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Abstract

Conway’s Topograph and Square Form Factorization

Brian Ma

Conway’s topograph gives a geometric perspective of binary quadratic
forms. Square form factorization is an integer factoring algorithm. We present
a description of the algorithm using binary quadratic forms, and translate those
steps in terms of the topograph. In particular, we illustrate the reduction operator
and relate it to the quadratic progression around an infinity-gon in the topograph

by using the connection between reduced forms and riverbends.
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Introduction

John H. Conway introduces a tool called the topograph in |[Con97|. The
topograph is used to visualize and provide a simpler way of understanding binary
quadratic forms. Daniel Shanks invented Square Form Factorization (SQUFOF),
a factoring algorithm using binary quadratic forms. Using this relation, we will
illustrate the steps of the algorithm on the topograph in the hopes of making it
easier to understand. We give an outline below.

In Chapter 1, we introduce binary quadratic forms and their properties.
We then introduce Conway’s definitions of lax and strict regarding vectors and
bases, leading to the construction of the topograph. We end the chapter with
topograph properties, focusing on the case where the discriminant is positive and
non-square.

In Chapter 2, we first give the binary quadratic form description from
[GWO0g|. We then describe the algorithm on the topograph. The rest of the
chapter is used to connect these two descriptions. In particular, we describe the
reduction operation in terms of the topograph.

In Chapter 3, we give a short overview of a variation of Conway’s topo-
graph; the dilinear topograph, as presented in [MSW19|. We introduce many
analogous properties in the dilinear case. We end by considering an implementa-

tion of SQUFOF on the dilinear topograph.



Chapter 1

Preliminaries

1.1 Binary quadratic forms

In this section, we provide the basic definitions and properties on binary
quadratic forms, which can be found in the beginning of Square Form Fuactoriza-

tion |[GWOS].

Definition 1.1.1. A binary quadratic form is a function Q : Z?> — Z of the

form Q(z,y) = az® + bxy + cy? for some coefficients a, b, c € Z.

We will also use the notation @ = (a,b,c). We will use (x,*,¢) when we

want to focus on a particular entry, like the third entry above.

Definition 1.1.2. An integer m is said to be represented by a binary quadratic

form Q if there exists a vector (z,y) € Z? such that Q(z,y) = m.

Definition 1.1.3. The discriminant of a binary quadratic form Q(z,y) = az?+

bry + cy? is given by A = b? — 4ac.

Definition 1.1.4. A discriminant A is called fundamental if either of the fol-

lowing holds:



1. A =1 (mod 4) and square-free.
2. A =0 (mod 4), % is square-free, and % = 2 or 3 mod 4.

Definition 1.1.5. Let @ be a binary quadratic form and let A be its discriminant.
If A <0, then @ is called a definite form. If A > 0, then @ is called an indefinite

form.

If ) is a definite form, then () takes on only positive values or only negative
values. If @) is an indefinite form, we have two cases depending on the discriminant
A. If A is a square, then @) represents positive values, negative values, and 0. If
A is non-square, then () represents positive and negative values only.

We now point out some special types of binary quadratic forms. Let ) =
(a,b,c). Then (a,—b,c) is called the opposite of @) and (c,b,a) is called the
associate of Q. If Q@ = (k,kn,c), then @ is called an ambiguous form. If

Q = (*,%,c?), then @Q is called a square form.

Definition 1.1.6. Let )1, ()5 be binary quadratic forms. We say ), is equiva-

a f
lent to ()5 if there exists a matrix A = € GLy(Z) such that

v 0

Qi(z,y) = Qa(ax + By, yx + 0y).

More specifically, if det(A) = —1, we say the equivalence is improper; if det(A) =

1, we say the equivalence is proper.

We mention that a form (a,b, ¢) and its opposite (a, —b, ¢) are improperly
equivalent to each other. The same is true for a form and its associate. An
ambiguous form (k, kn, c¢) is improperly equivalent to itself. Furthermore, a form

(a,b,c) is properly equivalent to the opposite of its associate (¢, —b, a).
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The next definition will play an important part in translating the algorithm

in terms of the topograph.

Definition 1.1.7. Let @ = (a,b,¢) be an indefinite binary quadratic form with
discriminant A. We say @ is reduced if |[v/A — 2|a|| < b < VA.

Equivalently, @ is reduced if |v/A — 2|¢|| < b < v/A. Thus, there is a sort
of symmetry in regards to switching a and c¢. We will see this sort of symmetry

again in the next chapter.

1.2 Conway’s topograph

In this section, we introduce Conway’s notion of strict and lax vectors and
bases to construct the topograph. This process can be found in the first chapter

of The Sensual (Quadratic) Form [Con97].

Definition 1.2.1. Let ¢ = (a,b) € Z* The vector ¥ is called primitive if

ged(a,b) = 1.
Primitive vectors and bases have the following relation:

Proposition 1.2.2 (|Weil7|, pg.231). Let (v1,v3) be a basis of Z*. Then both v
and vy are primitive vectors. Conversely, if a vector v1 is a primitive vector, there

exists another primitive vector vy such that (v1,v3) is a basis of Z*.

Let @ be a binary quadratic form. We have the property Q(¢) = Q(—7).
Thus, we can think of ¥ and —¢ as almost the same vector. To treat this prop-
erty, we introduce Conway’s notions of lax and strict. Below, e; € Z? denotes a

primitive vector.



Definition 1.2.3. A lax vector is a pair of vectors £7, where ¥ € Z? is a
primitive vector. A lax basis is a set {£e;, +es}, where the ordered tuple (e, e3)

is a basis of Z2.

We use strictness when making a distinction between the signs; that is, we
say U (or —7), is a strict vector. Similarly, after a choice of signs, (ey, ey) is called

a strict basis, i.e., a basis of Z2.

Definition 1.2.4. A lax superbasis is a set {£e;, *es, ez} where any two

distinct lax vectors {£e;, +e;} form a lax basis.

Let {£e;,+es, £es} be a lax superbasis. After a choice of signs such that
e1 + es + e3 = 0, we say that the ordered tuple (eq,es, e3) is called a strict
superbasis.

We note some important relations between bases and superbases. Given
a lax superbasis {tej, tey, 2eg}, it contains precisely 3 lax bases, with each lax

vector contained in exactly 2 of the 3 lax bases:

{:*:61, :l:62}, {:l:el, :i:eg}, {:‘:62, :i:eg}.

Conversely, given a lax basis {£e;, £es}, it is contained in precisely 2 lax super-
bases:

{:I:el, :l:eg, :I:(61 + 62)}, {:|:€1, :i:eg, :I:(el — 62)}.

We now introduce Conway’s topograph to illustrate these relations.

Definition 1.2.5 (Conway’s Topograph). The topograph consists of regions,
edges, and vertices that represent lax vectors, bases, and superbases respectively.
Incidence between the regions, edges, and vertices are given by containment among

the vectors, bases, and superbases.



Using the relations, we see each edge divides 2 regions:

:|:€1

:l:@g

Here, the edge represents the lax basis {£e;,+es}. Extending this, we have a

triad:

:|:61
T :I:(61 -+ 62)
:|:€2

Above, T = {+ey, tes, +(e1 + €3)} denotes the superbasis. Adding the second
superbasis, we have a cell:
:i:el

+(ey —ex) S T (e +e2)
:]:62

Following the relations, we can extend the topograph infinitely. Below

illustrates how the pattern continues.



Figure 1.1: The (domain) topograph

We have shown how to construct the topograph. In particular, we have
constructed the domain topograph above. Instead of labeling the regions by

lax vectors, we can label them by the integers represented by those lax vectors.

Definition 1.2.6. Let ) be a binary quadratic form. The range topograph
of @ is obtained from the domain topograph of @) by labeling each region by the

value represented by @) at that region.

On the domain topograph, the location where e; = +(1,0) and ey = +(0, 1)
is called home basis. We provide an example to illustrate.
Let Q(x,y) = 32 + 18xy + 22y*. We start at home basis on the domain

topograph and apply Q(z,y) to get the range topograph:



22

We note that in the example above, we have made a choice in the placement of
the lax vectors in the cell. That is, by placing £(1, 1) to the right, the sequence
(£(1,0),+(0,1),£(1,1)) occurs counterclockwise around a triad. Placing £(1,1)
to the left would have resulted in the same sequence occurring clockwise around
a triad.

In addition to a triad and cell, the topograph also has an infinity-gon:

Above, the infinity-gon consists of the fixed region labeled v and all the regions

around v.

1.3 Topograph properties

Throughout this section, we will refer to the range topograph by just topo-
graph. In this section, we list several properties of the topograph as well as how
properties of binary quadratic forms translate to the topograph. In particular,
we will take a further look at the topograph of indefinite forms. These properties
and their proofs can be found in An Illustrated Theory of Numbers [Weil7|. We

first state two very important properties regarding the topograph.



Proposition 1.3.1 (Arithmetic progression rule). ([Weil7], pg.246) Let e, u,v, f

be the values around a cell in the topograph as below:

Then the sequence e, u+wv, f forms an arithmetic progression; that is, the numbers

in the sequence have a common difference.

Let h be this common difference. Then f — (u+v) = h = (u+v) —e.
Thus, we can write f = u+ v+ h and e = u+ v — h. On the topograph, we label

the edge between u and v with this common difference:

We will also use the notation (u, h,v) to denote a cell such as the one above. We
note that the binary quadratic form Q(z,y) = uz? + hzy + vy? has the above cell

at home basis, again with the placement such that Q(1,1) = f.

Proposition 1.3.2 (Conway’s climbing principle). ([Weil7], pg.259) Consider a

region in the topograph as below:




Suppose u,v > 0. If the arithmetic progression e,u + v, f increases, then the

arithmetic progressions v,u + f,a and u,v + f,b also increases.

We go back to our example Q(z,y) = 3z% + 18zy + 22y?. At the cell

containing home basis, the values on the topograph were:

3
7 18 43
929

Since 43 = 3 + 22 + h, we see that the common difference is h = 18. We see the

increase in the arithmetic progression as we expand towards the right:

103

We now state how the discriminant A of a binary quadratic form ) can

be seen on the topograph and how all three definitions are equivalent.

Definition 1.3.3. Let

10



be a triad. Then the discriminant is given by u? + v* + f2 — 2(uf + fv + vu).

Let

be a cell. Then the discriminant is given by (u — v)? — ef.

Proposition 1.3.4 ([Weil7], pg.251). In the topograph of a binary quadratic form

Q = (a,b,c), the discriminant at any cell and at any triad is equal to A.

We now state some facts regarding the general structure of the topograph.
We first introduce some terminology. Let P, and P, be two vertices in the topo-
graph. A simple path is a path of edges between P; and P, that does not repeat
any vertices or edges. A simple loop is a simple path such that P, = P,. A tree

is a graph with no simple loops.

Proposition 1.3.5. The topograph is a tree, i.e., it is simply-connected: Given

any lax basis, we can get to home basis along a unique simple path.

The following states how equivalence of binary quadratic forms can be seen

on the topograph.

Proposition 1.3.6. Two binary quadratic forms are equivalent if they share a

triad in common.

In terms of the topograph, rotation symmetries are proper equivalences,
while reflection symmetries are improper equivalences. We now turn to some
further properties on the topograph of an indefinite form. Recall that we have the

discriminant A > 0. We will focus on the case where A is also non-square.

11



Definition 1.3.7. The river consists of the edge segments that separate positive

regions from negative regions.

Proposition 1.3.8. A topograph has exactly one river. The river is endless,

non-branching, and periodic.

We note that by the periodicity of the river, the values along the river will
also be periodic.

On the river, reflection symmetries can occur at two different places: an
edge or a vertex. At an edge, we have a symmetric cell; at a vertex, we have a

symmetric triad. We make note of these locations.

Definition 1.3.9 ([Weil7], pg.289). A symmetric cell or a symmetric triad of the

river is called an ambiguous river segment.

Figure [2.1] illustrates the two types of ambiguous river segments in the
context of the algorithm. Furthermore, we make note of another type of cell on

the river.

Definition 1.3.10. Riverbends are cells of the topograph consisting of three

river segments as below:

The riverbend on the left will be called an up-down riverbend and the riverbend

on the right will be called a down-up riverbend.

We can be more specific by including the direction of the edge weight, i.e.,

the common difference h.

12



Definition 1.3.11. An oriented cell is a cell where the direction of the edge
weight is given. An oriented cell that is also a riverbend is called an oriented

riverbend.

We will often denote an oriented riverbend by R. For example, let R be

the oriented riverbend below:

Then f = u+ v+ h and e = v + v — h. So the indefinite form (u, h,v) has the
sequence (£(1,0),£(0,1),£(1, 1)) occurring counterclockwise around a triad back
in the domain topograph. Unless stated otherwise, we will assume this orientation
of the topograph.

We remark that the edge weight h can positive, negative, or zero. In fact,
if a river segment has edge weight h = 0, then it is an ambiguous river segment
as e = f and the direction would not matter.

We now state an important property regarding an infinity-gon of a topo-
graph. Recall that a sequence of numbers has an arithmetic progression if they
have a common difference. A sequence of numbers has a quadratic progression if

the sequence of their differences has a common difference.

Proposition 1.3.12 ([Weil7|, pg.290). Consider an infinity-gon in a topograph

with fixed region labeled v:

13



Then the sequence of values around the infinity-gon form a quadratic progression

with acceleration 2v.

We describe this quadratic progression. First, let h be the edge weight
between u and v. Consider the cell (u, h,v). Then the equation a(t) = vt*+ht +u
indexes the values around the infinity-gon. That is, a(t) gives the value of the
region at location t. For example, at ¢ = 0, a(0) = u. At t = 1, we have
a(l)y=v+h+u=f. Att=—1, we have a(—1) = v —h+u = e. We get the
last equality in the previous two equations by the arithmetic progression rule. We
also note that the acceleration is a”(t) = 2v.

Now, suppose an infinity-gon is given as above in Proposition We
see that as we increment ¢, we move clockwise around the infinity-gon. Similarly,
as we decrement ¢, we move counterclockwise around the infinity-gon.

Furthermore, we emphasize that in defining a(t), a choice was made in
picking a cell along the infinity-gon; in the above case the cell being (u, h,v).
However, the quadratic progression does not depend on this choice. It only changes
the location of the starting position. For example, let h’ denote the edge weight
between e and v, and pick the cell (e, h’,v). Then defining a(t) = vt? + h't + e,
we still have a”(t) = 2v, but now we have a(0) = e.

We now take a closer look in the indefinite case (with positive non-square
discriminant), and the behavior of the river around an infinity-gon due to the

quadratic progression.

Theorem 1.3.13 (|Weil7|, pg.291). Let Q be an indefinite binary quadratic form,
with discriminant A non-square. Consider an infinity-gon in the topograph of @Q,

with fixed region labeled v and the river traveling around the infinity-gon:

14



Then the river cannot move along the infinity-gon indefinitely, i.e., only finitely

many edges of the infinity-gon are river segments.

From this theorem, we see that for a given infinity-gon, there must be cells
along it which are riverbends. In fact, each infinity-gon will have exactly two such
cells which are riverbends.

As the river is endless, starting at a riverbend on the topograph, we find
other riverbends as we travel in either direction along the river. We now introduce

some notation.

Definition 1.3.14. Let R be an oriented riverbend. The first riverbend we en-
counter as we travel in the direction of the edge weight will be called the next
riverbend, denoted p(R). The first riverbend we encounter traveling in the re-

verse direction of the edge weight will be called the previous riverbend, denoted

p~H(R).

Furthermore, we remark that the type of riverbend alternates as we travel
along the river. That is, if R is an up-down riverbend, then p(R) will be a down-
up riverbend. The next riverbend after p(R) will then be an up-down riverbend
again.

We illustrate this below. Consider the following topograph, where cells

with edges marked with arrows are riverbends:

15



So, if R = (31,57, —22), then p(R) = (4,—75,—22) and p~'(R) = (31, —67,—12).

16



Chapter 2

Square Form Factorization

In the first two sections, we describe the factorization algorithm SQUFOF
as invented by Shanks and studied in [GWO08]. Then we describe those steps in
terms of the topograph and note some differences. In the next three sections, we
relate the reduction operator and the quadratic progression around an infinity-gon
to riverbends on the topograph. We then make an analogous relation with the

inverse reduction operator. We end the chapter by giving an example.

2.1 Description of the algorithm

SQUFOF uses indefinite reduced binary quadratic forms to factor integers.
The discriminant plays a key part. If N = pq is a factorization of N, then the
indefinite binary quadratic forms 22 — Ny? and pz? — qy? have the same discrim-
inant. This coincidence, and others that look like it, suggest one might stumble
upon such a factorization by applying transformations to a binary quadratic form
which preserve the discriminant.

We now define a key transformation used in SQUFOF, as presented in

17



Binary Quadratic Forms [Bue89).

Definition 2.1.1 ([Bue89|, pg.22, pg.199). Let f = (a, b, ¢) be an indefinite binary
quadratic form, with ac # 0. Let A be the discriminant of f. Then the reduction

operator p is defined by

pla,b,c) = (c,—b+n(2c),n*c — nb + a)

where )
_ M ife<0
2c
n =
VA+ ife>0
2c

Although not used in the description of SQUFOF that we give, we also give
the definition of p~!, the inverse reduction operator. We have p~!(a,b,c) =
(n*a—nb+c, —b+n(2a),a), where n is defined as in the above definition switching
c with a.

We state several important properties of the reduction operator. First, the
reduction operator preserves the discriminant; if f is an indefinite binary quadratic
form with discriminant A, the p(f) also has discriminant A. Furthermore, p(f)
is properly equivalent to f. If f is a reduced form, then p(f) is also reduced. If
f is not reduced, then p*(f) is reduced for some finite number k. That is, we
apply the reduction operator k£ times. The above properties also hold true for
p~ 1. Additionally, if f is reduced, we have p(p=t(f)) = p~H(p(f)) = f.

For square forms, we have another transformation.
Definition 2.1.2. Let f = (a,b,c*) be a square form. Then the inverse square

root of f is defined as (—c-a, —b, —c).

18



We note that the inverse square root also preserves the discriminant. How-
ever, the inverse square root of a square form f may not be (properly) equivalent
to f.

We now list the steps of the algorithm, following the notation presented in

[GWO08]. We will focus on the main steps, omitting the optimization parts.

1. Initialize: Let N be an odd positive integer. If N = 1 mod 4 set the

discriminant A < N. Then set

b+ 2

_L\/ZQJ—1J+1

and

b — A
F 1 )
<—(,b, 1 >

Otherwise, N = 3 mod 4. Set A <— 4N and

b+ 2 @

and

b — A
F 1 )
<—(,b, 1 >
Set ¢ «+ 2.

2. Cycle Forward:

(a) Set F' = (A, B,C) < p(F), where p is the reduction operator.

(b) If i is odd, or i is even and C' is not a square, set i < i + 1 and go back

to Step 2a. If 7 is even, and C' is a perfect square, move to Step 3.

3. Compute inverse square root: Set G = (a,b,c) < (—AVC, —B, —/C).

19



4. Cycle Backward:
(a) Set v/ < b and G = (a,b, c) + p(G).

(b) If ' = b, go to Step 5, else go back to Step 4a.

5. Output factor of N: If ¢ is even, set ¢ <— ¢/2. Output |c|.

2.2 Description on the topograph

In this section, we give a general description of the steps of the algorithm
in terms of the topograph, similar to the one presented in [Weil7]. We start on
the topograph of the ambiguous form Q(x,y) = z* — Ny?, travel along the river,
and end near an ambiguous river segment on the topograph of the ambiguous
form Qs(z,y) = pa® — qy*.

To match the steps in the algorithm, we start at the home basis of the
form —Naz? + y2. Note that this is the opposite of the associate of ();, and hence

properly equivalent to (.

1. Initialize: Let N be an odd positive integer. Set F' = (A, B,C) <+
(—N,0,1)

2. Cycle Forward: Travel along the river until we find a square form (a, b, ¢?).
3. Compute the inverse square root: Set G = (A, B,C) < (—ca, —b, —c).

4. Cycle Backward: Continue traveling on the river until an ambiguous river

segment is found.

5. Output factor N: Output factor of V.

20



We make a note of some of the differences between the two descriptions.
Since we start at home basis of Qi (z,y) = —Nz?+ y?, the topograph description
always uses discriminant A = 4N. This contrasts with the [GWO08] description,
where A is determined such that it is fundamental.

Furthermore, in Step 1, we start the initialization at the ambiguous river
segment (—N,0,1). Now, consider the case where N = 3 mod 4, i.e., both de-
scriptions have A = 4N. Applying the reduction operator p to (—N,0,1), we
have p(—N,0,1) = (1,2n,n*> — N), where n = {\/TZJ This matches with the
initialization in the first description. We remark that this will not be the case
when N = 1 mod 4. However, as noted in [GWO08], the algorithm will still work
for non-fundamental discriminant.

Steps 2 and 4 regarding traveling along the river involve the quadratic
progression around an infinity-gon.

For Step 5, the algorithm ends at a cell in the topograph near an ambiguous
river segment of Qs(z,y) = pr? — qy?. In fact, it will be the nearest cell that is a
riverbend. We show the two possible ambiguous river segments that the algorithm
ends near.

Recall that an ambiguous river segment is a symmetric cell or symmetric

triad, i.e, where the reflection occurs. Up to symmetry, we have:

P p
P—q P—q r—49q r—4q
—g 4 4
(a) Type H (b) Type ¥

Figure 2.1: Types of ambiguous river segments
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We will go into further detail regarding these steps in the next few sections

and in the example in Section [2.7]

2.3 Reduced forms and riverbends

In this section, we take a deeper look at the reduction operator and the
cycling step of SQUFOF, and how that translates on the topograph. We will first
need a relation regarding reduced forms. The main theorem and its proof can be
found in Arithmetic of arithmetic Cozeter groups [MSW19].

We recall the two types of riverbends given in Definition [I.3.10, Up to

orientation, we have:

u >0 u <0
e<0 f>0 e<0 f>0
v<0 v>0
(a) up-down (b) down-up

Figure 2.2: Types of riverbends

Let h denote the edge weight between u and v. In both cases above, we
have h > 0. If R is an oriented riverbend such that the edge weight is negative, we
can take the opposite of the associate of R to get a form properly equivalent to R
with positive edge weight. We use this to make the connection between reduced

forms and riverbends.

Theorem 2.3.1. Let (u, h,v) denote a cell on the topograph, where h is the edge

weight between v and v. Assume the discriminant A = h* — 4uv is positive and
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non-square. Then the cell (u, h,v) is a riverbend if and only if the binary quadratic

form Q(x,y) = uz® + hxy + vy? is reduced.

Proof. The forward direction is given in [MSW19, pg. 443]. In fact, we use the
proof given there to explicitly show the reverse direction.

Now, suppose Q(z,y) = ur?® + hxy + vy? is a reduced form. So, 0 <
VA = 2Ju|| < h < vV/A. We want to show that the cell (u,h,v) is a riverbend.
First, let sgn(x) denote the sign of a number z.

Using the discriminant, we have h? = A+4uv. Since Q(z,y) is reduced, we
have h = v/A 4 4uv < v/A. Then we must have 4uv < 0, and so sgn(u) # sgn(v).

Thus, the edge between u and v must be a river segment. So far, we have (where

e=u+v—hand f=u+v+h):

What is left to show is sgn(e) # sgn(f). Again by the reduced property,
we have |[vVA — 2[u|| < h. So, (VA —2|u|)? < h?. Then,

A — 4ju|VA + 4u? < h?
Au® + A — h? < 4lulVA
4u® — duv < 4|ulvV/A, by the discriminant
du(u —v) < 4ulVA
Alulsgn(u)(u —v) < 4u|vVA
sgn(u)(u —v) < VA

(u—v)* <A
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But we also have A = (u — v)?

— ef, the discriminant at a cell. So,
(u—v)? < (u—v)*—ef. Hence, ef <0 and we must have sgn(e) # sgn(f). So

the cell (u, h,v) must be a riverbend as given in Figure O

Thus, for every riverbend on the topograph, there is an associated reduced
form. And for every reduced form, there is an associated riverbend.

Using this relation, we now see that as the reduction operator is applied, we
not only travel along the river, but we travel the river by jumping from riverbend

to riverbend.

2.4 Roots and riverbends

In this section, we show how to locate the riverbends on an infinity-gon
using the quadratic progression.

We recall from Section that given an infinity-gon with fixed region v, a
cell along the infinity-gon (u, h,v), the quadratic progression around the infinity-
gon is given by a(t) = vt? + ht +u. We also recall that the choice of cell does not

change the quadratic progression.

Theorem 2.4.1. Let ) be an indefinite binary quadratic form with discriminant
A non-square. Consider an infinity-gon in the range topograph of Q, with fized
region labeled v. Suppose the river is traveling along this infinity-gon as illustrated

below:
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Let (u,h,v) be a cell on the infinity-gon, such that the edge between u and v
1s a rwer segment, where h denotes the edge weight between u and v. Define
a(t) = vt* + ht + u. Then a(t) has one negative root, denote with r1, and one
positive root, denote with ro. Suppose that [r1] # |re]. Then the riverbends on

this infinity-gon will be located at t = [r1] and t = |rq].

Proof. Recall from Theorem that we know the existence of riverbends at
infinity-gons. Also note that v and v have opposite signs, since the edge between
u and v is part of the river. So vu < 0. Then the discriminant of a(t) is 0 =
h* — 4vu > 0. Thus, a(t) does indeed have two distinct roots which have opposite
signs.

Now, the roots ry,ry ¢ Z, as that would imply a(ry) = a(re) = 0 appears
on the range topograph of ). But A is non-square, so that is not possible. Thus,
|71] # [r1]. Since a(t) indexes the regions around the infinity-gon, a(|r1]) and
a(]ry]) will be values along the infinity-gon. Similarly for ry. Since [ri] # |r2],

we have four distinct integers:

L) < [ri] < [ra) < [ra]

Evaluating a(t) at these four integers yields a pattern of signs: either (—, +,+, —)
or (+,—,—,4). So we have exactly two sign switches as we travel along the
regions around the infinity-gon. Then the edge where the sign switch occurs must
be a river segment. Thus, the roots of a(t) locates the riverbends on the infinity-

gon. O

We can say more on how the roots locate the riverbends.
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Corollary 2.4.2. Keep the assumptions of Theorem|2.4.1. Furthermore, assume

that the infinity-gon is oriented as below:

Then t = [r1| locates the up-down riverbend and t = |rq| locates the down-up

riverbend.

Proof. We know that the infinity-gon has two riverbends. In this orientation,
the up-down riverbend is on the left and the down-up riverbend is on the right.
We have the quadratic progression as a(t) = vt? + ht + u. When we increment

t, we move clockwise around the infinity-gon, i.e., in the same direction as the

orientation. ]

We illustrate this below:

Figure 2.3: Locating riverbends

We now write the riverbends in terms of the quadratic progression a(t). We

have the cell (a([r1]), h1,v) as the up-down riverbend, and the cell (a(|rz2]), he, v)
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as the down-up riverbend.
To find hy and hs, we use the arithmetic progression in the orientation

given above. We have

a([ri]) +v—hy =a([r1])

h = a([r]) = a(lr]) +o

Similarly,

a([r2]) + v+ he = a([rse])

hy = a([ra]) — a([r2]) —v

Thus,
(a([r1]), a([r1]) = a([r1]) + v, 0) (2.1)

denotes the up-down riverbend and

(a(lr2]), a(fr2]) — a([r2]) — v, v) (2.2)

denotes the down-up riverbend.

2.5 Reduction operator and quadratic progres-
sion

In this section, we show how the reduction operator p relates to the quadratic

progression a(t) of an infinity-gon.
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Corollary 2.5.1. Let (u,h,v) be a reduced form with discriminant A > 0 and
non-square. Let R be the associated oriented riverbend. Then p(u, h,v) is the next

riverbend p(R).

Proof. We have two cases, depending on the type of riverbend we start with.

Case 1: R is an up-down riverbend.

In this case, we have that v < 0 (Figure 2.2). Then

p(u, h,v) = (v, —h +n(2v),n*v — nh + u) (2.3)

with

"= 2v

—%¢Z+hw

Since R is an up-down riverbend, p(R) will be a down-up riverbend. So, we use

(2.2)). We first take the opposite of the associate:

(v, v+ a([r2]) = a([ra]), a([72]))

Evaluating and simplifying:
(v, —h + (= |r2])2v, [72)*v + [72]h + u) (2.4)

Now, a(t) = vt + ht + u with roots r; < 0 < ry. As h > 0 and v < 0, we must

have

—(VA +h)

r9g = ————

2v
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Then |ry] = —n. Substituting into (2.4)), we have:

(v, —h + (n)2v,n*v — nh + u)

matching the reduction operation in ([2.3)).

Case 2: R is a down-up riverbend.

This case is analogous, with some extra steps. Using Figure [2.2] we now have

v > 0. Applying the reduction operator p, we still get (2.3)), but with

2v

\/Z+hJ

As p(R) is an up-down riverbend, we use (2.1). Taking the opposite of the asso-

ciate and simplifying:
(v, —h + (—=]r1])2v, [7“1}20 + [ri]h +w) (2.5)

with

—(VA +h)

r=————>:

2v

Note that since v > 0 and A > 0, we indeed have r; < 0.

Then,
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We use the fact that for z € R, [—z] = —|z]. So,

il =—lon) = - {
Substituting in (2.5)), we have
(v, —h + (n)2v,n*v — nh + u)

Once again, that matches (2.3)). O

Thus, in the description of SQUFOF (assuming the same starting form),
we can switch the reduction operator p with the quadratic progression a(t) and

the behavior of the algorithm would be the same.

2.6 The inverse reduction operator

We now make a similar relation using the inverse reduction operator p~!.
The idea is that if we switch the positions of u and v, then the infinity-gon would
now have fixed region labeled u. That is, as we travel along the river, we will be

traveling against the direction of the edge weight.

Corollary 2.6.1. Keep the assumptions of Theorem|2.4.1. Furthermore, assume

that the infinity-gon is oriented as below:
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Then t = |ry| locates the up-down riverbend and t = [ry] locates the down-up

riverbend.

Remark. The proof is analogous to Corollary 2.4.2] In this case, the quadratic

progression is given by a(t) = ut® + ht + v, with the roots still being r; < 0 < ry.

Using this corollary, we can now describe the up-down riverbend as

(u, —u = al[r2]) + a([r2]), a(r2])) (2.6)

and the down-up riverbend as

(u, u = a([r1]) +a([ri]), a([r1])) (2.7)

This leads us to an analogous statement of Corollary [2.5.1]

Corollary 2.6.2. Let (u,h,v) be a reduced form with discriminant A > 0 and
non-square. Let R be the associated oriented riverbend. Then p~'(u, h,v) is the

previous riverbend p~*(R).

Remark. The proof is similar as before. In this case, we use the definition of the

inverse reduction operator p~! and take the opposite of the associate of ([2.6)) and
of 7).

So, on the topograph, the reduction operation moves in the same direction
as the edge weight, and the inverse reduction operation moves in the reverse
direction of the edge weight. That is, given an oriented riverbend R, we use the
reduction operator to get to the next riverbend p(R) and the inverse reduction
operator to get to the previous riverbend p~!(R). Hence, the overloaded use of

notation.
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2.7 An example

In this section, we give an example of SQUFOF factoring. We show the
steps using the [GWO08] description, and then illustrate them on the topograph.
Let N = 11111 = 3 mod 4. So, the discriminant A = 4N. Denote the

form with (a,b,c). We have:
1. Initialize: (1,210, —86)
2. Cycle Forward:

(—86,134,77)

(77,174, —46)

(—46,194,37)

(37,176, —91)

(—91,188,25) = (—91, 188, 5%)
3. Inverse square root: (—91-—5 —188,—5) = (455, —188, —5)
4. Cycle Backward:

(—5,208,59)

(59, 146, —98)

(—98, 50, 107)

(107,164, —41)

(—41,164,107)
5. Output factor of N: Since the last two forms in Step 4 both have b = 164,

we take |c| = 41 of the second to last form. Thus, N =41 - 271.
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In the illustration that follows, we note that riverbends can have negative
edge weights. However, the algorithm uses the opposite of the associate in those
cases. For example, the first reduced form in Step 2 is (—86, 134, 77), which will

appear on the topograph as the riverbend (77, —134, —86).
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On the topograph, we start at home basis of Q;(z,y) = —111112*+y* and
proceed to find the nearest riverbend. Since we are starting at an ambiguous river
segment, traveling left or right is the same. Also note the edge weights illustrating

the acceleration of 2 at this infinity-gon:

—11110

(a) Finding nearest riverbend

After finding the nearest riverbend, (1,210, —86), we proceed to find a

square form (cells with edge weight labeled are riverbends):
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—295

210

—86

125
—134 77
174
—143

—46
—194

—203

—286

—295
—230

(b) Cycling Forward
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205

241

185

176

-91

122

25
—188

—254



Taking the inverse square root of the square form (—91,188,25), we now

cycle backward starting at (455, —188, —5):

—164

230
107

(c) Cycling Backward
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We have now arrived at the ambiguous river segment (271, 0, —41), which
is the home basis for the ambiguous form Qy(x,y) = 27122 —41y?. Taking a closer
look:

(d) Output factor of N

Figure 2.4: SQUFOF on the topograph

We see in this case that we are at a Type H ambiguous river segment
(Figure 2.1a). Furthermore, the last two riverbends were (107,164, —41) and
(—41,164,107). This illustrates the end condition ¥’ = b for the algorithm, which
is due to the reflection symmetry at (271,0, —41). Outputting |c| = 41, we once
again have N = 41 - 271.
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Chapter 3

Dilinear Topograph

We now introduce a variation of Conway’s topograph. Instead of taking
vectors U € 72, we take vectors ¥ € Z[v/2]2. These, along with further details on
the construction of the dilinear topograph and more general results can be found

in [MSW19].

3.1 Dilinear topograph properties

In this section, we illustrate how the structure of the dilinear topograph
differs from the regular topograph. We then show how many of the topograph
properties have analogues in the dilinear case.

We begin with the vectors. We first define two subsets of Z[v/2]?, referring
to them by different types of colors. Let Dppe = {(uv/2,v) € Z[V2)? : u,v € Z}

and Dyeq = {(u,vV/2) € Z[V2]? : u,v € Z}.

Definition 3.1.1. A vector d € D = Dye U Dyeq is called a dilinear vector, or
divector for short. If d € Dye, then d is a blue divector. If d € Dyeq, then d

is a red divector.
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Definition 3.1.2. A red divector (u,vv/2) is called primitive if ged(u, 2v) = 1.

Similarly, a blue divector (uy/2,v) is called primitive if ged(2u, v) = 1.

Definition 3.1.3. A binary quadratic diform is a function Q : D — 7Z of
the form Q(z,y) = az* + bv2zy + cy?, for some coefficients a,b,¢ € Z. The

discriminant of Q is A = 2(20* — 4ac).

Definite and indefinite diforms are defined analogously. We note that a
diform still (and only) represents integers. Furthermore, QQ = (a, b, ¢) will also be
used to denote a binary quadratic diform, with the v/2 is omitted in the middle
term.

Now, a lax divector is analogous to a lax vector and a lax dibasis is
analogous to a lax basis. Note that given any lax dibasis {4d;, +ds}, +d; and +ds

must be different colors. The next definition gives the analogue to a superbasis:

Definition 3.1.4 (Pinwheel). ([MSW19], pg. 445) Let £d;, £d3 be blue divectors
and +dy, +d4 be red divectors. A pinwheel is an ordered tuple (£d;, £ds, £d3, £d4)
such that any two distinct divectors {+£d;, =d;} forms a dibasis whenever +d;, £d;

has different colors.

Construction of the (domain) dilinear topograph follows from the construc-
tion of the regular (domain) topograph. The cell containing home basis now looks

like:

+(1v2,—1) \ £(1,0v/2) / £(1v/2,1)

+(1,-1v2) / +£(0v/2,1) \ £(1,1v?2)
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Let Q(z,y) = az? + bv/2xy + cy? be a diform. If we restrict @ to either

D,eq or Dy, we get back a binary quadratic form:

Qrea(,v) := Q(u, vV/2) = au® + 2buv + 2cv”

Qblue(u,v) == Q(uv2,v) = 2au? + 2buv + cv?

Thus, a dilinear topograph can be considered as two regular topographs combined
with each other, where regions of the same color belong to the same topograph
(see [IMSW19, pg.445]).

As with the regular topograph, we get the range dilinear topograph by
labeling each region with the values instead of the divectors. We will be referring

to the range dilinear topograph below.

Definition 3.1.5. Let

be a cell in the dilinear topograph of ). Then the discriminant is given by
(2u —v)* —ef.

At a vertex (pinwheel) of the dilinear topograph, we have the following

property:

Proposition 3.1.6. Let
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be a vertex in the dilinear topograph. Then we have a +b = c+ d.
Proposition 3.1.7 (Arithmetic progression rule). Let

(& u f

e ) f/

be a cell of the dilinear topograph. Then the sequence ¢,2u—+v, [ and the sequence

e, u+2v, ', both form an arithmetic progression with the same common difference.

We will also denote this common difference with h, and label the edge
with this number. Now, using the two arithmetic progressions, we show the two

quadratic progressions around an infinity-gon on the dilinear topograph.

Proposition 3.1.8. Let

e” 7z f/// / !

be an infinity-gon on the dilinear topograph with fized region labeled v. Suppose
v is blue (resp. red). Consider the numbers around this infinity-gon. The red
(resp. blue) numbers form a quadratic progression with acceleration 4v and the

blue (resp. red) numbers form a quadratic progression with acceleration 8v.

Proof. The proof will be analogous to the proof of Proposition [1.3.12] given in
[Weil7]. Without loss of generality, assume v is blue as above in the diagram.

Consider the sequence of red numbers:

e///,el’u’ f/’ f///
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Now, consider the sequence of their differences:

e — elll’u o 6/, f/ _ u,f”’ _ f/

Without loss of generality, consider the difference between v — ¢’ and f' — u,

(ff—u)—(u—¢€)=f+¢ —2u

But by the red arithmetic progression at the cell (u, *,v),

f = (u+2v)=(u+2v)—¢
[ +e =2u+2v)

ff+e —2u=4v

Similarly, now consider the sequence of blue numbers:

e, f, f"

Their sequence of differences is:

6_6//, _e’f//_f

Without loss of generality, consider the difference between e — e” and f — e,

(f =)= (e—e") = f+e" —2
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We use the blue quadratic progression at the cell (¢/,*,v) and (u, *,v) to get

e— (2¢ +v) = (2¢ +v) —¢€"

e+e =4+

and

f—Qu+v)=_2u+v)—e

f+e=4u+2v

respectively. Adding the two equations, we have

f+e"+2e=4u+¢€)+ 4
f+e"—2e=4(u+¢€)+4v —4e
f+e" —2e=4(e+v)+4v — 4de, by Prop.

f+e —2e=28v

Note that in this case, we used the vertex relation e +v = ¢’ + u. O

Consider an infinity-gon as in the previous proposition. Suppose v is blue.
Pick the cell (u, h,v), where h is the edge weight between u and v. Then a,eq(t) =
20t? + ht + u describes the red quadratic progression, indexing the red numbers
around the infinity-gon. Similarly, ape(t) = v(2t — 1)? + h(2t — 1) + 2u describes

the blue quadratic progression.
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3.2 Dilinear topograph riverbends

In this section, we take a closer look at the dilinear topograph of an indef-
inite diform. We illustrate the different possible riverbends.
The river is defined analogously on the dilinear topograph of an indefinite

diform. In the case with discriminant non-square, we have the same property.

Proposition 3.2.1 ([MSW19], pg.447). Let Q be an indefinite binary quadratic
diform with discriminant A non-square. Then the dilinear topograph of Q) has a

river. It is unique, endless, and non-branching.
We now describe the riverbends on the dilinear topograph.

Definition 3.2.2. On the dilinear topograph, riverbends are cells consisting of

three river segments as below:

(a) Sharp (b) Shallow (c) Thru

Figure 3.1: Types of dilinear topograph riverbends

Note that the riverbends above are the possible riverbends on the dilinear
topograph up to symmetry. That is, we also have riverbends that are reflections

and rotations of those above.
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3.3 Conclusion and further directions

Given the many similarities between Conway’s topograph and the dilinear
topograph, one can also consider SQUFOF on the latter. We start out the same:
if N = pq is a factorization of N, then the indefinite binary quadratic diforms
2?2 — Ny? and pz? — qy? have the same discriminant. Note that in the dilinear
case, the discriminant is always A = 2(4N) = 8N.

Thus, we use diforms to factor integers instead of binary quadratic forms.
We proceed through the rest of the steps of SQUFOF analogously. The main
difference will be using the dilinear quadratic progression instead. Several possible
issues arise.

The first is the presence of two different quadratic progressions on the
dilinear topograph. Although it would appear that both will locate the same
riverbends at a given infinity-gon, the behavior of algorithm may differ, i.e., the
number of steps taken to find the riverbends.

A larger issue is the wider variety of riverbends in the dilinear case, in
particular, encountering a thru riverbend. The description of SQUFOF on the
topograph relies on the use of the quadratic progression around an infinity-gon.
However, at a thru riverbend, one may not have a viable quadratic progression
to use. That is, the quadratic progression might have roots that are too close to
locate the riverbends. Lastly, it remains unknown whether an implementation of

SQUFOF using diforms will run faster or more efficiently.
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