
UC Berkeley
Berkeley Scientific Journal

Title
On the Brink of Disconnection

Permalink
https://escholarship.org/uc/item/2d256733

Journal
Berkeley Scientific Journal, 23(2)

ISSN
1097-0967

Author
Xu, Candy

Publication Date
2019

DOI
10.5070/BS3232045346

Copyright Information
Copyright 2019 by the author(s). All rights reserved unless otherwise indicated. Contact the 
author(s) for any necessary permissions. Learn more at https://escholarship.org/terms
 
Undergraduate

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2d256733
https://escholarship.org/terms
https://escholarship.org
http://www.cdlib.org/


on the brink of
 disconnection

BY CANDY XU

On April 19, 1965, Gordon Moore presented an article that rev-
olutionized the entire computer industry. He pointed out that 

due to the falling cost of circuit components, we would be able to squeeze 
more and more of them onto silicon chips over the next several decades.1 
One effect of this increase in components is an increase in speed, a core 
characteristic that determines the functionality of a computer. Computing 
speed is highly related to the arrangement of components and communi-
cation between signals and code. These design mechanisms all belong to 
the field of computer architecture. Vital elements of computer architec-
ture include the central processing unit (CPU), random access memory 
(RAM), read-only memory (ROM), Input and Output (I/O), and system 
bus.2 Together, these components construct a path for software and hard-
ware to communicate with each other. If a computer is like a human body, 
then computer architecture would be the ways in which the brain and the 
rest of the body, namely the mental and physical components, interact. 
While existing architecture has already matured greatly since its genesis, 
the next decade will likely bring about efforts to revise the current archi-
tectural design further so as to continue increasing computing speed.3



MOORE’S LAW

Computing speed is important for com-
puter architects to consider, and improving 
chips is one way to achieve speedup. Most 
chips depend on complementary metal-ox-
ide-semiconductor (CMOS) transistors, a 
type of semiconductor used in integrated 
circuits and digital logic design. For more 
than 30 years, we enjoyed “free” computer 
speedup by brutally adding more and more 
transistors on chips.4 This is the idea that 
Moore presented in his 1965 article. He pre-
dicted that the number of transistors would 
double every year, later revising the state-
ment to every two years.4 

With this wonderful physical capabil-
ity, the era of the “lazy software engineer” 
had begun. The speed of computers did not 
need to rely on code efficiency or runtime. 

All that programmers had to do was to wait 
for microchips to gain more transistors in 
order for their computers to run faster. This 
effortless speedup continued until we finally 
approached the physical limits of the tech-
nology. The time frame in which transistors 
double has increased tremendously because 
the transistors simply cannot get any smaller 
(Fig. 1). Currently, the smallest dimension 
of CMOS on electronic device is close to 10-
20 atomic diameters.5 Any smaller than that 
and CMOS transistors would physically stop 
working.5 As a result, computer scientists 
began to explore other venues to accelerate 
computer performance.

LANGUAGE DECODING

With a stagnation in speed, we would 
lose the ability to implement more powerful 

programs or enhance the performance of 
existing ones. The slowing down of Moore’s 
Law thus poses a pressing issue to the whole 

Figure 1: Transistor Count.11 The increase of transistors on chips started to slow down in the 21st century.

“The slowing down 
of Moore’s Law thus 

poses a pressing 
issue to the whole 
industry: how can 

we get computers to 
operate on a faster 

timescale?”

SPRING 2019 | Berkeley Scientific Journal               23



industry: how can we get computers to oper-
ate on a faster timescale? Now that we can-
not rely solely on hardware improvements, 
the solution probably lies in software or the 
intersection of software and hardware.

Computer scientists have already dis-
covered an area with high potential for 
increasing computing speed—decoding 
from high-level programming languages to 
low-level ones.3 Languages that are more 
abstract can be thought of as higher level 
since they are more readable to humans and 
easier to use when programming. However, 
they are thus more structurally complicated 
and have longer runtimes. Languages that 
are less abstract can be thought of as lower 
level, as they usually refer to assembly code 
or machine code, which can communicate 
directly with hardware without the need for 
a complier. Python is one of the most pop-
ular examples of a high-level programming 
language, while the language C is a great ex-
ample of a language that is less abstract and 
lower level than Python.

Jun and Ling once performed recursion, 
a function that calls on itself, to a Fibonacci 
series calculation using both Python and C 
to illustrate the significant runtime differ-
ence in the two languages: the computation 

took Python 3.0 about 2.5396 seconds and 
took C <<0.0001 seconds.6 This hints at the 
great potential in speeding up high-level lan-
guages like Python by using more efficient 

techniques to decode them into low-level 
ones. Currently, JIT is working in that area 
by directly converting real-time Python 
models to machine code execution and us-
ing cache, a smaller but more accessible stor-
age area for disk data, to temporarily store 
recently used data, respectively.6

DOMAIN-SPECIFIC LANGUAGES

Turing Award winner and Professor at 
University of California, Berkeley, David 
Patterson also suggests that another emerg-
ing field which may significantly increase 
computing speed is domain-specific lan-
guages.3 Unlike general languages, such as 
Java and Python, which can be used in a 
variety of applications, domain-specific lan-
guages are customized for a certain field of 
interest. For example, Matlab is primarily for 
numerical computing.

Schaumont and Verbauwhede once ran 
a 128-bit key Advanced Encryption Stan-
dard algorithm using a completely custom-
ized program involving application-specific 
integrated circuit (ASIC) and Java. It turns 
out the customization increased the per-
formance by a factor of nearly 3 million.7 
Therefore, in order to support domain-spe-
cific computing, we would need greater cus-
tomizable computer architecture. It is not 

Figure 3: Intel Core i7 Processor.13 Intel’s Core i7 is an example of a well-architected processor 
that is widely used in industry right now. 

Figure 2: Classical Bit vs. Qubit.12 Qubit allows access to many more states than classical bits. 
The combination of multiple states generate quantum superpositions, which tell us that we 
can freely add two quantum states together and obtain another valid outcome.9 However, we 
have to be careful when measuring a superposition state as random results might appear for 
certain measurements. On the other hand, entangled states cannot be separated. Their ways 
of combination cannot be recreated, but the two states do have perfect correlation.9 When 
measuring one state, the other will behave exactly the same. 

24               Berkeley Scientific Journal | SPRING 2019



only easier to run domain-specific languag-
es on such a architecture, but also cheaper. 
The cost of implementing all applications 
using ASICs with a 45nm CMOS is already 
exceeding $50,000,000, implying the need 
for another architectural method if we want 
to spread the use of customized computing.7 
Technologies such as CHP, a customizable 
heterogeneous platform that integrates cus-
tomizable cores and tunes performance to 
a specific application’s needs, are currently 
being researched and developed.

QUANTUM COMPUTING

Other newly emerging ideas are also 
trying to break through the barrier of speed 
limits. Quantum computing is one that 
gained a huge amount of attention recently. 
Instead of calculating information based on 
binary systems, which consist only of two 
levels (0 or 1), quantum systems can dis-
tinguish between multiple levels and enable 
data access to many parts of the computer 
simultaneously. They rely on qubits, super-
position, and entanglement, which together 
allow us to manipulate combinations of indi-
vidual states (Fig. 2).8

Although methods such as harnessing 
entanglement for computation have boosted 
quantum computing speed, this technology 
is so new and powerful that a real-world ap-
plication has not been found yet. Professor 
Patterson and others suggest that a tangible 
application of quantum computing is most 
likely not going to take effect within the next 

decade.9,10

Thus, these ten years of disconnection 
in the speed up of computers would likely 
rely on re-architecturing the way that soft-
ware languages communicate with each oth-
er and their hardware counterparts. If devel-
oped correctly, we can achieve as great of an 
increase in computing speed as we saw in the 
era of the “lazy software engineer.”

Living in this era of great technological 
advancement, we have the opportunity to 
join the battle and get involved with the next 
golden decade of computer re-architecture. 
In order to reconstruct the current system, 
we must redefine the means of interaction 
between software and hardware. Collective-
ly, such efforts could not only power devel-
opment in newly emerging technologies, but 
could in turn push past the boundaries that 
are currently preventing the next generation 
of advancements in computing.

Acknowledgements: I would like to ex-
press my sincere appreciation and acknowl-
edge Professor David Patterson (Professor 
Emeritus of Computer Science at UC Berke-
ley and Google Distinguished Engineer) for 
his support during the writing process.

REFERENCES

1. Moore, G. (1998). Cramming more
components onto integrated circuits.
Proceedings of the IEEE, 86(1), 82-85.
doi:10.1109/jproc.1998.658762

2. Wells, C. J. (2009, January 28). Com-
puter architecture. Technology UK. Re-
trieved from http://www.technologyuk.
net/computing/computer-systems/
architecture.shtml

3. Hennessy, J. L., & Patterson, D.
A. (2019). A new golden age for
computer architecture. Communi-
cations of the ACM, 62(2), 48-60.
doi:10.1145/3282307

4. Brenner, A. (1997). Moore’s law.
Science, 275(5306), 1401-1404.
Retrieved from http://www.jstor.org/
stable/2893682

5. Spencer, M. (2018). The end of
Moore’s law. US Black Engineer and
Information Technology, 42(1), 76-76.
Retrieved from http://www.jstor.org/
stable/26305580

6. Jun, L., & Ling, L. (2010, October).
Comparative research on Python
speed optimization strategies. In 2010

International Conference on Intelligent 
Computing and Integrated Systems (pp. 
57-59). IEEE.

7. Cong, J., Sarkar, V., Reinman, G., &
Bui, A. (2011). Customizable do-
main-specific computing. IEEE Design
& Test of Computers, 28(2), 6-15. doi:
10.1109/MDT.2010.141

8. IBM Research Editorial Staff. (2019,
February 08). Quantum computing:
you know it’s cool, now find out how
it works. IBM. Retrieved from https://
www.ibm.com/blogs/research/2017/09/
qc-how-it-works/

9. Patterson, D. (2019, February 25). Talk
with Professor David Patterson [Per-
sonal interview].

10. National Academies of Sciences, Engi-
neering, and Medicine. (2019). Quan-
tum Computing: Progress and Prospects.
Washington, DC: The National Acade-
mies Press. doi: 10.17226/25196

IMAGE REFERENCES

11. Roser, M. (2019). Moore’s Law—the
number of transistors on integrated cir-
cuit chips (1971-2016) [digital image].
Retrieved from https://commons.wiki-
media.org/wiki/File:Moore%27s_Law_
Transistor_Count_1971-2018.png

12. Zahid, H. (2016). Strengths and
Weaknesses of Quantum Computing.
International Journal of Scientific and
Engineering Research, 7(9), 1526-1531.

13. Intel. (2008). Nehalem die shot 2
[digital image]. Retrieved from https://
www.intel.com/pressroom/archive/re-
leases/2008/20081117comp_sm.htm

“These 10 years of 
disconnection in the 
speed up of com-
puters would likely 

rely on re-structuring 
the way software 
languages com-

municate with each 
other and their hard-

ware.”

SPRING 2019 | Berkeley Scientific Journal               25




