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Executive Summary

Randomized algorithms have propelled advances in artificial intelligence (AI) and represent a foun-
dational research area in advancing AI for Science. Future advancements in DOE Office of Science
priority areas such as climate science, astrophysics, fusion, advanced materials, combustion, and
quantum computing all require randomized algorithms for surmounting challenges of complexity,
robustness, and scalability.

Advances in data collection and numerical simulation have changed the dynamics of scientific
research and motivate the need for randomized algorithms. For instance, advances in imaging
technologies such as X-ray ptychography, electron microscopy, electron energy loss spectroscopy,
or adaptive optics lattice light-sheet microscopy collect hyperspectral imaging and scattering data
in terabytes, at breakneck speed enabled by state-of-the-art detectors. The data collection is
exceptionally fast compared with its analysis. Likewise, advances in high-performance architectures
have made exascale computing a reality and changed the economies of scientific computing in the
process. Floating-point operations that create data are essentially free in comparison with data
movement. Thus far, most approaches have focused on creating faster hardware. Ironically, this
faster hardware has exacerbated the problem by making data still easier to create. Under such
an onslaught, scientists often resort to heuristic deterministic sampling schemes (e.g., low-precision
arithmetic, sampling every nth element) and sacrifice potentially valuable accuracy.

Dramatically better results can be achieved via randomized algorithms, reducing the data size as
much as or more than naive deterministic subsampling can achieve, while retaining the high accu-
racy of computing on the full data set. By randomized algorithms we mean those algorithms that
employ some form of randomness in internal algorithmic decisions to accelerate time to solution,
increase scalability, or improve reliability. Examples include matrix sketching for solving large-scale
least-squares problems (see Figure 1) and stochastic gradient descent for training machine learning
models. We are not recommending heuristic methods but rather randomized algorithms that have
certificates of correctness and probabilistic guarantees of optimality and near-optimality. Such ap-
proaches can be useful beyond acceleration, for example, in understanding how to avoid measure
zero worst-case scenarios that plague methods such as QR matrix factorization.

data sketch

Figure 1: Randomized sketching can dramatically reduce the size of massive data sets.

Randomized algorithms have a long history. The Markov chain Monte Carlo method was central to
the earliest computing efforts of DOE’s precursor (the Atomic Energy Commission). By the 1990s,
randomized algorithms were deployed in regimes such as randomized routing in Internet protocols,
the well-known quicksort algorithm, and polynomial factoring for cryptography. Starting in the
mid-1990s, random forests and other ensemble classifiers have shown how randomization in machine
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learning improve the bias-variance tradeoff. In the early 2000s, compressed sensing, based on
random matrices and sketching of signals, dramatically changed signal processing. The 2010s saw a
flurry of novel randomization results in linear algebra and optimization, accelerated by the pursuit
of problems of growing scale in AI and bringing non-asymptotic guarantees for many problems.

The accelerating evolution of randomized algorithms and the unrelenting tsunami of data from
experiments, observations, and simulations have combined to motivate research in randomized
algorithms focused on problems specific to DOE. The new results in artificial intelligence and
elsewhere are just the tip of the iceberg in foundational research, not to mention specialization
of the methods for distinctive applications. Deploying randomized algorithms to advance AI for
Science within DOE requires new skill sets, new analysis, and new software, expanding with each
new application. To that end, the DOE convened a workshop to discuss such issues.

This report summarizes the outcomes of that workshop, “Randomized Algorithms for Scientific
Computing (RASC),” held virtually across four days in December 2020 and January 2021. Partic-
ipants were invited to provide input, which formed the basis of the workshop discussions as well
as this report, compiled by the workshop writing committee. The report contains a summary of
drivers and motivation for pursuing this line of inquiry, a discussion of possible research directions
(summarized in Table 1), and themes and recommendations summarized in the next two pages.

Table 1: A sampling of possible research directions in randomized algorithms for scientific computing

Analysis of randomized algorithms for production conditions
Randomized algorithms cost and error models for emerging hardware

Incorporation of sketching for solving subproblems
Specialized randomization for structured problems

Overcoming of parallel computational bottlenecks with probabilistic estimates
Randomized optimization for DOE applications

Computationally efficient sampling
Stratified and topologically aware sampling

Scientifically informed sampling
Reproducibility

Randomized algorithms for solving well-defined problems on networks
Universal sketching and sampling on discrete data

Randomized algorithms for machine learning on networks
Randomized algorithms for combinatorial and discrete optimization
Randomized algorithms for discrete problems that are not networks

Going beyond worst-case error analysis
Bridging of computational and statistical perspectives

Integration of randomized algorithms into coupled workflows
Mergeable summaries

In situ and real-time data analysis
Privacy

Composable and interoperable randomized abstractions for computation
Use cases for randomized communication

Broker abstractions for randomized input/output
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Overarching Themes

Theme 1: Randomized algorithms essential to future computational capacity
The rate of growth in the computational capacity of integrated circuits is expected to slow
while data collection is expected to grow exponentially, making randomized algorithms—
which depend on sketching, sampling, and streaming computations—essential to the future
of computational science and AI for Science.

Theme 2: Novel approaches by reframing long-standing challenges
The potential for randomized algorithms goes beyond keeping up with the onslaught of
data: it involves opening the door to novel approaches to long-standing challenges. These
include scenarios where some uncertainty is unavoidable, such as in real-time control and
experimental steering; design under uncertainty; and mitigating stochastic failures in novel
materials, software stacks, or grid infrastructure.

Theme 3: Randomness intrinsic to next-generation hardware
Computing efficiencies can be realized by purposely allowing random imprecision in computa-
tions. Imprecision is inherent in emerging architectures such as quantum and neuromorphic
computers. Randomized algorithms are a natural fit for these environments, and future com-
puting systems will benefit from the co-design of randomized algorithms alongside hardware
that favors certain instantiations of randomness.

Theme 4: Technical hurdles requiring theoretical and practical advances
Crafting sophisticated approaches that break the “curse of dimensionality” via sublinear
sampling, sketching, and online algorithms requires sophisticated analysis, which has been
tackled thus far only in a small subset of scientific computing problems. Foundational re-
search in theory and algorithms needs to be multiplied many times over in order to cover
the breadth of DOE applications.

Theme 5: Reconciliation of randomness with user expectations
Users are conditioned to certain expectations, such as viewing machine precision as sacro-
sanct, even when fundamental uncertainties make such precision ludicrous. New metrics
for success can expand opportunities for scientific breakthroughs by accounting for tradeoffs
among speed, energy consumption, accuracy, reliability, and communication.

Theme 6: Need for expanded expertise in statistics and other areas
Establishing randomized algorithms in scientific computing necessitates integrating statis-
tics, theoretical computer science, data science, signal processing, and emerging hardware
expertise alongside the traditional domains of applied mathematics, computer science, and
engineering and science domain expertise.
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Recommendations

Based on community-wide input and workshop discussions, this report recommends pursuing a
research program comprising six complementary thrusts.

Recommendation 1: Theoretical foundations
Foundational research in the theory of randomized algorithms to (among other issues) un-
derstand existing methods, tighten theoretical bounds, and tackle problems of propagating
theory into coupled environments. The output of this research will be theorems and proofs
to uncover new techniques and guarantees and to address new problem settings.

Recommendation 2: Algorithmic foundations
Foundational development of sophisticated algorithms that leverage the theoretical underpin-
nings in practice, identifying and mending any gaps in theory, and establishing performance
for idealized and simulated problems. The output here will be advances in algorithm analysis
and understanding, prototype software, and reproducible experiments.

Recommendation 3: Application integration
Deployment in scientific applications in concert with domain experts. This will often require
extending existing theory and algorithms to the special cases of relevance for each application,
as well as application-informed sampling designs. The output here will be software alongside
benchmarks and best practices for specific applications, focused on enabling novel scientific
and engineering advances.

Recommendation 4: Performance on next-generation hardware
Adaptation of randomized algorithms to take advantage of best-in-class computing hard-
ware, from current architectures to quantum, neuromorphic, and other emerging platforms.
The output here will be high-performance open-source software for next-generation com-
puting hardware, including enabling efficient utilization of nondeterministic hardware and
maximizing performance of deterministic hardware.

Recommendation 5: Outreach
Outreach to a broader community to facilitate engagement outside the traditional computa-
tional science community, including experts in statistics, applied probability, signal process-
ing, and emerging hardware. The output of this effort will be community-building workshops
and research efforts with topically diverse teams that break new frontiers.

Recommendation 6: Workflow standardization
Standardization of workflow, including debugging and test frameworks for methods with only
probabilistic guarantees, software frameworks that both integrate randomized algorithms and
provide new primitives for sampling and sketching, and modular frameworks for incorporat-
ing the methods into large-scale codes and deploying to new architectures. The output here
will be community best practices and reduced barriers to contributing to scientific advances.

Randomized Algorithms for Scientific Computing vii



1 Introduction

Randomized algorithms have propelled advances in artificial intelligence (AI) and represent a foun-
dational research area in advancing AI for Science. Future advancements in DOE Office of Science
priority areas such as climate science, astrophysics, fusion, advanced materials, combustion, and
quantum computing all require randomized algorithms for surmounting challenges of complexity,
robustness, and scalability.

Advances in data collection and numerical simulation have changed the dynamics of scientific
research and motivate the need for randomized algorithms. For instance, advances in imaging
technologies such as X-ray ptychography, electron microscopy, electron energy loss spectroscopy,
and adaptive optics lattice light-sheet microscopy collect hyperspectral imaging and scattering
data in terabytes at breakneck speed enabled by state-of-the-art detectors. The data collection is
exceptionally fast compared with its analysis. Likewise, advances in high-performance architectures
have made exascale computing a reality and changed the economies of scientific computing in the
process. Floating-point operations that create data are essentially free in comparison with data
movement. Thus far, most approaches have focused on creating faster hardware. Ironically, this
faster hardware has exacerbated the problem by making data still easier to create. Under such
an onslaught, scientists often resort to heuristic deterministic sampling schemes (e.g., low-precision
arithmetic, sampling every nth element) and sacrifice potentially valuable accuracy.

Dramatically better results can be achieved via randomized algorithms, reducing the data size
as much as or more than naive deterministic subsampling while retaining the high accuracy of
computing on the full data set. By randomized algorithms we mean those algorithms that employ
some form of randomness in internal algorithmic decisions to accelerate time to solution, increase
scalability, or improve reliability. Examples include matrix sketching for solving large-scale least-
squares problems and stochastic gradient descent for training machine learning models. We are
not recommending heuristic methods but rather randomized algorithms that have certificates of
correctness and probabilistic guarantees of optimality and near-optimality. Such approaches can
be useful beyond acceleration, for example, in understanding how to avoid measure zero worst-case
scenarios that plague methods such as the QR matrix factorization.

Randomized algorithms have a storied history in computing. Monte Carlo methods were at the
forefront of early Atomic Energy Commission (AEC) developments by Enrico Fermi, Nicholas
Metropolis, and Stanislaw Ulam [110, 111] and inspired John von Neumann to consider early
automated generation of pseudorandom numbers to avoid latency costs of relying on state-of-the-
art tables [126]. Ulam’s line of inquiry was rooted in solitaire card games but aimed at practical
efficiency [57]:

After spending a lot of time trying to estimate them by pure combinatorial calculations,
I wondered whether a more practical method than abstract thinking might not be to
lay it out say one hundred times and simply observe and count the number of successful
plays.

In the 1950s, Arianna Rosenbluth programmed the first Markov chain Monte Carlo implementation,
which was for an equation-of-state computation on AEC’s groundbreaking MANIAC I (Mathemat-
ical Analyzer Numerical Integrator and Automatic Computer Model I) computer [112]. In subse-
quent years, the consideration of systems at equilibrium and study of game theory have resulted in
many randomized algorithms for resolving mixed strategies for Nash equilibria [117]. By the 1990s,
randomized algorithms were deployed in regimes such as randomized routing in Internet protocols,

Randomized Algorithms for Scientific Computing 1



the well-known quicksort algorithm, and polynomial factoring for cryptography [118, 86]. In the
mid-1990s, methods such as random forests and other randomized ensemble classifiers improved
accuracy in machine learning, demonstrating that ensembles built from independent random ob-
servations can yield superior generalization [36, 37]. In the early 2000s, compressed sensing, based
on random matrices and sketching of signals, dramatically changed signal processing [46]. The
National Academies’ Mathematical Sciences in 2025 report [119] stated:

It revealed a protocol for acquiring information, all kinds of information, in the most
efficient way. This research addresses a colossal paradox in contemporary science, in that
many protocols acquire massive amounts of data and then discard much of it, without
much or any loss of information, through a subsequent compression stage, which is
usually necessary for storage, transmission, or processing purposes.

The work showed that the traditional Shannon bounds of information theory can be overturned
whenever the underlying signal has structure and that randomized algorithms are key to this
development.

The 2010s saw a flurry of novel results in linear algebra and optimization, accelerated by problems
of increasing scale in artificial intelligence.

The accelerating evolution of randomized algorithms and the unrelenting tsunami of data from
experiments, observations, and simulations have combined to motivate research in randomized
algorithms focused on problems specific to DOE. The new results in AI and elsewhere are just
the tip of the iceberg in foundational research, not to mention specialization of the methods for
distinctive applications. Deploying randomized algorithms to advance AI for Science within DOE
requires new skill sets, new analysis, and new software, expanding with each new application. To
that end, DOE convened a workshop to discuss such issues.

This report summarizes the outcomes of that workshop, “Randomized Algorithms for Scientific
Computing (RASC),” held virtually across four days in December 2020 and January 2021.1 The first
two days of the workshop, the “boot camp,” focused on highly interactive technical presentations
from experts and had 453 participants. The second part of the workshop, held one month later,
focused on community input and had 204 fully engaged participants. Participants in both parts
were invited to provide inputs during, in between, and after the sessions. These inputs have formed
the basis of this report, which was compiled by the workshop writing committee.

The report is organized as follows. Section 2 describes the need for a colossal leap in computa-
tional capacity, across the board, motivated by ever-larger and more heterogeneous data collection,
larger-scale and higher-resolution simulations, bounding uncertainty in high-dimensional inverse
problems, higher-complexity real-time control scenarios, inherent randomness in emerging com-
putational hardware itself, and scientific applications of AI. Ideas for foundational and applied
research in randomized algorithms that address these needs are described in Section 3. These ideas
range from linear and nonlinear systems, to algorithms for discrete and combinatorial problems,
to random sampling strategies and streaming computations, to software abstractions. Much atten-
tion is focused on providing a combination of theoretical robustness (i.e., assurances of correctness
for model problems), efficiency, practicality, and relevance for problems of interest to DOE. We
conclude with high-level themes and recommendations in Section 4, not least of which is the need

1In contrast to past workshops, such as Scientific Machine Learning [18] and AI for Science [137], this workshop
was held virtually because of the COVID-19 pandemic, which prevented travel in the winter of 2020/2021. The
virtual format had the benefit of enabling much broader engagement than past in-person workshops.
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for reconciling user expectations with the results of randomized algorithms and the need to engage
broader expertise (e.g., from statistics) than has historically been needed in the ASCR program.
The appendices give further details of the workshop: see Appendix A for the workshop agenda,
Appendix B for a full list of participants, and Appendix C for acknowledgments.

Randomized Algorithms for Scientific Computing 3



2 Application Needs and Drivers

Over the next decade, DOE anticipates scientific breakthroughs that depend on modeling more
complex chemical interactions yielding higher-capacity batteries, computing on emerging hardware
platforms such as quantum computers with inherent randomness, analyzing petabytes of data
per day from experimental facilities to understand the subatomic structure of biomolecules, and
discovering rare and previously undetected isotopes. Achieving these science breakthroughs requires
a colossal leap in DOE’s capacity for massive data analysis and exascale simulation science.

Algorithmic advances have always been the key to such progress, but the scale of the challenge over
the next decade will oblige DOE to forge into the domain of randomized algorithms. Supporting this
new effort will mean recruiting experts outside the traditional areas of computational science and
engineering, high-performance computing, and mathematical modeling by attracting and involving
experts in applied probability, statistics, signal processing, and theoretical computer science.

Advances in randomized algorithms have been accelerating in the past decade, but there is a high
barrier to integration into DOE science. This is in large part because DOE has unique needs that
require domain-specific approaches. In this section we highlight specific DOE applications, the
challenges of the coming decade, and the potential of randomized algorithms to overcome these
hurdles.

2.1 Massive Data from Experiments, Observations, and Simulations
Subsection lead: C. Kamath

The DOE Office of Science operates several national science user facilities, including accelerators,
colliders, supercomputers, light sources, and neutron sources [30]. Spanning many different disci-
plines, these facilities generate massive amounts of complex scientific data through experiments,
observations, and simulations. For example, by the year 2035, ITER, the world’s largest fusion
experiment [1], will produce two petabytes of data every day, with 60 instruments measuring 101
parameters (Figure 2) during each experiment or “shot.” The data will be processed subject to a
wide range of time and computing constraints, such as analysis in near-real time, during a shot,
between shots, and overnight, as well as remote analysis and campaign-wide long-term analysis [42].

These constraints, as well as the volume and complexity of the data, require new advances in
data-processing techniques. Similar requirements are echoed by scientists as they prepare their
simulations for the exascale era [49]. The nanoscale facilities at DOE also provide challenges as
scientists aim to control matter at the atomic scale through the Atomic Forge [83]. Manipulating
atoms by using a scanning transmission electron microscope involves real-time monitoring, feedback,
and beam control. Scalable randomized algorithms will be essential for achieving success in this
new field of atom-by-atom fabrication (Figure 3).

In order to fully realize the benefits of the science enabled by DOE facilities, the techniques
currently used for processing the data must be enhanced to keep pace with the ever-increasing
rate, size, and complexity of the data.

In order to fully realize the benefits of the science enabled by these DOE facilities, the techniques
currently used for processing the data must be enhanced to keep pace with the ever-increasing
rate, size, and complexity of the data. For simulation data generated on exascale systems, these
techniques include compression, in situ analysis, and computational steering, while experimental
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Figure 2: Schematic of ITER diagnostics [34] illustrating some of the instruments that will generate two
petabytes of data per day at the ITER Scientific Data Centre [35]. Randomized algorithms offer a potential
solution to the challenge of processing of these massive, complex data sets.

and observational data require robust, real-time techniques to identify outliers, to fit machine
learning models, or to plan subsequent experiments. In contrast to simulations that can be paused
to reduce the data overload, experimental and observational data often must processed as it arrives
in an unrelenting stream, or else risk losing parts of the data.

Randomized algorithms offer a solution to this challenge of processing massive data sets in near-
real time by introducing concepts of sparsity and randomness into the algorithms currently in use.
However, several technical issues must be addressed before such algorithms are broadly accepted
and used by scientists. Most important is a need to understand the uncertainties in the reliability
and reproducibility of the results from these algorithms, especially given their “random” nature.
In experiments where not all the data being generated can be stored, the critical information to be
saved must be correctly identified, even though the randomized algorithms sample only a subset
of the data stream; and predicting whether a sample is useful or not can be difficult. Randomized
algorithms must also be able to process data at different levels of precision, as well as data stored
in different data structures, such as images and time series, including structured and unstructured
data from simulations.

Addressing some of these roadblocks to the use of randomized algorithms in processing massive data
sets requires longer-term research, but several near-term opportunities exist. Two areas where ran-
domized algorithms could prove useful are data reduction through various compression techniques
and acceleration of data analysis. These algorithms could also be more accurate than periodic
sampling in some problems and more efficient than the use of dense linear algebra, lead to better
communication efficiency in high-performance computing, and allow more sophisticated analysis to
be performed in real time. In problems involving both simulations and experiments/observations,
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(a) Visualization of STEM interacting with a silicon atom in a graphene
hole.

(b) Reconstruction of potential on a
torus expanded coordinate system.
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(c) Tracking of atomic position using
auxiliary particle and backward doubly
stochastic differential equation filters.

Figure 3: A scanning transmission electron microscope is capable of measuring and modifying the location of
a silicon atom in a graphene hole. Current mathematical methods cannot reconstruct the energetic landscape
from the sparse and noisy measurements from the microscope or track the atoms accurately. However, newly
developed randomized algorithms are providing fundamental tools to achieve the goal of real-time atomic
control [56, 19]
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randomized algorithms could enable data assimilation of larger data sets, improve data-driven
simulations by allowing faster use of experimental data, perform better parameter estimation by
exploring larger domains, and open new venues for improvement as ideas for use of these algo-
rithms in simulations are transferred to experiments/observations and vice versa. The insight and
compression capabilities provided by randomized algorithms could also be used for improved long-
term storage of data. The specific areas where additional research is required to accomplish these
improvements are outlined in Section 3.

Technical issues are not the only roadblocks to the use of randomized algorithms in processing
massive data sets. From a societal viewpoint, these algorithms are currently not well understood
enough for domain scientists to be comfortable incorporating them into their work. Often lacking
is an awareness of opportunities where such algorithms may make processing massive data sets
tractable, as well as a lack of robust software that is scalable to massive data sets. Addressing
both the technical and societal concerns would help scientific communities processing data from
experiments, observations, and simulations to accept and benefit from randomized algorithms. If
successful, this would result in reduced time to science, more effective science, and a greater return
on the investment DOE has made in its facilities.

2.2 Forward Models
Subsection lead: C. Yang

As we gain a deeper understanding of a wide range of physical phenomena, forward models become
more complex. A scientific inquiry often begins with a hypothesis in the form of a forward model
that describes what we believe to be the fundamental laws of nature and how different physical
processes interact with each other. Mathematically, these models are represented by algebraic,
integral, or differential equations. They contain many degrees of freedom to account for the mul-
tiscale and multiphysics nature of the underlying physical processes. For example, to model the
interaction of fluids and structures, we need to include velocity, pressure for the fluid, and dis-
placement of the structure. To simulate a photovoltaic system, we need take into account electron
excitation, charge separation, and transport processes, as well as interface problems at a device
level. To understand electrochemistry in a Lithium-ion battery, we need to simulate the dynamic
interface between the electrode and electrolytes during the charging and discharging cycles (Fig-
ure 4). To perform a whole-device modeling of a tokamak fusion reactor, we need to combine the
simulation of core transport, plasma materials interaction at the wall, and global MHD stability
analysis (Figure 5). To model the fully coupled Earth system, we need to consider the interactions
among the atmospheric, terrestrial/subsurface, and ocean cryosphere components (Figure 6).

Such complexity challenges our ability to perform computer simulations with sufficient resolution
to validate our hypotheses by comparing with scientific observations and experimental results. A
high-fidelity simulation to predict extreme events in a climate model at a spatial resolution of 1
kilometer yields an extremely large number of coupled algebraic, integral, and differential equations
with the number of variables, n, in the billions. The complexity of existing numerical methods for
solving these problems is often O(np) for some integer power p > 1, and the number of degrees of
freedom n can be millions or billions. For example, the complexity of a density-functional-theory-
based electronic structure calculation for weakly correlated quantum many-body systems is O(n3),
with n as large as a million. More accurate models for strongly correlated systems such as the
coupled cluster model may require O(n7) floating-point operations, with n in the thousands. The
computational bottleneck is often in the solution of large-scale linear algebra problems. Because
of the nonlinearity of many forward models, these equations need to be solved repeatedly in an
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Figure 4: Snapshot of an ab initio molecular dynamics simulation of the solid-electrolyte interphase (SEI) of
a lithium-ion battery. A nonlinear eigenvalue with millions of degrees of freedom needs to be solved at each
time step. Thousands of time steps are required to generate a trajectory from which properties of the SEI can
be characterized. Randomized trace estimation may be used to reduce the computational complexity in each
time step from O(n3) to O(n) and significantly shorten the simulation time. (provided by J. Pask; a similar
figure appeared in [145])

iterative procedure. Even with the availability of the exascale computing resources, performing
these types of simulations is extremely challenging .

A high-fidelity simulation to predict extreme events in a climate model at a spatial resolution
of 1 kilometer yields an extremely large number of coupled algebraic, integral, and differential
equations, with the number of variables, n, in the billions.

Furthermore, because of model uncertainties, such as fluctuation and noise, multiple simulations
need to be performed in order to obtain ensemble averages.

State of the Art

Randomized algorithms have proven effective at overcoming some of the challenges discussed above.
In particular, randomized projection methods have been used to reduce the dimension of some
problems by projecting linear and nonlinear operators in the model onto a randomly generated low-
dimensional subspace and solving a smaller problem in this subspace [17, 9]. Although projection
methods have been used in a variety of applications, the traditional approach often requires a
judicious construction (e.g., through a truncated singular value decomposition or the application
of a Krylov subspace method) of a desired subspace that captures the main characteristics of the
solution to the original problem. This step can be costly. For problems that exhibit fast singular
value decay, randomized projection works equally well but at much lower cost. Fast sketching
strategies based on structured random maps can potentially accelerate computations dramatically.

In addition to being used as an efficient technique for dimension reduction, randomized algorithms
have played an important role in reducing the complexity of linear solvers for discretized elliptic
partial differential equations (PDEs) and Helmholtz equations [102]. By taking advantage of the
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Figure 5: A whole-device model of a tokamak when using the highest-fidelity physics models available for
core transport, the pedestal and scrape-off layer, plasma–materials interactions at the wall, and global MHD
stability. Simulating such a model is extremely challenging and requires a tremendous amount of computa-
tional resources. Randomized projection methods can be used to significantly reduce the computational cost.
(from [50])
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Figure 6: DOE’s Energy Exascale Earth System Model(E3SM) simulation showing global eddy activity.
Performing this simulation, which combines atmosphere, ocean, and land models, plus sea- and land-ice
models, requires DOE exascale computing resources. Randomized algorithms can significantly accelerate
the computation and are well suited for exascale platforms. (from e3sm. org and the article https: //
ascr-discovery. org/ 2020/ 11/ climate-on-a-new-scale/ )

low-rank nature of the long-range interaction in the Green’s function, randomized algorithms allow
us to construct compact representations of approximate factors of linear operators [104, 72, 153],
preconditioners for iterative solvers [58, 67, 87], or direct solvers that construct data sparse rep-
resentations of the inverse of the coefficient matrix for many linear systems [155, 103]. They are
also used in constructing low-rank approximations to tensors, for example, the two-electron integral
tensors that appear in Hartree–Fock or hybrid functional density-functional-theory-based electronic
structure calculations [77, 78, 94].

In addition to being used as an efficient technique for dimension reduction, randomized algo-
rithms have played an important role in reducing the complexity of linear solvers for discretized
elliptic PDEs and Helmholtz equations.

Randomized algorithms have also been used to compute physical observables such as energy density
through randomized trace estimation [80, 15, 144]. This technique has been used successfully in
ground- and excited-state electronic structure calculations for molecules and solids [61, 149]. The
use of this type of randomized algorithm often leads to linear complexity scaling with respect to
the number of atoms, which is a major improvement compared with methods that require solving
a large-scale eigenvalue problem with O(n3) complexity.

For high-dimension problems, Monte Carlo methods have been used extensively to generate random
samples of desired quantities to be averaged over (as an approximation to a high-dimensional
integral) [14, 151, 90].

The random samples must be generated according to an underlying distribution function that may
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be unknown. A widely used technique to achieve this goal is the Metropolis–Hasting algorithm,
also known as the Markov chain Monte Carlo. This algorithm has been successfully used in kinetic
models to study rare events and chemical reactions in large-scale molecular systems [150], quantum
many-body models to approximate the ground state energies of strongly correlated systems [14, 39],
and turbulent flow models [90] used to study atmosphere-ocean dynamics, combustion, and other
engineering applications.

Opportunities

Although randomized algorithms have been developed and used in several applications, many more
applications can potentially benefit. This is particularly true in a multifidelity or multiscale frame-
work in which we need to couple simulations across multiple spatial and temporal scales, for exam-
ple, a wind farm modeled at O(10m) resolution coupled with climate simulations run at O(10km).
Randomized algorithms might be used to provide avenues for enhancing the information shared in
such a coupling and open the door to questions related to uncertainty. One example is the use of
stochastic subgrid process models, that is, computational models that provide source terms from
processes with spatial and time scales below mesh resolution, to represent missing information (in-
troduced by grid-level filtering) probabilistically, rather than deterministically, by sampling subgrid
source term from appropriate distributions conditioned nonlocally on grid-level evolution. Proba-
bilistic models learn such distributions from direct numerical simulation data and deploy learned
samplers in large-scale simulations.

Although randomized algorithms have been developed and used in several applications, many
more applications can potentially benefit from randomized algorithms. This is particularly
true in a multifidelity or multiscale framework in which we need to couple simulations across
multiple spatial and temporal scales.

In general, sampling methods play an important role in the convergence of randomized algorithms.
A good sampling method can lead to a significant reduction in variance and, consequently, a
reduced number of samples required to achieve high accuracy. Although importance sampling and
umbrella sampling methods have been developed in several applications in quantum and statistical
mechanics, room for improvement still remains. These techniques can potentially be applied to a
much broader class of problems.

Despite the tremendous success randomized linear algebra has enjoyed in accelerating key matrix
computation kernels of many simulations, much is yet to be done to extend these techniques to
multilinear algebra (tensor) and nonlinear problems.

In order to achieve both high accuracy and efficiency, a hybrid method may be desirable in which
a low-complexity randomized algorithm is used to provide a sufficiently good approximation that
can be refined or postprocessed by a deterministic method.

Integrating randomized algorithms in the existing deterministic algorithms-based simulation pipeline
would require a careful examination of practical issues including data structure and parallelization.
Randomized or hybrid randomized and deterministic algorithms have the potential to reduce the
complexity of many of the most demanding simulation problems to O(n2) or O(n). They can be
much more scalable than existing methods and are suitable for exascale machines.

With the help of randomized algorithms we can continue to push the envelope of large-scale sim-
ulation in many scientific disciplines and significantly improve the fidelity of models needed to
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provide accurate descriptions of a broad range of natural phenomena and engineered processes.
Randomized algorithms are particularly powerful in tackling high-dimensional problems that are
not amenable to conventional deterministic approaches. They are game changers for solving some
of the most challenging computational problems in many applications.

2.3 Inverse Problems
Subsection lead: B. Wohlberg

The analysis of experimental measurements plays a fundamental role in basic science and mission
areas within DOE. In many cases the quantities of interest cannot be directly measured and must
instead be inferred from related quantities that are amenable to measurement. This inference
is typically posed as an inverse problem, where the corresponding forward problem describes the
physics of the measurement process that maps the quantities of interest to the measurements.

Large-Scale Inverse Problems for Science Data

A classical example of an inverse problem is X-ray computed tomography (CT), in which a map
of the internal density of an object is inferred from a sequence of radiographs taken from different
view directions.
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Figure 7: Illustration of the main components of a computational imaging system, including a sensing system
and an inverse problem solver consisting of a “digital twin” or “forward model” of the imaging system and
an optimizer. (courtesy of D. Gürsoy, Argonne National Laboratory.)

In addition to CT, numerous other imaging techniques involving inverse problems (Figure 7) are
relevant to DOE applications including materials science, parameter estimation for complex models
related to global climate change, oil and gas exploration, groundwater hydrology and geochemistry,
and calibration of computational cosmology models. Many inverse problems arise in experiments
at DOE imaging facilities, which can produce large volumes of data (e.g., up to 10 GB/s at the
current Linac Coherent Light Source, with 100 GB/s predicted for next-generation instruments [30,
Sec. 15.1.4]). Examples of such problems include CT [76] and CT reconstruction from a set of
coherent imaging experiments [21]. Such data sets are rapidly growing in size as imaging technology
improves and new experimental facilities are constructed, leading to an urgent need for improved
computational capabilities in this area.

The primary challenges to be addressed are the following.

• Many of these problems are of a sufficient scale that they can be solved only by using advanced
high-performance computing resources (e.g., see [30, p. 158]) that are in limited supply.
While computing power is important, the most significant constraint is usually the need to
keep the entire reconstruction and measured data set in working memory. Online or streaming
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algorithms that avoid this need would allow large-scale problems to be solved on a much
broader range of computing hardware.

• DOE imaging facilities are heavily oversubscribed, with the result that experiments have to
be conducted within a limited time window. Thus, calibration or other issues that might
degrade the utility of the experiments are often discovered only when reconstructions are
computed after the experiment has been completed. A capability for real-time or progressive
reconstructions would be of enormous value in addressing this difficulty [146, Sec. PRO 1].

Inverse problems at DOE facilities produce very large volumes of data, for example, 10 GB/s
at the current Linac Coherent Light Source, with 100 GB/s predicted for planned instruments.

While careful design of massively parallel algorithms can provide close to real-time reconstructions
of relatively large problems given a sufficient number of compute nodes [76], not all inverse problems
are amenable to this type of problem decomposition, and such large-scale computing facilities
(256,000 cores in [76]) are not widely available.

Randomization methods offer a number of different approaches to address these challenges:

1. Application of inherently randomized algorithms such as stochastic gradient descent, ran-
domized Levenberg–Marquardt, and derived methods for solving the optimization problems
associated with the inverse problems [32, 28, 138, 141, 140]

2. Use of randomized methods for solution of subproblems of non-randomized algorithms (e.g.,
use of sketching for solving the linear subproblem related to the data fidelity term within an
alternating direction method of multipliers (ADMM) algorithm [33])

3. Use of randomized algorithms for efficiently training machine learning surrogates of physics
models, with efficient use of queries of expensive physics models, and for efficiently using
large, complex data sets

Quantifying Uncertainty in Inverse Problems through Randomized Algorithms

Quantifying uncertainty in inverse problems and parameter estimation problems is an important
step toward providing confidence in estimation results (see, e.g., Figure 8), but emerging sensors
and novel applications pose significant challenges. For example, LIDAR sensors, for which the
usage is rapidly increasing, provide much higher resolution information about wind profiles. While
the instrument measurement error is well understood, little alternative information exists that can
be used to assess the accuracy of a reconstructed 3D wind field at that resolution (tens of meters in
space and seconds in time). The increased expectations of capabilities lead researchers to consider
applications with parameters of high spatiotemporal heterogeneity. Thus, uncertainty must be ex-
pressed over parameter spaces of vastly increased dimensionality with respect to problems currently
approachable via state-of-the-art uncertainty quantification techniques. Moreover, this parameter
heterogeneity, the complexity of the physics of these novel applications, and the advancement of
sensing techniques result in experimental data sets composed of various data sources with vastly
different data collection protocols in different regions of their state space and errors of different
probabilistic characteristics. Despite the significant advances in methods for Bayesian inference,
efficiently leveraging the physical constraints and laws characterizing applications of interest in con-
junction with data remains a significant computational challenge. This is particularly true where
the encoding of physical constraints and laws is in the form of expensive computational simulations
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Figure 8: Illustration of the estimation of mean and confidence interval from both simulations and experi-
ments. (diagram by “Jiangzhenjerry,” CC BY-SA 3.0 license, source https: // commons. wikimedia. org/
w/ index. php? curid= 19797809 )

with their own complexity drivers; this challenge is in turn compounded by the heterogeneity of
data sources described above.

Quantifying uncertainty in inverse problems and parameter estimation problems is an impor-
tant step toward providing confidence in estimation results.

Randomization methods offer an unprecedented promise for tackling the challenges in uncertainty
quantification. Specifically, randomization techniques may lead to gains in computational efficiency
in various places along the probabilistic modeling pipeline (e.g., accelerated solution of subprob-
lems, the training of machine-learning-based surrogate models). Furthermore, randomization can
support the solution of stochastic programs associated with approximate Bayesian inference such as
variational inference. Other examples of research challenges and opportunities include the following:

1. Leveraging randomization methods for probabilistic inference with streaming data. Integrat-
ing online data assimilation algorithms (e.g., particle filters) together with randomization
techniques such as sketching, approximate factorizations, and randomized calculations with
hierarchical matrices may lead to improvements in scalability and efficiency. Furthermore,
the impact of compression via randomization of streaming data on the inference process needs
to be explored.

2. Analysis of the effect of randomization in sketching, data compression, and other techniques on
the convergence and bias of probabilistic reconstructions. Such an analysis would distinguish,
in the probabilistic setting, the uncertainty stemming from randomized methods and the
uncertainty inherent in the inverse problem due to observation errors, for example.

Carrying out these advances will result not only in faster solution to the analysis problems but also
in increased predictive capabilities of the resulting computational tools.
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2.4 Applications with Discrete Structure
Subsection lead: J. Restrepo

We next consider problems with discrete structure, notably networks and graphs. In the context of
network science, specific application drivers are familiar: critical infrastructures such as the Internet
and power grids, as well as biological, social, and economic structures.

Faster and better ways to analyze, sample, manage, and sort discrete events, graphs, and connected
data streams will have dramatic impact on networked applications. In what follows, we highlight
two application areas that demonstrate the mathematical and algorithmic challenges.

Community detection is arguably one of the most widely used network analysis procedures. The ba-
sic purpose is to detect and categorize aggregations of activity in a network. Many algorithms have
been developed for this purpose. Practitioners often run these algorithms on their data, but their
data is actually a snapshot of the whole (e.g., a Twitter snapshot from the entire stream). These
methods yield no guarantee on the structure of the original, not the observed, network. Current
sampling methods include stratified sampling techniques along with topological/dimensionality re-
duction techniques (i.e., the Johnson–Lindenstrauss lemma [6]). Some algorithms reduce quadratic
time to near-linear time complexity for specific classes of problems, but the scope is frequently
narrow.

Researchers have little understanding of the mathematics in downsampling such a complex struc-
ture, and the current state-of-the-art approaches are based on unproven heuristics (see surveys [95,
101, 4]). Associated with sampling and searching is a general class of algorithms called streaming.
A rich history of streaming algorithms exists in the theoretical computer science and algorithms
community. While some of these methods have had significant success in practice (e.g., the Hy-
perLogLog sketch [64]), much of this field has remained purely mathematical. Advances in graph
sampling would provide methods to subsample a graph so that community detection algorithms on
the subsample would provide guarantees on the entire structure.

New graph search challenges appear in the context of black-box optimization techniques, as a result
of its relevance to many machine learning and reinforcement learning contexts. For graphs that are
larger to manage or store than the resources available on a single machine, the search requirements
on the discrete space are impractical or expensive.

Randomized algorithms may have an impact on streaming, and in general on sampling and search-
ing, and thus an impact on community detection and other analysis needs in network science.
Further, new uses for searches in connection with tasks associated with machine learning will also
benefit, should randomization lead to efficiencies associated with informing neural nets with data
associated with graph structures.

Power Grid A critical national security challenge is the maintenance of the integrity of national
power grids (Figure 9) under adverse conditions caused by nature or humanity.

With more renewable power sources on the grid, such as solar and wind, uncertainty on the power
supply side increases, caused by variations in weather; and potential disruptions become even
more difficult to manage. Thus, grid planners and operators need to assess grid management
and response strategies to best maintain the integrity of the national power grid under extremely
complex and uncertain operating conditions. Currently, the Exascale Computing Project (ECP)
subproject ExaSGD (Optimizing Stochastic Grid Dynamics at ExaScale) is developing methods to
optimize the grid’s response to a large number of potential disruption events under different weather
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Figure 9: The U.S. electric power transmission grid is over 120,000 miles long. The figure suggests that
complexities in the analysis and management of the network result from node heterogeneity, the federated
nature of the management of the network, and the complexity of sources and users. Inherent stochasticity in
this and other networks could be exploited by proposing ways to speed up sampling, searching, and analysis
of the network via randomized algorithms. (source: FEMA.

scenarios [79]. For example, in the Eastern Interconnection grid one must consider thousands of
contingencies taking place under thousands of possible (and impactful) weather scenarios. ExaSGD
is developing massively parallel algorithms for security-constrained optimal power flow analysis
that could involve simultaneous optimization of millions of power grid realizations. Future research
will need to address other power grid analysis questions that require discrete optimization. For
example, the unit commitment problem, selecting how much steady-generation power (e.g., coal-
based or nuclear-based) to buy and from where, is a large mixed-integer program for given demand
and generation estimates. Finding the worst-case placement of k outages is a bilevel discrete
optimization problem since the network can reoptimize to mitigate the damage.

Grid planners and operators need to assess grid management and response strategies to best
maintain the integrity of the national power grid under extremely complex and uncertain
operating conditions.

Randomized algorithms could help in a number of places in the near term. Progress in these will
also have an impact on other networked infrastructure systems and beyond:

1. Randomized rounding to find feasible solutions for, for example, unit commitment given a
fractional solution to a relaxation. Finding a provably good solution, or even finding a feasible
solution with reasonable probability, is valuable. Using approximations for the DC optimal
power flow (DCOPF) may speed up interdiction problems.

2. Fast approximation of DCOPF. Randomized approximation schemes for network flow exist
[26]. Can these be made faster, if less accurate? Can these network-flow approximation
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Figure 10: Logarithm of the total operations required to compute a derivative via checkpointing as a function of
storage (snaps) and time or stage steps (reps); see [129]. Randomization could bring down the computational
costs when the differentiation products do not have to be exact in structure and/or in value.

algorithms be extended to include the phase-angle constraints from DCOPF?

3. Randomized selection of scenarios. Is there a way to select a finite set of scenarios that are
representative of the full set? There has been some experimental success on finding average
damage estimates on stochastic versions of network-interdiction problems (e.g., [81]). The
largest current supercomputers tend to have GPUs on the nodes, and GPUs are particu-
larly strong when used for randomized algorithms. One might even use metaheuristics, even
without provable performance guarantees, to find better solutions in practice.

Automatic Differentiation Automatic differentiation (i.e., algorithmic differentiation) is a method-
ology for computing derivatives of functions defined by algorithms [69, 92]. Automatic differen-
tiation is the key technique underlying backpropagation for computing gradients of neural net-
works [25, 133], but automatic differentiation can also account for data-dependent control flow.
Combinatorial problems abound in automatic differentiation. A fundamental method is so-called
checkpointing [129], wherein derivatives are found with an awareness of finite storage and run-time
resources on a given machine, trading one for the other, depending on the resource limitations.
Figure 10 shows curves of constant effort required in obtaining a derivative by exchanging storage
resources and run times. Automatic differentiation often models computation using directed acyclic
graphs, and many automatic differentiation algorithms can be interpreted as graph transformations.
Sparsity structure in Jacobians and Hessians is detected by using Bayesian probing [68] or related
techniques and exploited by using graph coloring techniques [65].

Randomized algorithms have the potential to address many of the combinatorial challenges in
automatic differentiation. For example, in checkpointing, randomization could be exploited to
overcome computational resource challenges associated with storage and/or run time by exchanging
fidelity in obtaining derivatives. Such an exchange is an acceptable tradeoff in the context of many
optimization applications as well as in sensitivity analysis.

In many applications an approximate gradient is adequate. Randomized algorithms could lead
to lower computational costs in differentiation-related computations by harnessing randomized
linear algebra and randomized changes in the automatic differentiation algorithms.
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2.5 Experimental Designs
Subsection lead: D. Vrabie & P.H. Zwart

Experimentation in real and computational environments forms the basis for hypothesis-driven
scientific discovery. When planning laboratory experiments, changing control parameters in an
accelerator or nuclear reactor, or performing any task associated with planning a new course of
action to collect new data or in response to new information just collected, in combination with
models for forecasting dynamic response and all other knowledge available, experimental design
theory can aid in making optimal choices.

Advances in technology, such as brightness improvements in light sources or robots for automated
chemical synthesis, are rapidly pushing the complexity of scientific experiments to a level where
human intuition can no longer keep up with the high dimensionality of the decision landscape that
needs to be explored in order to select the best possible next actions under uncertainty.

While experimental design approaches, such Gaussian process–based strategies, alleviate some of
these problems, we are rapidly encountering bottlenecks due to the computational cost associated
with some of the underlying algorithms that, when implemented naively, can have computational
overheads that exceed the time required to perform the experiment without advanced decision-
making algorithms. Furthermore, the traditional scientist-guided approaches for selection of critical
parameters that rely on human intuition could introduce bias in the experimental design and the
end results.

State of the Art

The vast majority of experimental design approaches require some sort of uncertainty quantification
at their core, since this uncertainty or functions thereof are the driving force that guides experi-
mental design choices [127]. Approaches such as Gaussian processes and Bayesian neural networks
provide easy access to uncertainty quantification but can incur significant overhead depending on
the problem. The underlying computational bottlenecks within experimental design or autonomous
experiments are typically related to matrix inversion, often recast as solving a large linear system
of equations, and the global optimization of some utility function that provides guidance on the
next set of actions to take. Randomized algorithms will have a major impact on these types of
problems, enabling a computationally efficient exploration of decision space by balancing utility
and uncertainty reduction.

Experimental design questions that are encountered can be roughly grouped in two categories: (1)
one-shot designs, in which a data collection strategy is determined up front and cannot be changed,
or only at great cost, once data acquisition is initiated, and (2) adaptive designs, in which new
measurements have the ability to influence the data acquisition schemes.

The theory of how to design one-shot experimental designs is well established [132], with examples
ranging from the design of where to place wireless 5G transmitters, traffic monitoring sensors,
temperature or pH sensors in reactors, to the design of clinical trials, or to the placement of fixed-
position direct radiation monitoring systems.

Autonomous decision-making systems are replacing the intuition of the scientist and can scan
through the data and make smart decisions about how the experiment should proceed. This ca-
pability is critical in contexts characterized by high-complexity dynamics and high-dimensional
decision spaces. In the experimental sciences, for instance, the use of adaptive experimental de-
signs is rapidly becoming commonplace (Figure 11). Beamlines at DOE large-scale scientific user
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Figure 11: At the DOE large-scale scientific user facilities, real-time feedback loops provide continuous updates
on experimental design, enabling extremely efficient autonomous data acquisition. Some subtasks in this
workflow are expensive when using deterministic approaches and can cause a bottleneck in decision-making.
Randomized algorithms can alleviate these problems, providing rapid feedback at timescales compatible with
experiments that require fast response. (figure courtesy of BSISB & CAMERA, LBNL).

facilities such as the National Synchrotron Light Source, Advanced Photon Source, and Advanced
Light Source are utilizing adaptive design approaches to improve the throughput and usage of
scientific instruments [120, 108]. These approaches build, interrogate, and update a surrogate
while an experiment is running and provide rapid feedback on how to perform measurements. In
so-called self-driving autonomous laboratories this notion is pushed even further, where artificial
intelligence/machine learning approaches provide suggestions on which samples need to be syn-
thesized [128, 124]. A similar situation is encountered in running large-scale simulations, where
choices of system parameters that can change the outcome of the results need to be tuned, for
instance, to ensure reproducing related observational data. In all these approaches, the underlying
computational complexity can rapidly escalate such that approximation methods are required to
train the hyperparameters of surrogate models or efficiently interrogate these models in order to
obtain new, optimal experimental design parameters.

Opportunities for Randomized Algorithms

While the majority of applications in experimental design have focused on controlling and providing
feedback on continuous state variables, challenges in materials design and bioengineering require the
handling of discrete and combinatorial decision spaces as well [96]. The integration of randomized
algorithms approaches in these spaces will enable the deployment and integration of fast, scalable
decision-making frameworks to a diverse application space. Randomized algorithms can potentially
be used to construct data-driven surrogate models or to hybridize multifidelity data-driven and
physical models for expensive/complex systems.

When developing new randomized algorithm approaches, the availability of formal verification of
stability and probabilistic performance characteristics will be of great importance because it will
provide the end user of these algorithms with correct expectations and the ability to obtain the
right tradeoff between precision and run time. A thorough understanding of the error properties
of randomized algorithm approaches is especially important when the cost of making a mistake is
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very expensive, for instance in the control of accelerators or fusion reactors, such as tokamaks and
stellarators, or when not exploring a parameter space can be costly, for instance in materials or
molecular design.

The use of randomized sketching algorithms, for instance, can simultaneously regularize and reduce
computational complexity without impacting the accuracy of the overall procedure. Alternatively,
randomized algorithms that provide well-understood tuning options that can balance accuracy and
computational complexity in a predictable fashion could be the optimal approach for cases where
medium- or even low-accuracy answers are useful, as long as these answers come with an associated
uncertainty estimate.

Data is the new frontier for enhancing the predictive capabilities of global-scale models of the Earth
and environmental systems, understanding water cycles, and predicting extreme events. Real-time
feedback from dynamic systems provides the opportunity to explore the complex decision landscapes
more agilely and more effectively. Computational models powered by the world’s fastest computers
must guide the experimental data collection, aid in interpreting the data, ultimately inform follow-
up actions such as the design of new experiments, or serve as a basis for public policy. Randomized
algorithms play a critical role in advancing the application and use of autonomous experimental
designs: as the range of applications and the availability of data increase, the need for general-
purpose, high-performance, well-tested, plug-and-playable algorithms and software is of paramount
importance.

Randomized algorithms play a critical role in advancing the application and use of autonomous
experimental designs: as the range of applications and availability of data increases, the need
for general-purpose, high-performance, well-tested, plug-and-playable algorithms and software
is of paramount importance.

2.6 Software and Libraries for Scientific Computing
Subsection lead: S. Wild

Numerical software and libraries are a cornerstone of scientific computing and continue to transform
science [123]. Such libraries can enhance productivity of computational scientists in many ways,
including by reducing development time and enabling performance portability. Libraries that in-
clude implementations of randomized algorithms would allow scientists to focus on the use and
application of these algorithms for addressing grand-challenge domain-science problems. Extend-
ing the reach, reliability, and understanding of randomized algorithms for DOE’s complex software
and system stacks would help realize performance gains on problems and architectures not yet
imagined.

Current Status

In recent years, development of open-source numerical libraries for scientific computing has focused
on addressing the challenges associated with emerging exascale computing architectures and en-
abling the solution of big data problems. Emerging hardware and special-purpose accelerators are
also a driver and are discussed in Section 2.7.

DOE’s Exascale Computing Project [75]) and SciDAC programs have centralized much of the
development of production software. Community-driven efforts such as the Extreme-scale Scientific
Software Development Kit (xSDK [20]) have transformed the state of interoperability among math
libraries used on DOE’s leadership-class computing facilities (Figure 12).
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Figure 12: xSDK is an example of a component of the current DOE ecosystem of exascale math libraries
[20]. The diverse DOE hardware and software stacks represent both consumers and providers of randomized
algorithms for scientific computing.

With few exceptions (e.g., Monte Carlo–based software), production libraries in use on DOE com-
pute systems have addressed challenges distinct from those arising in randomized algorithms. Tra-
ditionally such libraries have focused on deterministic algorithms that produce highly accurate
results with provable guarantees. One expects that the results are reproducible in the sense that
the output is bitwise identical each time the algorithm runs under the same software and hardware
conditions. These guarantees are generally established based on a specified precision level for the
underlying elementary operations, all of which are assumed deterministic. An enduring example
of such a numerical setting is the LINPACK benchmark [51], which has been used to measure
performance of the top supercomputers in the world for nearly three decades.

At the same time, deterministic precision levels have received significant attention. For example, re-
cent years have seen the introduction of a veritable zoo of floating-point conventions (e.g., bfloat16,
TensorFloat, fp24, PXR24) beyond traditional IEEE standards. A significant driver of such de-
velopments has been data-intensive computing and special-purpose and commodity hardware and
accelerators. Similarly, mixed- and variable-precision techniques are of increasing interest [2, 71].
Exploration and adoption of these techniques are a recognition of performance gains realizable by
allowing libraries and software to exploit multiple (deterministic) precision levels.

Randomized techniques have been used extensively for empirical performance optimization and
software testing to find bugs [8]. The basis for these approaches is a recognition of the tradeoffs
among the applicability, accuracy, and expense relative to deterministic techniques such as formal
verification or analytic performance optimization.
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Challenges and Opportunities

The development of libraries of randomized algorithms shares many of the challenges of produc-
ing production machine learning software frameworks for high-performance computing [29] and
using randomized testing and performance optimization techniques. For example, shared modeling
challenges include considering metrics and solution characteristics beyond simplistic floating-point
operation-based and machine-precision-based quantities. For some problems, randomized algo-
rithms offer the potential for accuracy levels beyond machine precision or attainable by classical
deterministic methods.

For some problems, randomized algorithms offer the potential for accuracy levels beyond
machine precision or attainable by classical deterministic methods.

Similarly, the trends driving hardware technology ([148, Sec. 2]) have resulted in increasingly het-
erogeneous and nondeterministic computing paradigms in order to extend performance gains. For
example, as math libraries and software seek to avoid synchronization and mitigate faults when-
ever possible, the costs of preserving bitwise reproducibility has begun to outweigh the benefits for
many scientific use cases. In other cases, the process of pushing the hardware and software layers
to the computing fabric also results in a loss of such reproducibility. Hybrid classical and post-
Moore computing workflows (Section 2.7) are further contributing to nondeterminism in computing
environments.

The growing recognition of the tradeoffs between performance and achieving traditional notions
of reproducibility are only a first step in leveraging nondeterminism for scientific advances and
efficiency. The subtle distinction between random data (e.g., from nondeterministic hardware) and
intentionally randomized operations (from a randomized algorithm) poses challenges for software
development and debugging as well as validation and verification.

Standardized benchmarks for randomized algorithms are lacking, despite the fact that they have
been repeatedly identified as a need for advancing progress and co-design for DOE scientific comput-
ing [137, Sec. 16]. The benchmarks would come with well-defined notions of convergence/correct-
ness. Convergence for deterministic iterative solvers is typically described in terms of an iteration
budget or residual tolerance. Bringing randomized algorithms and their associated benchmarks to
a similar status would be a breakthrough in terms of enabling software-hardware co-design and
facilitating optimization for diverse architectures and computing environments. Since randomized
algorithms offer an approach for addressing problems where data is too large to fit in memory,
benchmarks would further understanding about which algorithms perform best for given input
sizes on specific systems.

The use of AI-inspired and other automated techniques to improve programmer productivity is
also recognized as a DOE grand-challenge computing problem ([148, Sec. 4.1], [137, Sec. 9]). An
example of such an approach is to automatically synthesize software programs based on a scientific
user’s intent [62]. Other uses include the automation of compilation, testing, and debugging of
numerical software. The search spaces, both discrete and continuous, that arise in such problems
are prohibitively large. Randomized algorithms offer a means to navigate such spaces for design
goals within defined resource requirements.
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Figure 13: NIST device used for ion trapping in quantum computing (source: https: // commons.
wikimedia. org/ wiki/ File: Quantum_ Computing; _Ion_ Trapping_ ( 5941055642) .jpg , public domain
CC-PD-Mark license).

2.7 Emerging Hardware
Subsection lead: A. DeGennaro

Many of the problems of interest to applied mathematics are computationally intensive. Modern
problems in optimization, uncertainty quantification, and engineering design involve evaluating the
output of sophisticated computer models over high-dimensional parameter spaces. As maintenance
of Moore’s law slows due to physical constraints in hardware manufacturing, it is imperative to pur-
sue research that expands the capabilities of new computational paradigms and hardware. Quantum
computing and neuromorphic computing are particular examples of such emerging paradigms. At
the same time, randomization has already proven to be a powerful technique for computational
acceleration, and its role in these computing schemes should be researched.

A central question for future progress will be how to co-design emerging hardware and random-
ized algorithms in a way that is optimized for particular tasks (e.g., speed, error-proneness).

Quantum computing [27, 125] is an emerging computational paradigm that could benefit from
randomization. Quantum computers (Figure 13) currently can solve only small problems, chiefly
because of noise in qubit states and quantum decoherence. Co-design of quantum hardware with
randomized algorithms might help expand the size of problems that could be computed. Opportu-
nities exist to discover and apply quantum-informed downsampling as an algorithm to load a small
but statistically representative sample of a given data set onto a quantum computer. This hints at
a more general motivation that quantum computing can inform classical algorithms. It also sug-
gests that in the quantum realm, and in the classical realm as well, randomization should be used
to find novel initialization schemes and more efficient methods for optimization and exploration.
Randomization can help optimize quantum algorithms, such as quantum annealing and quantum
Monte Carlo, and can help with the efficient solution of problems in optimization (e.g., quadratic
unconstrained binary optimization) and linear algebra (e.g., eigenvalue decomposition). If success-
ful, the integration of randomized algorithms with quantum hardware could result in significantly
faster time to solution, as well as privacy preservation. Quantum supremacy could also potentially
aid the solution of machine learning problems that require large data sets.

Neuromorphic computing [109, 47] is another computational paradigm that could benefit from
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randomization. Graph algorithms as currently implemented on neuromorphic computers are deter-
ministic in nature [73, 134] and could benefit from the usual speed and efficiency of randomization.
Neuromorphic sensors are plagued by a significant amount of noise and variations that must be
reduced. A good noise model of these sensors is clearly needed. Further research could potentially
reveal a better understanding of the tradeoffs of randomized algorithms with noise and provide
an opportunity to balance computation robustness with error tolerance. Randomization might
also help us understand the computational capabilities of neuromorphic computers. Co-design of
randomized algorithms with neuromorphic computers could lead to a novel random programming
model or help researchers understand and evaluate the parameter space for neuromorphics (e.g.,
spike thresholds, synaptic delays). If successful, neuromorphic computers could lead to better algo-
rithms for emulating random processes and solving stochastic/partial differential equations. They
could also lead to fast computing algorithms with low memory requirements associated with data.

2.8 Scientific Machine Learning
Subsection lead: S. Wright

Figure 14: Interpreting a subseasonal forecast: Light areas show the geographical regions most relevant to the
forecast. (from [106, Figure 4].)

The use of machine learning techniques in scientific computing has a long history dating back to the
1990s and earlier. The SIAM Conference on Data Mining, held every year since 2001, has always
had a strong focus on science and engineering applications and on connections to high-performance
computing [91]. In January 2018, a DOE ASCR workshop and report [18] identified six Priority
Research Directions for Scientific Machine Learning (SciML) that highlight basic research challenges
such as:

1. Science and engineering applications often make use of detailed models, based on laws of
physics, chemistry, and biology, that enable detailed simulations to be performed and useful
predictions to be made. The “model-free” ethos that pervades machine learning—the idea of
“letting the data speak for itself”—is not naturally compatible with the use of physical models.
However, there is increasing interest in making current machine learning techniques “play
well” with physical models—augmenting, enhancing, and complementing physical models in
ways that potentially reduce computational requirements while maintaining adequate fidelity
to scientific laws.

2. Even in their most successful applications, including speech and image recognition, machine
learning models are susceptible to perturbations in input data and parameters. That is, their
predictions can be affected strongly by minute changes to the data. Robustness of these
models reduces such sensitivity and is essential to scientific applications where model outputs
that are obviously invalid would reduce the credibility of machine learning methodology.

3. It is particularly important in scientific applications for models to be interpretable—for their
simulations and predictions to accord with prior knowledge (see, e.g., Figure 14). Since the
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applications can be mission-critical, trustworthiness is another essential property; the outputs
and predictions must be reliable. An example of the latter phenomenon is that when a machine
learning model is presented with data that is outside the scope of its training data, it is able
to flag that data as being “out of distribution” and issue a warning that the predictions may
not be trustworthy.

Machine learning enhancements to physical and biological models can be useful in “plugging gaps”
in existing composite models, using data-driven machine learning models in those parts of the
system for which the physics is not adequately known. But even in cases where the physics is
known, machine learning can still play a role in surrogate models that can be executed more
cheaply as part of optimization, control, and inversion processes. Such surrogates can be trained
using data generated by high-resolution physical models—an expensive process, but one that can
be done “offline” and in a way that makes use of massively parallel computing. Surrogates of this
type already have been used in fields such as Earth science [24]. Better understanding is needed at
an abstract level of how physical and machine learning model components can be composed in ways
that are efficient and serve the uses of the overall model. Randomness plays an important role in
generating data to train machine learning surrogates from physical models, accounting for the uses
to which the overall model will be put (for example, optimization, control, inversion). Potential
benefits of this improved machine-learning-enhanced modeling methodology are vast and include
accelerated scientific discovery in transistor design, materials discovery, and aerospace engineering.

In scientific applications, the outputs of machine learning models must be valid and trustworthy,
with quantified sensitivity and uncertainty and with interpretable behavior. The scientific comput-
ing community includes generations of computational scientists with wide and deep experience in
modeling important processes. Machine learning models whose outputs conflict with this experience
are unlikely to be trusted by these scientists. Techniques for improving interpretability and quanti-
fying uncertainty are active areas of research in the machine learning community, but the existing
community of scientific computing people must be engaged in order to ensure that the results of this
work are meeting their standards of quality. The challenges include high dimensionality, nonlinear-
ity, and nonconvexity of the models, all of which make it difficult to sample the uncertainty in ways
that are both theoretically and practically valid. Randomization can drive sampling strategies and
help reduce the effective problem dimension. Techniques for exploring high-dimensional parameter
spaces (based, for example, on Bayesian neural nets) are under investigation.

Robustness of the outputs of models to perturbations is essential in many mission-critical applica-
tions (e.g., reactor control). Machine learning models are known to be sensitive to perturbations
in their inputs and to their learned parameters. An area of active investigation for the past decade
has been on improving the robustness of machine learning models to such perturbations. Various
approaches are being investigated, including dropout in neural network training, bagging, boot-
strapping, and adversarial training. Randomization can help by generating augmented training
sets, and also in the form of stochastic differential equation-based analysis leading to model out-
comes that are distributional rather than point estimates.

Randomness already plays an essential role in machine learning (the optimization algorithms used
to train neural nets incorporate randomness, for example). It plays an important role, too, in
resolving the issues cited above, in ways that bring the benefits of modern advances in machine
learning to scientific computing.
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Randomness will be essential to the design of the next generation of machine learning models,
facilitating robustness and reliability with respect to perturbations in model parameters and
data.

Potential research directions include the design of stable network architectures [70, 60], novel noise
injection methods for training robust machine learning models, randomness as a resource to intro-
duce implicit regularization, randomness for data augmentation and robust training [45], and ran-
domness as a strategy for computing distributional estimates rather than just point estimates [143].
Such innovations are key to enabling deployment of machine learning models in mission-critical sci-
entific applications.

Better understanding of the randomized optimization algorithms that are at the heart of scien-
tific machine learning (and in fact all of machine learning) will be vital to future progress. The
basic analysis of such algorithms makes assumptions that do not hold true in practical situa-
tions. Scientific machine learning requires solution of nonconvex, nonsmooth problems in which
the randomized gradients do not satisfy an “independent identically distributed” (i.i.d.) property.
Although progress has been made in understanding the algorithms under these conditions and in
analyzing scaled stochastic gradient approaches such as ADAM, much foundational work remains
to be done.
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3 Current and Future Research Directions

Having reviewed the wide range of application drivers for randomization in scientific computing, we
now cover the research directions that must be pursued in order to enable randomization as a first-
class tool and a driver of progress in scientific computing. One of the recurrent themes throughout
this section is increased emphasis on practicality, whether it is sharpening complexity bounds by
reducing the constants and other lower-order terms, determining precise sketch size or sampling
rates based on application needs, or integrating randomized algorithms into coupled workflows.

In many cases, the existing theory beyond popular randomization techniques, such as sketching or
sampling, is too general and does not provide tight enough bounds for scientific computing tasks.
By restricting the problem domain or structure, greater statistical and computational efficiencies
can be gained, which will greatly broaden the applicability of randomized methods to scientific
computing.

Several subsections reiterate the importance of making the randomization itself computationally
efficient in practice, beyond the big-O notation. Since most scientific computing tasks are truly
large scale and require massively parallel computing, emphasis is also placed on the coupling of
randomization and parallelization. Moreover, the community suggests that these computational
aspects of randomization be captured through software abstractions for wide adoption, availability,
portability, and high performance.

3.1 Opportunities for Random Sampling Schemes
Subsection lead: K. Myers

As we see throughout this report, random sampling undergirds and enables many other types of
randomized algorithms. From the Monte Carlo methods used to generate random samples in many
forward models (Section 2.2) to stratified sampling and graph sampling approaches for discrete
processes (Section 2.4) to the desire for data reduction or compression in the context of massive data
generators and quantum computers (Sections 2.1 and 2.7), random sampling is the key component
of many scientific computing advances.

Likewise, this report showcases several cutting-edge scientific areas that are faced with higher
volumes or rates of data than ever before (see Section 2.1). Experts need answers more quickly
than is possible with the current state of the art. Random sampling offers the promise of tractable
analysis “downstream” from data-generating mechanisms, whether they be exascale simulations,
experimental data from high-throughput user facilities, or opportunistic measurements from sensors
with ever-increasing data rates. At the same time, we must have assurance that the random sample
will retain the relevant characteristics of the original data sets. Without this assurance, we cannot
trust the conclusions.

Random sampling offers the promise of tractable analysis “downstream” from data-generating
mechanisms, whether they be exascale simulations, experimental data from high-throughput
user facilities, or opportunistic measurements from sensors with ever-increasing data rates.

Furthermore, we need sampling schemes that are themselves computationally tractable in the pres-
ence of large and/or streaming data. Ideally we want efficient sampling methodologies that ensure
accuracy in the solution with minimal computational effort. An added challenge in the context of
complex simulations is that we may need to control the computational cost of the sampling scheme
before we know the available computational resources, which could change as the simulation evolves.
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To illustrate some of these concepts in the context of a scientific data set, Figure 15 presents
sampling schemes explored and developed under the ECP [75]. Here the focus was the Deep Water
Impact Ensemble data set [122], a set of simulations produced on a regular grid and used to study
asteroid-generated tsunamis. Panel (a) shows a volume-rendered visualization of the simulation’s
water fraction variable, showing the plume of water generated after an asteroid has hit the surface
of the ocean.

(a) (b)

(c) (d)

Figure 15: Sampling schemes applied to an ensemble of simulations run on a regular grid to explore asteroid-
generated tsunami. (a) Volume-rendered visualization of the simulation’s water fraction variable, illustrating
the plume of water generated after an asteroid has hit the surface of the ocean. (b) Simple random sampling
scheme in which every simulation grid point has an equal probability of being included in the sample regardless
of the underlying scientific content. (c) Local-smoothness sampling. (d) Joint multicriteria sampling. Both
(c) and (d) are data-driven sampling approaches that reveal the features of scientific interest. All three
sampling schemes use a sampling ratio of 2%. The color schemes in each panel are used to indicate that
each panel presents a different sampling method. (adapted from [31]).

Suppose our storage budget allows us to save only 2% of the grid points of the simulation. We need
to generate a sample of the simulation that will support post hoc analysis. Panel (b) of Figure 15
shows an example of a simple random sampling scheme, where each simulation grid point has the
same probability of being included in the sample regardless of what underlying scientific content
may be conveyed by that grid point. This is easy to compute but yields a uniformly distributed
collection of points that loses the scientific features of interest. In contrast, panels (c) and (d) show
two different data-driven schemes for selecting 2% of the original grid points that were explicitly
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designed to capture salient features of a specific scientific data set in a computationally tractable
framework [31].

More developments are needed in these directions, especially as more data-intensive applications
come online and data rates continue to accelerate. Here we discuss several promising research
directions.

Computationally efficient sampling Efficient sampling of data offers many important research
opportunities, particularly in the context of massive and/or streaming data sets. These include how
to adapt to the geometry of data, achieve robust nonlinear dimension reduction, identify sparse
representations (e.g., intrinsic low-dimensional structures), filter noise, and identify anomalies. An
exciting research direction along these lines is adaptive sampling. In the context of user facilities
and other experiments, this methodscan address the question of where to sample next in order to
gain the most information, allowing scientists to find the “needle in the haystack” under highly
dynamic conditions. In optimization, some adaptive sampling approaches use varying sample sizes
to gradually reduce the variance in the stochastic gradient. These enable optimal balance between
the computational burden and the accuracy of approximated information.

Stratified and topologically aware sampling A concern is that naive sampling techniques can
miss small but important subsets of data. Stratified sampling—strategically partitioning data into
classes to which we assign a sampling distribution—can address this. However, many partitioning
techniques assume that data points that are geometrically close to one another are similar, a
situation that is not always true. Topological data analysis tools allow us to construct graphs from
data where relationships are informed by more than distance.

Scientifically informed sampling For assuring that the sampled data set retains the salient
characteristics of the original data set, an interesting challenge is that the salient characteristics
could differ depending on the scientific questions of interest. For instance, if the interest is in
recognizing the occurrence of rare events in a massive data set, a Monte Carlo sampling scheme
might produce some samples with no instances of that event, leading to an underestimate of their
occurrence, and other samples with one or more instances, leading to an overestimate. On average
the Monte Carlo samples will have the correct proportion, but any given sample could be far from
the truth. In that situation, importance sampling [121] may be more appropriate because of the
particular interest in rare events. This sort of situational responsiveness demands the development
of sampling methods that are informed by the scientists.

Reproducibility The idea that different samples could have different characteristics even when
generated from the same sampling scheme leads to important questions about reproducibility. Will
the scientific results be different if a different set of samples is used? Scientists are unlikely to use
analysis algorithms that give widely different answers for different random samples. To address this
concern and to evaluate whether data samples are useful to the scientist could require research in
information theory or theoretical computer science. Success here would lead to greater acceptance
of randomized algorithms, more confidence in science results, and fewer false discoveries.
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Figure 16: Matrix sketching in the context of regression, using a random embedding to create a smaller
problem. (image from the RASC workshop presentation of Per-Gunnar Martinsson, December 2, 2020.)

3.2 Sketching for Linear and Nonlinear Problems
Subsection leads: T. Kolda & P.G. Martinsson

Sketching is a mathematical technique wherein a large problem or data set is replaced by a much
smaller “sketch” that retains essential properties. Counterintuitively, the size of the sketch can be
independent of the size of the original problem, meaning that the cost savings can be better than
exponential. Linear sketching has been applied successfully in many scenarios, including regression
(Figure 16) and low-rank factorization [72, 100, 153, 104]. As a relatively new technique, the most
convincing DOE applications of sketching have been in numerical linear algebra. More broadly
speaking, sketching is widely used in industry for counting unique elements, estimating quantiles,
or detecting frequent items in massive data sets or data streams (e.g., [130]). Looking forward,
sketching promises to be a key tool in areas including solution of large-scale nonlinear inverse
problems, PDE-constrained optimization, solution of linear and semidefinite programmer solvers,
and quantum chemistry.

Counterintuitively, the size of the sketch can be independent of the size of the original problem,
meaning that the cost savings can be better than exponential.

State of the Art

A prototypical problem is linear regression, fitting an n-dimensional linear model to a set of m
observations where the number of observations is orders of magnitude larger than the number
of dimensions (m � n). We let A ∈ Rm×n denote the matrix of m observations, b be the
corresponding right-hand side and x be the solution. Since the problem is overdetermined, we
cannot in general find a solution that solves the problem exactly. Instead, we seek a least-squares
solution that yields the minimum square error, namely, minx ‖Ax − b‖2. When the coefficient
matrix A is large, the problem of finding the minimizer can be accelerated by forming a much
smaller “sketch” of the full system, produced via a sketching matrix Ω ∈ Rm×d, so that the
sketched system minx ‖ΩTAx −ΩTb‖2 has only d � m rows and is much more efficient to solve
(Figure 16).

Many ways can be used to create the linear sketch Ω. A common approach is to choose Ω to have
random entries drawn from a standard normal distribution. Such Gaussian sketches are fast and
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Figure 17: Randomized sketching in linear algebra: Given a matrix A, a compressed sketch Y is formed by
applying A to a tall, thin random matrix Ω. When Ω is drawn from a “good” distribution, the sample matrix
Y contains all the information required to compute an approximate basis for the column space, to find a set
of rows of the matrix that approximately spans its row space, and to accomplish many other tasks.

reliable and yield the smallest possible sketch: the size of d is as small as theoretically possible.
For the price of a slightly larger sketch, further acceleration is possible by using random maps that
are sparse (Figure 17) or have other internal structure that enables their application using highly
efficient algorithms such as fast Fourier transforms [44, 72]. For instance, fast Johnson–Lindenstrass
transforms [7, 97] employ this strategy. Specialized sketches have been developed for the case that
A is sparse, using specialized sampling strategies, such as leverage-score sampling, that interact
with only a subset of the data [44, 100].

In some environments, the minimizer of the sketched system can serve as a good approximation
to the minimizer of the original problem, referred to as the “sketch-to-solve” regime. Using the
solution to the sketched system directly can lead to dramatic acceleration, but the error can be
bounded only when the properties of the original system are a priori well understood. Alternatively,
the sketched system can be used as a preconditioner that ensures rapid convergence in an iterative
solver for the original problem. Such a “sketch-to-precondition” approach has proven to be powerful
in accelerating practical computations and has a particular advantage in that this solver is 100%
reliable, since the computed solution is guaranteed to fit the data well [131, 16].

Another successful application of matrix sketching concerns low-rank approximations of matrices.
The idea is to use linear sketches to compute approximate bases for the row and/or column spaces,
(cf. Figure 17). Once these have been constructed, all further computations can be executed on
the small sketches. Algorithms of this type have proven to be highly communication and storage
efficient and excel in severely communication-constrained environments such as GPU computing or
when data is stored out of core [154, 104].

Other recent examples of sketching include a two-stage Gauss–Seidel preconditioner with a ran-
domized and asynchronous version of the Gauss–Seidel preconditioner developed by Avron et al.
using a graph Laplacian problem as a probe, randomized pivot selection in QR [53, 54, 105], accel-
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erated tensor decomposition [139, 22], and even very recent and potentially groundbreaking work
in semidefinite program solvers [156].

Training of large-scale machine learning methods has led to many new and popular randomized
methods for optimization, such as AdaGrad [52] (with approximately 9,000 citations per Google
Scholar as of this writing) and ADAM [89] (with over 60,000 citations). Despite its popularity, the
convergence of ADAM is not yet well understood.

Future Challenges

Many open research problems remain. Here we mention a few exemplars. In each case the problem
requires domain expertise to understand the accuracy requirements and special structure. Theo-
retical and statistical analyses are needed to, for instance, determine the required size to obtain
the required accuracy or to develop appropriate sampling strategies. Implementations need to be
adapted or rewritten, especially to realize reduced communication costs.

Incorporating sketching for solving subproblems Most large-scale simulations solve a se-
quence of linear systems to find a solution, and these linear solvers are the primary bottleneck. Con-
sider applications in high-frequency electromagnetic scattering and strongly advective advection-
diffusion-reaction systems. Sketching is a promising tool, but foundational questions need to be
answered. What is the size of the sketch that is required in order to guarantee the needed accuracy
in the overall simulation? Can smaller sketches be used in earlier iterations where less accuracy is
needed? Alternatively, consider a problem with multiple subsystems as in multiscale problems. Can
smart sketching yield improved approximate solutions at some scales? In most cases, the answers
will be application specific and perhaps even problem specific. In the context of ill-conditioned
inverse problems, the modes associated with small singular values are important because these are
actually large when viewed from the perspective of the inverse. Thus, some randomized algorithm
ideas associated with ignoring small singular values are not directly applicable. We do know, how-
ever, that many subblocks of the matrix inverse can often be approximated by low-rank operators.
Some hierarchical basis methods can already exploit this property, but further research into these
types of algorithms should be expanded. An interesting and challenging question is how one can
detect subblocks where it is appropriate to employ low-rank approximations via randomized algo-
rithms. This problem has been solved in some specific cases, but for more general matrices this is
significantly less understood.

Specialized randomization for structured problems Greater efficiencies (i.e., in the form
of smaller or easier-to-compute sketches) can be realized by exploiting problem structure. For
instance, can we exploit the dependency grid structure of PDE solvers to come up with randomized
variants of multilevel preconditioners? Can we exploit Kronecker structure in quantum structure
calculations? How does doing so impact efficiency and robustness? This could potentially speed up
the setup phase of an algebraic multigrid solver considerably in the context of extreme parallelism.

Overcoming parallel computational bottlenecks with probabilistic estimates In parallel
computing, the cost of floating-point operations is negligible compared with communication costs.
Sketching can greatly reduce communication costs, and it should be feasible for certain applications
to ameliorate the loss in accuracy with inexpensive extra iterations. As another application, global
reduction operations are bottlenecks. However, one may be able to distribute the data such that
responses from only a subset of the compute nodes are adequate to guarantee sufficient accuracy.
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Randomized optimization for DOE applications In machine learning, stochastic optimiza-
tion is standard practice. Such methods compute an inexpensive stochastic gradient by using only
partial information. Can such methods be employed in the context of DOE applications based on
large-scale simulations? For instance, perhaps the stochastic gradient employs only a subset of the
grid points. This situation is not dissimilar to multigrid methods, except that those are determin-
istic and used only in the context of linear solves. Can the computational burden of large-scale
partial differential equation optimization be reduced while providing the same kinds of guarantees
on accuracy or uncertainty quantification? A potential advantage of randomized approaches is
removing dependencies on outliers in data integration optimization tasks. While randomized algo-
rithms are powerful, many popular ones (e.g., ADAM) are not well understood: they work, but it is
not always clear why, how, or under what circumstances. As computing resources and applications
compel more use of such algorithms in high-performance scientific computing, it is vital that these
algorithms are understood from a theoretical and quantitative standpoint. Significant efforts in
the theoretical foundations are necessary in order to characterize, measure, and understand those
computational outputs, which are distributional in nature.

3.3 Algorithms for Discrete and Combinatorial Problems
Subsection lead: A. Buluç

We organize the major research themes in randomized algorithms for discrete problems in five
distinct themes. The overarching goal of randomization here is finding scalable ways to sample,
organize, search, or analyze very large data streams and discrete structures on finite resource
machinery. In this section, all connected structures such as graphs and their high-level counterparts
(e.g., hypergraphs and simplicial complexes) are collectively referred to as “networks.”

Randomized algorithms for discrete problems that cannot be modeled as networks
Many important discrete problems cannot, or need not, be represented as graphs or their general-
izations. For example, randomized techniques have been successfully used for routing in modern
supercomputers [88] and load balancing in various settings [114]. As the concurrency increases to
extreme scales, these methods will find more and more use in scientific computations. Another
area where discrete non-graph problems arise is the analysis of sequencing data. For example, ran-
domized algorithms are used to find compact index structures [59], which are crucial for efficiently
comparing large sequencing (DNA, RNA, or protein) data sets. Exponential rise in sequencing data
that has been outpacing Moore’s law is a pressing reason to adopt these randomized algorithms
widely in practice.

Randomized algorithms for solving well-defined problems on networks Randomized
algorithms are used to provide approximate solutions to many subgraph counting problems with
errors diminishing with sample size [82]. Various modifications to the celebrated color-coding
technique of Alon et al. [10] have been used for this purpose. Some randomized graph algorithms
are known for problems that require exact optimality, such as the min-cut [84] and minimum
spanning tree [85] problems. However, several open issues impede the adoption of these clever
techniques. While randomized algorithms often match or exceed the complexity bounds of the best
deterministic problems in the worst case, they sometimes fail to match the performance of the best
deterministic problems on real inputs in practice. A common reason is that existing randomized
algorithms are designed to perform the same number of operations regardless of the input, making
the common case as slow as the worst case. This situation is exemplified in Karger’s algorithm for
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minimum cuts, whose “primary misfortune is that it always runs in its worst-case O(n2 lgn) time
bound” [40].

Adoption of more realistic complexity measures by the community (Section 3.5) will help close the
gap between theory and practice. An obstacle to adoption of randomized methods is scalability to
large concurrencies, especially on distributed-memory architectures where most big science compu-
tations are performed. New research demonstrating scalability of parallel randomized algorithms
for important discrete problems will ignite the interest of domain scientists on randomized methods.
Furthermore, the ability to run on a streaming setting is crucial for processing data coming from
experimental facilities.

Universal sketching and sampling on discrete data The technique of “graph sketching”
refers to working on a subset of either nodes or edges from a much larger graph to draw a conclusion.
Sketching can be achieved by using various forms of graph sampling methods. A popular graph
sampling strategy is based on random walks, as shown in Figure 18. The theory of sketching
and sampling, especially in the streaming setting, is often phrased in terms of specific algorithms
that solve prespecified questions, such as frequent elements. In practice, the questions are often
determined after generating a sketch of the data or data stream. A theory of universal sketches,
where streaming and data analysis algorithms can answer a large variety of questions, needs to be
developed.

Figure 18: Example of randomization on graph traversal. The FAST-PPR algorithm, a fast personalized
PageRank algorithm, uses careful random sampling to find relevant vertices in a massive network [98].

With the explosion of high-volume and high-velocity data, the extraction of information has become
a serious challenge. Ample research opportunities exist for exploring, determining, and optimizing
how randomization may prove fruitful in achieving scalability and high performance in network
and topological data analysis. Furthermore, the practicality of these algorithms is of paramount
importance for their adoption in scientific computing. The theory of graph sampling, particularly as
it concerns statistically nonstationary and time-dependent graphs, is rich with questions that have
implications on the practical side of proposing randomized algorithms to search, sample, explore,
and reduce networks.

Much of the existing literature provides bounds of the following form: Given accuracy and confi-
dence parameters, necessary mathematical bounds exist on the sketch size and memory footprint.
In practice, the situation is inverted. There is a fixed memory budget, and users need to get
the “best possible” answer. A research opportunity exists to develop bounds of the latter form.
Moreover, existing theory focuses on asymptotic results ignoring constant factors. For practical
applications of the theory we need a more precise theory that tackles the constant factors involved.
The purview of challenges in streaming algorithms extends to edge computing as well as distributed
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computing.

Various forms of subgraph sampling are key to performing efficient training for graph repre-
sentation learning. The methods currently used often lack generality, and their computational
complexity is poorly understood.

Randomized algorithms for combinatorial and discrete optimization A significant por-
tion of problems in combinatorial optimization suffer from exponential (or worse) complexity using
traditional methods [152]. In practice, the situation is often exacerbated by the presence of non-
linear and nonconvex constraints, resulting in a lack of algorithmic scalability that even the most
advanced high-performance computing platforms fail to overcome. Randomized algorithms can
help overcome the scalability challenges in combinatorial optimization, especially if provable ap-
proximation guarantees are provided. A specific technique is randomized rounding for stylized
combinatorial optimization problems. Randomization can also help solve PDE-constrained opti-
mization problems arising, for example, in the control of additive manufacturing processes for a
given control trajectory (combinatorial component).

Randomized algorithms for machine learning on networks Geometric deep learning [38]
is often the umbrella term for various machine learning techniques on unstructured connected data,
with the prime example being graph neural networks. Various forms of subgraph sampling are key
to performing efficient training for graph representation learning [74]. The methods currently used
for this purpose often lack generality, and their computational complexity is poorly understood.
Developing a robust theory of sampling graphs, hypergraphs, and other discrete structures is a
key research direction. Furthermore, we need to understand how scientific goals relate to existing
discrete and graph sampling techniques that are being employed and develop methods to quantify
the effect of these sampling techniques on the scientific goal. Going beyond simple graphs that are
characterized by pairwise interactions and generalizing these methods to higher-order structures [23]
are another key research direction.

3.4 Streaming Algorithms and Data
Subsection lead: J. Nelson

A sketch of a data set D is simply a low-memory data structure to support answering any query
from some given family of queries (see Section 3.2). A primary goal is to achieve a sketch size that
is sublinear in |D|, the size of D. A streaming algorithm is simply a sketch that supports dynamic
data; in other words, the data structure should be able to process a stream of updates to D, during
which the sketch should be updated on the fly.

The earliest and perhaps simplest streaming algorithm is the probabilistic counter of Morris [115]
to count the number of events in a data stream using very few bits. This can be useful for sensors
or edge computing where there are extremely limited hardware or energy resources on device. The
Morris algorithm maintains a counter of up to N values subject to a single operation: increment
(Figure 19). Whereas a counter that is exact must use Ω(logN) bits of memory, Morris leverages
randomization to develop his approximate counter (which reports the counter value N up to approx-
imately 1% multiplicative error with at most 1% failure probability) using only O(log logN) bits of
memory—an exponential improvement. Indeed, for many streaming problems both randomization
and approximation are necessary in order to obtain sublinear memory [11].
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Goal: Count up to N = 100000 (streaming) events using an 8-bit counter

Method: Initialize η = 0 to be the 8-bit value. Increment η probabilistically according to the following
procedure:

• Let ξ be a uniform random value in (0, 1)
• If ξ < (a/(a+ 1))η, set η = η + 1

Result: n̂ ≡ a((1 + 1/a)η − 1) ≈ n with error σ2 = n(n− 1)/2a

Figure 19: Morris’s Probabilistic Counter [115]

In early literature on streaming algorithms in the late 1970s to the mid-1990s, motivations ranged
from wanting to study a crisp algorithmic model out of intellectual curiosity, without regard to
practice, to wanting to use low-memory data analytics in applications such as network traffic
monitoring and databases [115, 116, 113, 63, 11, 12]. More recently, streaming algorithms have
found their way into computational linear algebra [153], machine learning [66], and state-of-the-art
optimization algorithms for problems as fundamental as linear programming [147].

A remarkable illustration of how randomization enables streaming algorithms has been the discovery
of techniques for computing an approximate low-rank factorization of a given matrix or tensor in
a single pass over its entries [104]. Traditional techniques for computing such a factorization,
for example, Krylov methods or Gram–Schmidt orthogonalization, require multiple interactions
with the matrix and cannot be deployed to matrices that are too large to be stored. In contrast,
randomized sketches (as illustrated in Figure 17) of the row and column spaces of a matrix can be
extracted in a single pass, and one can reconstruct the matrix using only the information contained
in these sketches. These new algorithms have the potential to dramatically enhance our ability
to store and analyze gigantic data sets arising in applications such as turbulence modeling and
molecular dynamics.

More specific to current DOE interests, with rapid increases in computing power, modern sci-
entific simulations generate high-fidelity data that is outpacing our ability to write this data to
disk for later analysis. Similarly, rapid advancements in sensor technologies create storage and
analysis bottlenecks for DOE scientific facilities. Thus, a high-priority research area for the DOE
Advanced Scientific Computing Research program is the development of robust, efficient, and scal-
able algorithms for dimensionality reduction and/or data compression of streaming scientific data.
Challenges that must be overcome include accurately quantifying uncertainties in such representa-
tions arising from both the data and stochastic approximations inherent in randomized algorithms,
making the algorithms robust to hyperparameter tuning to ensure their effectiveness for real DOE
scientific problems, making the algorithms efficient enough in terms of computational complexity
and software implementation for in situ and/or online application, and porting the algorithms to
emerging computing architectures that emphasize high-bandwidth streaming computations over
random accesses that are common in many randomized algorithms. If successful, such techniques
would dramatically increase the throughput of DOE’s simulation and data acquisition workflows,
thereby quickening the pace of scientific breakthroughs.

Also of interest is the analysis of large structured data such as graphs or matrices, which are a
key component of data science workflows that becomes expensive in distributed memory, usually
because of memory and especially communication overhead.
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Randomized streaming and especially sketching algorithms can approximately summarize,
e.g., vertex neighborhoods [107] or matrix rows [43] in small memory for subsequent commu-
nication and analysis on other compute nodes or client hardware—affording approximation of
quantities of interest with reduced latency by dramatically limiting communication overhead.

High-performance computing algorithmic pipelines can use sketches to perform numerical linear
algebra, local structure approximations in graphs, dimensionality reduction, and nearest-neighbor
computations, among other key data science tasks. Such approximations and latency improvements,
along with performant and user-friendly software, are necessary in order to make high-performance
computing resources accessible and useful to nonexpert data scientists across many scientific do-
mains of interest.

Mergeable summaries One useful technique for distributed processing of streaming data is
that of using mergeable summaries [3]. A fully mergeable streaming algorithm is one that allows
several different streams to be processed separately so that the resulting sketches can be merged in
an arbitrary merge tree with no degradation in accuracy or confidence to obtain a sketch for the
union of all datasets. Such algorithms are important for minimizing communication (only sketches
need to be communicated) when data is naturally distributed across a network. They are useful
even when data is not distributed because they allow for a divide-and-conquer approach to obtain
parallel algorithms.

In situ and real-time data analysis As discussed in Section 2.1, in situ and real-time data
analysis are necessary in order to keep pace with increasing rate, size, and complexity of streaming
data in national science user facilities. Streaming algorithms are also needed to train or update
models in an online fashion as more data is seen.

Privacy In several applications, data is streamed in from multiple sources that would like to
maintain privacy against the central server processing the data. For example, consider Apple
wanting to automatically learn words for its spellchecker dictionary by monitoring words typed
by iPhone users, while guaranteeing user privacy so that Apple itself cannot determine which
users typed which texts [142]. A formal definition of privacy preservation is given by differential
privacy [55] in which a database is preprocessed into a randomized output that is statistically
nearly indistinguishable from what would be output had any single user’s data been removed. In
traditional differential privacy this data randomization is performed by a trusted central server, but
the example given here shows the necessity of development of solutions in the so-called local model,
where data is distributed and the central processing server is untrusted. Several recent works have
given solutions to specific tasks in this local model, as well as a newer shuffle model [41], but this
direction is still in an early stage of development.

3.5 Complexity Analysis
Subsection lead: M. Anitescu

One of the main drivers of this document is the strikingly reduced complexity (e.g., dependent
primarily on the rank rather than the dimension, in the case of singular value decomposition) that
randomized algorithms achieve in some notable circumstances. Nevertheless, many advances are
still required in order to understand when and how to use such algorithms and to sharply quantify
their performance and limitations. For instance, even for the fairly basic cases of linear systems and
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Figure 20: Very rough sketch of the landscape of accuracy and acceleration for existing randomized algorithms
for linear algebraic problems. Some algorithms can be 100% accurate and essentially risk-free, even improving
robustness. For massive problems, small sacrifices in accuracy may yield orders of magnitude acceleration.
(image from the RASC workshop presentation of Per-Gunnar Martinsson, December 2, 2020.)

matrix approximations, a spectrum of randomized algorithms exists, some that are very accurate
but only 2–10 times faster than deterministic methods and others that are less accurate but many
orders of magnitude faster than deterministic methods. As a rough sketch, Figure 20 shows that
the boundaries of the respective domains are not sharply understood in practice. A persistent
challenge in randomized algorithms is identifying the constants in the big-O promises of theory for
randomized algorithms and thus obtaining a sharp characterization of the problem size at which
randomized approaches start to be competitive with, or better than, deterministic ones.

Alternatively, understanding the boundary of such regimes sometimes offers the opportunity for hy-
bridizing discrete and randomized algorithms to obtain an even better complexity/accuracy bound-
ary. An example of the “best of both worlds” is provided by randomized quasi–Monte Carlo ap-
proaches [93]. Such approaches are deterministic approaches to high-dimensional integration that
reduce integration error from Monte Carlo’s O(n−1/2) to ”almost” O(n−1). Two problems with
quasi–Monte Carlo exist: it is deterministic, with no computable a posteriori error bounds, and
the “almost” qualification about error reduction hides worst-case powers of log(n) that are not
negligible. The randomized version of quasi–Monte Carlo supports error estimation by replication,
has finite sample variance no worse than a constant multiple of Monte Carlo’s, and effectively
circumvents the worst case. Moreover, for some sufficiently smooth integrands, the error is much
better than either Monte Carlo’s or quasi–Monte Carlo’s. Composing or combining deterministic
and randomized methods and understanding the properties of the resulting algorithms would bring
about both novel mathematics and improved capabilities for DOE’s applications.

In addition to such general challenges and opportunities concerning the complexity of random-
ized algorithms, this workshop identified two notable priority research directions related to the
complexity of randomized algorithms.
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Analysis of Randomized Algorithms for Production Conditions

The promise of reduced complexity of randomized algorithms is an exceptional opportunity to
advance the state of the art in mathematics and computer science while addressing critical questions
facing the applications in the space of DOE. Randomization has recently been demonstrated to
vastly improve both the theoretical and practical complexity of ubiquitous computational kernels,
and it is a key enabler for approaching complex tasks that are deterministically intractable.

Randomization has recently been demonstrated to vastly improve both the theoretical and
practical complexity of ubiquitous computational kernels, and it is a key enabler for approach-
ing complex tasks that are deterministically intractable.

Achieving such lofty goals faces a set of challenges, such as quantifying and predicting performance
of randomized algorithms under realistic production conditions. Moreover, we need to develop
analytical tools and frameworks for different classes of randomized methods for paradigms beyond
linear algebra. Furthermore, accelerating scientific adoption requires the ability to crisply commu-
nicate the algorithmic options and their properties to help users choose the best algorithm for any
given task.

To these ends, the community will build on existing tools and results from theoretical computer
science, for example by developing rigorous and practical metrics to monitor convergence of ran-
domized algorithms. Novel efforts are needed not only to achieve sharper a priori complexity and
run-time estimates but also practical a posteriori error estimates (which are typically significantly
less conservative than a priori estimates [104]) for realistic usage environments. A sustained effort
is required in the analysis of tradeoffs between cost and accuracy, with a particular focus on char-
acterizing environments and algorithmic templates where less accuracy is sufficient. In relation to
hardware models, an interesting opportunity occurs in randomized techniques to avoid worst-case
aggregation of errors (randomized rounding or truncation) and, more generally, in the integration
of probabilistic error estimates with floating-point error estimates. Furthermore, since the optimal
hardware world is likely to be hybrid, an important research direction is the analysis of coupled
(hybrid) deterministic/randomized algorithms that combine the best of both worlds.

Randomized Algorithms’ Cost and Error Models for Emerging Hardware

The performance of algorithms is affected not only by their mathematical formulation but also by
the nature of the hardware system, which can exhibit radically different costs for different prim-
itives. A recent striking example concerns the vastly different computational speeds of integer
programming in the classical versus quantum model. This can be seen in Shor’s algorithm [136]
that achieves polynomial time factorization of an integer in the quantum model, whereas the run-
ning times of the best-known deterministic algorithms is exponential (all statements with respect
to the number of bits required to represent the number). In this regard, urgent needs have emerged
caused by the ending of Moore’s law and data federation in combination with novel hardware con-
texts that include an increased emphasis on streaming application and heterogeneous architectures.
Important conceptual challenges include the following: How do algorithms need to change to mirror
the hardware evolution? How does error analysis incorporate not only algorithmic errors due to
randomization but also hardware originated errors?
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The performance of algorithms is affected not only by their mathematical formulation but also
by the nature of the hardware system, which can exhibit radically different costs for different
primitives.

Addressing such challenges requires progress on multiple research fronts at the intersection of math-
ematics and computer science. An important first step is a proper abstraction of the problem, which
needs interaction between mathematicians, computer scientists, statisticians, and hardware archi-
tects to develop concise cost models for the underlying hardware to aid algorithm design. Such
descriptions should lead to novel error models and estimators for randomized algorithms for hetero-
geneous architectures. Moreover, such a focus would broaden the scope of algorithmic innovation
and error analysis itself by creating opportunities for new optimized randomized algorithms for
evolving hardware cost models that now include, for example, bandwidth and latency limitations.

Such a holistic approach to analysis and algorithmic design will not only increase confidence in
randomized algorithms but will produce better randomized algorithm infrastructure for underlying
software that benefits many applications; see Section 3.7.

3.6 Verification and Validation
Subsection lead: J. Jakeman

Verification and validation are processes for checking the accuracy and reliability of algorithms or
models. Broadly speaking, verification and validation involve the use of systematic tools to study
how well computational results agree with known solutions or reference data. DOE has a strong his-
tory of supporting verification and validation research for deterministic physics-based computations;
and verification and validation standards are well established for many science drivers [48, 5, 13].
In the context of randomized algorithms, however, the processes for verification and validation have
not yet reached the same level of development. Accordingly, future efforts in verification and val-
idation are needed to ensure that new technologies based on randomized algorithms can be used
safely and with high confidence.

In order to develop tools and systems for verification and validation of randomized algorithms,
challenges and opportunities need to be addressed in several directions.

Going beyond worst-case error analysis Traditionally, error analysis of deterministic algo-
rithms is studied from a worst-case perspective. In other words, the goal of this type of analysis
is to measure the largest error that may arise among all possible inputs. A common limitation of
this approach is that the error bounds tend to be overly conservative for typical inputs, and con-
sequently they may not provide a realistic guidance about an algorithm’s performance in practice.
As a way of overcoming this issue, randomized algorithms naturally lend themselves to other types
of error analysis. In particular, randomized algorithms are suited to probabilistic analyses that are
flexible enough to handle average-case error, as well as a posteriori error estimates to be discussed
below. For instance, statements of the form “the error is no worse than ε with probability exceeding
(1−δ)” are common in theory for randomized algorithms, and such probabilistic bounds could help
in going beyond worst-case analyses for verification and validation.

Bridging computational and statistical perspectives A long-term challenge for verification
and validation is bridging the perspectives of computational and statistical research. From the
viewpoint of statistics, the output of a randomized algorithm can be considered an “estimate,” while
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an exact solution can be considered an “unknown parameter.” When randomized algorithms are
viewed from this standpoint, the potential exists to apply a variety of classical statistical methods
in the service of error estimation for verification and validation (Figure 21). Some of the most
well-established methods in this class are bootstrap, jackknife, and cross-validation. Although
these methods have been applied in statistics for decades, their potential uses for verification
and validation of randomized algorithms has yet to be fully realized; a recent overview of these
connections may be found in [104, Secs. 4.5–4.6 and 12.1–12.2]. From the viewpoint of computer
science or applied mathematics, these tools often are referred to as methods for a posteriori error
estimation, because they are designed to quantify error after a randomized solution has been
computed. Furthermore, this approach to error estimation offers an interesting contrast to the
worst-case error analysis because the a posteriori approach tends to be less pessimistic and more
adaptive to a given input. Also important is that these connections with statistical methods are
generally not available for deterministic algorithms and they represent a unique opportunity that
is directly enabled by the use of randomized algorithms.

From the viewpoint of statistics, the output of a randomized algorithm can be regarded as
an “estimate,” while an exact solution can be regarded as an “unknown parameter.” When
randomized algorithms are viewed from this standpoint, there is a potential to apply a variety
of classical statistical methods in the service of error estimation for verification and validation.

Integrating randomized algorithms into coupled workflows Growing evidence suggests
that randomized algorithms can dramatically reduce the cost of solving problems that require only
moderate accuracy. Research is needed to develop error estimates for a wide range of accuracy
requirements, from modest accuracy to machine precision. Often, randomized algorithms are part
of a larger workflow; for example, a randomized linear algebra solver is used within a finite element
model. Little attention has been given, however, to quantifying the effects of randomization for
predictions in coupled workflows. Algorithms that can delineate between the role and effects of
noise, errors, data-set distribution, and randomness on overall performance or accuracy would be
of great value. Such information could be used to identify the largest sources of error and efficiently
focus resources to reduce error in downstream prediction goals.

Successful efforts in this area will be transformative. Verification and validation of randomized
algorithms can impact numerous tasks, from distinguishing failure of algorithms versus failure of
code (e.g., an insufficient number of iterations versus a bug), to assessing the accuracy of quantum
simulations, to providing error estimates needed to estimate risk in decision-making in natural
sciences, engineering, and public policy.

3.7 Software Abstractions
Subsection lead: R. Kannan

Scientific data is growing exponentially. Scientists are using faster hardware without any changes
on their existing computational algorithm to process the growing data. Because of increasing
challenges of miniaturization of chip design, Moore’s law is becoming obsolete, and we can no longer
expect computing power to scale as it has in the past. Beyond exascale computing, fundamentally
novel techniques are required, such as randomized algorithms to accelerate scientific discoveries on
ever-growing data. In this section we consider software abstractions for randomized algorithms
of three important components in von Neumann architectures: computation, communication, and
input/output. These randomized abstractions for software should enable increased productivity for
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Figure 21: Understanding how the errors of a randomized sketching algorithm fluctuate, with a view toward
verification and validation. The light gray curves correspond to different runs of the randomized algorithm as
the sketch size t is increased. (Larger t corresponds to more computation.) One such curve for a single run
is highlighted in red. The black curve represents the 95th percentile of the error ε(t) over many runs. (That
is, for any fixed sketch size t, the error ε(t) will fall below the black curve with 95% probability.) Although the
black curve is unknown in practice, it can be approximated by using bootstrap methods for error estimation.
Once an approximation to the black curve is available, it can guide the user in selecting an appropriate sketch
size for a desired error tolerance. (adapted from the article [99] with permission from the authors.)

developers and make it easy to port existing applications. While any specification or standardization
would be a community effort, we lay out key principles and challenges for designing randomized
software abstraction.

Composable and Interoperable Randomized Abstractions for Computation

Most randomized algorithms are based on sketching and sampling. Applying these techniques to
existing numerical and scientific libraries (e.g., BLAS, LAPACK, FFT, GraphBLAS) and param-
eterizing them appropriately are challenging. In the near future, most scientific libraries should
have some randomization support, such as the sampled dense-dense matrix multiplication operation
in the BLAS. Generally speaking, randomized solvers and algorithms are heavily parameterized.
Determining the externalization of these parameters and the default values for broader application
classes will be an area of further investigation. Many solvers and scientific libraries leverage struc-
tures. Randomization techniques must be designed to retain local properties such as symmetric,
hierarchical, block, and neighborhood relations, while also preserving global properties of the data
(e.g., norm, density). We envision different software layers, from fundamental core operations,
solvers, and scientific libraries, to applications that will support various modes of randomization.
Real-world applications should deal with the combinatorial search problem of composing the varied
randomized layers of the software stack for ideal performance. That is, once the different layers
of software (Figure 22) start supporting various randomized abstractions, each of the component
parts will be optimized, but a workflow with multiple randomized parts will suffer from differences
in abstractions.
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Figure 22: Interoperable randomized abstractions for the DOE software ecosystem.

Interoperable randomized software abstractions across multiple libraries from different entities
(academia, labs, and industry) will require a coordinated effort.

Use Cases for Randomized Communication

Communication is important when data is too large to fit in local memory. Many distributed
software environments have evolved over different communication libraries, such as MapReduce,
MPI, and SHMEM. Sparsification of data thas long been used to reduce communication. Recently,
researchers in deep learning algorithms have considered sparsification of gradients to minimize
All Reduce time. These randomization strategies for communication will impact the realization of
a communication operation. The higher-level communication layers, such as MPI and PGAS, and
the lower levels, such as Mellanox SHARP, will support different randomization of communication.
In theory, similar to computation, algorithms designed for randomized communication will scale to a
larger number of processors and data. The existing partitioners that consider balancing load versus
minimizing the communication volume must also include randomization as an additional constraint.
A potential use case for randomization in communication is addressing missing information from
faulty nodes. That is, instead of communication randomization schemes that are local to every
node, randomized communication for collective calls can give some rigorous approximations.

Broker Abstractions for Randomized Input/Output

There is no free lunch for input/output in randomized algorithms. In von Neumann–based computer
architectures, the memory access is block by block; and in the case of slower storage, it is also
sequential. Hence, low compute-intensive randomized algorithms that involve memory and storage
access, such as graph applications, cannot show significant advantages for overall time to solution.
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A potential approach is to have a broker-based input/output abstraction for expressing the random-
ization requirements as service-level agreements to address memory access issues. Randomization
algorithms also require investigation of fundamental data structures to offer near-real-time random
access to the data.

Apart from these three important directions, another important topic is education outreach of
randomized thinking and programming. Most existing programming abstractions are based on
sequential and deterministic approaches. The computing world faced a significant challenge when
educating programmers on distributed and parallel techniques, and history will repeat itself with
regard to randomized programming. Some of the hurdles that must be faced include educating
researchers on randomized equivalents of existing traditional deterministic solutions using well-
defined techniques and novel algorithm design when ground truths are unavailable. Aside from
the critical aspects of computation, communication, and input/output, other areas that require
new abstractions include reproducibility, debugging, fault tolerance, journals and logs for reversible
computation, instrumentation, and performance evaluation, including metrics and measurements
for randomized algorithms.
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4 Themes and Recommendations

We surveyed the driving application needs in Section 2 and proposed research directions in Section 3.
We close with identification of the overarching research themes in randomized algorithms and
recommendations for moving forward.

4.1 Themes

Increased computational capacity is required on multiple fronts, including ever-higher resolution in
simulations for designing more efficient batteries, processing of massive data from ITER’s nuclear
fusion experiment, real-time control of scanning transmission electron microscopy, and integrating
ever more data for numerical weather prediction and long-term climate modeling. Traditional
algorithms, software, and hardware can no longer keep pace, and randomized algorithms offer the
potential for exponential increases in computational efficiency, leading to Theme 1.

Theme 1: Randomized algorithms essential to future computational capacity
The rate of growth in the computational capacity of integrated circuits is expected to slow
while data collection is expected to grow exponentially, making randomized algorithms—
which depend on sketching, sampling, and streaming computations—essential to the future
of computational science and AI for Science.

As we begin to take a fresh look at long-standing problems from a new perspective, novel approaches
emerge, as has taken place in every revolution in science. Consider the algorithmic advances
that have occurred in serial algorithms simply from revisiting them to enable more parallelism.
Just considering how to incorporate randomized algorithms has already inspired a fresh look at
verification and validation and the hope of incorporating ideas such as bootstrapping from statistics.
This inspires Theme 2.

Theme 2: Novel approaches by reframing long-standing challenges
The potential for randomized algorithms goes beyond keeping up with the onslaught of
data: it involves opening the door to novel approaches to long-standing challenges. These
include scenarios where some uncertainty is unavoidable, such as in real-time control and
experimental steering; design under uncertainty; and mitigating stochastic failures in novel
materials, software stacks, or grid infrastructure.

In signal processing, the rate at which a continuous signal is sampled is usually selected according to
the Nyquist—Shannon sampling theorem, depending on the highest frequency present in the signal
to be sampled. In the 2000s, a great deal of excitement was generated by the concept of compressed
sensing, which allows sampling at a potentially much lower rate by exploiting randomized sampling
and the common signal properties of sparsity or compressibility. For magnetic resonance imaging
in health care, this has had significant real-world impacts such as scan times reduced by 50% and
increased accuracies for the same scan times.2 In computing, we know that we can realize huge
gains in efficiency if we allow for the occasional numerical error. In emerging computing regimes
such as quantum and neuromorphic computing, imprecision is inherent. This brings us to Theme
3.

2See, e.g., How Compressed SENSE makes MRI Faster from Philips.
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Theme 3: Randomness intrinsic to next-generation hardware
Computing efficiencies can be realized by purposely allowing random imprecision in computa-
tions. Imprecision is inherent in emerging architectures such as quantum and neuromorphic
computers. Randomized algorithms are a natural fit for these environments, and future com-
puting systems will benefit from the co-design of randomized algorithms alongside hardware
that favors certain instantiations of randomness.

Indiscriminate use of randomness in algorithms is not what is proposed. For instance, sampling
has long been popular in handling large-scale graphs, but the errors cannot be bounded when
naive approaches are employed. Instead, methods have been devised that use more sophisticated
sampling strategies and provide probabilistic error guarantees (e.g., [135]). Rather, we propose the
integration of domain-informed sampling techniques, sketching with theoretical guarantees, and
online computations achieving almost the same accuracy as static computations. In turn, this
approach will require substantial efforts in overcoming both seen and unseen technical hurdles in
order to achieve the deployment of randomized algorithms to key DOE science and national security
applications, as in Theme 4.

Theme 4: Technical hurdles requiring theoretical and practical advances
Crafting sophisticated approaches that break the “curse of dimensionality” via sublinear
sampling, sketching, and online algorithms requires sophisticated analysis, which has been
tackled thus far only in a small subset of scientific computing problems. Foundational re-
search in theory and algorithms needs to be multiplied many times over in order to cover
the breadth of DOE applications.

Even though inputs to our calculations have a degree of uncertainty, skepticism about randomized
algorithms remains. Various discretizations are accepted as the cost of doing business, and faulty
computations due to errant cosmic particles are all but certain in exascale computers. Indeed,
poorly crafted randomized algorithms can be terribly inaccurate, but the same is true of any nu-
merical method. The answer is not only to develop better algorithms but also to work on educating
our colleagues and users about the advantages and even necessity of randomized algorithms per
Theme 5.

Theme 5: Reconciliation of randomness with user expectations
Users are conditioned to certain expectations, such as viewing machine precision as sacro-
sanct, even when fundamental uncertainties make such precision ludicrous. New metrics
for success can expand opportunities for scientific breakthroughs by accounting for tradeoffs
among speed, energy consumption, accuracy, reliability, and communication.

DOE has funded decades of world-class research in computational science at the national labs and
at universities. Nevertheless, barriers to randomized algorithms persist because naive strategies
are rarely competitive with well-understood and optimized deterministic approaches. We need
new expertise to ably surmount the technical hurdles outlined above, which means outreach to a
broader constituency of researchers and is the motivation for Theme 6. One could argue that this
is analogous to the integration of mathematics, computer science, and domain expertise in the
founding of computational science and engineering.
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Theme 6: Need for expanded expertise in statistics and other areas
Establishing randomized algorithms in scientific computing necessitates integrating statis-
tics, theoretical computer science, data science, signal processing, and emerging hardware
expertise alongside the traditional domains of applied mathematics, computer science, and
engineering and science domain expertise.

4.2 Recommendations

A concerted research program in randomized algorithms will require a mixture of efforts for success.
Pursuing research programs in one area at the expense of other areas will slow progress along all
fronts. Here we present six recommended priorities for research efforts.

The importance of basic research, promoted in Recommendation 1, cannot be overstated. Such
research may be in smaller stand-alone projects or part of joint efforts. Regardless of how it
takes place, the researchers engaged in foundational research will need to commit to engaging with
algorithmic researchers to bring the theory into practice.

Recommendation 1: Theoretical foundations
Foundational research in the theory of randomized algorithms to (among other issues) un-
derstand existing methods, tighten theoretical bounds, and tackle problems of propagating
theory into coupled environments. The output of this research will be theorems and proofs
to uncover new techniques and guarantees and to address new problem settings.

Development of randomized algorithms is the cornerstone of the proposed effort, per Recommen-
dation 2. The role of algorithm researchers is to unravel the theory into working prototypes of
methods, tested on idealized problems that reflect real-world applications. Algorithmic researchers
will need to engage with applications and possibly emerging hardware.

Recommendation 2: Algorithmic foundations
Foundational development of sophisticated algorithms that leverage the theoretical underpin-
nings in practice, identifying and mending any gaps in theory, and establishing performance
for idealized and simulated problems. The output here will be advances in algorithm analysis
and understanding, prototype software, and reproducible experiments.

While one may imagine application-agnostic randomized algorithms, the reality is that most ap-
plications will need tailoring of approaches to the domain. This might be in the form of sampling
strategies, such as appropriate stratified sampling, or it might go so far as requiring new specific
theory. The goal of Recommendation 3 is to focus on customizing solutions to specific applications
and their individual needs.

Recommendation 3: Application integration
Deployment in scientific applications in concert with domain experts. This will often require
extending existing theory and algorithms to the special cases of relevance for each application,
as well as application-informed sampling designs. The output here will be software alongside
benchmarks and best practices for specific applications, focused on enabling novel scientific
and engineering advances.
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Randomly distributed data, as in sparse matrices, has always bedeviled computational efficiency.
One might conclude that introducing more randomness could be detrimental to computational
efficiency. However, the next-generation hardware will have inherent randomness. The goal of
Recommendation 4 is to develop and co-design randomized algorithms that are scalable.

Recommendation 4: Performance on next-generation hardware
Adaptation of randomized algorithms to take advantage of best-in-class computing hard-
ware, from current architectures to quantum, neuromorphic, and other emerging platforms.
The output here will be high-performance open-source software for next-generation com-
puting hardware, including enabling efficient utilization of nondeterministic hardware and
maximizing performance of deterministic hardware.

The shift to randomized algorithms represents a fundamentally new direction for DOE; thus, it
requires new specializations that are not currently represented in its research program. Recom-
mendation 5 has to do with broadening the teams of researchers that are engaged with DOE via
this new effort. Pursuing this effort will accelerate the success of deploying randomized algorithms
over the next decade and bring a broader perspective to DOE’s problems overall. Without a specific
push in the direction of diversification, it will be too easy to fall back on the known and trusted
personnel in the current program.

Recommendation 5: Outreach
Outreach to a broader community to facilitate engagement outside the traditional computa-
tional science community, including experts in statistics, applied probability, signal process-
ing, and emerging hardware. The output of this effort will be community-building workshops
and research efforts with topically diverse teams that break new frontiers.

In concert with efforts in computer science and elsewhere, we also need to consider the standardiza-
tion of randomized algorithms, which is the focus of Recommendation 6. It is difficult to think of
standardization in a topic that is still so new in computational science, yet the next decade should
bring a wealth of advances. For these advances to have the greatest impact, they will need to be
incorporated into software frameworks, which will require standards in how to do so.

Recommendation 6: Workflow standardization
Standardization of workflow, including debugging and test frameworks for methods with only
probabilistic guarantees, software frameworks that both integrate randomized algorithms and
provide new primitives for sampling and sketching, and modular frameworks for incorporat-
ing the methods into large-scale codes and deploying to new architectures. The output here
will be community best practices and reduced barriers to contributing to scientific advances.
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Part 2: January 6, 2021
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62 Randomized Algorithms for Scientific Computing



B Workshop Participants
Name Institution
Karthik Aadithya Sandia National Laboratories
Erin Acquesta Sandia National Laboratories
Nagesh Adluru University of Wisconsin-Madison
Bulbul Ahmmed Los Alamos National Laboratory
James Ahrens Los Alamos National Laboratory
Sinan Aksoy Pacific Northwest National Laboratory
H. Metin Aktulga Michigan State University
Srinivas Aluru Georgia Institute of Technology
Vinay Amatya Pacific Northwest National Laboratory
Oluwamayowa Amusat Lawrence Berkeley National Laboratory
Marian Anghel Los Alamos National Laboratory
Mihai Anitescu Argonne National Laboratory
Rick Archibald Oak Ridge National Laboratory
Yeva F. Ashari Institut Teknologi Bandung (ITB)
Selin Aslan Argonne National Laboratory
Ahmed Attia Argonne National Laboratory
Alan Ayala University of Tennessee, Knoxville
Jacob Badger University of Texas at Austin
Siwar Badreddine INRIA
Zhe Bai Lawrence Berkeley National Laboratory
Craig Bakker Pacific Northwest National Laboratory
Prasanna Balaprakash Argonne National Laboratory
Grey Ballard Wake Forest University
David Barajas-Solano Pacific Northwest National Laboratory
Andrew Barker Lawrence Livermore National Laboratory
Andreas Bärtschi Los Alamos National Laboratory
William Beckner University of Texas at Austin
Getachew Befekadu Morgan State University
Julie Bessac Argonne National Laboratory
Vivek Bharadwaj University of California, Berkeley
Noah Birge Los Alamos National Laboratory
Simon Bolding Los Alamos National Laboratory
Raghu Bollapragada University of Texas at Austin
Erik Boman Sandia National Laboratories
Brian Borchers New Mexico Institute of Mining & Technology
Tyler Borgwardt Los Alamos National Laboratory
Kerry Bossler Sandia National Laboratories
Nicolas Boumal Swiss Federal Institute of Technology Lausanne
Charles Bouman Purdue University
Robert Bridges Oak Ridge National Laboratory
Christopher Brislawn Los Alamos National Laboratory
David Brown Lawrence Berkeley National Laboratory
Johannes Brust Argonne National Laboratory

Continued on next page

Randomized Algorithms for Scientific Computing 63



Name Institution
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