) = m,(X) = 0 for all n > 1. This makes X aspherical and a K(A, 1) space by definition.
Therefore, by H" (X, Z) = H"(A, Z) for all n > 0. Since X is a 2-dimensional CW-complex,
H"(X) = 0 when n > dimX = 2. Therefore the cohomological dimension of A is at most 2.
But spherical Artin groups are known to have cohomological dimension equal to the number of
generators in their standard presentation [22]. Therefore A is forced to have at most 2 generators,
which makes A either dihedral or Z.

Now that we have successfully split every spherical Artin group that can be split as a graph
of free groups, it remains to split the hyperbolic triangle Artin groups. Jankiewicz successfully
split a significant portion of the hyperbolic triangle Artin groups by working with a different

presentation for Artin groups called the Brady-McCammond presentation.
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Definition 2.4.2 ([23]). For M,N,P > 3,

Aynp =(a,b,c,x,y,zlx =ab,y =bc,z = ca,ry(a, b, x),rn(b,c,y),rp(c, a, z)) where:
e ru(a,b,x) = x™ =bx™ 'a when M = 2m and
* ry(a,b,x) = xMa=bx™forM =2m+ 1

and similarly for ry (b, ¢, ¥) and rp(c, a, 2).

The Brady-McCammond presentation originated in [23], in which they prove that triangle
Artin groups of large type (meaning that M, N, P > 3) are biautomatic through the use of the
presentation complexes associated to these presentations. Furthermore, they showed that these
presentation complexes are piecewise Euclidean and CAT(0).

This presentation comes from fixing an orientation on the variant of the Coxeter diagram in
which we allow edges to be labeled with 2s and 3s and remove edges labeled with co. We start
by partially orienting the Coxeter diagram I by orienting every edge with label > 3. An example

is shown in Figure 2.10.

b b
4 5 x/4  5\Y
5 / 5
a C a z C

Figure 2.10.: Coxeter diagram & oriented Coxeter diagram for A4 5 5.

Definition 2.4.3 ([2]). Let T be a simple graph (no length-1 loops or multiedges) with a partial
orientation t where (e) is the terminal vertex of the oriented edge e. A path y of length > 2inT
is called misdirected if the partial orientation on y induced by ¢ can be extended to an orientation
such that a maximal directed subpath of y has length 1. A cycle y is called almost misdirected

if ignoring one edge of y makes the resulting path misdirected.
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Almost Misdirected

ele
OO

Figure 2.11.: Example of a misdirected cycle and almost misdirected cycles with subpaths of
length 3 & 2 respectively

Definition 2.4.4 ([2]). A partial orientation ¢ on a simple graph I labelled with integers > 2 is
called admissible if the only oriented edges are those with labels > 3 and it does not contain any

almost misdirected cycles.

To obtain the Brady-McCammond presentation from the Coxeter diagram I' of Ar, we start
by fixing an admissible partial orientation ¢ on I'. This ¢ allows us to define a new presentation
Ar ={a e V(l),x € E(T')|x = ab,ry,, (a, b, x) where x = {a, b} and either a = 1(x) or Mg, = 2)
where M, is the label on the edge between a and b. Here, ( is utilized to determine whether
x = ab or x = ba. Of course, if My, = 2, then ab = ba and such a (-based choice is irrelevant.
When T is a triangle, we can choose ¢ so that the resulting presentation is precisely the Brady-
McCammond presentation as previously described. In general, this presentation coming from

an admissible partial orientation results in the following theorem.

Theorem 2.4.6 ([2]). If T is bipartite with all labels even, then Ay = Axg where A and B
are finite-rank free groups. Otherwise, Ar = A %¢c B where A, B, C are finite rank free groups
with rk(A) = |E(T)|, rk(B) = 1 — [V(I')| + 2|E(T)| and C is an index-2 subgroup of B with

rk(C) =1 =2|V(T)| + 4|E(T)]|.

To prove this theorem, we fix the -induced presentation for Ar and construct the presentation

complex of Ar with respect to this presentation.
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Definition 2.4.5 ([23]). Given a group G with presentation (S|R), the presentation complex Xg
is the 2 dimensional cell complex obtained in the following manner. First construct the wedge
of oriented circles with one circle for each s € S. Then, for each word r € R, construct a 2-cell
whose boundary is labelled with the word r, and attach each oriented edge to the corresponding

loop in the wedge of circles.

By construction, 7 (Xg) = (S|R). Clearly every loop in X; is homotopic to a combination of
loops in the wedge of circles, thereby making the generators of 71 (Xg) = S. The 2-cells allow
us to contract any loop on the boundary of a 2-cell through the interior of the 2-cell, thereby
making every relation in 7 (Xs) a word in R.

We now can use the presentation complex associated to the (-induced presentation of Ar to
arrive at our desired splitting. The case in which T is bipartite with even labels is not relevant
to this paper since we will be focused on triangle Artin groups and I" being a triangle precludes
it from being bipartite. When T is not a bipartite graph with all even labels, the (-induced
presentation for Ar allows us to construct the relator polygons in an intentionally illuminating
way. Notice that the yellow, red and orange edges in the relator polygons in Figure 2.12 only
appear as vertical path-components of the boundaries, and that the green, purple & blue elements
appear only in the tops and bottoms of our relator polygons, oriented horizontally. This allows
us to apply Seifert Van Kampen’s theorem to the complex in a natural way, as shown in the
Figure 2.12.

We can then deformation retract the blue component U, the green component V, and the
turquoise component UNV to the graphs U, V and U NV, resulting in Ar = 71 (U) * .y @) T1 (V).
Since U, V and U NV are all graphs, their respective fundamental groups are all free groups. It
remains to calculate the ranks of these free groups.

Each portion of U in a relator polygon deformation retracts naturally to the horizontal paths at
the nearest top/bottom of that relator polygon. Since all of the vertices in the relator polygons are

all identified in the presentation complex, we must also identify the vertices in the deformation

30



§2.4. Residual Finiteness of Artin Groups
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Figure 2.12.: Seifert-Van Kampen’s Theorem applied to the presentation complex for A4 5 5

retract U. This will result in the wedge of many length-one loops with potentially multiple loops
of the same color. Having multiple loops of the same color is redundant, so we identify these
loops to realize U as the wedge of n circles, one for each color present at the tops/bottoms of
the relator polygons. For example, in the case of A4 5 5, these loops correspond to the generators
x,Y, %, which are precisely the generators constructed from the oriented edges of the Coxeter
diagram I'. By the construction of the Brady-McCammond complex, it will always be the case
that the loops in U are in direct correspondence with these new generators added during the
construction of the Brady-McCammond presentation. Therefore 7 (U) is the free group on
E(T), making rk(m; (U)) = |E(T)|.

When we deformation retract V by compressing each portion of V to its midline, we get a
graph with an edge coming from each relator polygon. Notice that the relations in a Brady-
McCammond presentation come in pairs: 2 relations for each edge in the Coxeter diagram T'.
One of these relations is used to define the new generator coming from an oriented edge in
I', and the other relation is an analogue of the traditional Artin relation involving the pair of
traditional Artin-generators used to define the new orientation-induced generator. Therefore

|[E(V)| = 2|E(T)|. The endpoints of an edge in V are vertices on a “vertical" edge of the relator
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polygon’s boundary. These vertical edges correspond to the generators coming from the usual
Artin presentation. These generators are represented in the Coxeter diagram I' as vertices.
Therefore V(V) = V(T') and rk(m; (V)) = 1 — [V(V)| + |E(V)| = 1 = |[V(T')| + 2|E(T)].

In Figure 2.13 we can see that every edge in V is double-covered by the two edges in U NV

above and below it in the relator polygon, making U NV a double cover of V and [z (V) :

(@AY = 2.
\%
o
—
L ] v z
a
° [ L ]
b'e—Jpec e Peb
b C c
bo.—;oc* c: ):E é
( ] { ] o { ]
g: ):j a b*
a o ——>
® e e
a b~
unv

Figure 2.13.: U NV % V for Ags 5

We now use Lemma 2.4.3 by setting F = (V) and H = m;(UNV), which forces r

1 — |V(T)| + 2|E(T)| and k = 2. Putting this all together gives us that rk(a;(U N V))

(I=VI@MI|+2IEMQ2)—=2+1=1=2|V(T)| +4|E(T)|.

Having calculated the groups that arise from the application of Seifert-Van Kampen’s Theorem
to the Brady-McCammond complex, it remains to show that the induced maps from 71 (U NV)
to 71 (U) and mr1 (V) are injective. To do so, we must define an important class of combinatorial

maps that will play a major role throughout the rest of the paper.
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Definition 2.4.6 ([19]). A combinatorial mapY — X between graphs Y and X is a function that
maps every vertex to a vertex and every edge to an edge. A combinatorial immersion¢ : Y & X

is a locally injective combinatorial map.

Combinatorial immersions are important because every combinatorial immersion ¢p : ¥ & X
induces an injective homomorphism z{(Y,y) < (X, x) [19]. Equivalently, the existence
of a combinatorial immersion ¢ : Y 9 X guarantees that Y can be completed to a cover of X
by adding trees to the vertices in Y that are keeping Y from being a cover of X. The copy of
U NV in Figure 2.13 combinatorially immerses into V since it is already a cover. The homotopy
equivalent copy of U NV that conforms to the deformation retract of U is shown in Figure 2.14.

Notice that the three dashed edges get collapsed to vertices during the retraction.

b/c Z

Figure 2.14..UNV & U

This graph, after the collapsing of the three dashed edges, also combinatorially immerses into
U, though it is not a cover. Infinite trees will have to be added to the five outer vertices for
those vertices to be preimages of the lone vertex in U. Nevertheless, the fact that both homotopy
equivalent copies of U NV combinatorially immerse into U and V guarantees that the edge maps
in the ensuing graph of groups will be injective. This makes our application of Seifert-Van
Kampen’s Theorem to the Brady-McCammond complex a splitting of each large-type Artin
group into a graph of finite-rank free groups.

Once these large-type Artin groups were split as graphs of free groups, Jankiewicz uses this
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information to prove that the triangle Artin groups Ay yp Wwhere M, N,P > 4 and {M, N, P} #
{2m+ 1,4, 4} for any m € N are residually finite. To do this, Jankiewicz first defines an index-2

subgroup of Ay n p = A *¢ B called the twisted double.

Definition 2.4.7 ([2]). Let A and C be finite rank free groups and 8 : C — C be an automorphism.
The double of A along C twisted by 8, denoted D(A, C, 3), is the amalgam A x¢ A where C is

mapped into the leftmost A via the inclusion map (, and is mapped into the rightmost A via to 3.

We construct a twisted double D(A,C,B) = A #¢ bAb~! in Aunp = A ¢ B by defining
B :C — Ctobe B(c) = bechb~! where b is a nontrivial coset representative of B/C = {[1], [b]}.
We can realize D(A, C, 8) as the kernel of the homomorphism ¢ : A *c B — B/C = Z/27.
The kernel is generated by all conjugates of A, which are simply A and bAb~!. Consider the
action of ker¢ = (A, bADb~!) on the Bass-Serre tree T. The subgroup A fixes a vertex in T,
as does bAb~!. There are two edges between these vertices in T, one that is fixed by C, the
other which is fixed by bCh~'. Therefore, by The Fundamental Theorem of Bass-Serre Theory,
ker ¢ = A 5op-1_c DAD™! where C — A s the inclusion map and C — bAD~! is sent to hCH™!,
making D(A, C, B) = ker ¢. Since ¢ is obviously onto, this proves that [Ay n p : D(A,C, B)] = 2.

So, by Lemma 2.3.2, if we can prove that D(A, C, B) is residually finite, then we have proven
that A ¢ B is residually finite. To prove that D(A, C, B) is residually finite, Jankiewicz first

proves that it virtually splits as an algebraically clean graph of finite rank free groups.

Definition 2.4.8 ([24]). A graph of groups is algebraically clean if the vertex groups are free

and each edge group is a free factor in its adjacent vertex group(s).

Theorem 2.4.7 ([24]). If a group G splits as an algebraically clean graph of finite-rank free

groups, then G is residually finite.

Proof. Let (T, G) be a splitting of G as an algebraically clean graph of finite-rank free groups.
We begin our calculation of 7, (T, G) by collapsing a maximal tree in T', and amalgamating

the identified vertex groups along their respective edge groups. Consider two vertices v and w
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in T joined by an edge e. The edge group G, is a free factor in both G, and G,,, making the
amalgamated product G, *g, G, a free group. Therefore the iterated amalgam that appears as
the vertex group after the maximal tree has been collapsed is a free group as well. Denote this
collapsed version of (T, G) by (T, G). This new graph of groups has one vertex and a collection
of loops based at that vertex, making i1 (T, G) is an iterated HNN extension of a free group.
Furthermore, each edge group E; is a free factor in the vertex group V since each G, in (T, G) is
a free factor in V and every E; is a free factor in some such G, by construction.

Our goal is to define a projection to the iterated HNN extension of a finite group for each
g € G such that g survives the projection. We begin by noting that iterated HNN extensions have
anormal form for each element element g = fotg0 fi til o fity fryy Whereall f; € V, ¢, € {~1,0, 1}
and ty, ..., t. are stable letters. Furthermore, we can assume that this normal form for g is reduced,
meaning that no combination of relations can decrease its length. In particular, this means that
if g contains a subword tkfktlzl (resp. tlzlfktk), then fi ¢ Ey (resp. fx ¢ Ex) where Ex = Ey is
the edge group that contributes the stable variable t; to the HNN extension. Consider the case
when g contains a subword ty fxt, 1 (resp. t; ! fxtx) for some fi ¢ Ex (resp. fr € Ex). In this case
we can explicitly construct a finite index subgroup Ly < V such that Ey < Ly (resp. Ex < Li) and
fr € Lx. We construct such an Ly using the following covering space argument.

The vertex group V being a finitely generated free group means that we can represent V =
T1(ViewS') = 71 (V). The edge group Ej being a finitely generated subgroup of V forces
the existence of a cover & of V with a finite core. We then attach a path to the basepoint of
&k whose edge labels form the word for g in its normal form, and then perform any necessary
Stallings folds to identify redundant edges (see Figure 2.18 for examples of Stallings folds). We
now use the same algorithm as in the proof of Property 2.3.2.1 to complete this augmented &
to a finite cover L of V. Therefore 7| (Lx) = L is a finite index subgroup of V that does not
contain g since g is an open path in L. See Figure 2.15 for an example of such a construction.

For every other f; in the normal form of g that is not conjugated by a stable variable, assign Ly
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to be the finite index subgroup of V that does not contain f;, whose existence is guaranteed by

the fact that V is residually finite.

basepoints identified Stallings folds

1

Lol s

5o
@)
g Ex L

Figure 2.15.: The process of constructing a finite cover £ of S' v §' v §! that contains & and
g as an open path.

If g = fo # 1 is in normal form, then g € V and we choose N to be the finite index subgroup
of V guaranteed by the residual finiteness of V to not contain g. Otherwise, let N = ﬂg;ll Ly.
Define C = (Ngeaue(vy) (N). This group C is a finite index characteristic subgroup since
automorphisms preserve subgroup-index and the number of subgroups of a fixed finite index
in a finitely generated group is finite. The quotient p : V. — V/C extends naturally (and well-
definedly) to a surjective map p : (...((V#g,)*g,)...%5,) — (..((P(V)*p(E))) *p(Er))---*p(Er))>
which is an iterated HNN extension of a finite group since C is finite index and characteristic.
If g € V, then p(g) # 1 by our choice of C. Consider g ¢ V. Since every element f; that is
conjugated by a stable letter in g is separated from the edge group corresponding to the stable
letter by Ly, none of the stable-letter-derived relations in the image can be used to reduce the

length of the normal form of p(g). Therefore p(g) is an element in its reduced normal form

of length r > 1, making p(g) # 1. All iterated HNN extensions of finite groups are virtually
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free (the free group generated by the stable letters is finite index), making it residually finite by
Property 2.3.2.1 and Lemma 2.3.2. Therefore p(g) will survive a further quotient to a finite
group, making G residually finite. 3

In order to prove that D(A, C, ) splits as an algebraically clean graph of finite rank free
groups, Jankiewicz constructs a quotient of D(A, C, 8) with respect to an oppressive set for C in

A.

Definition 2.4.9 ([2]). Let p : Y — X be a covering map inducing the inclusion of a finite rank
free group H = mr1(Y) — m1(X) = G. Let A, C G consist of all g € G represented by a cycle y

in X such that y = y;y, where

* y1 = p(u1) where p; is a nontrivial simple non-closed path in Y going from the vertex y

to yi.

* yo» = p(u2) and py is either trivial or a simple non-closed path in Y going from some

vertex y» to ygp where y| # y2 # Yo.
We refer to A, as the oppressive set for H in G with respect to p.

In order for a graph of groups to be algebraically clean, we need the edge groups to be
free factors in the vertex groups, which requires every Y with G, = 7,(Y) to be an embedded
subgraph of X where m;(X) = G,. This requires every path in Y that maps to a loop in X to
have been a loop in Y as well. The oppressive set for G, in G, is therefore the set of all elements
keeping G, from being a free factor in G,. If we can find a quotient ¢ of G such that the image
of our oppressive set is disjoint from ¢(G,), then ¢(G,) is a free factor in ¢(G,). Finding such

a quotient of D(A, C, B) requires the use of the following lemmas.

Lemma 2.4.8. Let H < G be a free factor. Then for every finite index G' < G, G’ N\ H is a free

factor in G’.

Proof. The subgroup H < G being a free factor in G, means that G = H = F for some F < G.

Consider the Bass-Serre tree T of this splitting. The subgroup G’ < G being of finite index
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means that the action of G’ on T has a finite fundamental domain. If G’ N H is trivial, then
G’ N H is trivially a free factor in G’. Assume G’ N H is nontrivial. Then we can choose the
finite fundamental domain of the action of G’ on T to contain the vertex stabilized by H under
the action of G on T. The stabilizer of this vertex under the action of G’ will therefore be G’ N H.
The edge stabilizers of T are trivial since our splitting is free. By The Fundamental Theorem
of Bass-Serre Theory, G’ = 71(T/G’) with T/G’ viewed as a graph of groups. Since the edge
stabilizers of T are trivial, the edge groups in T /G’ will be trivial. So when we amalgamate the
vertex groups in T/G’, we get G’ = (G’ N H) = L where L is the free product of the other vertex
groups in T/G" and the fundamental group of the underlying graph of T/G’. Therefore, G’ N H

is a free factor in G’. M

Lemma 2.4.9. Let A, be an oppressive set for C in A coming from the covering map p : X¢c — Xa.
Suppose there exists a finite quotient ¥ : D(A, C, B) — K such that ¥|a(A,) N W (A) = 0. Then
D(A, C, B) virtually splits as an algebraically clean graph of finite rank free groups. In particular,

D(A, C, B) is residually finite.

Proof. D(A,C, ) is the fundamental group of a graph of groups and therefore inherits a
natural action on its Bass-Serre tree T. The vertex-stabilizers of this action are conjugates of A,
and the edge-stabilizers are conjugates of C. Since K is finite, ker ¥ is a finite index subgroup
of D(A, C, B) forcing the action of ker ¥ on T to have a finite fundamental domain. The vertex
stabilizers of the action of ker ¥ are conjugates of ker ¥ N A = ker ¥|,, and the edge stabilizers
are conjugates of ker ¥|4 N C. This information tells us that T /ker ¥ is the graph of groups with
vertex groups isomorphic to ker ¥| 4 and edge groups isomorphic to ker ¥|4 N C, and thus ker ¥
splits as a graph of finite rank free groups. Our goal is to show that this splitting is algebraically
clean.

Consider the edge group ker |4 NC. LetC’ = ‘Plgl (¥]a(C)). Since ¥[2(C)N¥|a(A,) =0,
C'NA, =0. Let C be the cover of X, with 7;(C) = C’. Since C < C’, there exists a cover

p : Xc — C and p factors through p. The oppressive set Ap € A, NC" = D because every path
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in X¢ that maps to a loop in ¢ must therefore also map to a loop in X, since C is a cover of X,4.
This makes p an embedding and C a free factor in C’. By Lemma 2.4.8, since ker ¥|4 < C’,
C Nker ¥|, is a free factor in ker ¥|4. Conjugates of the intersection C N ker ¥|4 are the edge
groups in our splitting, making the graph of groups I' with 71 (') = ker ¥ algebraically clean.
So ker ¥ is a finite index residually finite subgroup of D(A, C, 8) by Theorem 2.4.7, making
D(A, C, B) residually finite by Lemma 2.3.2. 3

We now would like to use the above lemmas to show that our specific twisted double is
residually finite. In our case we will be constructing a quotient of A, so we utilize the following
theorem to give us the necessary ingredients to extend a quotient of A to a separating quotient

of D(A,C, B).

Theorem 2.4.10 ([2]). Suppose there exists a quotient ¢ : A — A with the following character-

istics:
1. A is a virtually special hyperbolic group,
2. C := ¢(C) is malnormal and quasiconvex in A,
3. ¢ separates C from an oppressive set A of C in A,
4. B projects to an automorphism 3 : C — C.

Then D(A, C, B) virtually splits as an algebraically clean graph of finite rank free groups. In

particular, D(A, C, B) is residually finite.

Condition (4) allows us to extend ¢ to a projection ® : D(A, C, B) — D(A, C, B). Conditions
(1)-(3) allow us to construct a quotient ¥ : D(A,C,3) — K for some finite group K so that
¥Yod:D(AC,B) — K separates A from C, giving us that D(A, C, B) is residually finite. We
now set out to find such a quotient ¢p. The most difficult condition for us to satisfy in Theorem

2.4.10 is condition (2).
Definition 2.4.10. A subgroup C < G is called malnormal if gCg~' N C = {1} forall g € G.
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Thus far we have only discussed our vertex groups and subgroups of Ay y p in terms of the
fundamental group of graphs. In order to explore malnormality in this fashion, we need to

understand what subgroup intersection and conjugation look like in terms of graphs.

Definition 2.4.11. Let ¢; : Y; — X be a combinatorial immersion for i = 1, 2. The fiber product
of Y] and Y, over X is the graph Y| ®x Y, with vertex set

{(vi,v2) € V(Y1) XV(Y2) : p1(v1) = ¢2(v2)}

and edge set {(e1, e2) € E(Y1) X E(Y2) : ¢1(er) = da(e2) }.

There is a natural combinatorial immersion Y; ®xY>» — X, given by (y1,y2) — ¢1(y1) = d2(32).

Lemma 2.4.11 ([19]). Let H|,Hy < G = 71(X,v) where X is a finite graph. Fori = 1,2, let

(Y;, %) — (X, v) be a cover of X where m1(Y;, X;) = H;. Then Hy N Hy = 71 (Y] ®x Y2, (%1, %2)).

In our case, the graph X, that we will be computing fiber products over is the wedge of 3
circles. Since X4 has only one vertex, the immersions ¢ and ¢, agree on every vertex. So the
vertex set of every fiber product for the rest of this paper will be V(Y;) X V(Y2). For example,
when we split A4 5 5 using Seifert-Van Kampen’s Theorem applied to the deformation retract of
the Brady McCammond presentation in Figure 2.13, we get A ¢ B where A = 71 (U), B = 71 (V)
and C = (U NV). If we denote X¢ as the copy of U NV that is combinatorially immersed into
U then the computation X¢ ®; X¢ results in the connected components shown in Figure 2.16.

Notice that every element of V(X¢) X V(Xc) is present in X¢ ®; Xc. There is a purple edge
(a,b) — (c,d) only when there is a purple edge a — ¢ and a purple edge b — d in the
respective components of the fiber product. The same is true for blue and green edges. For
example, we have a purple edge (1,2) — (2,4) in the bottom connected component since there
is a purple edge 1 — 2 in the first copy of X¢ and a purple edge 2 — 4 in the second copy of
Xc. This example also demonstrates that fiber products need not be connected, making choice
of basepoint very important when calculating the fundamental group. We will be primarily

interested in cores of graphs, and thus will omit the trees needed to complete the connected
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Figure 2.16.: X¢ ®7 X¢

components of fiber products to actual covers, as well as any maximal acyclic paths that arise

during fiber product computations.

When we conjugate C < A by an element g € A, this naturally corresponds to translating the

basepoint b along the path labelled by g~! in X¢ to the vertex bg. Such a path is incident with

every vertex in X since X¢ is a cover of X,. We will see that gCg~! = 7 (X, b,). Figure 2.17

demonstrates such a basepoint translation pictorially.

In Figure 2.17 we have initially chosen the basepoint of X to be the vertex labeled 1. If

we conjugate 7 (Xc, 1) by z (the algebraic element corresponding to traveling once around the

purple loop in A), this corresponds to shifting the basepoint backwards along the purple edge to
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®5

Figure 2.17.: Change of basepoint

the vertex labeled 8. This is because every loop that begins at 8 can be realized by first traversing
the purple edge to 1, performing a loop at 1, and then returning backwards along the same purple
edge back to 8. In the figure, a loop at 1 is shown in orange and the traversal of the purple path
is shown in black. This pictorially demonstrates that zz; (X¢, 1)2~! = 71 (X¢, 8). We may also
translate the basepoint along a path that leaves the core, i.e. translating the basepoint 1 along
a blue edge in the tree (not shown in the figure) attached to 1. In both cases, translating the
basepoint does not affect the structure of the underlying graph itself.

Therefore if we want to find a quotient ¢ such that ¢(C) is malnormal in ¢(A), such a
quotient would have to introduce 2-cells to the graphs that arise as connected components of

fiber products so as to make them all contractible, thereby making ¢(C8 N C) = {1} as desired.

Theorem 2.4.12 ([2]). Suppose M, N, P > 4 with at least one of M, N, P even. Then Ay np =
A %¢ B for A, B, C finite rank free groups with [B : C] = 2 and A Z {(x,y, z). There exists a

k even

NSl

quotient ¢ : A — A defined in the following way. Let k =
k kodd

and A = (x,y, z|]x™, yN, 2Py = Z|MZ « Z|NZ « Z|PZ with the associated quotient ¢ : A — A.

The map ¢ is a projection that satisfies the four conditions in Theorem 2.4.10.
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The existence of such a quotient ¢ proves that D(A, C, ) is residually finite by Theorem
2.4.10, and thus Ay p is residually finite as well by Lemma 2.3.2. This same method was
used to prove that Ay y p is residually finite when (M,N,P) = (2m +1,2n+ 1,2p + 1) with
m,n, p > 2, albeit with a different quotient, owing to the fact that the graphs representing C¢ N C
contain non-monochrome simple loops in those cases.

But what about Ay y p? When M = 2, the fourth relation in the Brady-McCammond pre-
sentation becomes x = ba, which results in a fourth triangle being present in the presentation
complex. When we deformation retract U NV along the deformation retract of U, the vertices
b*, ¢”, a” and c* are all identified to one vertex. This four-fold identification forces multiple
closed Stallings folds to occur.

Stallings folds are an important part of the process of converting a graph into a cover of
another graph. In the case of U, the deformation retract of U, there is only one vertex, and thus
any vertex in a cover of U must locally look identical to this lone vertex. As discussed before, if
a vertex in a combinatorially immersed graph does not have the same edges adjacent to it as the
lone vertex in U, we can simply attach an infinite tree to this vertex so that every vertex in the
tree has the same adjacent edges as the lone vertex in U. But we also must consider the case in
which there are redundant edges entering or exiting a vertex. Stallings folds remedy precisely
these redundancies. Stallings folds come in two varieties, open and closed, as seen in Figure
2.18.

The Stallings fold at the top of Figure 2.18 is an example of an open Stallings fold. The other
two Stallings folds are examples of closed Stallings folds. A closed Stallings fold is a Stallings
fold that results in an entire loop being collapsed in the graph. In the context of constructing
amalgamated products, closed Stallings folds are to be avoided at all costs since they result in
the loss of a nontrivial loop, thereby creating a kernel in the induced map on the fundamental
groups of the graphs. If closed Stallings folds were to occur during the course of a deformation

retract like in the previous examples, then Seifert-Van Kampen’s theorem applied to the Brady-
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Figure 2.18.: Stallings Folds

McCammond complex cannot be an amalgamated free product. To remedy the occurrence of
closed Stallings folds when the previous procedures are applied to Az y p, Jankiewicz defines

the new presentation for A, y p described below.

Lemma 2.4.13 ([1]). Aonp = (b, x,y|rn(b,x),rp(b,y), bx~lyb~! = yx~1y where
e ry(b,x) = bx"b~! =x" when N = 2n
o ry(b,x) = bx"b =x"! when N =2n + 1

and similarly for rp(b, y).

To prove that this is indeed a valid presentation for A, y p one only needs to identify x = ab
and y = cb. The presentation complex of Ay y p where N > 3 and one of N, P is odd is shown
in Figure 2.19.

We can again apply Seifert Van-Kampen’s theorem to this presentation complex, and then
deformation retract U, V and U NV to obtain the graphs in Figure 2.20.

The general form of these graphs can be used to prove that Ay y p = F3 *p, F4 when N > 3
and one of N, P is odd. An example of what the presentation complex of A y p when N > 3 and

both N and P are even is shown in Figure 2.21.
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Figure 2.19.: Presentation complex for
A2,4,5 = <b,x>.)’|bx2b_l = X2, byzb = y3: bx—lyb_l = yx—1>
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Figure 2.20.: Deformation retracts of U,V and U NV

In Figure 2.21 we attempt to apply Seifert Van-Kampen’s Theorem in the same way as in
the previous examples, but this unfortunately cannot be done since the blue regions are no
longer connected. Instead, we can forego using Seifert Van-Kampen’s Theoreom by instead
noticing that the presentation A 2,2, = (b, x, y|[bx"b~! = x", byPb~! = y?,bx"1yb~! = yx71)
is precisely that of an HNN extension with stable letter b. So A2 2n2p = (X, y)*(xn y» o) Where
the two injective homomorphisms ¢ : (x™, y?,a) — (x,y) and ¢, : (x",y?,a) — (x,y) are
defined by ¢ (a) = x'y and ¢, () = yx~ 1.

But when we impose Jankiewicz’s presentation on Aj 3 2, With 2m > 6, a closed Stallings
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Figure 2.21.: An attempt at applying Seifert-Van Kampen’s Theorem to the presentation complex
of Ayg4 = (b, x,y|bx*b~! = x%,by?b™! = y2, bx~lyb~! = yx~1).

fold occurs, as seen in Figure 2.22. The final graph in Figure 2.22 has two orange paths of
length m — 2 going between the topmost triangular vertices, which, after m — 3 open Stallings
folds, will force a final closed Stallings fold to occur. This graph is the copy of U NV that we
are attempting to complete to a combinatorial immersion into U. The guaranteed presence of
this closed Stallings fold forces us to look for yet another presentation that we can use to split
Aj 3 p as an amalgamated product. Wu & Ye utilized the following presentation in [25] to prove

that Aj 32, for 2m > 6 splits as a graph of free groups.

Theorem 2.4.14 ([25]). A232m = (b,c,x,Yy,d,8|d = xc,d = bx,y = bc,yb = cy,8b =c6,6 =

dx™2d) = F3 *p, Fq form > 3.

The details of the above isomorphism along with the presentation complexes associated to
these presentations are analyzed in detail in the next section. We have now split almost every
hyperbolic triangle Artin group. All that remain are A3 p for P > 6 and odd. Wu & Ye proved

in [25] that such Artin groups actually cannot split as a graph of free groups.
Theorem 2.4.15 ([25]). When m # 3k + 1, A2 32m+1 does not split as a graph of free groups.

Proof. The details of this proof will take us too far off course from the rest of the paper, but we

provide here a brief sketch of the foundational arguments. We begin by proving that every action
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Figure 2.22.: Stallings folds in the Aj 3 7, case

by isometries of Az 32,41 On a simplicial tree T either has a global fixed point or a geodesic
line that is invariant under that action. We prove this by assuming to the contrary that there
exists an action on a tree T without a global fixed point or invariant geodesic line. This forces
the existence of a geodesic path with specially constructed vertex stabilizers that in turn forces
one of the generating elements a € Aj 3 2m+1 to have a nonempty fixed point set. This generator
a is special in that it commutes with ¢, and we use this nonempty fixed point set to prove that
Fix(a) # 0 forces the existence of a global fixed point, providing us with a contradiction.

Now assume that A 3 2,41 Splits as a graph of free groups. Then A3 32m+1 acts on the Bass-
Serre tree, T, of this splitting. The elements that fix the vertices of T are conjugates of the vertex
groups. If there were to be a global fixed point of the action on T, this would force A 3 2m+1
to consist only of elements from a conjugate of a vertex group, which would make the splitting
trivial and Aj 3 2m+1 a free group, which it clearly is not. Therefore there must be a geodesic line
lin T that is invariant under the action of A2 3 2m+1.

The Artin group Az 32m+1 acts on [ by translations, and translations of a line form a copy
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of Z. This allows us to define a map f : Az32m+1 — Z that factors through A?,%,Zm +1- The

Abelianization A4P = Z due to the Artin relations and the newfound Abelian relations

2,3,2m+1
forcing all of the generators to be identified. Therefore ker f is the kernel of the Abelianization
map, which is the commutator subgroup, A, of Az 3 2,m+1. Therefore there is a vertex in [ with A
as its stabilizer. But the vertices in [ are also vertices in T, meaning that the vertex stabilizers are
conjugates of free groups. If A were to be free, then this would make A; 3 2,41 free-by-cyclic,
and thus also coherent [26]. A combination of results from [27] and [28] forces the only coherent
triangle Artin groups to be of the form A, ,. Therefore Aj32m+1 cannot be coherent and thus
cannot split as a graph of free groups. N
The case when m = 3k + 1 is proven in a similar fashion, except there is now a third condition
to consider where Aj 3 6x+3 has a vertex stabilizer that contains specific elements that keep the
vertex stabilizer from being a free group, and the group itself from splitting as a graph of free
groups. The goal of the next section is to use the splitting of Wu & Ye from Theorem 2.4.14

to prove that all Artin groups Az 32, for n > 3 are residually finite using similar methods as

Jankiewicz.
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§ 3.1. Splitting A5 3 7, For n > 3

We begin by fixing the presentation of Aj 37, from Lemma 2.4.14, which will be used to split

Aj 30, as a graph of free groups. An isomorphism between
A232n = (a,b, clac = ca, beb = cbe, (ab)* = (ba)™)
and the presentation in Lemma 2.4.14 can be defined by mapping, in one direction:
$(b) =b,$(c) = ¢, p(x) = chac™!
¢(y) = be, p(d) = bebac™, $(8) = be(ba)®
and in the other direction:
Y(a) =b~ ¢ Ixe, Pp(b) = b, h(c) = ¢

The presentation complex associated with the presentation in Lemma 2.4.14 can be seen in
Figure 3.1. In order to realize A3 3 2, as an amalgamated product, we apply Seifert-Van Kampen’s
Theorem to X as shown in Figure 3.2.

The red band, U, and the blue band, V, are path connected open subsets of X with nonempty

intersection, namely the purple band. There is a natural deformation retract that we then perform
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on U and V respectively to obtain the graphs U and V, as shown in Figures 3.3 & 3.4.

A DA
1170

Figure 3.1.: Presentation complex X
\/';"/'\/

n—2

Figure 3.2.: Seifert Van Kampen’s Theorem applied to the 2-cells in X

\ y
AAA . L.
s e N

n—2

Figure 3.3.: U deformation retracts to the wedge of 3 circles, U.



§3.1. Splitting Ay 32, Forn >3

Figure 3.5.: W’, the deformation retract of U NV when viewed as a graph that can be combina-
torially immersed into V.

Next, we deformation retract U NV to the graph U N V constructed from the purple horizontal
lines in Figures 3.5 & 3.6. We will soon see that the maps UNV — U and UNV — V are

combinatorial immersions.

Lemma 3.1.1. The induced map U NV & V is a combinatorial immersion.

Proof. The graph W’ in Figure 3.5 is the image of U NV under the composition U NV <
UNV — V — V where the final map is the deformation retract of V. The combinatorial
immersion from W’ - V is represented by the coloring of the edges in W’. 3

Notice further that W’ is a double cover of V, making obvious the fact that W 9 V is a

combinatorial immersion. The mapping U NV — U is not as simple.
Lemma 3.1.2. The induced map U NV 9 U is a combinatorial immersion.
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O ——FP e o W

Figure 3.6.: W, the deformation retract of U NV when viewed as a graph that can be combinato-
rially immersed into U.

Proof. The graph W in Figure 3.6 is the image of U NV under the composition U NV >
UNV < U — U. The graph above W is an intermediate step in the construction of W where
the dashed edges are collapsed to vertices in W under the deformation retract of U. Once again,
the combinatorial immersion U NV 9 U is defined by the coloring of the edges in W. M

We utilize these combinatorial immersions to induce the injections (W) — m(U) and
m1(W’) — m1(V) respectively. Since we would need infinitely many vertices to complete W
to a cover of U, this makes sr{ (W) an infinite-index subgroup of m{(U). Since W’ is a double
cover of V, this makes 1 (W’), an index-2 subgroup of m{(V). Both m;(W) and 7, (W’) are
isomorphic to F7, making W and W’ homotopy equivalent. We denote this homotopy equivalence
by o : W — W. Intuitively, c maps each edge in W’ to the closest horizontal component at the
top/bottom of the relator polygon from which that edge is derived. For details about the behavior
of o, see Figure 3.9. The deformation retracts, combinatorial immersions and o all fit into the

following diagram that commutes up to homotopy:
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1% 'UW’/;
Lo
Vie—unv —

This commutative diagram coming from Lemmas 3.1.1 & 3.1.2, along with Seifert-Van

S+

Kampen’s Theorem being applied to the presentation complex for A; 3 25, proves the following

theorem.

Theorem 3.1.3. Forn > 3, A>3, = 71 (U) *5, wnv) T1(V) where
« m(U) =m1(U) = F3
s (V) =m(V) 2 F4
c mUNV) =m (W) =m (W) = Fy

Since this graph of groups is a graph of free groups, the vertex and edge groups implicitly
satisfy the first 2 criteria in [29, Theorem 2.3], thereby reducing [29, Theorem 2.3] to the more

approachable theorem below.

Theorem 3.1.4 (Huang-Wise [29]). Let G be a graph of finite rank free groups. If G has finite

stature with respect to its vertex groups, then G is residually finite.

We will discuss finite stature in greater detail in the following subsection. For now we end

this section with an explicit generating set for ot (W, 1), which will be used in later sections.
Lemma 3.1.5. m;(W, 1) = (x", ¥, y8 L, y(y8 Dy 1,87y, yx, y(yx)y ™).

Proof. In order to see that this is a generating set for z;(W, 1), collapse the maximal tree
shown in Figure 3.7. Recall that each red edge corresponds to the algebraic element x, each
green edge corresponds to y and each yellow edge corresponds to §. The loops present after the

collapse of this maximal tree are in one-to-one correspondence with the generating set in the

lemma. M
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Figure 3.7.: Collapsing the maximal tree.

§ 3.2. Finite Stature Procedure

In order to prove that Aj 3 75 is residually finite, we first prove that Aj 3 2, has finite stature with

respect to {m (U), w1 (V)}, the vertex groups of the splitting.

Definition 3.2.1 ([29]). Let G be a group and {H} } 1< be a collection of subgroups of G. Then G
has finite stature with respect to {Hj }1ea if for each p € A, there are finitely many H,-conjugacy
classes of infinite subgroups of the form H, N D where D is an intersection of G-conjugates of

elements in {H) } ca.

In our case the set {H; }5¢x is the set of vertex groups of our splitting, namely {7 (U), 7r1(V)}.
Therefore each D is an intersection of A 32,-conjugates of the vertex groups. Conjugates of
vertex groups are stabilizers of vertices in the Bass-Serre Tree T associated with the graph
of groups. Therefore the intersection of conjugates of vertex groups is a group element that
stabilizes multiple vertices in T. Since the action of elements of G on T preserves vertex-
adjacency, the action of D on T maps paths to paths. If D fixes two vertices in T, then the path
between the vertices is unique, forcing D to fix the entire path in T between the vertices. Edge
stabilizers in T are conjugates of m(U) N (V) = w1 (W) = m(W’). Therefore D is either
71(0), 1 (V) or the intersection of Aj 3 2,-conjugates of 1 (W) =z (W’).

Thus far we have only discussed the groups in our graph of groups in terms of the fundamental

group of graphs. We would like to continue to proceed in this fashion. In order to do so, we need
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to understand what subgroup intersection and conjugation look like in the context of graphs.

3.2.1. Fiber Products

We will be performing fiber products of covers of W ~ W’ throughout the rest of the paper. We
choose to work with covers of W instead of W’ since U has only one vertex, guaranteeing that the
immersions ¢ and ¢, agree on every vertex. This results in V(Y]) X V(Y3) being the vertex set
of every fiber product for the rest of this paper. Figure 3.8 shows an example of a fiber product

calculation that will be used later on.

Figure 3.8.: W ®; W for Ax3 3

Lemma 3.2.1. Let Y| C X; and Y, C Xo be subgraphs. Then Y1 @3 Y, C X; ®g Xo.

This lemma is immediate by the definition of fiber products. Also, algebraically, it is intuitive

that the intersection of subgroups will always be a subgroup of the intersection of the supergroups.
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3.2.2. Basepoint Translation

We now must discuss how to understand conjugation of subgroups when our subgroups are
being considered as the fundamental group of graphs. We begin by exploiting the following

property of Az 32y, n > 3.

Lemma 3.2.2. Every element g € Ay 32, withn > 3 can be written as
g = gIUgV...gm_1Vgm Where g1, ...,gx € m1(U) and v € w1 (V) is a fixed coset representative

coming from 7t (V) /m (W') = {[1], [v]}.

Proof. 232, = 11 (0)%x, (w)=x, w)T1(V) = (1 (0)*71(V)) /(71 (W) = 1 (W')). Therefore
every element g = hikihoks...hp—1km—1hy, where each h; € w1 (U) and k; € m;(V). Since
m1(W’) is an index-2 subgroup of m(V), each k; = [v for some [; € w1 (W) = @ (W).
Therefore g = hiky...hp—1km—1hm = hilivholbv...hy— 1Ly 1vhy,. Setting hil; = gifor 1l <i<m
and hy,, = g, results in the desired expansion of g.

Consider a subgroup H < m1(W). We can represent H = {1 (Y, p) whereY & W. By Lemma
3.2.2 it suffices to understand how conjugation by elements of 7;(U), and conjugation by the
coset representative v € 1 (V), affect H.

When we conjugate H by an element g € 7 (U), this naturally corresponds to translating the
basepoint p along the path labelled by g in Y to the vertex p, just like Figure 2.18. But since
v ¢ m1(U), we cannot represent conjugation by v of a subgroup of 71 (W) < 7 (U) by simply
shifting the basepoint along a path in the corresponding cover of U. Consider v~'zr; (W’)v. Since
ai (W) Qo (V), vl (W)v =t (W’). Since W’ is a cover of V and v € r;(V), conjugating
71(W”) by v corresponds to shifting the basepoint of W’ along the path v. The basepoint of W’
being one of {d*,d~,b*,b™, c*, ¢} and v being a loop in V means that it must take the basepoint
to its partner, meaning d* < d~,b" < b~ or ¢t < ¢~ depending on the basepoint. This is
all to say that 7, (W’, p,) = v~z (W’, p)v, and the isomorphism is defined on the vertices by

d* & d7,b* & b7, c* < ¢. This isomorphism extends naturally to the edges.

56



§3.2. Finite Stature Procedure

Consider the homotopy equivalence o : W — W introduced in the previous section. Since
o is a homotopy equivalence, it extends naturally to all covers of W’ as well. Figure 3.9 shows
how o behaves locally on edges. If we want to translate the basepoint of a cover Y of W by v, we
start by considering the graph Y’ that is the cover of W’ such that ¢(Y") =Y. The v-translated
copy of Y, (Y")Y, is a cover of the v-translated copy of W’, which is a copy of W’ with + < —
swapped in every superscript. Therefore (Y’)” must likewise be obtained by swapping + < —
in the superscripts of every vertex in Y’. Define 8 : Y’ — (Y’)" to be defined by this swapping

of superscripts.

b- d- ; b d+ 3 1
< . o <> o « I ——3pe
b* c b- c* 1
< o ] (—) ° o 1) ]
3 c b- ct b* 1

2 C b- . ¢ b* 3

o(io e (> o oi>o L]
Tod A d a0 2
Ne—~—~

n—2

Figure 3.9.: B = o o f applied to every applicable vertex & edge.

Putting these pieces together, we can calculate YV, for any cover Y of W by applying g = 6o 8
toY’. Pictorially, we can think of B(Y’) as swapping the tops and bottoms of the relator polygons
in the presentation complex. Figure 3.9 shows the details of how S affects the vertices and edges
of the core of every cover of W. In the figure, the dotted arrows are meant to represent edges that
are being mapped to a vertex by 0. An example of a 8 calculation can be found in Figure 3.13.

To recap, the basepoint translation of a graph Y & W can either result in:
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1. Y with a new basepoint chosen, when Y is basepoint translated by an element of 1 (U) or

2. A (potentially) new graph 8(Y) with a (potentially) new basepoint, when Y is basepoint

translated by the nontrivial coset representative v € 1 (V).

3.2.3. Defining the Set S

Lemma 3.2.3. [f there exists a finite set S of finite cores of covers of W such that S contains:
- W
* Every connected component of every fiber product of elements in S
* The image under B3 of every element in S

Then Ay 32, has finite stature with respect to its vertex groups.

Proof. SuchasetS corresponds to a collection of 1 (U)-conjugacy classes & 71 (V)-conjugacy
classes of subgroups of s;(W), and these conjugacy classes are closed under intersection.
Therefore S contains every graph Y, corresponding to a subgroup D as described in Definition
3.2.1. By construction, {(U) Ny (V) = (W) = x1(W’). Assume D 2% m1(U) or (V).
Then D < (W) = m;(W’) and r1(U) N D = D < o (U). Similarly, 71 (V) "D = D < m;(V).
Therefore, if there are finitely many elements in S, there are also finitely many subgroups
m1(U) N D and 7{(V) N D. Since each Yy has finitely many vertices in its core and Yp is
closed under basepoint translation by all elements of r1(U) and 1 (V), there are finitely many
conjugacy classes of 71 (U) N D and 71 (V) N D. Therefore A; 3 2, has finite stature by definition.
M

Connected components coming from fiber products have tuples for vertex labels. The maps
o and B are defined with respect to vertices that have integer labels. We will need to calculate 8
of connected components coming from fiber products, so we choose to project each vertex-tuple

to its second component. This will allow us to apply B to the connected component, and to
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decide which graph in S (if any) that the connected component is a subgraph of. Because we
are making this choice, we must perform H ®; K and K ®3 H for all pairs H, K € S, despite the
fact that (H ®; K) = (K ®7 H) by swapping the tuple-values at each vertex.

3.2.4. g-Contractibility

In Lemma 2.4.14, we fixed the presentation
(W, 1) = (" ¥, y8 Ly (87 )y~ 67y, v, y (yx)y ™)
Consider the quotient g : (W, 1) — x1 (W, 1)/{(N)) where
N =y, y67 y287 1yl sy

Definition 3.2.2. For every K & W, define q(K) to be the minimal 2-complex with K as its
1-skeleton and 2-cells attached to all simple loops whose edges form a word in ({N)). The

complex q(K) satisfies G(a1(K)) = m1(q(K)).

Definition 3.2.3. Let K be the core of a cover of W. The graph K is g-fillable if every path in K

whose edges form a generator of N with the above presentation is a simple loop.

A graph K being g-fillable means that every loop in K that corresponds to an element of N is

built from simple loops, each of which corresponds to a generator of N.
Lemma 3.2.4. Suppose that H, K & W are q-fillable. Then:

* H ®y K is g-fillable,

* B(H) is g-fillable.

Proof. Let L be a connected component of H ®; K. Then L combinatorially immerses into
both H and K. Let £ be a path based at (h, k) in L whose edge labels form a generating element

of N. The fiber product definition allows us to view ¢ also as a path based at h in H and a path
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based at k in K. Since H and K are g-fillable, this makes ¢ a simple loop in both H and K.
Therefore the only vertex in H reached twice by £ is h and the only vertex in K reached twice by
¢ is k. Therefore the only vertex in L reached twice by ¢ is (h, k), making ¢ a simple loop in L
and H ®g K g-fillable by definition.

Let € be a path in B(H) whose edge labels form a generating element of N. Figure 3.10 shows
that 8 maps every generator of N to a generator of N. Therefore f~!(£) is a collection of paths
in H whose edge-labels form the same generating element of N. Since H is g-fillable, this makes

every path in 871 (£) a simple loop. Therefore ¢ itself is also forced to be a simple loop, making

B(H) g-fillable. ¥

Lemma 3.2.5. Let H, K be q-fillable graphs such that q(K) is contractible. Then every connected

component of K ®; H and H ®; K is a subgraph of K.

Proof. Let L be a connected component of K ®; H. Then there is a combinatorial immersion
¢ : L — K. In order for ¢ to not be an embedding, there needs to exist an open path p in L
such that ¢(p) is a loop in K. Assume such an open path p exists. Since K is g-contractible, this
makes ¢ (p) a loop whose edge-labels form an element in N. Therefore p is a path in L whose
edge labels form an element in N. Lemma 3.2.4 guarantees that L is g-fillable, forcing every
every path in L whose edge labels form an element of N to be a loop. Therefore p is a loop,

forcing ¢ to be an embedding. N

Lemma 3.2.6. Let K be a q-fillable graph such that q(K) is contractible. Then q(B(K)) is

contractible as well.

Proof. ¢(K) contractible means that every loop in K is a combination of path-translations
of red cycles of length n, green triangles and yellow-green bigons. As shown in Figure 3.10,
this collection of loops is closed under 8. Therefore B(K) also consists only of loops that arise
as combinations of path-translations of red cycles of length n, green triangles and yellow-green

bigons, making q(f(K)) contractible as well. J
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Figure 3.10.: B applied to the boundaries of the 2-cells.

§ 3.3. Residual Finiteness of A 3>, For n > 4

The goal of this section is to prove the following theorem:
Theorem 3.3.1. A 32, for n > 4 is residually finite.
Combining Lemma 3.2.3 with Theorem 3.1.4 reduces the proof of this theorem to proving

that a finite set S, as described in Lemma 3.2.3, exists.

3.3.1. Iterative Construction of S

The general procedure for constructing S is as follows. Begin with S = {W}, then:

* Perform H ®; H, H ®3 K and K ®; H for each H, K € S. Project each vertex-tuple to its
second component and add to S any resulting connected component that is not a subgraph

of an element already in S.

* Calculate 8(H) for every H € S. Add B(H) to S if it is not a subgraph of any element of

S.

* Repeat the above two steps until no new graphs can be added to S in this fashion.
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* Add all subgraphs of elements of S to S.

We will prove that such a process will terminate, resulting in a finite set S of finite graphs.
We begin with S = {W} since S must, at minimum, contain W. Conjugating W by any element
of m1(U) does not change W, it just shifts the basepoint. Also, since m;(W) = xr1(W’) and
(W) S (V), vry(W)v™! = vy (W)v~! = o (W) = 7 (W). Pictorially, this is shown in

Figure 3.11.

Figure 3.11.: (W) =W

We end this subsection with the statement of Lemma 3.3.2, which we will spend the remainder

of the section proving.
Lemma 3.3.2. The set S is finite for Az 32, withn > 4.

So far S = {W} is closed under basepoint translation, but we also S need to be closed under

fiber product.
Lemma 3.3.3. For Ay30, withn > 4, W ®; W has the following connected components:

* One copy of W
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* n — 5 copies of an n-gon with red edges

* One of each of the graphs in Figure 3.12, to be denoted henceforth by X (leftmost) and

X5 (rightmost).

Figure 3.12.: X; & X»

Proof. W has three yellow edges, three green edges and n red edges. Therefore W ®; W
must have nine yellow edges, nine green edges and n® red edges. By direct computation, these
yellow edges and green edges arise as the triangles (1,1) — (3,3) — (2,2) — (1, 1) in the
copy of W, (1,2) — (3,1) —» (2,3) — (1,2) and (1,3) — (3,2) — (2,1) — (1,3). After
projecting to the second component of each tuple, these triangles become the triangles present
in X| and X, respectively. The placement of the red edges in W, X| and X, follow directly from
these vertex-labelings. W has n vertices, X; has 2n vertices and X, has 2n vertices. Therefore
there are n> — 5n vertices unaccounted for. Since we have identified all of the yellow and green
edges in W ®; W, only red edges can connect the remaining n> — 5n vertices. Every vertex in W
is contained in a red loop of length n, therefore every vertex in W ®; W must also be contained
in a red loop of length n. Therefore the remaining n> — 5n vertices must occur in n — 5 red loops

of length n. N

3.3.2. The Proof of Lemma 3.3.2

Proof. Lemma 3.3.3 describes the connected components of W ®3 W as being a copy of W, X;

and X,, along with a collection of red n-cycles. These red n-cycles are all subgraphs of W, and
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so by Lemma 3.2.1 they are only capable of producing subgraphs of fiber products involving W
to S. At the end we will include all unique subgraphs of elements of S, but for the first two steps
of our construction we are focused on new maximal elements of S.

So far S = {W,X),X,}. We need S to be closed under 3, so we must calculate S(X;) and
B(X>). These calculations are carried out in Figures 3.13 & 3.14 by applying 8 and o to each
edge and referring to Figure 3.9 for the image of each edge. These calculations result in two new
graphs that must be included in S. The vertices 1 (resp. 2) in (X;) and B(X3) is a preimage of
the vertex labelled 1 (resp. 2) in W, and the notation is used to differentiate the two preimages
for ease of computation later on.

We now have S = {W, X1, X», B(X1), B(X2)}, a set closed under . It remains to show that
every connected component of each pairwise fiber product of elements in this set is either a
subgraph of a graph in S or is g-contractible. To prove this claim we proceed in a similar fashion
as in Lemma 3.3.3. As n increases, the number of red edges increases, but the number of yellow
and green edges remains the same, so it suffices to focus on how the yellow and green edges are
dispersed among the connected components. The collection of connected components of a fiber
product that contain yellow & green edges will be termed the relevant portion for the remainder
of the proof. The other connected components will be dealt with at the end of the proof.

E* 2' d- l.) g¢ ct d+
& d- b _B> d d*./ b
VNS, i / \\{5 i

b d* c* b+

Figure 3.13.: (X))
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Figure 3.14.: B(X>)

All fiber products involving only W, X and X,

We begin by calculating the relevant portion of W ®3 X;. By direct computation, these com-
ponents are two copies of X| and a graph that is g-contractible, as seen in Figure 3.15. The
presence of g-contractible graphs in the fiber product computations will be addressed at the end
of the proof. For now, we focus on adding to S only the non g-contractible graphs that arise.

n

3,3) Q
2.3) 2 @3 2 '

AN N

7
1,2 G 2.2 a.n
n n n

Figure 3.15.: The relevant portion of W ®3 X

We compute the relevant portion of X; ®; W by swapping the entries in each vertex-tuple in
Figure 3.15, resulting in X;, X, and a g-contractible graph.

The fiber products used to build S are with respect to U, meaning that we view each component
of the fiber product as being combinatorially immersed in U. The graph U has only one vertex, so

the vertex labellings of the graphs in S are therefore irrelevant in the fiber product calculations.
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Notice that X; and X, are identical graphs when the vertices are not labelled. We denote this
property by X; £ X;. Since X; = X;, the connected components that arise from Y ®3 X (resp.
X) ®z Y) will be the same graphs, up to vertex relabelling, as the connected components in
Y ®5 X, (resp. X ®; V) forallY ¢ U.

In particular, the connected components of W ®; X are identical to the connected components
of W ®g X1 up to vertex labels. Since a graph is g-contractible regardless of its vertex labels, it
suffices to calculate the other two relevant connected components of W ®3 X,. This results in

two copies of X; as seen in Figure 3.16.

2,2) (3,2)

Figure 3.16.: The non g-contractible relevant portion of W ®z X»

To calculate the non g-contractible relevant portion of X, ®; W, we swap the tuple-entries at
each vertex in Figure 3.16, resulting in a copy of X; and X].
The relevant portion of X; ®3 X, is 2 g-contractible graphs and X,, as seen in Figure 3.17.

n

n
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1

n—
e
n n n n

n

Figure 3.17.: The relevant portion of X| ®z X»

To obtain the non g-contractible relevant portion of X, ®; X;, we swap the tuple-entries at
every vertex in the rightmost graph in Figure 3.17, resulting in a copy of Xj.
Since X; = X», there is only one non g-contractible relevant connected component in both

X1 ®3 X1 and X, ®; X respectively. For X; ®; X1, that connected component is the copy of X
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shown in Figure 3.18.

(1,3)

(3,2 20

Figure 3.18.: The non g-contractible relevant portion of X| ®z X

For X, ®7 X, the non g-contractible relevant connected component is the copy of X, shown in

Figure 3.19.

n

Figure 3.19.: The non g-contractible relevant portion of X> ®z X»

Z Q5 B(X1) where Z € {W, X, X,}

The relevant portion of W ®; B(X1) is a copy of B(X]), two g-contractible graphs and a subgraph

of X5, as shown in Figure 3.20.

wd 6o @ %"
22 ’

[ J
(2,9) 3,3

Figure 3.20.: The relevant portion of W ®3 (X))

Swapping the tuple-values at each vertex in leftmost and rightmost graphs in Figure 3.20

results in the non g-contractible relevant portion of (X)) ®; W being (X)) and a subgraph of
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Xj. The relevant portion of X; ®; 8(X;) consists of 4 g-contractible connected components and

a subgraph of X, as shown in Figure 3.21.

n—1 n

°
2,2) Q (1,3)
(11
n—1
n mn
o L 4 > ®

n
n

Figure 3.21.: The relevant portion of X; ®; S(X;)

Swapping the tuple-entries at each vertex in the rightmost graph in Figure 3.21 results in the
only non g-contractible relevant component of 3(X;) ®3 X; being a subgraph of Xj.

Since X; = X;, we know from the above calculations that there is only one non g-contractible
relevant component of X, ®; f(X;). This component is the subgraph of X, shown in Figure
3.22. Swapping the tuple-entries at each vertex leaves the labels unchanged, so the only non

g-contractible relevant component of 8(X;) ®; X, is the same subgraph of X;.

3,3)

n

Figure 3.22.: The relevant portion of both X, ®; B(X;) & B(X|) Q5 X2

Z Q5 B(X,) where Z € {W, X, X,}

The relevant portion of W ®; 8(X>) is a copy of B(X3), a subgraph of X; and two g-contractible

graphs as shown in Figure 3.23.
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Figure 3.23.: The relevant portion of W ®; B(X>)

Swapping the tuple-entries at each vertex of the two leftmost graphs in Figure 3.23 results in
the non g-contractible relevant portion of f(X,) ®; W being B(X») and a subgraph of X;.
The relevant portion of X; ®; (Xz) consists of 4 g-contractible graphs and a subgraph of X

as shown in Figure 3.24.
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Figure 3.24.: The relevant portion of X ®; S(X2)

Swapping the tuple-entries at each vertex in the rightmost graph in Figure 3.24 results in the
same graph being the only non g-contractible relevant component of 8(X;) ®7 X;.

Since X; = X5, the only non g-contractible relevant component of X, ®; B(X>) is the subgraph
of X| shown in Figure 3.25.

Swapping the tuple-entries at each vertex in the graph in Figure 3.25 results in the only non

g-contractible relevant component of 8(X;) ®; X, being a subgraph of X;.

B(X1) ®; B(X1), B(X1) ® B(X2) and B(X3) &y B(X2)

The relevant portion of 8(X;) ®; B(X1) consists of a copy of B(X;) and 6 g-contractible graphs

as shown in Figure 3.26.
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Figure 3.26.: The relevant portion of B(X;) ®; B(X1)

The relevant portion of B(X;) ®; B(Xz) is a subgraph of X; and 6 g-contractible graphs as

shown in Figure 3.27.
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Figure 3.27.: The relevant portion of 8(X;) ® B(X2)

Swapping the tuple-entries of the leftmost graph in Figure 3.27 results in the only non g-
contractible relevant component of B(X,) ®5 B(X]) being a subgraph of X;.
The relevant portion of B(X>) ®7 B(X>) is a copy of B(X,) and 6 g-contractible graphs shown

in Figure 3.28.

Assembling the Pieces To Finalize S

We now have a complete enumeration of every relevant connected component in every fiber

product coming from pairs of graphs in S = {W, X1, X5, 8(X1), B(X2)}. Every such component
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Figure 3.28.: The relevant portion of B(X») ®; B(X2)

is either a subgraph of a graph in S = {W, X1, X», B(X1), B(X2)} or is g-contractible. In each fiber
product computed in the last subsection, there are also non-relevant connected components that
arise, consisting of unaccounted for vertices and red edges. Note that every red edge in every
graph in S = {W, X1, X, B(X1), B(X2)} is contained in a red cycle of length n, which forces
every red edge in every fiber product to also be contained in a red cycle of length n. Therefore
the remaining vertices and red edges in each of the fiber products must arise as connected
components consisting solely of one cycle of length n, which is a subgraph of W, and will
therefore be included in the final step in the construction of S.

If a graph K € S is g-contractible, Lemma 3.2.5 tells us that every connected component of
K ®; H and H ®j K is a subgraph of K for all H € S. While f(K) may not already be in S
(in which case we add B(K) to S), B(K) also has q(B(K)) contractible by Lemma 3.2.6, and
therefore every connected component of 8(K) ®; H and H ®3 B(K) is a subgraph of 8(K) for
all H € S as well. Since 2 = 1, this guarantees that any g-contractible K can contribute at most
one new maximal graph to S, namely S(K). In the above calculations we encountered a finite
number of g-contractible relevant graphs, so including these graphs and their images under 8
in S allows S to remain finite. Finally, since every element of S is finite, each graph contains
finitely many subgraphs. We include all subgraphs of every element of S to finalize our set S

guaranteeing that it is both finite and satisfies the properties described in Lemma 3.2.3. N
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§ 3.4. Residual Finiteness of A, 3 g

Theorem 3.4.1. A; 33 is residually finite.

The goal of this section is to prove Theorem 3.4.1 in a similar manner as the proof of Theorem
3.3.1. To do so, we will again construct a finite set S that will satisfy Lemma 3.2.3.

Proof. The reason that A; 3 g is a special case comes from the very first calculation, W ®3 W.
This calculation is carried out in Figure 3.8 and results in two connected components. The first
connected component is, of course, a copy of W with vertices (1, 1), (2,2), (3,3) and (4,4).

The second connected component is shown in Figure 3.29, and will be denoted Y.

4
4 1 3 1
si—o o e
2 3 2 4
3

Figure 3.29.: Y}

So far S = {W,Y;}. The next step is to compute S(Y;). This calculation is performed in
Figure 3.30.

Since B(Y)) is anew graph, we include B(Y;) in S and proceed by performing the fiber product
of every pair in S = {W,Y;,B(Y1)}. A full enumeration of all of the connected components
that appear in these fiber product computations is shown in Table 3.1 at the end of the section.
Readers who would like to perform the fiber product computations should refer to the GitHub
link at the end of the paper for a Python program that will aid in these calculations. Here we
describe the new graphs that arise from these fiber products. One of the connected components
of W ® B(Y}) is a new graph that we will denote Y, and is shown in Figure 3.31. One of the
connected components of B(Y;) ®W is a new graph that we will denote Y3 and is shown in Figure

3.32.
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Figure 3.30.: B(Y1)

Figure 3.32.: 13
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Again, we need S to be closed under 3, so we must compute 8(Y>) and B(Y3). These
calculations are shown in Figures 3.33 & 3.34. Luckily, B(Y>) is a rotated copy of Y2, so B(Y3)
is the only other new graph that we must add to S after this step. Table 3.1 contains information
about every connected component that arises from the fiber products of every pair of graphs
inS = {W,Y,B8(Y1),Y>,Y3,B8(Y3)}. Weuse Y, =Y, L1Y3 LI B(Y3) to streamline computations.
Some connected components that arise over the course of these computations are subgraphs of
multiple of W, Y1, B(Y1), Ys, Y3, B(Y3). In these situations, a choice was made regarding which
column this component is counted in. This choice is arbitrary and does not affect the finiteness

of S.

Figure 3.33.: B(Y2) =Y
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Figure 3.34.: B(Y3)

Number of Subgraphs of Connected Components In S
w V) BYy) |1 Y3 B(Y3) | g-contractible

WegWw 1 1 0 0 0 0 0
Wep Y 0 2 0 0 0 0 2
W ®g B(Y1) 0 2 1 1 0 0 0
W ey Yy 0 0 0 2 2 2 12
Y@ W 0 2 0 0 0 0 2
Y1 ®5 Y 0 2 0 0 0 0 14
Y1 ®g (Y1) 0 4 0 2 0 0 6
Y ®5Ya 0 0 0 2 2 2 72
B(Y1) &g W 0 2 1 0 1 0 0
B(Y1) ®; Y1 0 4 0 1 1 0 6
B(Y1) &g B(Y1) || O 2 1 1 0 0 8
B(Y1) ®; Ya 0 0 0 3 1 1 68
Yy ®5 W 0 0 0 2 3 1 12
Yi Q57 0 0 0 2 3 1 72
Y4 ®5 B(Y1) 0 0 0 4 0 1 68
Yi®5Y4 0 0 0 6 3 4 512

Table 3.1.: An enumeration of the connected components that occur in the fiber products in the
construction of S for A3 3 g.
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Applying the same reasoning as in the end of the proof in Section 3.3.3 to the above table
proves that S is finite. By Lemma 3.2.3, this proves that A; 3 g has finite stature with respect to

its vertex groups. Therefore, by Theorem 3.1.4, A 3 g is residually finite.
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The program used to analyze the connected components that arise in the Aj 3 g fiber products

is available at

https://github.com/GreysonPMeyer/Triangle-Artin-Groups

The program is written in Python, and you will need a Python interpreter to run it. These
interpreters are available, for free and for almost all platforms, from http://python.org. To build
any of the graphs in the code, use the “build_F3" function. To view the connected components
of a fiber product, use the “check_fiber" function and follow the prompts. To verify the rows in
the table, use the “check_row" function. The Ys ®; Y4 calculation takes a lot of time, so the full
dictionary containing the connected components of this calculation is included at the end of the
code. Checking the Y4 ®; Y4 row of the table can be done by applying the “check_row_Y4xY4"

function to the “Y4_x_Y4" dictionary.
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