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! Department of Mathematics & Computer Science, Rutgers University—Newark
2 Department of Computer Engineering and Computer Science, University of Louisville

Abstract

The enormous scale of the available information and products
on the Internet has necessitated the development of algorithms
that intermediate between options and human users. These al-
gorithms do not select information at random, but attempt to
provide the user with relevant information. In doing so, the
algorithms may incur potential negative consequences related
to, for example, “filter bubbles.” Building from existing al-
gorithms, we introduce a parametrized model that unifies and
interpolates between recommending relevant information and
active learning. In a concept learning paradigm, we illustrate
the trade-offs of optimizing prediction and recommendation,
show that there is a broad parameter region of stable perfor-
mance that optimizes for both, identify a specific regime that
is most robust to human variability, and identify the cause of
this optimized performance. We conclude by discussing im-
plications for the cognitive science of concept learning and the
practice of machine learning in the real world.

Keywords: Recommender systems, active learning, concept
learning, filter bubble

Historically, the information each individual had access
to was defined by one’s local environment: what one could
directly observe , who one had to talk to or do business
with, and available texts or catalogs one could access. With
the advent of the Internet, information and products became
available at a global scale. This vast potential resource cre-
ates a problem: how to choose—from billions or trillions of
options—which information or products to present to an in-
dividual at a given time. Solutions to these problems form
the foundation that supports major players in the online busi-
ness world—from search engines and e-commerce to social
network services—such as Google, Amazon, and Facebook.
These algorithmic solutions radically affect not only what in-
formation and products we are exposed to, but also which
information and products we have the chance to be exposed
to. Thus, these algorithms mediate between us and reality,
not by providing a random sample from what is possible, but
by carefully selecting a sample which optimizes some under-
lying goals and metrics. The consequences of these human-
algorithm interactions have been insufficiently explored de-
spite recent interest in cases such as filter bubbles (Pariser,
2011), algorithmic bias (Baeza-Yates, 2016), and human-
algorithm interaction biases (Nasraoui & Shafto, 2016).

A well-established doctrine in cognitive science asserts
that a driving factor of our beliefs is the information we are
exposed to. However, the situations investigated in the most
typical concept learning experiments (Bruner, Goodnow, &
Austin, 1956; Shepard, Hovland, & Jenkins, 1961) differ
sharply from the kinds of situations we encounter with recom-
mender systems. In concept learning experiments, examples
are typically sampled either exhaustively or randomly, neither

of which is feasible in the context of Internet-scale problems.
Obviously, enumeration is not feasible. Random sampling is
also not feasible because if the quality of the algorithm’s sug-
gestions were too poor, human users could simply choose to
go elsewhere. This yields a thorny problem: how to select
information and products to maximize relevance, while also
accurately estimating what users want.

Two classes of  algorithms—information filters
(Sparck Jones, 1970; Van Rijsbergen, 1979; Salton,
Fox, & Wu, 1983) and recommender systems (Goldberg,
Nichols, Oki, & Terry, 1992; Maes et al., 1994; Adomavi-
cius & Tuzhilin, 2005)—have been developed to facilitate
selection of information for users. Although different in
some ways, they share a core assumption that the goal is
to deliver humans relevant information or products. Given
that these sorts of algorithms have raised concerns about
not exposing people to the breadth of potentially relevant
information, basic questions one might raise are whether the
data they obtain allow them to accurately estimate human
users’ preferences, and whether there are small adjustments
that could be made to optimize for recommendation and
learning about the users’ preferences.

One approach for obtaining optimally informative data
is active learning, well known in both cognitive science
(Nelson, 2005) and computer science (MacKay, 1992). Ac-
tive learning has been proposed both as a model for how hu-
mans search for information and as an algorithm for how ma-
chines learn about the world. In the current context, active
learning is a method for learning what information is relevant
to the human user (Elahi, Ricci, & Rubens, 2016), which—
while having advantages for estimating the user’s beliefs—is
unlikely to produce quality recommendations.

Drawing inspiration from real-world problems of informa-
tion filtering and recommendation, we seat these problems
in a concept learning framework that allows for experimental
control of which examples are relevant. This framework al-
lows for an exploration of algorithms that perform better or
worse on the joint problems of optimizing recommendations
and inferring relevance. We introduce a novel approach to
investigating algorithm performance that merges aspects of
computational simulation and user testing: people are trained
on the true concept, then they interact with the algorithm to
test performance. Unlike in computational simulations and
user testing, there is both defined ground truth and naturalis-
tic human variability in behavior.

Our approach uses the simple concept learning task pre-
viously used by Markant and Gureckis (2014). We present
two experiments. The first validates the method by demon-
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strating expected limitations of recommendation and active
learning. The second investigates a simple one-parameter
generalization—active recommendation—that unifies both
approaches. We show that while the extreme cases of pure
active learning and pure recommendation yield poor perfor-
mance, all intermediate values converge to near optimal rec-
ommendation and prediction. We also observe that due to hu-
man variability, parameter values that are closer to pure rec-
ommendation yield the best performance. We conclude by
discussing implications for cognitive science in the lab and
machine learning in the real world. Overall, the main contri-
butions of our work are: (i) the use of an experiment to gauge
how real human users interact with a system that spans graded
shades between recommendation and active learning and (ii)
how a unified, yet simple and generic model is beneficial in
the design and interpreting of real user experiments.

Unifying recommending and active learning

Given a dataset, D = {x;,y; }"Y, the goal of a probabilistic clas-
sification algorithm is to predict the probability that a new
data point x* belongs to class y, P(y|x*,D). We will be con-
cerned with learning two classes corresponding to irrelevant
and relevant information, y € {0,1}. These predictions form
the basis of the recommendation and active learning algo-
rithms we will consider. Intuitively, the goal of recommen-
dation is to provide the user with examples that are relevant.
This intuition can be formalized directly,
Xree = argmax P(y = 1|x*, D). €))
o

At any point—given previously observed data—this defines
which examples are optimal for recommendation: those that
maximize the probability of being relevant. Within the
closely related problem of probabilistic retrieval (ranking rel-
evant information), this coincides with optimal probabilistic
retrieval for the most relevant item (Robertson, 1977).

One intuitive formalization of active learning is to select
examples that reduce our uncertainty about which examples
are relevant. This can also be formalized directly,

Xaer = argmin |0.5 — P(y = 1|x*,D)|. )
x*

Given previously observed data, the optimal example to ob-
serve is the one about which we have the greatest predictive
uncertainty.

It is worth noting that this is not the only formalization
of active learning that one may consider. Other well known
strategies include optimizing information gain (K-L diver-
gence), diagnosticity, and probability gain (Nelson, 2005).
While each differs in formal detail, in many practically rel-
evant situations, their predictions are quite similar. We for-
malize active learning as the selection of maximally uncertain
data to facilitate integration with the recommendation crite-
rion in Eq. 1, as will be seen below.

We propose a unified model of active recommendation that
exploits the parallel structure in previous models. Our single
parameter generalization includes filtering and active learn-

ing as extreme cases and thus unifies the two approaches and
interpolates between them. Formally,

X, = argmin|a— P(y = 1|x*,D)], (3)

where o € [0.5,1]. When o = 0.5 we recover active learn-
ing, as is obvious from inspection of Eq. 2. When o = 1, we
recover recommendation. In our context, subtracting from 1
and taking the min is equivalent to taking the max in Eq. 1.

Of interest is what happens between the extremes that cor-
respond to recommendation and active learning. Are there
parameterizations of active recommendation that optimize ac-
curacy in terms of recommendation and prediction? Are there
parameterizations that are more robust to the kinds of vari-
ability that are characteristic of human behavior?

Experiments

In what follows, we empirically investigate these questions
using a novel approach. Human subjects were first trained
on the underlying conceptual structure that defines which ex-
amples are relevant and which are not. The classes of rel-
evant examples are defined by axis-aligned logistic function
with data standardization in two dimensions. Next, people are
randomly assigned to an algorithm, and are presented with
a series of examples, which they label as being in the rele-
vant class or not. The algorithm updates upon receiving each
example-label pair, and then selects a new example. This
method combines aspects of computational simulation and
user testing by providing a ground truth, yet allowing human
variability in responses. It thus provides information about
when we would expect algorithms to perform well—both ab-
solutely and in the presence of human variability.

The questions of interest are: which algorithms perform
well in terms of recommendation and prediction and which
ones perform well in terms of robustness to human variabil-
ity? An algorithm’s trial-by-trial recommendation accuracy is
the fraction of examples labeled as relevant, at each trial, by a
population of participants. Its predictive accuracy for trial i is
the fraction of correct predictions—made by the classification
algorithm trained with data up to trial i—where predictions
are tested on a grid of predetermined, held-out test examples.
The correctness is judged against the optimal decision bound-
ary that was set in the beginning of the experiment.

Two experiments follow. Experiment 1 investigates the
performance of pure recommendation and active learning,
and compares them with random sampling. This experiment
allows us to validate that recommendation and active learn-
ing fail to predict and recommend well, respectively, and pro-
vides a random sampling baseline. Experiment 2 investigates
the unified active recommendation model, which interpolates
between pure recommendation and pure active learning. This
experiment characterizes recommendation and prediction ac-
curacies of the algorithm in the context of concept learning.

Experiment 1

Participants. The experiment was run on Amazon’s Me-
chanical Turk (MTurk) with 30 participants in each of the
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three conditions: recommend, active learning, and random.

Stimuli. Following Markant and Gureckis (2014), the stim-
uli were circles with a central diameter. The stimuli varied
along two dimensions—the size of the circle’s radius in pix-
els and the orientation of the central diameter in degrees (for
an example, see Figure 5 B in Markant and Gureckis (2014)).
The ranges of the size and orientation were fixed to 110 pixels
and 140 degrees, respectively. The minimum radius and min-
imum orientation for the classes were sampled independently
and uniformly from 10 to 30 units and fixed for the whole ex-
periment. This procedure determined a pair of minimum and
maximum values {min,max} for each dimension.

For each experiment, one of the dimensions (size or ori-
entation) was randomly selected as the separable dimension.
Let the {mins, max;} be the minimum and maximum values
of the separable dimension, and {min,,max,} be the values
for the other dimension. Two classes were defined by two
two-dimensional normal distributions. Along the separable
dimension, the variances of the two classes were both 75, and
their means were set at (min, +max,) /2 +30. Along the other
dimension, the variances were both 2250, and the means were
both (min, + max;)/2. Stimuli were sampled from the two-
dimensional Gaussian described above. Those that happened
to be outside the determined range were resampled.

The experiment consisted of three phases: training, inter-
action, and testing. In each trial of the training phase, a class
was randomly sampled, and a stimulus was sampled accord-
ing to its class distribution. In the interaction phase, there
were several sampling algorithms. Random sampling used
the procedure as in the training phase. Recommendation and
active-learning sampling followed Eqs. 1 and 2 respectively.
The choice was made from a fixed pool of 400 randomly sam-
pled stimuli for each experiment. In the test phase, the stimuli
were no longer sampled from the classes but from a test set.
The test set consisted of 16 x 16 samples that lied on a regu-
lar grid covering the area of feature space defined by [10,140]
pixels x [10,170] degrees. Five stimuli were randomly se-
lected from each of the four quadrants in that area to form the
20 test stimuli used in the test phase.

Procedures. Before the training phase, participants were
instructed that throughout the experiment, they would see a
series of “loop antennas” that receive signals from music sta-
tions called “Beat” and “Sonic” (the two classes of stimuli
described above). They were instructed that the station re-
ceived depends upon the antenna’s radius and the orientation
of its diameter. The goal of the training phase, as described to
the participants, was for them to learn which station was re-
ceived by a given class of antennas (e.g., Beat antennas have
large diameters and Sonic have small). Participants provided
input by clicking on one of two buttons (labeled Beat and
Sonic respectively). After responding, participants received
feedback on whether or not their input was correct. The par-
ticipants moved on to the interaction phase once they had 19
correct answers in the past 20 trials.

The interaction phase was comprised of two parts. Partici-
pants were first instructed to pretend that they preferred either
Beat or Sonic. Given this preference, participants were told
that they would teach an algorithm to recommend the station
that they preferred by indicating—by clicking on a button—that
the antenna it chose was one that they “like” or “dislike.”
Participants were instructed to pay attention to whether the
algorithm was improving or not. This part of the interac-
tion phase continued for 20 trials. Next, participants rated the
algorithm’s improvement—that is, how well the participants
thought the algorithm learned to recommend their preferred
station—using a slide bar from “very poor” to “excellent.”

The final phase of the experiment, the test phase, entailed a
classification test to confirm whether participants still remem-
bered the categories correctly. This phase followed the same
procedure as the initial training phase, but did not provide
participants with feedback (i.e., they were not told whether or
not their categorization was correct). Afterwards, participants
were asked to provide feedback about the experiment and
identify the rule behind the classification they were trained
on. Participants who successfully completed all phases of the
experiment were compensated via MTurk.

Analysis. We quantify the behavior of the sampling algo-
rithms by their trial-by-trial recommendation and predictive
accuracies, as described previously. The test examples for
computing the predictive accuracy consisted of a grid of 10-
by-10 examples covering the area spanned by two pairs of
{min,max} sampled for each experiment (see the Stimuli sec-
tion under Experiment 1).

We report the first trial index by which an algorithm’s rec-
ommendation accuracy becomes statistically different from
50% as well as the first trial index at which its recommen-
dation accuracy becomes statistically no different from 95%.
For these we use the binomial test and claim statistical signif-
icance when p-value is less than 0.05. We also report the trial
index at which an algorithm’s predictive accuracy converges.
We formalize this as the first trial at which the predictive ac-
curacy is not statistically different from the prediction accu-
racy at the last trial, using a one-sample t-test. The accuracy
at the final trial is reported as the converged value.

We omit subjects whose test accuracy is below 18 out of
20 (below 90%). For the included subjects, we compute a
consistency score, which is the fraction of their responses
to the recommended examples that matched the expected re-
sponse. For subjects whose consistency score is below 50%,
we computed the predictive accuracies after flipping all their
responses in the recommendation phase. This allowed us to
correct for the responses from subjects who misremembered
the preference during the interaction phase. A 0% consis-
tency would flip the classification algorithm’s prediction on
every test example. We assume that the fraction of properly
predicted examples is proportional to consistency. Thus, to
maximize the fraction of proper predictions, we flip responses
when consistency is < 50%. The number of included subjects
are 26/30 (3 flipped) for random, 27/30 (4 flipped) for active

1377



1.0 1.0
s )
MTTTTIIIIT o 1
308 308
o y 3] |
3 i ©
3 06 / S 06 \%
© h =
o 8
204 2 04 4
RS —— random <]
8 —— active E
=02 —¥— a=0.55 E 0.2
o —— a=075 Q
a=0.95 | 8
e
0.0 o0
0 5 10 15 20 0 5 10 15 20
Trial index Trial index

Figure 1: Predictive accuracy and recommendation accuracy for all
six conditions over time (trial index indicated on x-axis).

learning, and 27/30 (3 flipped) for recommendation.

Results. Figure 1 shows the recommendation and predic-
tive accuracies of the different sampling algorithms. As ex-
pected, examples chosen under the recommendation objec-
tive result in high recommendation accuracy, but low predic-
tive accuracy. As a function of the number of examples seen
(trial index), recommendation accuracy rises above chance
level and reaches 95% after 4 examples, ! while predictive
accuracy converges after 5 examples to 81%, which is low
compared to the active learning or random algorithms.

Conversely, recommendation accuracy under the active-
learning algorithm results in low recommendation accuracy,
but high predictive accuracy. As a function of trial index, rec-
ommendation accuracy remains at chance level, while predic-
tive accuracy converges after 5 examples to 92%.

For reference, results of random sampling are also pre-
sented. These show a pattern similar to that observed for
active learning. There is a rapid increase in predictive accu-
racy, converging after 8 examples to 95%. Recommendation
accuracy remains at chance level throughout.

Experiment 2: Exploring active recommendation

An ideal algorithm would combine both high recommenda-
tion and high predictive accuracy. As a function of the num-
ber of examples given, one hopes that the recommendation
accuracy will approach 1 after a few examples, and the pre-
dictive accuracy will steadily increase to 1. Given the sharp
dichotomy between the performance on recommendation and
active learning, it is not obvious how best to achieve this.

We explore a simple, one parameter generalization of rec-
ommendation and active learning that we call, active rec-
ommendation. We investigate its trace of accuracy under a
range of o0 = (0.55,0.75,0.95). We look at how the predic-
tive and recommendation accuracies interpolate between the
active learning and recommendation sampling as a function
of a.. The new sampling algorithm is as described in Eq. 3.
The stimuli and procedure are the same as Experiment 1.

I'This and subsequent numbers represent statistically significant
results, as described above.
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Figure 2: Predictive and recommendation accuracies for all included
subjects broken down by condition. Red traces corresponds to indi-
vidual subjects, and the blue curve is the average. (a) Active train-
ing; (b) a=0.55; (c) = 0.75; (d) o« = 0.95; (e) Recommend. Note
that a few mislabeled examples in the early trials can lead to unstable
behavior, such as those curves that dip below chance level.

Participants. The experiment was run on MTurk with 30
subjects for each of the 3 conditions: o = (0.55,0.75,0.95).
Following the criteria described above, the number of sub-
jects included in the analysis is 27/30 (4 flipped) for a. = 0.55,
26/30 (5 flipped) for oo = 0.75, and 23/30 (3 flipped) for
o =0.95.

Results. Figure 1 shows the plot of predictive and recom-
mendation accuracies for all conditions. The predictive accu-
racies in the active-recommendation conditions converge to
93%, 90%, and 93% for a. = (0.55,0.75,0.95), respectively.
These are similar to the 92% in the active condition and bet-
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Figure 3: The distributions of like/dislike examples for each condi-
tion. The dotted lines in the distributions indicate the distributions’
quartiles.

ter than the 81% in the recommend condition. The predic-
tive accuracies of the active-recommendation conditions con-
verged after 5, 5, and 8 examples for oo = (0.55,0.75,0.95),
respectively. The recommendation accuracies in the active-
recommendation conditions reached 95% after 12, 16, and 4
examples for oo = (0.55,0.75,0.95), respectively. These are
similar to the recommendation condition in that all reached
95%, whereas recommendation accuracies in the active and
random conditions remain at chance level.

Importantly, if we move slightly away from the active con-
dition (sampling from slightly farther away from the bound-
ary than active; i.e., from o = 0.5 to 0.55), we can achieve
much higher recommendation accuracy (it rises above chance
after 8 examples and reaches 95% after 12 examples vs. at
chance level throughout), while also achieving similar pre-
dictive accuracy. Similarly, if we move slightly away from
the recommendation condition (from o = 1 to 0.95), we can
maintain the recommendation accuracy while improving the
predictive accuracy. Thus, these intermediate conditions (in
terms of &) appear to allow the algorithms to uncover more
of the space that is relevant.

Figure 2 employs the same measures as Figure 1, but dis-
plays each of the six conditions separately, with individual
participant performance (red lines) and the results averaged
over all participants (blue lines). Figures 2a-2e allow for a
closer look at individual variability during the experiment,
and in particular highlight the difference in recommendation
accuracy from the active learning and o = 0.55 conditions.
If we compare Figures 2a and 2b, we can see that variation
in recommendation accuracy across individuals persists for
all trials in the active condition, while reducing greatly after
8 to 12 trials in the o0 = 0.55 condition. Comparing Figure
2d and 2e, we can see the predictive accuracy across indi-
viduals varies much less in the o0 = 0.95 condition than in
the recommendation condition, resulting in the better average
predictive accuracy for oo = 0.95.

The cause of the improved performance of intermediate o
values can be traced back to the examples they select. The
distributions of “likes” and “dislikes” are plotted in Figure 3
alongside random sampling, active learning, and recommen-

dation. At the top, random sampling replicates the true distri-
bution (up to some small number of inconsistent responses).
Active learning selects examples that are evenly distributed
across likes and dislikes but shifted toward the boundary be-
tween the two categories. At the bottom, recommendation
selects examples that are skewed away from the boundary
and the balance of examples is strongly tilted toward likes,
consistent with the goal of recommending relevant exam-
ples. Of particular interest are the three alpha conditions.
There are minor differences focused on the distribution of dis-
liked items. What is most notable are the similarities among
them and the active learning distribution for likes. Unlike the
recommend condition, all three intermediate conditions dis-
proportionately select “liked” examples that are close to the
boundary. They all also select relatively few “disliked” exam-
ples. Cross-referencing against Figure 2, these disliked items
happen only in the early trials. To summarize, the advantage
of the active recommendation approach is a bias to select un-
certain items within the relevant category. This allows them to
achieve both high recommendation and predictive accuracy.

Interestingly, if we include only the fully consistent sub-
jects, the a values dictate a strict ordering in both the pre-
dictive and recommendation accuracy. Increasing o from 0.5
to 1, one sees a monotonic decrease in the converged predic-
tive accuracy and a monotonic increase in the rate at which
recommendation accuracy reaches 1. The stochasticity in the
subjects’ responses can break the ordering in two ways. First,
algorithms that provide examples closer to the boundary will
receive more noisily labeled examples. Second, randomness
in responses slows down the convergence of the classification
algorithm. These effects cause the converged prediction ac-
curacies, in small o conditions, to be lower than what they
could be with less variable responses.

Discussion

Information filters and recommender systems mediate be-
tween humans and the vast information and product stores
on the Internet. Naturally, these algorithms aim to provide
relevant information, but this goal may also lead to negative
consequences by overly restricting experience. Embedding
recommendation into a concept learning framework, we in-
vestigate the conditions under which we may observe high
recommendation and predictive accuracy, in the presence of
naturalistic human variability. We introduced a unified model
of recommendation and active learning which we call active
recommendation. In well-controlled experiments, we show
that—across a wide range of parameterizations—active rec-
ommendation converges toward optimal predictive and rec-
ommendation accuracy. We also observe that parameteriza-
tions closer to pure recommendation yield better performance
in terms of faster convergence and greater robustness to hu-
man variability. We trace the success of active recommenda-
tion to the fact that all parameterizations automatically com-
bine rapid convergence toward selecting only relevant items
and actively exploring informative examples from within that
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set. Parameterizations close to pure recommendation per-
form best because they minimize exploration of regions of
the space where human actions are most variable—near the
boundary and in the non-focal category.

Our approach is unusual in that the goal is to use humans
to investigate the behavior of algorithms. This makes sense
because the algorithms are meant for recommending options
to humans. In contexts where recommendation is typically
applied, however, there is no known ground truth, which
makes assessing the performance of algorithms difficult. One
could assume a ground truth and perform computational sim-
ulations, but these assume that your simulation is robust to
human-like variability, which is rarely known or checked. In
our experiments, humans were taught very simple concepts
that governed relevance. They then labeled data for the al-
gorithm, which captures the kinds of uncertainty associated
with cognition—stochasticity across time, in response to re-
cent input, and features of the concepts. The results bear the
fruits of the approach. If one considers only the people who
labeled correctly in their interactions, active recommendation
performs comparably well across a wide range of parameter-
izations. However, human variability is concentrated at the
boundary and toward the non-focal concept, which gives pa-
rameterizations closer to pure recommendation a distinct ad-
vantage in recommendation and predictive accuracy.

Our proposed unified model of active recommendation
takes pure recommendation and active learning as a starting
point. However, across a wide range of parameterizations,
the unified model exhibits behavior that is qualitatively dif-
ferent from either. That is, it achieves good performance on
both goals of recommendation and active learning simultane-
ously. It is useful to consider this behavior in contrast with
more explicit alternative approaches, namely, managing the
exploitation-exploration trade-off in reinforcement learning.
Formalizing and training a policy about when to apply rec-
ommendation (exploitation) or active learning (exploration)
would certainly be more involved than the simple model we
presented; it would also arguably miss the point. The active
recommendation approach, in denying the existence of the
dichotomy, allows simultaneous optimization of recommen-
dation and prediction.

Active recommendation can be recast as a social active
learning model where an agent asks questions to learn from
another agent who may not answer because of disinterest,
ignorance, or some other factors. In these social scenarios,
good questions should depend on the answerer’s preference,
knowledge state, etc.. In the cognitive development literature,
empirical studies have shown that children select questions
based on the answerer’s expertise (Kushnir, Vredenburgh, &
Schneider, 2013). This exemplifies an interesting connection
between our model and human social learning.

Although active recommendation has demonstrated excel-
lent performance, the problems considered here are vastly
simpler than those more typical of real-world recommenda-
tion or information filtering. In light of this, one may rea-

sonably ask whether the results are likely to generalize to
more complex, high-dimensional problems. Of course, active
learning becomes decreasingly tractable as the space grows.
This is why active recommendation may be expected to per-
form well. Instead of exploring the space of possibilities, ac-
tive recommendation focuses on exploring the space of rele-
vant possibilities. An important direction for future work is
to formalize and test this question.

Often experimental control and real-world relevance are
seen in competition. However, there are ways in which they
can and should be complementary. Real-world applications
of machine learning are especially amenable to this due to
their algorithmic nature. In addition to the user studies that
are typical of the applied computer science, we propose that
more controlled experimental and modeling approaches in
cognitive science can shed light on the core strengths and lim-
itations of these algorithms.
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