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Elucidating the mechanisms of complex diseases such as cardiovascular disease (CVD) 
remains a significant challenge due to multidimensional alterations at molecular, cellular, 
tissue, and organ levels. To better understand CVD and offer insights into the underly-
ing mechanisms and potential therapeutic strategies, data from multiple omics types 
(genomics, epigenomics, transcriptomics, metabolomics, proteomics, microbiomics) 
from both humans and model organisms have become available. However, individual 
omics data types capture only a fraction of the molecular mechanisms. To address this 
challenge, there have been numerous efforts to develop integrative genomics meth-
ods that can leverage multidimensional information from diverse data types to derive 
comprehensive molecular insights. In this review, we summarize recent methodological 
advances in multidimensional omics integration, exemplify their applications in cardio-
vascular research, and pinpoint challenges and future directions in this incipient field.

Keywords: multidimensional omics integration, integrative genomics, cardiovascular disease, genomics, 
transcriptomics, epigenomics, metabolomics, proteomics

inTRODUCTiOn

Cardiovascular disease (CVD) is a highly prevalent complex disease involving multiple risk factors, 
pathological changes in diverse cell types, tissues, and organs, and multidimensional molecular 
perturbations. Common forms of CVD including coronary artery disease (CAD), myocardial 
infarction, and stroke are among the leading causes of death in the world and therefore demand 
a better understanding of the etiology. Thanks to the rapid advances of omics technology, we are 
experiencing an explosion of biomedical data that have the promise to improve our understanding 
of the molecular underpinnings of clinical phenotypes (1). Accompanying the growing data volume 
are bioinformatics methodologies and tools to analyze individual data types, as recently reviewed 
by us and others (2–4).

However, it is increasingly recognized that focusing on any particular type of data only offers 
limited insights into the mechanistic black box bridging molecular traits and disease phenotypes 
(5). This is due to the fact that biological processes do not operate through any isolated molecular 
data type but manifest collectively as molecular cascades and interactions across omics domains to 
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affect CVD etiology. Only comprehensive integration of multi-
dimensional omics data can effectively capture a holistic view of 
pathogenic mechanisms.

Through recent efforts directly addressing this critical need, a 
number of integrative genomics approaches have been developed 
to model the interplays of data from multiple omics domains in 
a step-wise or meta-analytical fashion (6–8). The mathematical 
foundations of various integrative methods (9) and the principles 
and applications of such methods in cancer-related domains 
(10) have been previously reviewed. These methodological 
advances have significantly improved our ability to leverage the 
available rich data to recapitulate the flow of regulatory signals 
from the genetic background to the eventual disease outcome. 
Multidimensional analysis also has the built-in advantage of 
filtering away noise through the aggregation of biological infor-
mation from independent and diverse sources. Pioneering efforts 
applying multidimensional data integration have led to numerous 
novel discoveries of biomarkers, disease pathways, and potential 
therapeutic targets for CVD (4, 11–15).

In this article, we focus primarily on multidimensional integra-
tive methods applicable to CVD. We first provide an overview of the 
basic data types and principles of multidimensional data integration 
and then summarize methodologies and tools along with their rep-
resentative applications in CVD. Lastly, we summarize the remain-
ing challenges in the field and point to future research directions 
to improve the effectiveness of multidimensional data integration.

OMiCS DATA TYPeS AnD BiOLOGiCAL 
ReLATiOnSHiPS BeTween DATA TYPeS

The most common omics data types representing the various 
molecular domains are genomics, epigenomics, transcriptom-
ics, metabolomics, proteomics, and microbiomics (Figure  1). 
We have recently thoroughly reviewed the basic principles, 
the commonly used bioinformatics methods to analyze each 
data type, and their applications in CVD research (16). Briefly, 
genomics assesses DNA sequence and structural variations 
including single-nucleotide polymorphisms, insertions and 
deletions, copy number variations, and inversions. Epigenomics 
is the measurement of DNA methylation, histone modifications 
(methylation, acetylation, phosphorylation, DP-ribosylation, and 
ubiquitination), and non-coding RNAs (microRNAs, long non-
coding RNAs, small interfering RNAs) (17). Transcriptomics 
evaluates the transcriptional activities of all genes, including the 
expression levels of individual genes and transcripts, as well as 
alternative splicing. Metabolomics aims to profile the levels and 
flux of metabolites. Proteomics captures the protein levels as well 
as post-transcriptional modifications of proteins. Lastly, microbi-
omics measures the composition of bacterial communities as well 
as the genome and transcriptome of individual bacterial species. 
Between the omics dimensions, intrinsic biological relationships 
exist (Figure  1), as detailed in our previous reviews (16, 18). 
Briefly, genomic and epigenomic variations have the capacity 
to control or modulate the transcriptome and in turn affect the 
proteome. Metabolites are products of host proteome, or derived 
from the gut microbiota, and can modulate the epigenome to 
affect transcription and translation. Gut microbiota can affect 

the host immune system and metabolism, which are central to 
programming many aspects of host activities. These complex 
cascades and interactions are critical elements for consideration 
in multidimensional data integration.

MULTiDiMenSiOnAL DATA inTeGRATiOn 
MeTHODOLOGieS AnD eXAMPLe 
APPLiCATiOnS in CvD

Principles of Multidimensional Data 
integration
Multidimensional data integration aims to aggregate information 
from diverse molecular domains into predictive models that 
can inform on mechanisms underlying pathogenesis or help 
select composite biomarkers that have diagnostic or prognostic 
values. A critical and non-trivial consideration for multi-omics 
integration is data preprocessing, including quality control and 
data normalization (19, 20). Proper preprocessing is important 
for removing outliers and non-biological variation within a data 
type and increasing the biological comparability between data 
types. To date, a vast majority of the recently implemented mul-
tidimensional data integration tools fall into one of the following 
five broad categories: clustering/dimensionality reduction-based 
methodologies, predictive modeling approaches, pairwise integra-
tion, network-based methodologies, and composite approaches, 
as summarized in Figure 1 and Table 1. The available methods 
are mostly designed for specific combinations of data types. The 
selection of proper methods requires consideration of data-driven 
statistical patterns and biological interpretability. However, 
depending on the specific applications, the weight for these two 
aspects may differ. Therefore, before choosing an appropriate 
method, it is imperative to first understand the biological ques-
tion that is being addressed: biomarker discovery or mechanistic 
insight. For the discovery of diagnostic and prognostic biomark-
ers, data pattern is the key factor, whereas biological interpretation 
can be less important. Clustering/dimensionality reduction-based 
methodologies and predictive modeling methodologies are 
powerful for this task. For mechanistic studies, however, it is 
critical to couple intrinsic biological relationships among data 
types with data pattern searches to facilitate biological interpreta-
tion. Typically used methods here are pairwise integration and 
network-based approaches, although clustering/dimensionality 
reduction, predictive modeling, and composite methodologies can 
be used for both applications. In the sections below, we categorize 
and discuss the tools based on their general but not necessarily 
exclusive applications: biomarker or mechanism discovery.

Omics integration Methodologies for 
Biomarker Discovery
Clustering/Dimensionality Reduction-Based 
Approaches
Clustering/dimensionality reduction-based approaches have 
the capacity to transform different data types into a common 
data space, thus facilitating downstream integration. This 
can be achieved through graph or kernel-based methods 
followed by grouping data features into a smaller number 

http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Cardiovascular_Medicine/archive


TABLe 1 | Comparison of multidimensional data integration methodologies discussed in the manuscript.

Method 
category

Brief description Advantages Limitations Representative tools

Clustering/
dimensionality 
reduction-based 
approaches

Transform data into 
common space through 
graph or kernel-based 
methods

Easy to implement using common 
statistical techniques; retain within-
data properties; robust to different 
units of measurements and different 
data sets from the public domain

Cross-data interaction may be 
altered; application limited to visual 
overview of data and detection of 
subpopulations

Clustering-based: iCluster (21); ICM (22); 
TMD (23); SNF (24)

Dimensionality reduction: Biofilter (25); 
CIA/MCIA (26); FALDA (27); GMDR (28)

Predictive 
modeling 
approaches

Machine learning based 
methodologies to predict 
prognosis or diagnosis 
and discover biomarkers

High predictive power; versatile 
methodologies; data-driven approach 
(does not require preexisting 
knowledge of omics interaction)

Overfitting issue; can require high 
computational power; does not 
integrate biological knowledge; 
higher accuracy requires larger 
data sets

Camelot (29); Kernel fusion (30); sMBPLS 
(31); MDI (32); PARADIGM (33); DIVIAN 
(34)

Pairwise omics 
data integration

Centered on interaction 
information between pairs 
of omics data

Easy to implement; reflects inter-
omics interaction; causal implication

Available data dominated by 
expression quantitative trait loci 
(eQTLs); low robustness of trans-
association signal

MERLIN (35); RAREMETAL (36); EMMA 
(37); GEMMA (38); PLINK (39); Matrix 
eQTL (40); SMR (41)

Network-based 
approaches

Reduce data complexity 
by converging multi-
omics information onto 
networks

Networks can accommodate multiple 
layers of data; intuitive depiction and 
visualization of regulatory circuits

Computationally expensive; 
difficult to model feedback loops in 
multidimensional space

Weighted gene coexpression network 
analysis (42); MEGENA (43); Bayesian 
networks (44); TIGRESS (45); ARACNE 
(46); TIE* (47); GENIE3 (48); mixOmics (49)

Composite 
approaches

Flexible integration of 
multiple integration 
models

Flexibility and adaptability to diverse 
research needs

Few well-acknowledged 
frameworks available

Analysis Tool for Heritable and 
Environmental Network Associations (50, 
51); Mergeomics (3, 52)

FiGURe 1 | Summary of different omics data types and multidimensional data integration methods. Cardiovascular disease (CVD) involves various omics 
spaces and complex inter-omics interactions. To discover accurate biomarkers and disentangle disease mechanisms of CVD, multidimensional data integration 
methods are available, broadly categorized into clustering/dimensionality reduction-based approaches, predictive modeling approaches, pairwise omics data 
integration, network-based approaches, and composite approaches integrating multiple modeling approaches.
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of variables. These approaches are the most straightforward 
methods to define biomarkers of disease or disease subtypes, 
thereby facilitating diagnosis and prognosis. The advantages 
of clustering/dimension reduction include the ability to retain 
within-data type properties and the robustness to different 
units of measurement. The drawback, however, is that the 
transformation of different data types may alter the underlying 
interaction between data types, even if within-data properties 
are retained (6).

Clustering-based approaches typically include hierarchical 
clustering (53), biclustering (54), and k-means clustering (21), 
which are used to find disease subpopulations (21, 55), refine 
disease characteristics, and help identify markers (56). Various 
methods such as iCluster (21), ICM (22), TMD (23), and others 
have been developed to use clustering for multidimensional inte-
gration (Table 1). For example, iCluster models the associations 
between different data types and the structure within each data 
type to bring the data onto the same feature space allowing for 
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k-means clustering. This workflow has been applied on breast and 
lung cancer data sets to identify novel disease subtypes, which 
cannot be resolved using a single data type (21). We did not 
identify specific applications of multi-omics clustering in CVD 
research, although this type of approach has been applied based 
on individual data types (57–59). Future applications of such 
approach engaging multidimensional data will facilitate more 
accurate patient stratification based on multi-omics patterns and 
help identify unique biomarkers of CVD subtypes.

Dimensionality reduction can be achieved either intrinsically, 
which scales the dataset of interest using an analytical method, 
or extrinsically, which uses information outside of the dataset. 
Intrinsic approaches are the most widely used for dimensional-
ity reduction of genomics data. Standard techniques include 
principle component analysis, factor analysis, multidimensional 
scaling, and others, which have been covered in a review of fea-
ture selection and extraction methods by Hira and Gillies (60). 
Tools utilizing dimensionality reduction techniques for multi-
dimensional integration include CIA/MCIA (26), FALDA (27), 
and others (Table 1). Multifactorial dimensionality reduction has 
been applied by Badaruddoza et al. to identify environmental and 
genetic interactions in type 2 diabetes and CVD (61).

Predictive Modeling Approaches
Predictive modeling is another powerful data-driven approach 
that is primarily utilized for the discovery of composite biomarkers 
in a multi-omics, big data landscape. In broad terms, it comprises 
a set of algorithms capable of learning from data to make predic-
tions, which theoretically become more accurate with increasing 
amount of data. A series of machine learning techniques are 
commonly implemented, including logistic regression, support 
vector machines, random forest, neural nets, Bayesian models, 
and boosting (62) to select the most predictive features. This is 
typically done through weighting, where the most predictive 
features contribute more weight to the final model.

Among the various predictive modeling approaches used for 
multidimensional data integration (Table 1), an example is Causal 
Modelling with Expression Linkage for cOmplex Traits (Camelot) 
(29). Camelot implements elastic net regression to select the most 
significant features and uses bootstrapping to reduce the set of 
features to potential causal genes (29). There has also been wide-
spread usage of machine learning methods in CVD-related fields 
to identify CVD risk variants (34) and estimate cardiometabolic 
risks (63). Specifically, Chen et al. trained an ensemble classifier 
to prioritize non-coding risk variants using multi-omics data 
and found that the variants associated with repressed chromatin 
were often the most informative (34). Kupusinac et al. leveraged 
artificial neural networks to predict cardiometabolic risk using 
easy to obtain, non-invasive primary risk factors and achieved 
comparable performance to predictions based on more invasive 
secondary risk factors (63).

Omics integration Methodologies for 
Mechanistic Discovery
Pairwise Omics Data Integration
As discussed previously, there are intrinsic biological relation-
ships between data dimensions that can inform on mechanisms, 

and quantitatively assessing the association between the omics 
domains can help capture such relationships in a data-driven 
manner. Pairwise omics data integration is therefore an intuitive 
and commonly used approach that characterizes interactions 
between two omics domains. This type of integration comes in 
two broad categories based on whether genetic information is 
under consideration (Figure 1). The first category is genetics of 
intermediate traits analysis, in which DNA variants are tested 
for association with downstream omics markers. The second 
category is correlation analysis between two non-genetic omics 
data types (e.g., between metabolites and microbiome).

For genetics of intermediate trait analysis, expression quan-
titative trait loci (eQTLs) are the most well-known pairwise 
integration where genetic variations are linked to transcriptomic 
alterations, achieved through an association test between variants 
and gene expression levels (64). There are numerous methods 
available to conduct eQTL analyses such as GEMMA (38) and 
Matrix eQTL (40), which have been discussed in detail elsewhere 
(65). Genetic loci can also be associated with omics data types 
other than transcriptomics, such as methylation quantitative 
trait loci (66), microRNA QTLs (miR-eQTLs) (67, 68), protein 
quantitative trait loci (69–71), metabolite quantitative trait loci 
(72–74), and microbiome quantitative trait loci (75). Correlations 
between downstream omics data are also informative, although 
it may be difficult to infer a causal relationship. For example, 
expression quantitative trait methylation has been defined as the 
correlation of CpG methylation levels to gene expression (66). 
This type of analysis can be extended to the other omics data types 
(e.g., between microbiome and metabolome).

The combination of genetics-based and non-genetic cor-
relative analyses can help infer causality. This concept has been 
widely used in CVD research to infer candidate causal genes (12, 
76–80). Schadt et al. (81) were among the first to develop a formal 
procedure to incorporate eQTLs, genetic disease association, and 
gene–trait correlation to infer disease causal genes. Yang et al. (76) 
applied this approach to identify tissue-specific causal genes for 
atherosclerotic lesions. Laurila et al. applied a combined approach 
using both eQTLs and pathway analysis to link genomics, adipose 
transcriptomics, and lipidomic profiling, highlighting a shift 
toward inflammatory HDLs in individuals with low HDL (82). 
Huan et  al. (83) combined eQTLs, miRNA-eQTLs, correlative 
analysis between gene expression and microRNAs, and GWAS 
to identify microRNA–gene pairs that are putatively causal for 
CVD. In another effort toward this direction, Zhu et al. proposed 
a summary data-based Mendelian randomization method that 
integrates diverse types of QTLs with GWAS to infer candidate 
genes for complex traits (41).

Network-Based Approaches
Network approaches have emerged as another powerful platform 
for multidimensional data integration. Networks depict omics 
markers as nodes and connections between markers as edges that 
reflect correlations, regulatory relations, or physical interactions. 
There are many types of network inference approaches, includ-
ing regression, mutual information, correlation, and Bayesian 
networks (44) (Table 1). Among the widely used network meth-
odologies, particularly in the CVD field, are correlation-based 
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methods such as the weighted gene coexpression network analy-
sis (42). These approaches primarily focus on gene expression 
data and use correlation patterns to group functionally related 
genes into modules, which significantly reduce the complexity of 
overlaying other types of omics data onto transcriptomics. It is 
also feasible to apply these coexpression network approaches to 
other types of omics data (e.g., DNA methylation data).

In network-based applications, different data types are typi-
cally mapped to features (e.g., genes) that can be projected onto 
networks. For example, Huan et  al. integrated coexpression 
networks with genetic variants to identify causal functional 
modules for coronary heart disease (78). Yao et al. built an eQTL 
coexpression network to reveal CVD-related modules (84). 
Shang et  al. inferred a transcription factor regulatory network 
from blood macrophages transcriptomics profiles and identi-
fied a key driver, LIM domain binding 2, for atherogenesis (85). 
Public network depositories such as protein–protein interaction 
(86) and BioGRID (87) have also been used to identify novel 
candidate CVD genes from diverse datasets (88, 89). Recently, 
the Björkegren group integrated Bayesian networks with CAD 
genetics and transcriptomics data from CVD relevant tissue types 
and identified CVD-causal subnetworks and key drivers (80).

Composite Approaches
Many of the available tools and methods applied to better 
understand the etiology of a complex disease like CVD utilize 
combinations of the various principles discussed above (Table 1). 
The integration of the various methods and data types is typi-
cally done in a sequential manner where a common overlapping 
feature (e.g., genes) is used to convert the output of one part of the 
analysis to be a compatible input for the next step. One example 
is the Analysis Tool for Heritable and Environmental Network 
Associations (50, 51), which utilizes neural nets and has been pre-
viously applied to predict HDL cholesterol (90). Specifically, this 
method generates a separate neural net model for each individual 
data type, and the features with the top predictive power from each 
model are combined in an integrative model, which possesses 
higher predictive power than any of the individual models (91). 
An alternative approach is to employ a majority voting scheme 
from each of the independent models from the individual omics 
types, thereby avoiding the additional step of merging multiple 
models but still leveraging information from multiple data types 
to predict a clinical outcome (92). As another example, Inouye 
et  al. constructed metabolic networks where metabolites were 
identified to be associated with the genes identified in the eQTL 
analysis, thereby layering an additional data modality. The expres-
sion levels of the prioritized candidate genes were found to be 
associated with the phenotypes of the disease, demonstrating the 
effectiveness of this integrative method (15). Our lab has recently 
developed a highly generalizable analytical framework, named 
Mergeomics (3, 52), to more effectively incorporate multidimen-
sional data and various integration strategies. Mergeomics can 
reveal pathogenic processes underlying diseases by interrogating 
enrichment patterns from diverse omics association data, and 
then leverage tissue-specific networks to identify key perturba-
tion points of the significant processes. With this approach, we 
have prioritized novel regulatory genes and therapeutic targets 

for CAD and hypertension from diverse genomics, transcriptom-
ics, and molecular network resources (12, 79, 93).

CHALLenGeS, GAPS, AnD FUTURe 
DiReCTiOnS

The explosion of omics data in recent years has shifted the bot-
tleneck of scientific discovery from data generation to the need 
for efficient multidimensional integrative methods. As sum-
marized in this review, there have been major progresses in the 
development of methodologies and tools that can accommodate 
and integrate multidimensional data, and the application of 
these integrative approaches have yielded significant insights 
into the complex etiology of CVD. However, this field is still in 
its infancy, and the flexibility, effectiveness, and robustness of 
data integration to extract biological insights is still restricted. 
The limitations are mainly due to the intrinsic complexity within 
individual datasets and between datasets, as well as technical 
difficulties in integrative modeling that accurately captures true 
biological complexity. Moreover, there is currently no optimal 
tool with broad applicability in varying analytical scenarios, 
as most tools are tailored to particular applications and are 
limited in data type coverage, thus restricting their generaliz-
ability. Further, the performance of the various methodologies 
has not been comprehensively compared, and there is a lack of 
general guidance in the field on best practices. To address these 
challenges, future efforts should focus on intimate collabora-
tions between computational biologists, systems biologists, and 
experimental biologists in the following areas. First, there is a 
need for a comprehensive map of data types and data relations, 
application scenarios, and the desired outcomes. Such a map 
will facilitate the design of flexible and generalizable multidi-
mensional integration methods. For example, clear differentia-
tion of diagnostic, mechanistic, and therapeutic needs will help 
choose more appropriate algorithms. Second, comprehensive 
testing and evaluation of various statistical and mathematical 
models and computational algorithms are needed to document 
the performance. The recent effort on network method com-
parison via crowd sourcing is one of the first demonstrations of 
the value of this approach (94). Performance evaluation should 
also go beyond in  silico studies to engage bench scientists to 
systematically test predictions from the modeling studies to 
help refine the computational methods. With growing interests 
and coordinated efforts, multidimensional omics integration 
will be the next wave of modern biology to help dissect major 
complex diseases like CVD by promising a holistic understand-
ing of disease pathogenesis and more accurate and personalized 
diagnostic and prognostic markers.
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