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Significance

Plants and microorganisms 
release metabolites that mediate 
rhizosphere host–microbe 
interactions and modulate plant 
adaptation to environmental 
stresses. However, the 
mechanisms underlying 
rhizosphere metabolite-
microbiome dynamics and their 
functional and biological 
significance are largely unknown. 
Our study reveals that certain 
classes of rhizosphere metabolites 
exhibit a response to abiotic 
stressors and are linked to 
changes in the rhizosphere 
microbial community and plant 
phenotypes. We propose that a 
group of underinvestigated 
rhizosphere compounds can act as 
keystone metabolites, impacting 
the composition of the 
rhizosphere microbiome and 
potentially modulating plant 
metabolism in response to 
nutrient availability. These findings 
demonstrate the tremendous 
potential of harnessing plant–
metabolite–microbe interactions 
to optimize rhizosphere 
microbiome function, promote 
plant and ecosystem health, and 
offer broad avenues for soil 
microbiome research.

Reviewers: G.A.B., Iowa State University; D.C., The University 
of Manchester; and A.S., Austrian Institute of Technology.

The authors declare no competing interest.

Copyright © 2024 the Author(s). Published by PNAS. This 
open access article is distributed under Creative Commons 
Attribution-NonCommercial-NoDerivatives License 4.0 (CC 
BY-NC-ND).
1N.R.B. and K.Z. contributed equally to this work.
2To whom correspondence may be addressed. Email: 
mkfstone@berkeley.edu.

This article contains supporting information online at 
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.​
2303439121/-/DCSupplemental.

Published August 2, 2024.

MICROBIOLOGY

Nutrient and moisture limitations reveal keystone metabolites 
linking rhizosphere metabolomes and microbiomes
Nameer R. Bakera,1, Kateryna Zhalninab,1, Mengting Yuana, Don Hermana, Javier A. Ceja-Navarroc,d, Joelle Sasseb,e, Jacob S. Jordanb,f, Benjamin P. Bowenb,  
Liyou Wug, Christina Fossuma, Aaron Chewa,h, Ying Fug, Malay Sahai, Jizhong Zhoug , Jennifer Pett-Ridgeh,j, Trent R. Northenb , and Mary K. Firestonea,2
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Plants release a wealth of metabolites into the rhizosphere that can shape the composition 
and activity of microbial communities in response to environmental stress. The connection 
between rhizodeposition and rhizosphere microbiome succession has been suggested, 
particularly under environmental stress conditions, yet definitive evidence is scarce. In 
this study, we investigated the relationship between rhizosphere chemistry, microbiome 
dynamics, and abiotic stress in the bioenergy crop switchgrass grown in a marginal 
soil under nutrient-limited, moisture-limited, and nitrogen (N)-replete, phosphorus 
(P)-replete, and NP-replete conditions. We combined 16S rRNA amplicon sequenc-
ing and LC-MS/MS-based metabolomics to link rhizosphere microbial communities 
and metabolites. We identified significant changes in rhizosphere metabolite profiles in 
response to abiotic stress and linked them to changes in microbial communities using 
network analysis. N-limitation amplified the abundance of aromatic acids, pentoses, 
and their derivatives in the rhizosphere, and their enhanced availability was linked to the 
abundance of bacterial lineages from Acidobacteria, Verrucomicrobia, Planctomycetes, 
and Alphaproteobacteria. Conversely, N-amended conditions increased the availability 
of N-rich rhizosphere compounds, which coincided with proliferation of Actinobacteria. 
Treatments with contrasting N availability differed greatly in the abundance of potential 
keystone metabolites; serotonin and ectoine were particularly abundant in N-replete 
soils, while chlorogenic, cinnamic, and glucuronic acids were enriched in N-limited 
soils. Serotonin, the keystone metabolite we identified with the largest number of links 
to microbial taxa, significantly affected root architecture and growth of rhizosphere 
microorganisms, highlighting its potential to shape microbial community and mediate 
rhizosphere plant–microbe interactions.

rhizosphere | microbiome | metabolome | abiotic stress | switchgrass

It is well established that plants modify the chemistry and microbiology of the rhizos­
phere—the soil adjacent to their roots. Compared to the surrounding bulk soil, rhizosphere 
microbial communities have increased biomass (1, 2), and often lower diversity, and are 
frequently dominated by microbial taxa from specific lineages (3, 4). In addition, distinct 
traits are enhanced in rhizosphere microbial communities, including motility (5), 
cell-to-cell communication or sensing (3), and nutrient uptake (6). While this indicates 
strong selection for specific rhizosphere competence traits, the mechanisms of rhizosphere 
microbial community assembly remain ill-defined. Laboratory incubations, hydroponic 
systems, and greenhouse studies suggest that the chemical signatures of plant exudates 
and mucilage—collectively termed “rhizodeposits”—are key drivers of rhizosphere micro­
bial community structure and function. For example, as plants develop, their exudation 
rates and exudate chemistry change in a consistent manner (6–8) as do their rhizosphere 
microbial communities (2, 9). Furthermore, experiments in hydroponic systems and with 
exudate additions have shown changes in gene expression of rhizosphere communities 
(10) and taxa recruitment/repulsion in response to specific exudate compounds (6, 11–13). 
These findings provide evidence for the direct impact of root-derived metabolites on 
rhizosphere community structure. However, the relationship between the full spectrum 
of the rhizosphere exometabolome and changes in microbial community structure in 
natural soils, particularly under environmental stress conditions, remains largely 
uninvestigated.

The rhizosphere exometabolome is a diverse chemical milieu of primary and secondary 
metabolites released by the plant host and rhizosphere microorganisms into the soil sur­
rounding plant roots (6, 14). The exometabolome interacts with the soil environment 
(i.e., mineralogy, pH, water) and provides a dynamic “playground” for the cross-talk 
between plants and microorganisms living in soil (15–17). Plant-derived metabolites reflect 
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plant responses to a changing environment and enable plants to 
modulate their metabolic interactions with microorganisms (14, 
18–20), thus potentially enabling them to recruit a beneficial 
microbiome. At the same time, microorganisms attracted by 
plant-derived molecules produce metabolites that can alter the 
plant host’s phenotype and enhance its capacity to withstand envi­
ronmental stresses (18, 20).

Switchgrass (Panicum virgatum) is a broadly distributed tallgrass 
native to prairies in the Eastern and Midwestern, USA (21). Drought- 
tolerant (22) and capable of growing in nutrient-poor marginal soils 
(23), the bioenergy crop switchgrass is a deep-rooted perennial with 
significant potential to promote long-term soil carbon (C) seques­
tration (24–26). Switchgrass seedlings are susceptible to a number 
of biotic and abiotic stresses during the establishment phase (27), a 
period when mutualistic plant-microbial relationships that enhance 
nutrient availability, reduce moisture stress, or protect against path­
ogens (28–30) could be critical to plant resilience and future yields. 
Switchgrass has a core microbiome of bacterial taxa that are consist­
ently found in its rhizosphere across diverse soil and sampling envi­
ronments (31, 32). However, it is not known how the switchgrass 
microbiome is recruited during establishment, what role metabolites 

play in this process, and how abiotic stress affects these recruitment 
mechanisms.

In this study, we linked dynamics of switchgrass rhizosphere 
metabolites and microbiomes in response to abiotic stress by grow­
ing a single switchgrass genotype in a nutrient-poor marginal soil 
for 18 wk under five treatments: a control, soils amended with 
phosphorus (+P), nitrogen (+N), both nitrogen and phosphorus 
(+NP), and water-limited (−W) (Fig. 1A). We identified potential 
“keystone metabolites”—compounds that may have functional links 
to specific microbial lineages or abiotic stressors that significantly 
alter the structure of rhizosphere microbiomes. We found that N 
availability was a significant determinant of both metabolite and 
microbial community composition, and resulted in the coenrich­
ment of select microbial lineages and metabolites. Keystone metab­
olites included compounds such as organic and aromatic acids 
previously linked to changes in microbiome community structure 
(6, 12), but also N-rich compounds such as serotonin and acetyl­
choline that have not been investigated in the rhizosphere but are 
known to be strong signaling molecules in other settings (33, 34). 
Further, we used simplified lab experiments to show that one of 
these keystone metabolites, serotonin, significantly impacts both 

Fig. 1.   Greenhouse experiment investigating the effect of nutrient or moisture stress on switchgrass biomass, rhizosphere chemistry, and microbial communities. 
Plants were grown in one-meter-deep mesocosms containing a marginal sandy loam soil, with recreated “A”, “B,” and “C” horizons. (A) Schematic of experimental 
design illustrating five treatments: “Control” with nutrient-poor marginal soil, “+P,” “+N,” and “+NP” mesocosms with phosphorus and/or nitrogen amendments in 
the top soil horizon, and “−W” mesocosms which received 50% less water relative to the other treatments. Box-whisker plots (median and 25 to 75% quartiles) of 
(B) switchgrass root biomass (g dry mass), (C) soil water potential (−kPa), (D) microbial biomass (pmol PLFA/g dry soil) from bulk soil, and (E) microbial α-diversity 
(Fisher’s α) in rhizosphere soil are shown by treatment for the “A” horizon. Letters represent significantly different post hoc pairwise comparisons via Tukey’s 
test (P < 0.05, n = 6).
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plant phenotype and the growth of specific rhizosphere microor­
ganisms. This study identifies keystone metabolites with unexplored 
potential to mediate rhizosphere communities and influence plant 
phenotypes under nutrient stress. In addition, our study demon­
strates an approach for identifying the relationships between rhiz­
osphere metabolites, microbial communities, plant phenotypes, and 
abiotic stressors in complex living soils.

Materials and Methods

Experimental Design, Sample Collection, and Processing. Soil from remnant 
Dust Bowl fields in Anadarko, Oklahoma, USA  consisting of a nutrient-deplete Pond 
Creek fine sandy loam (<0.5% total carbon, <1 ppm total nitrogen, <6 ppm total 
phosphorus) classified as a superactive, thermic Pachic Arguistoll, was collected and 
used to construct one-meter-deep soil mesocosms (n = 30) in 19.7 cm diameter 
polycarbonate tubes. Each mesocosm contained layered soils from the “A”, “B”, and 
“C” horizons and one of five treatments: control (no nutrient amendment), +N (nitro-
gen added), +P (phosphorus added), +NP (nitrogen and phosphorus added), or −W 
(water-limited) (Fig. 1A). Slow-release coated urea and rock phosphate were added 
to the “A” horizon of the appropriate treatments (24). The mesocosms were watered 
from above with either 50% or 100% of the mean monthly rainfall at the field site in 
Oklahoma in the summer months. A clonal ramet of Alamo switchgrass genotype was 
planted in each mesocosm and grown at the University of California, Berkeley, Oxford 
Tract greenhouse. After 18 wk, the mesocosms were destructively harvested and the 
soil was processed by horizon. We collected roots and associated rhizosphere soil  
(<2 mm from root) for DNA extractions and analyzed microbial communities in the 
“A” horizon where most root biomass and soil nutrients were found (24). Rhizosphere 
soil from all three horizons was used for metabolite extractions. See Sher et al. (24) 
and SI Appendix for full sample processing details and assessments.

DNA Extraction, Sequencing and Analysis. Rhizosphere soil in Lifeguard 
solution was centrifuged to pellet, and DNA was extracted from single 0.5 g 
aliquots using a modified RNA/DNA phenol chloroform coextraction protocol via 
bead-beating (35, 36). The microbial community composition was characterized 
using the V4 region of the 16S ribosomal RNA gene with the 515F and 806R 
primer set (37, 38), and samples were sequenced on the Illumina MiSeq platform 
with 2 × 250 bp format.

All initial bioinformatics processing and production of amplicon sequence 
variants (ASVs) by DADA2 (39) were conducted within Qiime2 (40), with taxon-
omy assigned via the SILVA database (release 132) (41). Subsequent processing, 
visualization, and statistical tests of sequence data were performed in R version 
3.6.0 (R Core Team, 2020), primarily within the phyloseq package (42). Chloroplast, 
mitochondrial, and bacterial or archaeal sequences that lacked designation at the 
phylum level were discarded. Singletons and doubletons were removed for all 
analyses other than α-diversity, resulting in 7,093 ASVs accounting for 3,792,087 
reads (104,776 to 194,526 per sample). Differentially abundant ASVs between 
each of the individual treatments and the control samples were determined with 
the DESeq2 package (43), and differentially abundant ASVs whose responses to 
a treatment were driven by only one sample were removed from subsequent 
analyses. Analyses of β-diversity were performed via permutational analysis of 
variance (PERMANOVA) on rarefied sets of 100,000 reads per sample using Unifrac 
distance matrices.

Metabolite Extraction and Analysis. Soil metabolites were extracted separately 
from the “A”, “B”, and “C” soil horizons using a method described in Swenson et al. (44). 
Rhizosphere soil samples were shaken in ice-cold liquid chromatography-mass spec-
trometry (LC-MS)-grade water, centrifuged, filtered, lyophilized, and resuspended in 
100% methanol with internal standards for analysis using normal-phase LC-MS with 
a HILIC-Z column and an Agilent 1290 LC stack. MS and MS/MS data were collected 
using a Q Exactive Orbitrap MS (Thermo Scientific) (see SI Appendix for additional 
details and Dataset S4).

Metabolomics data were analyzed using Metabolite Atlas software to obtain 
extracted ion chromatograms and peak heights for each metabolite (45). 
Metabolite identifications were verified with authentic chemical standards based 
on matching m/z better than 5 ppm for positive mode, 15 ppm for negative mode, 
retention time difference ≤0.5 min, and/or MS/MS fragment matching score of 

>0.6 as calculated by the Stein and Scott “composite” algorithm with modifi-
cations (46) (Dataset S4). As defined by the Metabolomics Standards Initiative 
(47), any two of these orthogonal measures support a level 1 identification for 
the identified metabolites (provided that the third measure did not invalidate 
the identification). All identified metabolites were detected in at least four out 
of six replicates from at least one treatment.

Relative abundances of each metabolite were assessed by the peak heights of 
this metabolite across samples. Significant differences in switchgrass rhizosphere 
metabolite profiles in response to treatments and between the three soil horizons 
were determined with PERMANOVA. The magnitude of change (Delta metabolite 
abundance) for all significantly changed metabolites (P < 0.05) was calculated 
by scaling metabolite peak heights from 0 to 1, where “1” is the highest peak 
height of each metabolite across all samples, and then subtracting the scaled 
metabolite abundances observed in control soil from the treatments. A positive 
Delta indicates an increase in metabolite abundance in a specific treatment.

Rhizosphere Metabolite—Microbiome Associations. To find connections 
between metabolites and microbial ASVs, we built a correlation network using 
their relative abundances in the “A” horizon. Only ASVs present in at least 15 
of the 25 samples were considered, and correlations were calculated using 
Spearman coefficients. We used a Random Matrix Theory approach to set a 
correlation coefficient cutoff of 0.710, which separated noise from nonrandom 
correlations (48). We only included metabolite-ASV pairs with a correlation 
coefficient above the threshold and discarded links within metabolite species 
or 16S ASVs. Positive and negative correlations were represented by positive 
and negative links in the network. We identified putative keystone metabolites 
and ASVs based on network topology using a fast greedy algorithm to calculate 
within-module connectivity (zi) and among-module connectivity (pi) for each 
node (49). Nodes with zi > 2.5 were designated as module hubs, while nodes 
with pi > 0.62 were designated as connectors among different modules. Nodes 
with both zi > 2.5 and pi > 0.62 were designated as network hubs (50). We 
used the igraph package (51) for correlation calculations, network construction, 
and topology analysis, and Cytoscape (52) for visualization. Hierarchical clus-
tering analysis was performed using the vegan package (53) to identify associ-
ations between differentially abundant ASVs and metabolites with significant 
Spearman correlations (r > ± 0.7, P < 0.05).

Plant Phenotype Response to Serotonin. Surface-sterilized Alamo switchgrass 
seeds were grown on 1/5 strength Murashige and Skoog (MS) basal salt mixture 
M524, supplemented with either 0.1 mM serotonin (n = 9) or 0 mM serotonin 
as a control (n = 9). After 25 d, root and shoot biomass were measured and root 
length and root number were quantified using the SmartRoot plugin in ImageJ 
(version 2.0.0) (54). Significant differences between the treatments were deter-
mined using an ANOVA test (P < 0.05).

Microbial Response to Serotonin. We investigated the effect of serotonin 
on microbial growth using six bacterial isolates from Oklahoma marginal soils 
planted with switchgrass. To ensure that the isolates were closely related to 
those observed in the switchgrass rhizosphere, we mapped their 16S rRNA gene 
sequences to the 16S amplicon sequences (ASVs) from our study. Based on the 
V4 region homology with the corresponding ASVs in our correlation network, 
we assigned the isolates to either a positively or negatively correlated serotonin 
response pattern (BLASTN, Evalue < 1 × 10−10, ≥97% of gene sequence homology).  
These isolates, which represent common rhizosphere genera, were grown in 1/10 
R2A medium with 0, 0.1, or 0.5 mM serotonin. Optical density (OD600) measure-
ments were taken and compared to a control without serotonin. We analyzed 
the OD600 responses using a Kruskal–Wallis test after subtracting the OD600 of 
uninoculated blanks from the inoculated samples.

Further details on the experimental design, sampling, rhizosphere soil DNA 
and metabolite extraction and analysis, sequencing, statistical methods, and 
serotonin tests can be found in SI Appendix.

Results

Plant and Soil Responses to Nutrient and Water Treatments. 
Switchgrass root biomass in the “A” horizon varied significantly 
by treatment (P < 0.001, Fig. 1B) and was highest in the +NP 
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treatment (4.80 ± 1.04 g; mean ± SD) and lowest in the −W 
treatment (2.45 ± 0.24 g). The bulk soil water potential in the “A” 
horizon at harvest also varied significantly by treatment (P < 0.001, 
Fig. 1C); the control soils were the wettest (−527 ± 352 kPa), 
treatments with higher root biomass (+N, +NP) had generally drier 
soils, and the −W treatment had the driest soils (−12,100 ± 5,700 
kPa). Bulk soil microbial biomass in the “A” horizon, measured 
by phospholipid fatty acid analysis (PLFA) (24), did not vary 
significantly by treatment (Fig. 1D), with an average 9.81 ± 1.25 
pmol PLFA/g dry soil observed across all treatments.

Microbial Diversity in Rhizosphere Soil. To evaluate how nutrient 
availability and moisture stress affected microbial diversity in the 
rhizosphere of switchgrass, we analyzed 7,841 ASVs from the 
uppermost soil horizon. Microbial α-diversity varied significantly 
by treatment according to a suite of metrics including Fisher’s α  
(P = 0.01, Fig. 1E). Phylogenetic diversity also varied significantly 
by treatment (P = 0.01), but mean pairwise distance between ASVs 
did not. In general, α-diversity metrics were significantly higher 
in controls and in the +P treatment relative to soils where N was 
added, while reduced watering did not have a significant effect 
relative to controls (SI Appendix, Fig. S1).

At the phylum level, rhizosphere communities were domi­
nated by Actinobacteria and Proteobacteria; together, these phyla 
made up 46.4 ± 8.2% and 26.5 ± 2.3% of the sequences observed 
in each sample, respectively (Dataset S1). Acidobacteria and 
Verrucomicrobia were the only other phyla that comprised >4% 
of the community in each sample, on average (SI Appendix, Fig 
S2A). The phyla Actinobacteria and Acidobacteria were the only 
dominant phyla (>4% relative abundance) that varied signifi­
cantly between treatments (P < 0.05). Communities from the 
+N and +NP treatments were significantly different (P < 0.05) 
from those in the control and +P treatment, and communities 
from the −W treatment were significantly different from those 
in the control and +NP treatment (SI Appendix, Fig. S2B and 
Dataset S2).

Impact of Nutrient and Moisture Limitation on Rhizosphere 
ASVs. To assess the effects of abiotic stressors on specific ASVs and 
determine which ASVs were driving community-level differences 
between treatments, we used DESeq2 to identify lineages that were 
differentially abundant in the +N, +P, +NP, and −W treatments 
relative to the control (Fig. 2A). N addition (+N, +NP) caused 
the strongest shifts in community composition (Fig. 2 A and B). 
Specifically, the +NP treatment affected the abundance of 184 
ASVs, and the +N treatment impacted 139 ASVs (Fig. 2C). The 
−W treatment had the least effect. While there was some overlap 
in the effect of treatments on ASVs (Fig. 2C), many ASVs were 
solely affected by the +NP and +N treatments. Notably, 83 ASVs 
were uniquely affected in both the +N and +NP treatment soils, 
evidence of a strong N addition effect. Relatively few ASVs were 
solely affected by the +P and −W treatments (11 and 1, respectively). 
DESeq responsive ASVs and their taxonomy are listed in Dataset S3.

We defined ASVs that were more likely to be found (or not 
found) in a given treatment as “positive” (or “negative”) respond­
ers. The taxonomic identity of ASVs that responded to the +N or 
+NP treatments depended on whether they were positive- 
(increased in abundance) or negative-responders (decreased in 
abundance). Positive-responders to N-application (+N or +NP) 
were dominated (>50%) by ASVs from the phyla Actinobacteria 
(e.g., Kribbella, Streptomyces, Marmoricola, Conexibacter) (Fig. 2B). 
ASVs with negative-responses to N were more taxonomically 
diverse as a group, with negative-responders coming from over  
17 classes, with the majority belonging to the Acidobacteria, 

Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, 
Planctomycetes, and Verrucomicrobia (Fig. 2B).

Far fewer ASVs responded to the +P and −W treatments 
(SI Appendix, Fig. S3 A and B) and there were few taxonomic pat­
terns. Of 16 responders to the +P treatment, only five ASVs increased 
in abundance in response to P amendment, all from different phyla. 
A majority of the ASVs (n = 5) that decreased in response to P 
addition belonged to Actinobacteria. The −W treatment had the 
fewest ASVs change in abundance relative to the control soil, but 
six ASVs responded positively to water limitation, with the response 
driven by five ASVs from Actinobacteria.

Fig. 2.   Influence of nutrient and water limitation on switchgrass rhizosphere 
microbial community structure assessed by DESeq2 analysis. (A) Number of 
positively (+) and negatively (−) responsive ASVs in nutrient-amended and 
water-limited treatments (+N, +NP, +P, −W) as compared to control soils, 
arranged by phyla (bubble size reflects the number of responsive ASVs). Empty 
cells indicate no responsive ASVs from that phylum. (B) The top-50 ASVs that 
increased (+Log2 fold-change) versus decreased in prevalence (−Log2 fold-
change) in response to the +N treatment. ASVs are presented at the highest 
available taxonomic resolution and are colored by class for Proteobacteria 
and by phylum for all other phyla. (C) Number of unique and shared ASVs 
that changed in prevalence in response to each treatment relative to controls.
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Treatment-Induced Changes in Rhizosphere Metabolite Che­
mistry. LC-MS-based metabolomics was used to identify rhizosphere 
metabolites under different nutrient additions and water limitation. 
99 unique metabolites were identified across five treatments and 
three soil horizons (Dataset S4). Analysis of rhizosphere metabolites 
revealed compositional changes in all treatments, with the +N and 
+NP treatments exhibiting the greatest differences compared to the 
nutrient-poor control soil (Fig. 3). Across all soil horizons seventeen 
metabolites were significantly more abundant (P < 0.05) in the 
rhizosphere of the marginal control soils when compared to nitrogen 
(+N and/or +NP) supplemented treatments (Fig. 3 A and B and 
SI Appendix, Fig. S4). The majority of these 17 metabolites were 
organic acids (n = 12) and about half contained an aromatic ring (n = 9); 
the remaining metabolites included pentoses and pentose alcohols  
(n = 3), vitamin B, and a lactone. Conversely, addition of N (+N and/
or +NP) significantly increased the abundance of 35 N-containing 
rhizosphere metabolites and one sugar for all three soil horizons. 
This included amino acids, nucleosides, and quaternary amines, 
as well as N-containing azoles such as allantoin and N-containing 
indoles such as serotonin (Fig. 3 C and D and SI Appendix, Fig. S4). 
Moisture stress also had a significant effect on an array of rhizosphere 
metabolites; 17 metabolites increased in abundance in response 
to the −W treatment, including osmolytes, such as amino acids, 
quaternary amines, sugars (Fig. 3 E and F and SI Appendix, Fig. S4). 
P amendment had a much smaller effect on rhizosphere metabolite 
chemistry than the other treatments; in the +P treatment, only 
seven metabolites significantly changed in abundance relative to 
the control (SI Appendix, Fig. S4).

We also analyzed metabolite changes in response to the treat­
ments for each soil horizon. The top-soil horizon responded the 
most to nutrient limitation, with 13 metabolites increased in 
abundance when N was limited out of the 17 metabolites that 
changed across all horizons (Fig. 3A). Nitrogen addition resulted 
in the most significant changes in metabolite abundances of any 
treatment in the middle and bottom horizons (Fig. 3C), where 
nearly any metabolite with a significant response to N addition 
was found to increase in abundance, and very few were observed 
to decrease. Notably, the bottom and middle soil horizons revealed 
more profound metabolite responses to water limitation than the top 
horizon, where only two out of 17 metabolites increased (Fig. 3E).

Associations Between Metabolites, Microbial ASVs, and Abiotic 
Stresses. To identify relationships between microbes and metabolites, 
we used Spearman’s rank correlations and hierarchical clustering of 
differentially abundant rhizosphere ASVs defined by the DESeq2 
analysis and metabolites observed in the “A” soil horizon. This 
analysis groups treatment-responsive rhizosphere metabolites and 
ASVs by their degree of correlation, to identify clusters with similar 
behavior. Hierarchical clustering of the most responsive ASVs and 
differentially abundant metabolites revealed two large microbial-
metabolite clusters. Cluster #1 (Fig. 4) contains microbial ASVs (n = 
8) and rhizosphere metabolites (n = 17) that increased in abundance 
in the N-amended treatments (+N, +NP), including ASVs from 
the Actinobacteria, Alphaproteobacteria, and Gammaproteobacteria as  
well as metabolites with N-rich compounds (amino acids, azoles, 
quaternary amines). Cluster #2 (Fig. 4) includes metabolites (n = 
8) and microbial ASVs (n = 29) with higher relative abundance 
in the unamended control soils. ASVs in this cluster were distinct 
from the ASVs identified in Cluster #1 and include diverse 
microbial classes from the Alphaproteobacteria, Deltaproteobacteria, 
Verrucomicrobia, Acidobacteria, as well as ASVs from Planctomycetes, 
Nitrospirae, Armatimonadetes, Gemmatimonadetes, Bacteroidetes,  
and Actinobacteria. The majority (75%) of rhizosphere meta­
bolites that covaried with the ASVs from Cluster #2 were organic 

acids, particularly aromatic acids (chlorogenic, cinnamic, caffeic, 
4-pyridoxic, 2,3-dihydroxybenzoic acid).

Metabolite-Microbial Rhizosphere Community Network. In 
our bipartite co-occurrence network of rhizosphere ASVs and 
metabolites (Fig. 5A), 117 ASVs connect to 31 metabolites via 
368 links, including 153 positive and 215 negative links, with 
an average of five links per node (Dataset S5). We identified 
five module hubs and one network hub as putative “keystone 
metabolites” (Fig.  5B and Dataset  S5). Three metabolites 
reflect modules dominated by negative correlations, including 
serotonin, acetylcholine, and ectoine (modules 2, 3, and 4, 
respectively), with serotonin exhibiting negative links (83%) 
with a wide range of bacteria, and positive links primarily 
with Actinobacteria ASVs. Module 1, the largest, was driven 
by positive interactions with chlorogenic acid, glucuronic 
acid, and cinnamic acid, and included 78% positive links with 
bacterial ASVs from a diverse range of lineages and negative 
links primarily with ASVs from Actinobacteria. There was no 
module hub observed for Module 5, which was dominated by 
metabolite nodes instead of ASVs.

The six connector ASVs behaved similarly to one another 
(Fig. 5C), forming most of their positive links (4/5) with organic 
acids—including the three aforementioned module hubs and 
2,3-dihydroxybenzoic acid in Module 4—and forming most of 
their negative links (10/12) with nonorganic acid metabolites. 
Approximately half of the ASVs in the network were also iden­
tified as differentially abundant by DESeq (Dataset S3), and 
nearly all of these were responsive to the +N or +NP treatment 
but not the −W or +P treatments.

Serotonin Impacts on Plant Biomass and Rhizosphere Iso­
lates. Serotonin was identified as a key hub metabolite in the 
reconstructed network (Fig. 5); it formed the largest number 
of ASV links and had the largest number of significant ASV 
correlations (Figs. 4 and 5). Given serotonin’s known role in 
gut bacterial–host interactions (34) and phenotypic effects on 
Arabidopsis (55) we conducted a follow-up study to examine 
its effect in the switchgrass rhizosphere. Switchgrass seedlings 
grown with 0.1 mM serotonin had increased root and shoot 
biomass (SI Appendix, Fig. S5), promoted the number of sec­
ondary roots (Fig.  6A), and increased secondary root length 
(Fig. 6B) (P < 0.05, n = 9).

We also tested serotonin’s effects on six microbial isolates puri­
fied from the switchgrass rhizosphere in marginal soils from 
Oklahoma (Fig. 6C), and are closely related to the ASVs identified 
in the switchgrass rhizosphere in this study (≥97% of 16S gene 
sequence homology). Three of the isolates are closely related to 
ASVs exhibiting negative serotonin correlations (“−SER”) and 
three to ASVs with positive serotonin correlations (“+SER”) 
(Fig. 6C). Increased serotonin concentrations (0.5 mM) in the 
isolate growth medium suppressed growth of the -SER isolates 
and did not affect growth of the +SER isolates based on the OD600 
readings of this treatment compared to the control (Fig. 6C and 
SI Appendix, Fig. S6).

Discussion

Exometabolites Reflect Rhizosphere Abiotic Stress Conditions. 
Plant exudates and microbial metabolites present in the rhizosphere 
play significant roles in shaping plant–microbe and microbe–
microbe relationships under a range of environmental conditions, 
including abiotic stresses (56–59). These rhizosphere metabolites 
primarily consist of plant exudates, microbial products, and 

http://www.pnas.org/lookup/doi/10.1073/pnas.2303439121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303439121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303439121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303439121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303439121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303439121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303439121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303439121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303439121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2303439121#supplementary-materials
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Fig. 3.   Significant changes in switchgrass rhizosphere metabolite profiles in response to five nutrient and water stress treatments (n replicates = 6), assessed 
by PERMANOVA (P < 0.05; Dataset S4 for details). (A) Metabolites significantly enriched (P < 0.05) in a nutrient-depleted marginal soil (control) compared to 
treatments where N was added (+N; +NP). Y-axis circles next to each metabolite represent the soil horizons where the metabolite had a significantly different 
abundance. Unresolvable metabolites are indicated by parentheses. (B) Abundance of an example metabolite enriched in nutrient-depleted soil across all three 
horizons. (C) Metabolites that increased (P < 0.05) in abundance in response to N addition (+N, +NP) compared to the control soil. (D) Abundance of an example 
metabolite enriched in N-replete soil. (E) Metabolites that increased in abundance (P < 0.05) in response to water limitation (−W) compared to the control soil. 
(F) Abundance of an example metabolite enriched in the water-limited treatment. The red diamond inside each box denotes the mean and the horizontal line 
denotes the median. Points reflect a single metabolite per sample, the outer boxes indicate the first, second, and third data quartiles, and whiskers indicate 
the range of the points excluding outliers.
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background C compounds present in the bulk soil. While a 
number of studies have analyzed metabolites present in rhizosphere 
soil of maize, Arabidopsis, wheat, rice, and wild oat (7, 60–63), few 
studies have identified changes of rhizosphere metabolites in soil in 
response to abiotic stressors and nutrient limitations (64, 65). Here, 
we demonstrate that metabolites recovered from the rhizosphere soil 
of switchgrass changed in response to nutrient (N and P) and water-
limited conditions. We identified three major patterns in switchgrass 
rhizosphere metabolite shifts: i) enhanced abundances of aromatic 
acids when switchgrass was grown in N-limited soil (Fig. 3A);  
ii) enhanced abundances of N-containing compounds when N was 
added (Fig.  3C); and iii) enhanced abundances of osmolytes in 
water-limited conditions (Fig. 3E).

One of the most significant patterns observed in this study was 
the enhanced release of aromatic acids when switchgrass was limited 
by N (Fig. 3A). Numerous studies have established the crucial roles 
of aromatic acids in plant-soil-microbial ecology (6, 20, 66–68). In 
our recent work, we demonstrated that aromatic acids impact the 
microbiome assembly of wild oat through the metabolic synchro­
nization of microbial substrate utilization traits and root exudation 

(6). We propose that the increased release of this class of metabolites 
under N limitation may be linked to the plant’s efforts to reshape 
its microbiome assembly to favor the selection of beneficial micro­
organisms that enhance plant nutrient availability. Further research 
is warranted to establish direct evidence of switchgrass’s release of 
these compounds as a means of recruiting beneficial microorgan­
isms. However, other studies have demonstrated that plants exude 
compounds that facilitate Fe (56, 58), P (56, 59), and N (57) 
acquisition.

We observed greater abundances of amino acids, nucleosides, and 
other N-containing molecules (Fig. 3C), in response to 
N-amendment. The resulting alleviation of N stress led to enhanced 
root biomass (Fig. 1B) and C availability (24). Consequently, the 
effect on nutrient status influenced the composition of rhizosphere 
microbial communities, potentially attracting microorganisms that 
thrive in environments with higher nutrient availability, particularly 
where N-rich compounds are present.

We observed a heightened production of ectoine, choline, betaine, 
raffinose, and a variety of amino acids under water-limited condi­
tions (Fig. 3E). These known osmolytes—compounds produced by 

Fig. 4.   Heatmap representing the top covarying microbial taxa and metabolites in the rhizosphere of switchgrass grown with five soil nutrient and water treat-
ments. Top associations between metabolites (columns) and ASVs (row) include i) DESeq2-determined differentially abundant ASVs (n = 37) with more than 
three significant positive or negative correlations (Spearman’s rank correlation, r > 0.7, P < 0.05) with metabolites; and ii) metabolites (n = 25) with more than one 
significant positive or negative correlation (Spearman’s rank correlation, r > 0.7, P < 0.05) with ASVs. Hierarchical clustering shows two clusters of metabolite-ASV 
correlations. Cluster #1 (blue lines) represents metabolites and ASVs that were more abundant in the rhizosphere when nitrogen was added (+N, +NP treatments) 
and Cluster #2 (brown lines) includes metabolites and ASVs that were more abundant in nitrogen-poor marginal soil (controls). Purple colors in the heatmap 
represent positive Spearman correlations, white represents no correlation, and green colors represent negative correlations between metabolites and ASVs.
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plants and microorganisms to alleviate osmotic stress (69–72), are 
generally more abundant in soils with limited water availability (69, 
73). Notably, some of the same osmolytes were produced in the 
rhizosphere in response to both water limitation and enhanced N 
availability (Fig. 3C). This convergence of metabolites responsive to 
reduced watering and increased N availability is reasonable, as the 
increased root biomass in the treatments with added N and NP 
resulted in soil that was drier relative to the control conditions (Fig. 1 
B and C) (24). Thus, the observed response of osmolytes in our 
system is consistent with an increase in osmolyte abundances in 
response to moisture stress experienced by plant and/or microbial 
cells in the soil matrix.

Abiotic Stress Structures Rhizosphere Microbiomes. The com­
munity composition observed in the switchgrass rhizosphere was 
in agreement with the literature regarding the taxa found in the 
rhizosphere of various other grasses and soil bacteria associated 
with switchgrass (2, 31, 74). We observed that Actinobacteria was 
the dominant switchgrass rhizosphere phylum and Proteobacteria 
(particularly class Alphaproteobacteria), Acidobacteria, and 
Verrucomicrobia were the next-most dominant phyla (SI Appendix, 
Fig S2A). While Verrucomicrobia are not generally considered to be 
“rhizosphere” taxa, Hestrin et al. reviewed switchgrass microbiome 

literature and noted that Verrucomicrobia were consistently 
associated with switchgrass roots and rhizosphere soil (75).

We observed that abiotic stresses and nutrient limitation caused 
changes in the metabolic profiles of the switchgrass rhizosphere. 
We suggest that changes in the switchgrass rhizosphere metabo­
lome in response to nutrient and water availability, mediate the 
assembly of the rhizosphere microbiome. The shifts in rhizosphere 
bacterial community structure that we observed in response to 
changes in abiotic stress and in tandem with associated changes 
in metabolite profiles demonstrate close linkages between these 
factors and generally support this hypothesis.

Alleviating N-limitation likely resulted in the proliferation of 
bacteria that are adapted to environments with plentiful soil 
resources at the expense of more diverse taxa better adapted to 
nutrient-limited environments (76). In terms of taxonomic shifts, 
we observed the same trend consistently seen by Ramirez et al. 
whereby bacterial communities under N-addition have greater 
abundances of Actinobacteria (77). In contrast, members of 
Verrucomicrobia and Acidobacteria decreased in abundance under 
N-addition. These slow-growing, lineages have been linked to 
nutrient deficiencies in general, and N-limitation, in particular 
(77). Our findings corroborate previous field studies, in which 
comparable community changes were observed in the same bac­
terial groups (77–79).

Fig. 5.   Co-occurrence network of switchgrass rhizosphere metabolites and microbial ASVs exposed to five soil treatments in a greenhouse study. (A) An 
association network between 908 16S ASVs and 99 rhizosphere metabolites. Nodes with circle symbols represent 16S ASVs, and nodes with square symbols 
represent metabolites. Links between nodes are based on Spearman correlations (r > 0.710) of their relative abundances, red for positive correlation and blue 
for negative correlation. The network separates into five major modules, or highly connected groups of nodes, shown as the five numbered circles. Red filled 
squares highlight rhizosphere metabolites that act as network and module hubs, which are the nodes with dense connections to other nodes within the entire 
network (network hub) or a module (module hub). The six microbial ASV nodes at the center serve as connectors of different modules, or the nodes linking 
different modules. (B) Subnetworks of rhizosphere metabolites that formed module hubs and their neighboring microbial nodes. (C) Subnetworks of microbial 
nodes that serve as connectors, and their linked rhizosphere metabolite. Microbial ASVs are colored by class for Proteobacteria and by phylum for all other phyla.

http://www.pnas.org/lookup/doi/10.1073/pnas.2303439121#supplementary-materials
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We did not observe a strong microbial community response to 
P addition or watering reduction in our study. Notably, a number 
of rhizosphere metabolites that responded to +P treatment were also 
the lowest compared to other nutrient treatments. P availability 
was likely not as limiting in our system as N. The fewest number 
of ASVs (6) responded to our −W treatment, with the majority of 
these also from Actinobacteria, a phyla with many drought-tolerant 
lineages (80). We note that no ASVs decreased in prevalence in 
response to the −W treatment. This may reflect the frequently dry 
conditions at the site where the soils were originally collected, and 
hence the long-term adaptation of the indigenous microbial 
communities.

Metabolite Chemistry Associated With Changes in Abundance of 
Specific ASVs. Taxon-specific responses to individual rhizosphere 
metabolites could be an important driver of rhizosphere bacterial 
community assembly. While we note that rhizosphere metabolites 
are not direct measures of plant exudation, we hypothesize that 
nonrandom covariations in the abundances of microorganisms 
and rhizosphere metabolites across the broad range of abiotic 
stresses in our treatments could indicate potential functional links 
between identified metabolites and microbial lineages. Our results 
support this hypothesis, with rhizosphere metabolites shifting with 
microbial community composition in a similar manner to that 
observed in the literature for soil microbial communities exposed 
to changing exudate chemistry.

It has been previously established that plants can exude organic 
acids in nutrient-limited conditions, at least in part to directly 
liberate C and nutrients into the soil matrix (16). However, it has 
also been shown that organic acids, and in particular aromatic acids, 
are exuded by plants as they develop, and that greater abundances 
of such acids correspond to large-scale shifts in soil microbial com­
munity composition (11, 12, 67). Several potential mechanisms of 
how aromatic acids may modulate rhizomicrobiomes have been 
proposed, including shifts in soil pH, antimicrobial effects, or pref­
erential utilization of these metabolites as a nutrient source by spe­
cific microbial taxa geared to decompose them (6, 12, 67).

In our association networks, we found that half of the six module 
hubs were organic acids, with chlorogenic acid, an aromatic com­
pound, possessing the most links to microbial ASVs of the three 
(Fig. 5). In addition, we observed that aromatic compounds such 
as chlorogenic acid, caffeic acid, and four-pyridoxic acid (among 
others) were most abundant in our control, N-limited marginal 

soils. These soils also possessed the most diverse microbial commu­
nities (Fig. 1E). Reduced concentration of these aromatic acids in 
our N-amended treatments also corresponded to significantly less 
diverse rhizosphere bacterial communities, with consistent reduc­
tions in similar ASVs (Fig. 2 B and C). The ability to metabolize 
organic acids, in particular, has been linked to the proliferation of 
taxa in the rhizosphere of a variety of plant hosts (6, 12, 81), which 
is notable given that organic acids are among the dominant classes 
of exudate compounds and many plants are known to exude them 
(along with other rhizodeposits) from their roots during active 
growth and development (6, 8, 82). Thus, aromatic acids such as 
chlorogenic acid are likely strong drivers of switchgrass rhizomicro­
biome structure.

Two of the three remaining rhizosphere module hub metabolites, 
serotonin and acetylcholine, have not been extensively studied in the 
context of soil. In soil, serotonin can result from the degradation of 
tryptophan (83), itself a precursor for many essential plant metabo­
lites including plant hormone auxin (33). Interestingly, serotonin 
was the largest module hub that we observed in our network. In 
plants, serotonin plays important roles in growth, development, and 
response to environmental stresses (33). However, the mechanism 
of action of this signaling metabolite and its role in the rhizosphere, 
particularly in plant–microbe interactions, are unknown. We have 
demonstrated that serotonin not only exhibits a correlation with a 
significant number of ASVs, but also influences the growth of rhiz­
osphere microorganisms and the phenotype of the plant. We found 
that growing switchgrass in microcosms with applications of seroto­
nin increased plant aboveground biomass and significantly enhanced 
root growth (Fig. 6 A and B and SI Appendix, Fig. S5). We observed 
that serotonin has the capacity to selectively inhibit rhizosphere 
microorganisms, thereby granting the plant the ability to sculpt its 
community in response to its surrounding environment. Root phe­
notypic modifications and substantial shifts in rhizosphere ASV 
abundance in correlation with serotonin levels and its impact on 
microbial growth suggest serotonin’s role as a keystone metabolite in 
mediating plant–microbe interactions in the rhizosphere. Recent 
studies demonstrated that gut microorganisms coevolved to induce 
serotonin production by the host and can sense this host-derived 
serotonin to increase their colonization and fitness in the intestine 
(34). However, it is also known that many phenylamides, such as 
serotonin have antibiotic properties (84) which is consistent with 
our observed suppression of microbial growth and negative correla­
tions between selected microbes and serotonin. In contrast, microbes 

0

5

10

15

R
oo

t l
en

gt
h 

(c
m

)

0.0

2.5

5.0

7.5

R
oo

t n
um

be
r

Correlation

Serotonin(mM) 

(ASV)*

*
*
*

*

Reyranella OAS946

Mucilaginibacter OAE612

Methylobacterium OAE515

Paenarthrobacter OAE575

Burkholderia OAE615

Mesorhizobium OAE845

C

B

A

0%

0

100%

0.1 0.5

-0.71

-0.53

0.79

0.64

0.62

-0.72
(239)

(381)

(602)

(44)

(50)

(8)

Secondary 

Secondary 

Primary 

Primary 

+SER-SER+SER-SER

+SER-SER +SER

+SER

-SER

-SER

OD600

Fig. 6.   Serotonin effects on switchgrass plant pheno-
type and growth of rhizosphere microorganisms. (A and 
B) 25-d-old switchgrass seedlings (n = 9) grown with ex-
ogenous application of 0.1 mM of serotonin (+SER) or 
controls (−SER). Serotonin effects on secondary root 
number (A) and total root length (B). Significant differenc-
es between added-serotonin and controls were assessed 
by ANOVA, asterisks reflect P < 0.05. (C) Optical density 
(OD600) of rhizosphere bacteria cultures after 130 h of 
growth in 1/10 R2A medium with 0, 0.1, or 0.5 mM of 
serotonin. Values have been scaled to the highest OD 
for each isolate across the row. The highest OD of the 
isolate is 100% (dark purple) and the lowest OD is 0% 
(dark green), meaning that isolate growth has been com-
pletely inhibited. Orange cells indicate isolates related 
to ASVs with significant negative correlations with sero-
tonin (−SER) and brown cells indicate isolates matched 
to ASVs with positive correlations (+SER). Positive and 
negative correlations between specific ASV (shown in 
parentheses) and serotonin shown inside of each cell. 
Asterisks indicate significantly different OD600 between 
the 0.1 and 0.5 mM serotonin treatments (n = 4) and a 
control treatment without serotonin (0 mM, n = 4) at  
P < 0.05 by means of the Kruskal–Wallis test.
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that have not been inhibited by serotonin and correspond to the 
ASVs positively correlating with this molecule, could possibly come­
tabolize serotonin as a nutrient source or have developed a mecha­
nism to detoxify this molecule.

The final module hub metabolite we observed is ectoine, one of 
the most abundant osmolytes in nature and commonly produced by 
prokaryotes (85). As such, it may be indicative of moisture stress 
experienced by microbial communities in the rhizosphere. Notably, 
ectoine abundance was positively associated with Actinobacteria, a 
lineage often thought to be drought-tolerant (86), and associated 
with ectoine in arid environments (87). We note that the mechanisms 
behind links in a correlation network are difficult to assess, in the 
context of the broad range of abiotic conditions experienced by the 
plant and soil in our study, strong correlations between metabolites 
and microbial ASVs could well imply that they respond similarly 
(positive links) or differentially (negative links) to these conditions. 
The organic acids that were identified as module hubs in our associ­
ation network had mostly positive associations with a diverse array 
of ASVs, which is supported by the treatment responses we observed 
for rhizosphere metabolites and microbiome community composi­
tion. In contrast, serotonin had negative associations with a diverse 
array of ASVs, but its few positive associations were almost entirely 
with Actinobacteria lineages, which is supported by the taxonomic 
responses to N-rich rhizosphere metabolites that we observed. Thus, 
rhizosphere microbial assembly mediated by metabolites could be 
important drivers of these covariations—especially when the potential 
relevance of the chemistry of these compounds to plant-microbial 
metabolism is consistent with the literature and can be demonstrated 
(as we did for serotonin) in controlled experiments.

Conclusion

Metabolic changes belowground play a vital role in plant stress resilience 
and microbial adaptations to environmental change. However, the 
relationships between rhizosphere metabolite chemistry and the 
dynamics of microorganisms in soil have been largely overlooked. Our 
results show that rhizosphere metabolites are sensitive indicators of 
abiotic conditions in the soil environment that can be linked to the 
shifts of specific bacterial lineages in response to such changes. We 
show that aromatic acids were enriched in the rhizosphere of 
N-limited switchgrass and identified microbial lineages associated 
with this N-limiting condition that were enriched in the presence of 
these organic acids. In contrast, N-rich metabolites were plentiful in 
the rhizosphere of N-replete switchgrass, as were fast-growing micro­
bial lineages capable of responding to increased nutrient availability. 
We contend that the metabolites identified as module hubs in our 
association network—chlorogenic acid, cinnamic acid, glucuronic 
acid, serotonin, ectoine, and acetylcholine—merit further study as 

“keystone metabolites” by structuring soil microbial communities in 
response to abiotic stress. In conclusion, the rhizosphere metabolite 
response to nutrient and moisture availability and associated changes 
in microbiota suggest a putative mechanism of metabolite-driven 
microbial community assembly under abiotic stress and highlight 
potential keystone metabolites in the rhizosphere of switchgrass.

Data, Materials, and Software Availability. The DNA sequences of the 16S 
rRNA gene amplicons were deposited in the National Center for Biotechnology 
Information (accession no. PRJNA781222) (88). The raw metabolomics data were 
deposited to the Global Natural Products Social Molecular Networking (https://
gnps.ucsd.edu) data repository (MSV000088543) (89).
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