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Superconducting Hyperdimensional Associative
Memory Circuit for Scalable Machine Learning

Kylie Huch, Patricia Gonzalez-Guerrero, Member, IEEE, Darren Lyles, Member, IEEE, and George
Michelogiannakis, Senior Member, IEEE

Abstract—We propose a generalized architecture for the first 
rapid-single-flux-quantum ( RSFQ) a ssociative m emory circuit. 
The circuit employs hyperdimensional computing (HDC), a 
machine learning (ML) paradigm utilizing vectors with di-
mensionality in the thousands to represent information. HDC 
designs have small memory footprints, simple computations, 
and simple training algorithms compared to superconducting 
neural network accelerators (SNNAs), making them a better 
option for scalable SFQ machine learning (ML) solutions. The 
proposed superconducting HDC (SHDC) circuit uses entirely 
on-chip RSFQ memory which is tightly integrated with logic, 
operates at 33.3 GHz, is applicable to general ML tasks, and 
is manufacturable at practically useful scales given current SFQ 
fabrication limits. Tailored to a language recognition task, SHDC 
consists of ∼2-20M Josephson junctions (JJs) and is 102 (RSFQ) 
to > 103 (ERSFQ) times more energy efficient than an analogous 
CMOS HDC circuit including cooling and > 104 (RSFQ) to 106 

(ERSFQ) times excluding cooling while achieving 78-84% higher 
throughput. SHDC is up to 107 (RSFQ) to 106 (ERSFQ) times 
more energy efficient t han t he s tate o f t he a rt R SFQ SNNA, 
SuperNPU, while achieving 62-99% higher throughput for all 
but the smallest NN accelerated by SuperNPU. To the best of the 
authors’ knowledge, SHDC is currently the only superconducting 
ML approach feasible at practically useful scales for real-world 
ML tasks and capable of online learning.

I. INTRODUCTION

W ITH the slowdown of Moore’s law and the end of
Dennard scaling, superconducting digital computing

offers a promising alternative for future high performance
computing (HPC) systems due to its ability to operate at
up to ∼100 GHz with low power dissipation [1], [2]. Of
the variety of different superconducting digital logic families
based on single-flux-quantum (SFQ) pulses, rapid-single-flux-
quantum (RSFQ) logic is the most mature and remains the
most common for high-speed circuit applications [3]. As such,
we design and simulate a practical HDC circuit based on
standard RSFQ logic gates [4].

Limited device density is one of the greatest challenges for
superconducting digital computing currently, making area a
critical constraint for SFQ circuits [1], [5]. Although RSFQ
circuits with about one million Josephson junctions (JJs) [6],
[7] and, more recently, close to ten million JJs [8] have
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been demonstrated, these chips had highly-regular shift reg-
ister designs. In terms of complex logic and irregular RSFQ
circuits, recently demonstrated chips have been limited to
around 20-30 thousand JJs [9]. Additionally, cryogenic on-
chip memory is widely regarded as a scarce resource [10].
These factors severely hinder the development of SFQ circuits
for machine learning (ML) at practical scales due to the
computational complexity and large memory footprints typical
of these algorithms.

A. Background and Related Work
At a high level, all ML approaches can be broken down

into two basic stages: learning, also referred to as training, and
inference, also referred to as classification. Typically, ML sys-
tems accept a single type of input data–for example: images,
text, frequency data, etc.–and map it to some internally-used
representation preserving the feature(s) of interest. During
learning, the system constructs high-level class representations
that capture the distinguishing statistical characteristics of the
objects in that class either using explicitly labeled data in
what is termed supervised learning, or from naturally-arising
similarities and differences among unlabeled data in what is
termed unsupervised learning or clustering. There are also
other approaches using a combination of the aforementioned
methods such as reinforcement learning and semi-supervised
learning. Most ML approaches can be used with any of the
above methods. During classification, the system calculates the
best matching class to unlabeled input data and returns the
label of that class as the classification result. For additional
details on ML methods and approaches please consult [11].

Learning is significantly more complex and time-consuming
than classification. As such, many ML approaches perform
training separately from classification in more powerful and
less resource-constrained environments to enable deployment
of the system on less complex hardware in what is termed
offline or batch learning. This approach comes at the ex-
pense of the robustness and adaptability of the system; once
deployed, they cannot continue to learn, making such systems
rigid, highly dependent on the training environment, and often
susceptible to noise. Supervised learning methods typically
necessitate offline learning. When the system is capable of
continued learning after deployment, it is termed online or
continuous learning. The architecture used to deploy such
systems must be capable of implementing the computations of
both learning and classification; however, the resulting system
benefits from greatly increased robustness and adaptability.
Please consult [12] for additional details.
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Neural networks (NNs) are the dominant ML approach
currently and are capable of achieving near-human level
accuracy for many tasks at the cost of memory, inference
computational complexity, and training complexity [13], [14].
NNs consist of multiple layers each containing on the order
of thousands of nodes connected in a predefined and fixed
manner. Each node has tens to thousands of floating point
parameters, resulting in millions to hundreds of millions of
parameters for standard, modern NN architectures. Input data
is mapped to typically float-valued activations of first-layer
nodes which then propagate through the network based on the
connectivity of the nodes and the values of the learned network
parameters. Each node in the output layer represents a class
and the one with the highest valued activation is the winner
of the classification operation.

Classification in NNs involves on the order of millions of
data-intensive matrix multiply-accumulate (MAC) operations
per classification operation [13], [15]. Training involves both
backwards and forwards passes over the data with the back-
ward pass being far more computationally complex. Following
the forward pass (classification), error is back-propagated
through the entire network (backwards pass). This requires
the repeated computation of extremely large and complex
gradients followed by the adjustment of the many millions
of learnable network parameters. In order for the network
to successfully converge, this must be done over the entire
training data set in many thousands of iterations, making NN
training exceedingly energy and time intensive [13], [14], [16].

State-of-the-art superconducting NN accelerators (SNNAs)
such as SuperNPU [15] use quantized network parameters
both to reduce memory requirements and to better match
the quantized nature of SFQ pulses. However, quantizing
NN parameters to the low bitwidths (≤8 bits) required for
realistic implementation in SFQ technology inevitably intro-
duces quantization error and reduces noise tolerance [17], [18].
Additionally, even with aggressively quantized parameters,
the smallest NNs still require on the order of millions of
parameters [19]–[24], necessitating the use of off-chip, non-
SFQ memory as well as converters, resulting in increased
latency and area [10]. Perhaps most importantly, due to the
extreme complexity of NN training, SNNAs are designed
to implement only the forward pass of NNs (classification).
This makes SNNA architectures fundamentally incapable
of online learning. They must be initialized with pretrained,
quantized network parameters and thus are unable to learn
following deployment.

The matrix-based nature of NN computations results in a
huge amount of data movement in the form of both net-
work parameters and partial results. As such, NN accelerators
require large amounts of on-chip memory in the form of
buffers to ensure performance is not unduly limited by memory
bandwidth [15]. This is especially important for SNNAs as
the maximum operating frequency of the off-chip, non-SFQ
memory–DRAM in the case of SuperNPU–is generally much
slower than that of the SFQ portion of the circuit [2], [25]–
[28].

While NNs excel in semiconductor-based computing envi-
ronments, they are not a good match to superconducting digital

environments due to the limitations on device density and lack
of abundant cryogenic on-chip memory in conjunction with
the extreme computational complexity, memory requirements,
and training costs of NNs. Conversely, neuromorpic ML
systems are uniquely well-suited for implementation in SFQ
technology. A major barrier to the implementation of next-
generation neuromorphic designs in traditional semiconductor
technologies is their vast scales which result in large power
consumption and data processing requirements [29]. As such,
the implementation of these systems in superconducting envi-
ronments has garnered increasing attention recently due to the
remarkably high speed and low power consumption metrics
of this technology, enabling the scaling of such systems
beyond what is realistic in semiconductor technologies [29],
[30]. Furthermore, the natural spiking behavior of JJs very
closely resembles that of biological neurons; JJ critical current
is analogous to the threshold potential of neurons, enabling
biologically-plausible spike-based computing schemes [29]–
[31]. [30] and [31] propose potential designs for such next-
generation superconducting neuromoprhic designs capitalizing
on the aforementioned properties and [29] provides a compre-
hensive review of cryogenic neuromorphic hardware.

In terms of currently feasible superconducting ML ap-
proaches, the only one the authors are aware of is the SFQ
Discrete Hopfield Neural Network presented in [32]. This
SFQ circuit is intended for image recognition tasks and is
realistically fabricatable given current SFQ technology limits.
However, the circuit is only capable of storing two, 8-bit
memory patterns, making it unrealistic for use with real-world
ML tasks at its current scale.

B. Summary
In this paper, we propose hyperdimensional computing

(HDC) for efficient ML in superconducting digital comput-
ing. HDC is a Turing-complete neuromorphic computational
paradigm in which computation is performed with vectors
whose dimensionality is in the thousands, termed hypervec-
tors [33]–[38]. Data is represented holographically within
these hypervectors, meaning that data is distributed across the
entire vector; no subset has any particular meaning [37], [39],
[40]. Due to their hyperdimensional and holographic nature,
the representations of HDC are extremely robust to noise and
error from all sources [35], [38], [41]. The power of HDC
as an ML approach lies in the topographical properties of its
hyperdimensional (HD) representational space which is ideally
suited for naturally expressing cognitive operations [33], [35],
[38]. As such, the computations of HDC are quite simple, re-
sulting in designs with small hardware footprints dominated by
memory [34], [36]. Additionally, HDC is capable of learning
classes from very little training data while achieving accuracy
competitive with NNs [38], [40], [42], [43]. Furthermore,
learning and classification are performed in the same manner
in HDC, making these architectures capable of online learning
without added computational overhead [36], [38]. See Table I
for a glossary of HDC terms and Section II for additional
details on HDC as an ML paradigm.

HDC’s low computational complexity, small area foot-
prints, simple algorithms, robustness, and fast, online learn-
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TABLE I: Glossary of HDC terms.

Hypervector Vector of length N where N=500-10k
HD Space Representational space formed by the 2N possible

binary hypervectors of length N
Projection
Function

The mapping of the input data to the HD repre-
sentational space

Seed Vector Predefined hypervector chosen to represent a fea-
ture of the input data in HD space

Profile Vector Hypervector representing input data in the HD
representational space

Memory/Class
Vector

Profile vector of a known class stored in item
memory

Query Vector Profile vector of an unknown class
Difference
Vector

The element-wise XOR of two hypervectors (’1’
at every element where values differ)

Encode
Module (EM)

Projects input data to its profile vector (imple-
ments the projection function)

Associative
Search Module
(ASM)

Stores learned memory/class vectors, classifies
query vectors

Item Memory
Vector Node
(IMVN)

Dedicated memory node within the ASM, holds
one memory vector and calculates its Hamming
distance from query vectors during classification

Seed Memory Look-up table mapping all data features to their
corresponding seed vectors

Item Memory Learned memory/class vectors stored in the ASM

Fig. 1: Overview of HDC for language recognition.

ing capabilities make it ideally suited for implementing ML
in SFQ technology.

In this paper, we present a generalized architecture for the
first superconducting HDC (SHDC) design and evaluate it
against an analogous CMOS HDC design [36] as well as
the state-of-the-art SNNA, SuperNPU [15]. As we show, our
SHDC architecture operates at 33.3 GHz and is 102 (RSFQ) to
> 103 (ERSFQ) times more energy efficient than an analogous
CMOS HDC circuit including cooling and > 104 (RSFQ) to
106 (ERSFQ) times excluding cooling while achieving 78-84%
higher throughput, and is manufacturable at practically useful
scales given current SFQ fabrication limits. SHDC is up to
107 (RSFQ) to 106 (ERSFQ) times more energy efficient than
SuperNPU, while achieving 62-99% higher throughput for all
but the smallest NN accelerated by SuperNPU (MobileNet).

To the best of the authors’ knowledge, SHDC is currently
the only superconducting ML approach that is feasible at
practically useful scales for real-world ML tasks and capable
of online learning. We argue that SHDC is a superior
approach for implementing machine learning in supercon-
ducting digital computing.

II. HYPERDIMENSIONAL COMPUTING (HDC)

In HDC, objects are represented in hyperdimensional (HD)
space as N -dimensional vectors–termed hypervectors–where
N typically ranges from 500 to 10k [33], [35], [38], [40],

[44]. Due to its high dimensionality, the topology of the rep-
resentational space formed by these hypervectors is ideal for
naturally expressing the types of cognitive operations required
for artificial intelligence (AI), resulting in lightweight but
powerful ML architectures [33], [36], [38], [45]. Higher-order
class representations are formed by recoverably superimposing
multiple object hypervectors of the same class into a single,
averaged hypervector representing the class [36], [37]. These
class hypervectors are the only things learned and stored in
HDC. The natural, highly neuromorphic ability to compute
in superposition underlies the remarkable error tolerance, fast
learning capabilities, and robustness of solutions learned by
HDC [33], [35], [38], [40], [42], [46].

Both NNs and HDC map data to a HD space to perform
learning and classification; however, this happens differently
in each paradigm. In NNs, the HD space–the parameter space
of all nodes in the network–is used to perform the mapping
of inputs to classes, represented by final layer nodes. NNs
learn the correct “slice” of this HD space such that inputs
are mapped to the desired classes. In HDC, the mapping is
predefined and the HD representational space–the space of all
possible hypervectors under a given representational scheme
and dimensionality, N–is not constrained or stored. In this
case, it is only the points within the space corresponding
to class centroids which are learned and stored. Points are
represented as individual hypervectors.

The training costs and memory footprints of NNs are so high
because the entire representational space is learned and stored.
By learning and storing only the points in the representational
space corresponding to classes, HDC is able to solve the
same ML tasks with far simpler hardware, smaller memory
footprints, and less training data than NNs [38], [40], [42].

One highly desirable feature of HDC is one-shot learning:
the ability to learn a class from one or very few passes over
the training data [38], [40], [42], [47]. For example, an HDC
algorithm achieved 97.8% classification accuracy in one pass
over 1

3 the training data required by the state-of-the-art support
vector machine (SVM) on the same task [48].

Due to the exceptional accuracies of cutting-edge deep
neural networks (DNNs) [21], [23], [24], it is extremely
challenging to out-perform them in terms of accuracy. This is
particularly true for image classification tasks in which feature
extraction capabilities are crucial for learning transformation
invariance [40], [46], [49]. To overcome these challenges,
state-of-the-art HDC approaches for such tasks build feature-
extracting kernels into their encoding schemes mapping input
data to the HD representational space [50], [51]. HDC is
capable of achieving comparable accuracies to DNN models
on applications including computer vision, speech detection,
robotics, and others. [40], [43], [49], [52]–[55].

We focus on the European language recognition task for
our SHDC implementation presented in the following sections.
The details of this task are discussed in Section III. The
HDC algorithm implemented by our SHDC design achieves
96.7% accuracy on this task compared to the 97.9% accu-
racy achieved by a histogram-based nearest neighbor baseline
classifier [36]. This algorithm makes use of binary hypervec-
tors, the binary spatter code representational scheme, ∼1MB
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Fig. 2: Hypervector pulse stream representation.

training texts, ∼1kB evaluation texts, and generates language
profiles based on consecutive groups of three characters (tri-
grams). It is discussed in detail in Sections III to V.

A high-level overview of a HDC ML architecture for
language recognition is shown in Fig. 1. It is composed of
two modules, the encode module (EM) and the associative
search module (ASM). The EM projects input data to an N-
dimensional hypervector in the representational space, termed
the profile vector of the input data. During training when the
class of the profile vector is known, it is written to one of the
M dedicated item memory nodes in the ASM to form a new
class. When the class of the profile vector is unknown, it is
termed a query vector and searched for across the M classes
stored in the ASM in a nearest-neighbor search.

There are many possible encoding schemes for HD vectors
ranging from simple binary and bipolar representations to
much more complex representations making use of floating
point and imaginary numbers [37], [38], [40]. For simplicity,
we use binary hypervectors and the binary spatter code [39]
in our implementation following that of [36]. Fig. 2 shows
how binary hypervectors are represented as pulse streams in
our design. For binary hypervectors, Hamming distance is
used as the similarity function. Hamming distance is a simple
L1 distance measure consisting of the number of elements at
which two vectors differ [33]. The Hamming distance between
two vectors A and B is calculated as SUM(XOR(A,B))–the
sum of the element-wise XOR, the difference vector, of A
and B (6 in Fig. 2). Such computations are exceedingly simple
compared to the complex matrix multiplication-accumulation
operations of NNs.

The vector primitives of HDC–multiply, add, permute (ab-
breviated as MAP)–enable the association of representations
in the HD space via superposition while still allowing the
individual component representations to be recovered [33],
[36], [37]. The representational space is closed under the MAP
primitives [38]. For binary hypervectors, the MAP primitives
are implemented as element-wise XOR (multiply), element-
wise thresholded accumulation (add), and the wrapped shifting
of all elements of the vector +1 index (permute) [36]. For
binary hypervectors, addition must be thresholded to return

the resulting integer-valued vector elements to ‘1’ or ‘0’. As
the permute function is simply a shift in the indexing of vector
elements, it is performed solely through wiring, requiring no
extra hardware. This is demonstrated in the green portion of
Fig. 3 for the letter hypervectors: here the letter 1 hypervector
is permuted twice and the letter 2 hypervector is permuted
once. See Section IV for details.

III. MACHINE LEARNING BENCHMARK TASK

The SHDC architecture we present can easily be generalized
to almost any ML, pattern recognition, or classification task
by varying the length (and thus representational capacity) of
the hypervectors, the number of classes stored in the item
memory, and the projection function implemented by the
encode module.

In the following sections, we focus on the European lan-
guage recognition task [36], [56], [57] and tailor our archi-
tecture to its specifications. The input data is a text stream
consisting of only the Latin alphabet and the space character,
and the desired output is the language of the text. There are
21 European languages in the dataset resulting in M = 21
memory classes (one for each language).

As our dataset is comprised of 27 features known a priori,
we implement our projection function as a lookup table map-
ping each feature of the data (character) to a randomized seed
vector which serves as its representation in HD space. This
lookup table that maps features of the dataset to hypervectors
is termed the seed memory. The details of how the hypervector
representing an entire text stream is generated are discussed
in detail below.

IV. ENCODE MODULE

We begin by describing the encode module (EM) of our
SHDC circuit, shown on the left in Fig. 3. The EM imple-
ments the projection function mapping input data to the N-
dimensional representational space. The letters of the input
text are received one at a time and encoded into hypervec-
tors representing groups of three consecutive letters–termed
trigrams–by the EM. Each letter as well as the space character
is represented by a predefined N-dimensional seed vector
stored in the seed memory of the EM. The seed memory is
implemented as a look-up table; its architeture is shown in
Fig. 4. All seed vectors are generated randomly and chosen
to be approximately orthogonal to each other in the HD space
in order to ensure all features of the dataset–characters in our
application–have unique representations.

During the encode stage, input letters are first mapped to
their corresponding seed vectors by the seed memory, then
permuted according to their position in the trigram. The first
letter hypervector is permuted twice, the second once, and the
third not at all. This is to ensure that different combinations
of the same letters have unique trigram hypervectors and thus
representations within the HD space. As shown in Fig. 3, per-
mutation is accomplished through the wiring between buffers
as letter hypervectors propagate through them in FIFO order.

Next, the permuted letter hypervectors are bound into
a single trigram hypervector using two subsequent vector
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Fig. 3: HDC language recognition architecture.

Fig. 4: Seed memory implementation. Each element of each
seed vector is stored in its own non-distructive read out
(NDRO) cell. All elements of the selected seed vector are read
out in parallel (simultaneously) to their designated output wire;
i.e. element i of the selected seed vector is driven to wire sv[i].

multiplication operations–implemented as XOR for binary
vectors. Lastly, all trigram hypervectors of the text stream are
accumulated element-wise into a single, integer hypervector
such that element i if the integer hypervector is the sum
of the ith element of all binary trigram hypervectors. This
is accomplished with a vector of N accumulators, one per
element. A threshold of t

2 (where t is the total number
of trigrams in the text) is then applied to each element of
the integer profile vector in order to return it to the binary
representational space by converting all elements smaller than
t
2 to 0 and all others to 1. The resulting binary hypervector
represents the entire text and is termed its profile vector.

For scalability, we use inductor-based accumulator cells
with temporal result readouts in conjunction with tempo-
ral thresholding gates each implemented with a single non-
destructive read out (NDRO) cell. Accumulators produce their
outputs x cycles after the start of the read operation where
x is the number of pulses accumulated. With this temporal

Fig. 5: (a) Encode module (EM) output routing. (b) Vector
pulse stream formatting.

formatting, the threshold function is implemented as a tem-
poral inhibit signal sent t

2 cycles after the start of the read
operation to block output from any accumulators that have not
yet produced it. A DFF array is used to temporally synchronize
the elements of the profile vector following the thresholding
operation.

How the EM outputs the profile vector depends on whether
the language (class) of the profile vector is known or not.
The implementation of profile vector routing at the output
of the EM is shown in Fig. 5 (a). During training, when
the language of the input text is known, its profile vector
represents a learned class. In this case the profile vector–
termed a memory vector–will be sent to the writelines output
of the EM (wls) were it will written to one of the M memory
nodes (IMVNs) of the ASM, forming a new class. Each
element of the hypervector is represented on its own wire for
memory write operations, so the wls signal consists of N , 1-bit
writelines. The ASM’s sel control signals select the memory
node to store the profile vector in, with sel[i] indicating the
write should be preformed on IMVN i. When the language of
the input text is unknown, its profile vector–termed a query
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Fig. 6: Item memory vector node (IMVN) implementation. In-
node memory used to store the memory vector for class i is
shown in purple. Distance calculation logic is shown in black.

vector–is sent to the ASM for classification. In this case, the
profile vector is directed to the query vector output (q vec) for
distribution to all M memory nodes of the ASM to perform
the search.

Fig. 5 (b) shows how the N -bit query vector is formatted as
a single pulse stream of length N . This is accomplished using
N readlines (rls) to read the query vector out in a serial pattern
such that the ith element of the query vector is read in cycle
i of the read operation. A merge tree with a fan-in degree of
N then merges the N individual query vector element reads
into a single, N -cycle pulse stream where the ith element of
the vector is represented in the ith cycle of the pulse stream.
Memory vector read operations within the IMVNs of the ASM
are also performed as shown in Fig. 5 (b) to format memory
vectors into pulse streams. Read operations in the IMVNs use
the same readline control signals as the EM (with added path-
balancing logic) to ensure the memory and query vector pulse
streams are temporally synchronized within the IMVNs.

V. ASSOCIATIVE SEARCH MODULE (ASM)

In this section we present the associative search module
(ASM) of our SHDC circuit. The ASM consists of M item
memory vector nodes (IMVNs) and an M -argument compara-
tor. Each IMVN stores a single class hypervector, calculates its
Hamming distance from input query vectors, and outputs said
distance as a k-bit binary number where k = ceil(log2(N)).
The comparator accepts the M , k-bit Hamming distances and
selects the minimum, outputting the index of the corresponding
class, indicating the best match to the query vector. The
implementation and operation of the ASM are discussed below
and shown on the right in Fig. 3. The implementation of the
IMVNs of the ASM is shown in Fig. 6; the IMVN control
signals shown are shared by all M IMVNs of the ASM.

A. Training

During memory write operations, the profile vector to be
written to memory is driven to the ASM by the N writelines
(wls) output by the EM. The writelines are projected to all M
IMVNs, the M sel control signals of the ASM select which
IMVN the profile vector will be written to.

Each IMVN has an N -element NDRO array to store its class
vector. An N -element array of coincidence cells is used to gate
inputs to the NDRO array to ensure the write operation is only
performed to the IMVN indicated by the sel lines. Element i
in the coincidence array of IMVN j accepts wls[i] as its data
input, sel[j] as its select input, and eow as its reset input, used
to signal the end of each write operation. The wls and eow
signals are sent to all IMVNs for every write operation but
only one of the M sel signals will fire during any given write
so only that IMVN will have its memory written to.

B. Classification

1) Item Memory Vector Nodes (IMVNs): IMVNs (Fig. 6)
implement the distance calculations of HDC. During search
operations, the query vector is projected to all M IMVNs
which perform their distance calculations in parallel. As men-
tioned previously, the query vector is output from the EM as
a single, N -cycle pulse stream. The memory vectors stored
in the IMVNs are read out in the same format using the
same readline signals rls for temporal synchronization with
the query vector read (Fig. 5(b)).

With query and memory vectors both represented as N -
cycle pulse streams, their difference vector can be calculated
using a single XOR gate (see Fig. 2 and 6). The difference
vector pulse stream forms the input to the synchronous TFF
counter. The counter accumulates all pulses of the difference
vector–the Hamming distance between the query and memory
vectors–over an accumulation period of N cycles (the temporal
length of the difference vector pulse stream) and outputs this
distance as a binary number. The maximum Hamming distance
possible for vectors of length N is N , thus the bitwidth of
the TFF counter is k = ceil(log2(N + 1)). A read signal
(cntr rd) is used to gate output from the counter to ensure it
only produces output once the accumulation is complete.

As the counter is synchronous, the output of each bit stage
is offset by a single cycle. Therefore, the counter read signal
(cntr rd) must follow the end of the accumulation period by
k cycles to allow the LSB value to be fully updated before
the read. The cntr rd signal is shared by all IMVNs in order
to synchronize their outputs.

2) Comparator: Each of the M IMVNs generates the Ham-
ming distance between its stored memory vector and the query
vector as a k-bit binary number. At the output of the ASM is
a M -way k-bit tree comparator which selects the minimum
of these Hamming distances and outputs the index of the
corresponding IMVN–the index of the best matching class–
as a binary number. To minimize design footprint, all k-bit
comparators are implemented with a single 1-bit comparator
which is used to compare arguments one bit at a time from
MSB to LSB, stopping after an inequality is found or all bits
have been compared.
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VI. METHODOLOGY

We evaluate our SHDC architecture using a combination
of WRspice, PyRTL, and analytical models. We use a cell
library derived from the SUNY RSFQ cell library [4] with
the exception of the NDRO cell which is from [58]. See
Table V for a list of cells. We extracted the parameters for
all gates in our library by simulating them at the circuit level
in WRspice [59], an open-source SPICE simulator, using the
open-source MIT-LL SFQ5ee 10 kA/cm2 process [60]. We used
our SPICE models to extract the JJ counts, critical currents,
bias currents, propagation delays, hold times, and set-up times
for all gates in our cell library.

In order to simulate and verify our design at scale, we
built RTL models of our architecture as well as its individual
modules in PyRTL [61], a python library for RTL design,
simulation, tracing, and testing built on Verilog. We parame-
terize our RTL models with the gate parameters extracted from
our circuit-level WRspice simulations in order to verify both
the functional and timing correctness of our design as well
as obtain latency, area, and power results for our full-scale
models. We explicitly model all control, signal distribution,
and clock tree hardware to ensure our designs are properly
path-balanced, there are no timing violations, and our results
are accurate.

Latency results for our design are obtained directly from
the parameterized, ps-scale RTL simulations of our designs.
We extract gate counts from our RTL models and use these
in tandem with the gate parameters extracted from our SPICE
models to obtain area–in terms of JJ counts–and power con-
sumption results for our designs.

To obtain mm2 area estimates for our SHDC architecture
and its component modules under the MIT-LL SFQ5ee 10
kA/cm2 manufacturing process, we use the gate count data of
our designs in combination with MIT Lincoln Lab (MIT-LL)
JJ area data which gives the physical area of JJs based on their
critical currents. We calculate the µm2 area of all gates in our
cell library from the JJ area data and the critical current of each
JJ in each gate taken from their circuit-level implementations.
We obtain the physical area of our designs using this gate
area data in tandem with our module gate count data. We also
introduce a 3× area overhead to estimate the effect of non-JJ
components as well as routing and layout restrictions.

To obtain power consumption results, we wrote a python
library to calculate the dynamic and static power consumption
of each cell in our library given the critical currents of its JJs
and bias resistances, as well as the bias voltage and operating
frequency of the chip. All modules in our design use the same
bias voltage of 10 mV. Table V shows the per-gate static and
dynamic power consumption values for all cells in our library
at an operating frequency of 33.3 GHz and the gate-wise power
consumption breakdown of our full SHDC circuit for N = 1k.

It is worth noting that static power dissipation dominates
the total power consumption of RSFQ circuits due to the
large amount of power dissipated by the bias resistors [62],
[63]. The static power dissipation of the cells in our library is
∼ 102 times higher the dynamic power dissipation at the chip’s
operating frequency of 33.3 GHz (see Table V). In recent

years, energy-efficient rapid single flux quantum (ERSFQ)
circuits have emerged as a highly promising alternative to
traditional RSFQ circuits. In this technology, bias resistors are
replaced with bias JJs, completely eliminating static power
dissipation [62], [63]. The timing characteristics and physical
area of ERSFQ gates are assumed to be the same as those of
their RSFQ counterparts as their gate structures are the same,
just the bias current supply lines differ [15], [62].

Following the methodology in [15], to calculate the power
consumption of our design’s implementation in ERSFQ tech-
nology, we estimate that ERSFQ gates dissipate twice the
dynamic power of their RSFQ counterparts and zero static
power. ERSFQ power consumption results for our SHDC
design are shown in Table VI for the language recognition
benchmark (M = 21) and Table VIII for the ImageNet
benchmark (M = 1k). All other results are for the RSFQ
implementation of our design.

Without exception, all power calculations given in this paper
for our SHDC design assume a worst-case activity factor,
meaning each JJ within every gate of our circuit is assumed to
be accessed every clock cycle. This is a large over-assumption,
however, it effects only the dynamic power consumption.
Therefore, the impact to RSFQ total power consumption is
minimal but the impact to ERSFQ total power consumption
values is substantial since all power dissipation is dynamic in
this technology.

For both RSFQ and ERSFQ implementations, we calculate
cooling power consumption as 395 W of cooling power per W
of chip power for a helium reliquifier refrigeration system [64].

VII. EVALUATION

We assess the performance of our SHDC architecture for
vector lengths in the range N = 1 − 10k as this spans a
typical range of vector lengths used in most HDC applica-
tions [33], [38], [40]. As mentioned above, all power numbers
reported for our SHDC circuit assume a maximum activity
factor, meaning every JJ is assumed to activate every clock
cycle. Additionally, control, signal amplification, and clock
tree hardware are accounted for in all results. All SHDC results
are for the European language recognition task (M = 21)
unless otherwise indicated. Power results are for the RSFQ
implementation of our circuit and include cooling power
unless otherwise indicated. Area percentages are based on JJ
count areas as described in the previous section.

The maximum operating frequency of the SHDC associative
memory chip is 33.3 GHz, set by the IMVN. The only module
that operates at a different frequency is the comparator at
the output of the ASM which uses a self-clocking scheme
and operates at 6.67 GHz with worst-case latency. See Sec-
tion VII-B below for details. The area and power consumption
of our SHDC design broken down to its individual modules
as well as memory versus logic are shown in Fig. 7 and
Fig. 8 respectfully. Individual gate contributions to area and
power consumption totals for N = 1k are shown in Table V.
The area scaling results for SHDC as well as its component
modules in terms of both JJ count and mm2 are shown
in Table IV. Performance and power scaling of our design
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Fig. 7: Superconducting HDC (SHDC) area scaling.

Fig. 8: SHDC power scaling. Includes cooling power.

are shown in Tables II and III respectively. ERSFQ power
consumption results for our SHDC circuit are given in the
CMOS and SuperNPU comparison sections and shown in
Tables VI and VIII.

A. Encode Module

Two factors affect the area of the EM, predominantly the
length of hypervectors (N ) and to a lesser extent, the length of
the input text. As the vast majority of the EM is comprised of
gate arrays of length N , its area scales approximately linearly
with N . The length of the text being encoded in trigrams
(groups of three consecutive characters), t, also has a minor
effect on EM area as the accumulators must be adequately
sized to hold up to t pulses–one per trigram hypervector.

Sized for 1kB training texts, the EM comprises 47-49% of
the area of the full design over a range of N = 1− 10k. The
seed memory (Fig. 4) comprises 72% of the total EM area over
this range. The power consumption of the EM is proportional
to its area. Operating at 33.3 GHz, the EM accounts for 42-
44% of the power consumption of the full SHDC design over
a range of N = 1 − 10k with the seed memory accounting
for 64% of the EM’s total power consumption. See Fig. 7 and
Fig. 8.

Due to the fact that all bits of hypervectors are operated
on in parallel in the encode operation implemented by the
EM (see Fig. 3), the EM’s cycle-based latency is determined
solely by the number of trigams in the input text, t. Each
trigram hypervector takes four cycles to encode, resulting
in 4t cycles to accumulate all trigram hypervectors. The
temporal accumulation and thresholding operations–performed
simultaneously–take t

2 cycles. Thus, the total latency of the
EM–the projection of a t-trigram input text to HD space–takes
4.5t cycles.

B. Associative Search Module (ASM)
The ASM consists of the M IMVNs and the comparator

used to select the minimum distance class. The ASM com-
prises 51-53% of the design footprint and 56-58% of the power
consumption for vector lengths ranging from N = 1−10k. The
item memory of the ASM, consisting of all in-node memories
(Fig. 6) of the M IMVNs, comprises 79-85% of the ASM’s
total area and 68-73% of its total power consumption over this
range. The total area of the IMVNs comprises 83-85% of the
ASM footprint and the comparator comprises 3.7-0.5% over
the same range of vector lengths. The remainder of the area
is signal amplification and control circuitry hardware. As all
IMVNs perform their distance calculations in parallel, the total
latency of the ASM is the sum of the IMVN and comparator
latencies, discussed in detail below.

1) Item Memory Vector Nodes (IMVNs): IMVN area scales
approximately linearly with the vector length, N . The area of
the TFF counter scales proportionally to log2(N); however,
for large values of N , IMVN area becomes dominated by the
in-node memory (Fig. 6) which scales proportionally to N .
The in-node memory comprises 95-99% of the area and 94-
99% of the power consumption of the IMVNs over the range
of N = 1− 10k. The total area of the IMVNs dominates the
area of the ASM at all scales of N .

As discussed in Section V-B, with both the query and
memory vectors formatted into N -cycle pulse streams, it takes
N cycles to compute their difference vector using a single
XOR gate. The difference vector pulse stream is accumulated
by the TFF counter as it is generated. Due to the synchronous
nature of the TFF counter, its read must occur k cycles after
the completion of the accumulation where k = log2(N) is the
bitwidth of the counter. Thus the total latency of the IMVNs
is N + k cycles. The IMVN distance calculation latency
comprises 78-96% of the total ASM classification latency over
vector lengths in the range N = 1− 10k.

2) Comparator: The area of the binary tree comparator
discussed in Section V-B scales approximately linearly with
the number of arguments M and to a lesser extent logarith-
mically with the argument bit width, k = log2(N). Because
k-bit comparators are implemented using 1-bit comparators,
the latency of the binary comparator is logarithmically propor-
tional to both the number of arguments, M , and the length of
the vectors, N . The latency of the k-bit comparators depends
entirely on the bit at which the arguments differ, the worst case
being equal arguments which take k + 1 cycles to compare.

In order to minimize latency, we use a self-clocking scheme
for both the k-bit comparator and the M -way tree comparator



9

TABLE II: SHDC performance scaling. The minimum
throughput between the EM and ASM determining overall
design throughput is shown in bold.

V ectorLength(N) 1000 2000 4000 8000 10000
EM Throughput
(M enc ops/s) 22.24 22.24 22.24 22.24 22.24

ASM Throughput
(M searches/s) 25.94 14.42 7.69 3.99 3.21

SHDC Throughput
(MCO/s) (overall) 22.24 14.42 7.69 3.99 3.21

TABLE III: SHDC power consumption (µW).

V ector
Length(N)

1000 2000 4000 8000 10000

Dyn. Power 0.026 0.052 0.102 0.204 0.255
Static Power 1.92 3.76 7.42 14.75 18.42
Total Power
(w/o cooling) 1.95 3.81 7.53 14.95 18.67

Cooling
Power 7.68E+2 1.50E+3 2.97E+3 5.91E+3 7.38E+3

Total Power
(w/ cooling) 7.70E+2 1.51E+3 2.98E+3 5.92E+3 7.39E+3

in which the result of the slowest comparison at each stage
is used to initiate the comparison(s) in the next stage. This
self-clocking scheme enables us to capitalize on the latency
variability of the comparison operations by triggering the next
clock cycle as soon as the current cycle’s computation is
complete. The maximum length of a single comparison cycle
is 150 ps corresponding to a minimum operating frequency
of 6.67 GHz. With worst-case latency–maximum number of
comparison cycles at maximum cycle length–the 21-way k-
bit comparator comprises 3.6-21% of the total latency of the
ASM over vector lengths in the range N = 1− 10k.

As the comparator is used to select the winning class
at the output of the ASM, it is the last module in our
SHDC circuit meaning its self-clocking scheme does not cause
synchronization issues with the rest of the circuit. We assume
worst-case latency for the comparator–6.67 GHz operating
frequency–for all results given in this paper.

C. Full SHDC Design

1) Memory Footprint: In HDC designs, only the S seed
vectors of the seed memory (Fig. 4) and the M class vectors of
the item memory (Fig. 6) must be stored. With binary vectors
of length N , this totals to N ∗(S+M) bits. For the given task,
we have S = 27 and M = 21 for a total memory footprint of
only 48N bits. In both the seed and item memories, each bit
of memory is implemented with a single NDRO gate. Over
the range N = 1 − 10k, the memory NDROs comprise 37%
of the item memory and 58% of the seed memory with the
rest of the area being comprised of read and write control
circuitry. Despite the small memory requirements of the SHDC
architecture, the combined seed and item memory footprints
still comprise 75-78% of the full design footprint due to the
simplicity of the computational logic of HDC.

2) Performance: Performance is expressed in terms of mil-
lions of classification operations per second (MCO/s). Results

TABLE IV: SHDC area scaling. The upper bounds of single-
chip fabrication limits with both on-chip memory (total area)
and off-chip memory (logic area only) for each module are
shown in bold text. See Section VII-D for details.

V ectorLength(N) 1000 2000 4000 8000 10000
IMVN Logic (JJs) 2.1k 2.36k 2.67k 3.01k 3.36k
IMVN Mem (JJs) 38k 76k 152k 304k 380k
IMVN Total (JJs) 40k 78k 155k 307k 383k
IMVN Logic (mm2) 0.12 0.13 0.15 0.17 0.19
IMVN Mem (mm2) 2.21 4.43 8.86 17.71 22.14
IMVN Total (mm2) 2.33 4.56 9.01 17.88 22.33
EM Logic (JJs) 0.26M 0.52M 1.03M 2.06M 2.58M
EM Mem (JJs) 0.65M 1.31M 2.61M 5.23M 6.53M
EM Total (JJs) 0.91M 1.82M 3.65M 7.29M 9.11M
EM Logic (mm2) 16.3 32.6 65.2 130 163
EM Mem (mm2) 32.1 64.1 128 256 320
EM Total (mm2) 48.4 96.8 193 387 484
ASM Logic (JJs) 0.21M 0.36M 0.63M 1.18M 1.45M
ASM Mem (JJs) 0.80M 1.60M 3.19M 6.38M 7.98M
ASM Total (JJs) 1.01M 1.95M 3.82M 7.56M 9.43M
ASM Logic (mm2) 13.7 23.4 42.2 79.4 98.2
ASM Mem (mm2) 46.5 93.0 186 372 465
ASM Total (mm2) 60.3 116 228 451 563
SHDC Logic (JJs) 0.47M 0.87M 1.66M 3.24M 4.03M
SHDC Mem (JJs) 1.45M 2.90M 5.81M 11.61M 14.51M
SHDC Total (JJs) 1.92M 3.78M 7.47M 14.85M 18.54M
SHDC Logic (mm2) 30.0 56.0 107 210 261
SHDC Mem (mm2) 78.6 157 314 628 786
SHDC Total (mm2) 107 213 422 838 1047

are shown in Table II. Each classification consists of an
encode operation–performed by the EM–followed by a search
operation–performed by the ASM. These two stages can be
overlapped, thus the overall throughput of the circuit is set by
the throughput of the slowest stage.

The latency of the EM is proportional to the length of the
input text being encoded. With 1kB training texts, operating
at 33.3 GHz, the EM can perform 22.24 million (M) encode
operations per second for all values of N . The latency of the
ASM is proportional to N so its throughput decreases as vector
length increases. The throughput of the ASM becomes the
limiting factor on overall throughput for N > 1k. See Table II.

D. SHDC Fabrication Bounds

As discussed in Section I, current RSFQ fabrication limits
depend on the complexity of the circuit in question, lying at
∼20-30k JJs for logically complex designs [9] and over 1M
JJs for highly-regular designs [6]–[8]. Although much of the
SHDC design consists of large logic gate and memory arrays
with highly regular structures, its control circuitry and the
comparator module are fairly complex. As such, one would
expect the actual fabrication limits for SHDC to lie close
to but likely below 1M JJs. Thus, we use ∼1M JJs as the
upper bounds for the design scales at which SHDC and its
component modules are realistically fabricatable.

The upper bounds (∼1M JJs) of design scales for which
SHDC and its component modules are realistically fabricatable
with both on-chip memory (total area) and off-chip memory
(logic area only) are shown in bold in Table IV. HDC applica-
tions are practically useful at vector lengths of N ≥ 500 [33],
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Gate JJs
Dyn. Power
33.3GHz
(µW)

Static
Power
(µW)

EM
Gates

IMVN
Gates

Comparator
Gates*

Gate
Totals JJ Totals

Chip Dyn.
Power**
(µW)

Chip Static
Power
(µW)

Total
Power
(µW)

JTL 2 3.45E-8 3.45E-6 6090 5917 1335 13342 26684 4.23E-4 4.60E-2 4.64E-2
split 3 5.89E-8 5.99E-6 52121 87196 3227 142544 427632 8.25E-3 8.54E-1 8.62E-1
merge 7 8.20E-8 5.00E-6 26999 21399 1222 49620 347340 3.99E-3 2.48E-1 2.52E-1
inhibit 8 1.43E-7 7.77E-6 1000 0 0 1000 8000 1.43E-4 7.77E-3 7.91E-3
Inverter 10 1.43E-7 7.77E-6 3028 0 60 3088 30880 4.36E-4 2.40E-2 2.44E-2
Coincidence 11 1.97E-7 1.15E-5 6056 21000 440 27496 302456 5.35E-3 3.15E-1 3.20E-1
XOR 9 1.21E-7 1.74E-6 2000 21 20 2041 18369 2.46E-4 3.55E-3 3.80E-3
LA 6 1.12E-7 8.83E-6 0 0 8 8 48 1.79E-7 7.07E-5 7.09E-5
DFF 6 6.72E-8 3.68E-6 2000 2079 93 4172 25032 2.75E-4 1.53E-2 1.56E-2
TFF2 10 6.49E-8 1.48E-5 0 210 0 210 2100 1.36E-5 3.10E-3 3.11E-3
NDRO 14 1.36E-7 7.62E-6 27000 21840 760 49600 694400 6.67E-3 3.78E-1 3.84E-1
uACC*** 42 2.93E-7 2.49E-5 1000 0 0 1000 42000 2.93E-4 2.49E-2 2.52E-2
Totals 1924941 2.61E-2 1.92 1.95

TABLE V: SHDC gate-wise power consumption breakdown (M=21, N=1k). The circuit runs at 33.3 GHz with the exception
of the comparator (*) which runs at 6.67 GHz at minimum. Thus, the dynamic power consumption numbers for the full chip
(**) are slightly lower than they would be if all gates were clocked at 33.3 GHz. The IMVN Gates column gives the gates for
all M IMVNs including their control circuitry, clock trees, and signal distribution hardware. The Comparator Gates column
also includes the gates for the comparator’s control circuitry, clock trees, and signal distribution hardware. Comparator Gates
are assumed to operate at the minimum frequency of 6.67 GHz here. The total power numbers in the last column do not
include cooling cost. ***The unipolar accumulator gate (uACC) consists of a DFF, 2 NDROs, 2 splits, and 2 additional JJs.

TABLE VI: CMOS power consumption comparison (µW).

V ector
Length(N)

1000 2000 4000 8000 10000

CMOS HDC 1.1E+5 2.4E+5 4.9E+5 9.5E+5 1.09E+6
RSFQ SHDC
(w/o cooling) 1.95 3.81 7.53 15.0 18.7

RSFQ SHDC
(w/ cooling) 7.7E+2 1.51E+3 2.98E+3 5.92E+3 7.39E+3

ERSFQ SHDC
(w/o cooling) 0.052 0.103 0.205 0.408 0.510

ERSFQ SHDC
(w/ cooling) 20.7 40.8 81.1 162 202

[38], so as long as the vector length (N ) for which a module
is realistic to fabricate lies at or above N = 500, we consider
the module fabricatable at practically useful scales. The EM
and ASM with both on- and off-chip memory, as well as
the full SHDC design with off-chip memory are all realistic
to fabricate at practically useful scales of N ≥ 1000. It is
possible to fabricate individual IMVNs at practically useful
scales even using the lower bounds of 20-30k JJs. Although
it is not shown in the table, the full SHDC architecture with
on-chip memory is also realistic to fabricate at a practically
useful scale of N = 500 having 995k JJs, although it lies
close to the upper bound.

To implement SHDC at scales beyond N = 500, one could
fabricate the component modules of SHDC on separate chips
to create multi-chip modules connected by transmission lines
with SFQ pulses. With the EM and ASM each fabricated on
their own chip and connected in this manner, SHDC could
be implemented for scales of up to N = 1000 with on-chip
memory and N = 4000 with off-chip memory.

E. CMOS Comparison

To facilitate a comparison of our SHDC design with an
equivalent CMOS circuit, we benchmark our circuit against

the 2D CMOS HDC circuit architecture presented in [36]
for the European language recognition task [56], [57]. Recall
that there are 21 classes in this task (M = 21). This design
implements the same algorithm as our SHDC design using the
TSMC 65nm LP CMOS process.

1) Performance: The study of [36] for a CMOS HDC
design focuses on the ASM module and in particular the
IMVNs. As in our SHDC IMVNs, the CMOS IMVNs pre-
sented in [36] use a single XOR gate to compare one element
of the query and memory vectors at a time, requiring O(N)
cycles to compute the Hamming distance between the two
hypervectors. In order to compare against [36], we assume
zero latency for the circuitry that is not described in the CMOS
design, namely the EM and combinational comparator used
in the ASM. We assume that the CMOS distance calculation
takes exactly N cycles. Thus, the latency of the CMOS design
given here is optimistic even for the distance calculation alone.
Our SHDC design’s latency includes all components. As such,
this is a highly favorable assumption for the CMOS design.

Since performance metrics are not reported in [36], we
assume the CMOS design runs at an aggressive operating
frequency of 5 GHz and that the entire classification requires
N cycles. Even under these conditions, our SHDC design
outperforms the CMOS HDC design by 78-84% for vector
lengths in the range of N = 1 − 10k. Even assuming the
CMOS HDC design can operate at a frequency of 10 GHz,
our design still outperforms it by 55-69% over this range.

Given the aggressiveness of our latency-based assumptions
in favor of the CMOS design, the gains given above are
entirely due to the faster operating frequency of SHDC. If we
were taking into account the latency introduced by the CMOS
comparator, which accounts for 3.6-21% of the SHDC ASM’s
latency, we would also expect to see cycle-based gains from
the self-clocking scheme utilized by the SHDC comparator.
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TABLE VII: Memory footprint and performance of SuperNPU
versus SHDC for ImageNet.

Benchmark M Params Mem (Mb) M MACs M Classific./s
AlexNet 61 488 720 1.17
GoogLeNet 6.8 54.4 1550 0.54
MobileNet 1.32 10.56 76 11.08
ResNet 50 25 200 3860 0.22
VGG16 138 1104 15300 0.06
SHDC N=1k 1 1 - 21.37
SHDC N=10k 10 10 - 3.10

2) Power Consumption: Table VI shows how the power
consumption of both RSFQ and ERSFQ implementations of
our SHDC design with and without cooling cost compare to
that of the CMOS HDC benchmark design over the range N =
1 − 10k. Without cooling cost, RSFQ SHDC consumes four
orders of magnitude less power than CMOS HDC. Including
cooling cost, this factor drops to two orders of magnitude.
ERSFQ SHDC consumes six orders of magnitude less power
than CMOS HDC without cooling cost and three orders orders
of magnitude less power including cooling.

F. SuperNPU Comparison

In this section we evaluate SHDC’s performance as a super-
conducting ML technique against that of the state of the art
SNNA: SuperNPU. The NNs used to benchmark SuperNPU
were designed for use with the ImageNet dataset [65] which
contains images belonging to a total of 1000 classes. Tailoring
our SHDC design to this benchmark, the ASM contains
M = 1000 IMVNs representing the 1k classes and a 1k-way
comparator to select the winning class.

As the input data consists of images for the ImageNet task,
it makes more sense to use a pixel-value based projection
function to perform the mapping of images to the HD space
than a look-up table mapping data features to predefined seed
vectors as we do not know the features of the dataset a priori.

Under this framework, during training input images of a
given class would be projected to hypervectors one at a
time based on their pixel values and then accumulated into
a single profile hypervector representing the class just as with
the trigram hypervectors for the language recognition task
in what is termed an N-gram encoding [49]. However, for
classification, the input is a single image so no accumulation
stage is required; the image is mapped to the HD space and
sent directly to the ASM for classification.

The area of the EM scales only with hypervector length (N )
and the number of object hypervectors in a class (t) but not
with the number of classes (M ). Therefore, we would expect
an EM implementing a simple pixel-based projection function
to be roughly the same scale of complexity as the EM for
the language recognition task presented above, given that it
does not include a seed memory which comprises ∼ 37%
of the number of JJs of the language recognition EM. To
be conservative, we estimate that the EM for the ImageNet
task has the same area (in terms of JJ count) and power
consumption of the M = 1k ImageNet ASM. Recall that the
EM is smaller than the ASM for the language recognition task

for which M = 27. As M = 1k for the ImageNet task and
the area of the EM does not scale with M while that of the
ASM does, this is likely a significant over-estimate.

1) Memory Requirements: The number of parameters for
five popular NN architectures used to benchmark SuperNPU
are shown in Table VII. All parameters are quantized to 8
bits in SuperNPU; the resulting memory requirements of each
network under this quantization scheme are shown in the same
table. Network parameters are stored in off-chip DRAM in
the SuperNPU architecture. Additionally, SuperNPU uses two
buffers of 24 MB each to store partial calculation results and
an additional buffer of 128 kB to hold the network parameters
currently in use for a total of 48.128 MB of on-chip memory
(see Table I in [15]).

With M = 1000 classes and vectors of length N , our SHDC
architecture requires N × M = 1000N bits of memory to
store the 1k binary class vectors in the ASM. As the EM
does not contain a seed memory for this application, the item
memory of the ASM comprises the memory footprint of the
entire design. For vectors in the range N = 1− 10k, the total
memory requirements of SHDC’s architecture for ImageNet
would be 1 − 10 Mb. Even at the extreme of N = 10k, the
memory requirements of SHDC are still smaller than those of
even the smallest NN architecture, MobileNet (see Table VII).

2) Area: The mm2 area results given for SuperNPU in [15]
(∼ 299mm2) assume the JJ device technology used to imple-
ment SuperNPU is equivalently scaled to a 28 nm CMOS
technology, which was used to benchmark the TPU [15]. To
avoid making device technology assumptions for our design,
we compare area against SuperNPU in terms of JJ counts.

As no JJ count numbers are given in the SuperNPU pa-
per [15], we estimate them here given the mircroarchitectural
details presented in their paper in combination with their cited
multiplier and adder implementations [9], [66]. SuperNPU
consists of a 64×256 processing element (PE) array, 48.128
MB of on-chip memory implemented with shift registers, and
a data alignment unit (see Figures 3 & 19 and Table I in [15]).
The PEs each contain a 20.3k JJ 8-bit pipelined multiplier [9],
a 3k JJ adder [66], and 8 shift registers. Ignoring the shift
registers, control circuitry, and clock distribution hardware,
each PE uses ∼23k JJs. Thus, there are 64×256×23k JJs =
∼377M JJs total in the PE array. Again ignoring the control
circuitry and clock distribution hardware, we will assume the
shift-register based on-chip memory requires only a single JJ
per bit. Under these assumptions, we have 48.128 MB×8 b/B
= ∼385M JJs in the on-chip memory. We ignore the data
alignment unit giving an optimistic total of 377M + 385M =
762M JJs for the SuperNPU architecture.

With M = 1k for the ImageNet task, our SHDC design
uses 96M JJs at small design scales (N = 1k) and 892M JJs
at large scales (N = 10k). SHDC has a similar footprint to
SuperNPU at large design scales, however, it makes use of
entirely on-chip memory while SuperNPU requires additional
off-chip DRAM.

As the area of SHDC scales proportionally to both the length
of hypervectors used (N ) and the number of classes (M ), its
area does not scale as favorably as that of SNNAs when the
number of classes becomes very large. SNNAs have a fixed



12

TABLE VIII: Power consumption (W) of SuperNPU versus SHDC for ImageNet.

Architecture SuperNPU SHDC N=1k SHDC N=10k SHDC 1k Factor Improvement SHDC 10k Factor Improvement
RSFQ (w/o cooling) 964 1.06E-04 9.87E-04 9.08E+06 9.77E+05
RSFQ (w/ cooling) 3.82E+05 4.20E-02 3.91E-01 9.08E+06 9.77E+05
ERSFQ (w/o cooling) 1.9 2.74E-06 2.62E-05 6.94E+05 7.24E+04
ERSFQ (w/ cooling) 751 1.08E-03 1.04E-02 6.93E+05 7.22E+04

Fig. 9: SHDC SuperNPU performance comparison. The per-
formance of our SHDC architecture designed for use with the
ImageNet dataset at small (N = 1k) and large (N = 10k)
design scales is shown in blue. SuperNPU’s performance on
five NN architectures is shown in orange assuming the peak
performance of 842 TMAC/s is maintained throughout the
computation.

size and instead suffer in terms of latency when accelerating
very large NN models.

3) Performance: SuperNPU is reported to operate at 52.6
GHz [15]. Its performance in terms of millions of classifi-
cations per second (MC/s) for five popular NN architectures
is shown in Table VII. The performance numbers given here
assume that the SuperNPU architecture performs all compu-
tations at its peak performance of 842 TMAC/s. However,
the actual performance of the SuperNPU architecture depends
on the percent of the PE array being utilized for each MAC
operation which depends on the architecture of the network
being accelerated [15]. SuperNPU cannot maintain peak per-
formance for the entirety of the computations for any of the
NNs shown here so these performance numbers are optimistic
in favor of SuperNPU.

For classification, input data will consist of only one image
at a time, meaning the encode operation will be a single
image projection operation without the accumulation and
thresholding of multiple images into a single hypervector that
is required during training. Thus, the latency of the EM will
be minimal compared to that of the ASM even at small vector
lengths, meaning the performance of the design will be set by
the ASM. Assuming maximum latency for the comparator, the
ASM can perform 21.37-3.1 MC/s over vector lengths ranging
from N = 1− 10k. Fig. 9 shows how the performance of our
SHDC architecture compares to that of SuperNPU running the

five NN architectures from Table VII at its peak performance
of 842 TMAC/s.

4) Power Consumption: The power consumption results for
both RSFQ and ERSFQ implementations of the SuperNPU
and SHDC architectures with and without cooling power are
shown in Table VIII. SuperNPU power consumption results
come directly from Table III of [15]. At small scales (N = 1k)
the RSFQ implementation of SHDC is ∼ 107× more energy
efficient than SuperNPU while the ERSFQ implementation is
∼ 106× more energy efficient. At large scales (N = 10k)
the RSFQ implementation of SHDC is ∼ 106× more energy
efficient than SuperNPU while the ERSFQ implementation is
∼ 105× more energy efficient.

To summarize, SHDC tailored to the ImageNet ML task
with 1k classes is ∼ 107 − 106× more energy efficient than
SuperNPU given a RSFQ implementation and ∼ 106 − 105×
more energy efficient than SuperNPU given an ERSFQ im-
plementation for vector lengths in the range N = 1 − 10k.
With very large vectors of N = 10k, our SHDC architecture
outperforms SuperNPU in terms of throughput for all but the
smallest NN architecture, MobileNet. With smaller vectors
N = 1k, SHDC outperforms SuperNPU for all benchmarks.

VIII. CONCLUSION

Given the extreme computational complexity, memory re-
quirements, and training costs of NNs, such ML approaches
are not ideal for implementation in superconducting digital
technologies due to the area limitations arising from limited
device density and the lack of scalable cryogenic mem-
ory solutions. Additionally, superconducting NN accelerators
(SNNAs) are only designed to implement the forward pass of
NNs and must be initialized with pretrained, quantized NN
parameters, making them fundamentally incapable of online
learning.

In contrast, hyperdimensional computing (HDC) uses sim-
ple computations and drastically less memory than SNNAs.
Despite the small memory footprint, the computational logic of
HDC is so simple that the design footprint is still dominated by
memory. Furthermore, training and classification are the same
under HDC, the only difference being in whether a vector is
written to memory or searched for across the vectors already
stored in memory. As such, training is exceedingly simple and
can easily be performed online. This allows SHDC to continue
learning after deployment in cryogenic environments, greatly
increasing its adaptability and robustness.

Here we present the first superconducting HDC (SHDC)
design and evaluate it against an analogous CMOS design
as well as the state of the art SNNA, SuperNPU. As we
have shown, the proposed SHDC circuit uses entirely on-
chip RSFQ memory which is tightly integrated with logic,
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operates at 33.3 GHz, is applicable to general ML tasks, and is
manufacturable at practically useful scales given current SFQ
fabrication limits. SHDC is 102 (RSFQ) to > 103 (ERSFQ)
times more energy efficient than an analogous CMOS HDC
circuit including cooling, > 104 (RSFQ) to 106 (ERSFQ)
times more energy efficient than CMOS excluding cooling,
and up to 107 (RSFQ) to 106 (ERSFQ) times more energy
efficient than the state of the art RSFQ SNNA, SuperNPU,
while achieving 78-84% higher throughput than the CMOS
benchmark and 62-99% higher throughput for all but the
smallest NN accelerated by SuperNPU.

To the best of the author’s knowledge, SHDC is the only
superconducting ML approach that is currently feasible
at practically useful scales for real-world ML tasks and
capable of online learning. Given the much greater maturity
of semiconductor digital computing technologies over super-
conducting ones as well as the restrictions that come with
cryogenic computing environments–predominantly the cost of
cooling–SHDC is certainly not the best approach for all ML
applications; however, we argue that it is a superior option for
implementing ML in superconducting digital computing.

SHDC stands poised to make significant impact in any
superconducting environment in which ML is required, es-
pecially given the fact that these systems are already cryo-
genic, meaning there is no cooling cost overhead in such
environments. The on-chip SFQ memory, extreme noise and
error tolerance, and high throughput performance of SHDC
are particularly desirable for implementing ML solutions in
these environments. Quantum control and error correction are
two such key areas of active research.

IX. FUTURE WORK

The binary magnitude comparator implementation used in
our SHDC design is rather basic, contributing a significant
amount of area and latency to our design. This is particularly
true at small design scales where the distance calculation
latency is low and signal amplification and clock distribution
hardware comprise a smaller proportion of the design. Using
a more intelligently designed SFQ comparator could signifi-
cantly decrease the area and latency of SHDC, especially at
small design scales.

Under temporal logic schemes such as Race Logic [67],
values are encoded in the temporal domain and MIN and MAX
are first-order functions with highly simple implementations.
This makes the implementation of distance-based computa-
tions that are at the heart of HDC extremely efficient. Our
SHDC architecture stands to benefit greatly from the use of
such a temporal logic scheme for the implementation of the
distance calculations and comparisons of HDC.
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