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ABSTRACT OF THE DISSERTATION 
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Genetic Variation on DNA Binding 

 
by 
 

Jonathan Robert Deans 
 

Doctorate of Philosophy, Graduate Program in Genetics, Genomics, and Bioinformatics 
University of California, Riverside, December 2017 

Dr. Frances Sladek, Chairperson 
 

 
Nuclear receptors (NRs) are ligand-sensitive transcription factors that regulate a wide 

array of biological processes including development, metabolism, and circadian rhythms. 

All NRs share a common protein structure, including highly conserved DNA binding 

domains and a highly variable N-terminal A/B domain, and are very popular drug targets. 

To better understand the role of alternative A/B domains between NR isoforms and the 

impact of genetic variation on gene expression in the liver, we employed two 

experimental approaches. The NR hepatocyte nuclear factor 4α (HNF4α), a master 

regulator of liver-specific gene expression, is regulated by two promoters (P1 and P2) in 

the liver resulting in proteins with different A/B domains. P1-HNF4α is expressed in fetal 

and normal adult liver while P2-HNF4α is expressed only in the fetal liver and in liver 

cancer. We compared wildtype mice, which express only HNF4α1 (P1) in the adult liver, 

to exon-swap mice that express only HNF4α7 (P2) for global changes in gene expression 

(RNA-seq), chromatin binding (ChIP-seq), and unique protein interactions (RIME). The 
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results show that P1- and P2-HNF4α isoforms differentially regulate hundreds of 

transcripts in the adult liver, including the NR CAR (Nr1i3), and may be recruited 

differentially to non-HNF4α binding sites by unique protein interactions. They also 

exhibit altered metabolic pathways, especially cytochrome P450 (Cyp) genes. All told, 

the results show that changes in just 16-30 amino acids in the AF-1 region of an NR can 

have profound effects on gene expression. Utilizing protein binding microarrays (PBM), 

we can measure the DNA binding affinity of a given NR against both alleles of 125,000 

genetic variants in a single experiment to probe for affinity altering SNPs (aaSNPs). By 

mining SNPs from ChIP-seq peaks and eQTLs from the GTEx project, we have identified 

thousands of aaSNPs, hundreds of which show significant correlation to changes in gene 

expression within their regulatory network. Analysis of aaSNPs from GWAS studies 

associated with Alzheimer’s disease identified a large number of genetic variants that can 

alter the DNA binding affinity of PPARɣ in the APOE locus. Additionally, we show the 

power of the PBMs to validate many aaSNPs derived from in vivo analysis and suggest a 

role for the PBM technology in characterizing how genetic diversity may play a role in 

personalized medicine.  
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Chapter 1 
 

Introduction 
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The Human Genome and Genetic Variation 

The human genome is comprised of a system of coding and noncoding genetic 

features that define gene expression patterns across cell types and individuals. Over the 

last two decades there have been many advances in our understanding of the relationship 

between genetic variation in phenotypic variation and human disease. Much of this 

knowledge has come from genome wide association studies (GWAS) that have identified 

thousands of variants affecting disease and phenotype. The majority of genetic variants 

identified by GWAS studies are noncoding and may impact their associated phenotypes 

by altering the regulation of gene expression (Maurano et al., 2012; Ward and Kellis, 

2012). It has been shown that noncoding genetic variants can impact tissue-specific 

phenotypes and play a role in disease susceptibility (Albert and Kruglyak, 2015). 

However, the molecular mechanisms by which genetic variation can influence gene 

expression are still poorly characterized. One of the most commonly used methods to 

characterize these variants is with expression quantitative trait loci (eQTL) that identify 

loci where genotypes are significantly correlated with patterns of gene expression within 

a population of individuals (Schadt et al., 2008). Different genotypes between individuals 

are distinguished by a variety of alterations in the genome. The most common genetic 

variations are single nucleotide polymorphisms (SNPs), sometimes referred to as single 

nucleotide variants (SNV) when they are less commonly found in a population. Currently 

there are well over 10 million common SNPs in the human genome. 
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 The Genotype-Tissue Expression project (GTEx) is a consortium funded by the 

National Institutes of Health Common Fund (https://www.gtexportal.org/). The goal of 

the project is to generate eQTL datasets that allow one to study of the relationship 

between genetic variation and gene expression in human tissues. Currently, the GTEx 

datasets are comprised of 10,361 RNA-seq samples from 635 donors across 53 tissue 

types. Nonetheless, these datasets still lack the power to identify potential mechanisms by 

which these variants impact gene expression. As personalized medicine, and medical 

genetics, are increasingly used to explore the role of rare and common genetic variants, 

data such as that in GTEx will be ever more important for the interpretation of the 

mechanisms by which genetic variants can impact human disease. 

  Gene expression levels between individuals and cell types are regulated by 

transcription factors (TF) through sequence-specific interactions with genomic DNA. 

While chromatin immunoprecipitation followed by high-throughput DNA sequencing 

(ChIP-seq) allows a researcher to extract and sequence DNA bound by a specific TF to 

interpret genome-wide occupancy, it can often be challenging to identify the true binding 

site within a single peak. Additionally, attempting to identify genetic variants that can 

disrupt or alter DNA binding affinity of a TF via ChIP-seq experiments would require a 

very large number of samples and would be very time-consuming. Protein binding 

microarrays (PBM) are high-throughput DNA binding assays. By utilizing high density, 

custom-designed microarrays extended on the slide to double-stranded oligonucleotides, 

one can test for TF binding directly to the DNA on the slide with a fluorophore-
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conjugated antibody. PBMs provide an alternative to ChIP-based assays of TF binding 

and can be custom designed to cover a broad range of k-mers or small (<30nt) DNA 

binding sites from the genome. The power of this technology comes from the large 

number of test sequences that can be spotted in a single slide (80,000-125,000) with 

replicated sequences throughout the design. By designing two test sequences, each with 

one allele of a genetic variant (plus flanking region), we can measure in vitro DNA 

binding affinity of any TF to both alleles and statistically identify variants that can 

potentially impact DNA binding in vivo. 

 Another level of genetic diversity with impact on tissue-specific gene expression 

between cell types is the use of alternative promoters. Alternative promoters are quite 

common in the human genome and have been verified for approximately 7,000 human 

genes, and expressed sequence tags (EST) and cap analysis gene expression (CAGE) 

mappings to the genome suggest there may even be more (Singer et al., 2008). These 

promoters can function in many ways to produce a wide array of transcripts from just a 

single gene locus. The primary role of alternate promoters is thought to be the control of 

gene expression under different cellular conditions, including tissue specific gene-

expression (Davuluri et al., 2008). However, less frequently discussed is the notion that 

the different proteins resulting from the alternative promoter usage also have important 

physiological functions. 
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Nuclear Receptors 

Nuclear receptors (NR) are ligand-sensitive transcription factors that regulate a 

wide array of biological processes including development, metabolism, and circadian 

rhythms. It is not surprising then that they also play a role in many diseases including 

obesity, diabetes, cancer, atherosclerosis, and inflammation. There are a total of 48 

nuclear receptors encoded in the human genome. With the exception of NR0B1 (DAX1) 

and NR0B2 (SHP), which lack a DNA-binding domain, all NRs share a common protein 

structure: a highly variable N-terminal domain with transactivation function (A/B 

domain; activation function 1, AF-1), a highly conserved DNA-binding domain (C 

domain), a variable “hinge” region (D domain), a large highly conserved ligand-binding 

domain (E domain; LBD; activation function 2, AF-2) which can also play a role in 

dimerization of NRs, and in some cases a highly variable C-terminal tail (F domain). NRs 

may interact with many variations of a consensus DNA response element (AGGCTA or 

AGAACA) throughout the genome as monomers, homodimers, or heterodimers in a wide 

array of conformations, including direct or inverted repeats with anywhere from 0 to 6 

nucleotides (nt) as spacers between each element. It is from these elements that NRs 

recruit other transcriptional co-regulators, which interact with the general transcription 

machinery to either repress or activate their target genes. 

The A/B domain of NRs is the most variable domain within the superfamily, with 

no conservation in either length or structure. The steroid receptors have the longest A/B 

domains, as large as 602 amino acids for mineralocorticoid receptor (Lavery and 
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McEwan, 2005), while non-steroid receptors tend to have much shorter domains, even as 

small 24 amino acids in the case of the vitamin D receptor (Campbell et al., 2010). N-

terminal domains of NRs are thought to be highly flexible and unstructured in the 

absence of binding partners (Chandra et al., 2008; Wärnmark et al., 2001). This flexibility 

has led to difficulties in deciphering the structure of A/B domains, which remain poorly 

understood. 

Hepatocyte nuclear factor 4 alpha (HNF4α) is a liver-enriched transcription factor 

and a member of the NR superfamily (Sladek et al., 1990). HNF4α is expressed in the 

liver, kidney, colon, pancreas, stomach, and intestine. It is highly expressed in the liver 

where it is best known as a master regulator of liver-specific gene expression (Bolotin et 

al., 2010; Odom et al., 2004) and is essential for adult and fetal liver function. HNF4α 

knockout mice are embryonic lethal and adult liver HNF4α knockouts die within six 

weeks with a fatty-liver phenotype (Chen et al., 1994; Hayhurst et al., 2001). Results 

from transcriptional regulatory networks derived from ChIP promoter microarrays for 

HNF factors indicate that dysregulation of HNF4α may contribute to the development of 

type 2 diabetes (Odom et al., 2004), consistent with inherited mutations in the HNF4A 

gene in maturity onset diabetes of the young 1 (MODY1) (Yamagata et al., 1996). 

The human HNF4A and mouse Hnf4a genes are highly conserved. Both are 

regulated by alternative promoters, the proximal P1 and distal P2 promoters. In the adult 

liver the P1 promoter is the only active promoter, while during fetal development both P1 

and P2 promoters are active (Torres-Padilla et al., 2001). P1-HNF4α is expressed in the 
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liver, small intestine, colon, and kidney while P2-HNF4α is expressed in the fetal liver, 

pancreas, stomach, small intestine, and colon. In liver, colon, and stomach cancers altered 

expression patterns of P1- and P2-HNF4α are typically found, suggesting that altered 

promoter usage may be important in cancer development (Tanaka et al., 2006). While it 

has been shown that P1-HNF4α acts as a tumor suppressor in the liver (Hatziapostolou et 

al., 2011; Walesky and Apte, 2015), the specific roles of the isoforms remain unclear. 

The primary isoforms derived from the P1 promoter are HNF4α1/α2 while the 

primary isoforms derived from the P2 promoter are HNF4α7/α8. These isoforms share 

≥90% homology with each other and have identical DNA-binding and ligand-binding 

domains. The only difference between P1 and P2 isoforms are alternative first exons that 

result in an altered A/B domain and the loss of the AF-1 domain for the P2 isoforms 

(Briançon and Weiss, 2006; Torres-Padilla et al., 2002). It should be noted that 

phosphorylation of HNF4α by Src kinase preferentially targets P1-HNF4α leading to 

protein degradation, without affecting P2-HNF4α (Chellappa et al., 2012). P2-HNF4α is 

not normally expressed in the adult liver, thus, to study the role of P1- and P2-HNF4α in 

the mouse liver we used genetically engineered (exon swap) mice that express 

exclusively the P1- or the P2-HNF4α isoforms (Briançon and Weiss, 2006). 

 

Cytochrome P450s 

Since the NR superfamily is a family of ligand-sensitive transcription factors, 

ligand synthesis and degradation play a crucial role in tissue-specific hormonal signaling 



 
 
 
 

 
 
 
 8 

and gene expression. Ligands must be synthesized and delivered throughout the body and 

the degradation of ligands helps to limit both the duration and the intensity of the NR-

ligand response. The enzymes that regulate these processes are the cytochrome P450s 

(Cyp) enzymes that play a key role in the oxidative metabolism of cholesterol, steroids, 

bile acids, and fatty acids (Furge and Guengerich, 2006; Nebert and Russell, 2002). It has 

been shown that these enzymes are regulated by NRs pregnane X receptor (PXR, Nr1i2) 

and constitutive androstane receptor (CAR, Nr1i3) (di Masi et al., 2009; Tolson and 

Wang, 2010; Willson and Kliewer, 2002). It has also been shown that HNF4α is a critical 

factor for in vivo transcriptional activation of one of the most abundant drug metabolism 

enzymes, CYP3A4, and plays a critical role in liver-specific Cyp gene expression 

(Hwang-Verslues and Sladek, 2010; Tirona et al., 2003). 

  

Circadian Rhythms 

Circadian rhythms have been identified in essentially all living organisms -- 

including animals, plants, fungi and bacteria -- as a mechanism to optimize energy 

acquisition and storage. In higher animals such as rodents and primates, the 

suprachiasmatic nucleus (SCN) functions to signal peripheral clocks to the light cycle. 

This includes functions related to energy homeostasis and involves tissues that regulate 

glucose and lipid metabolism, such as the liver. 

Nuclear receptors are a unique family of ligand-sensitive TFs that lie at the 

intersection of metabolic and circadian pathways. Core circadian clock components, 
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which include NRs, work in an incredibly well coordinated transcriptional feedback loop 

that regulates mRNA expression, protein stability, chromatin states, and metabolite 

production and utilization (Eckel-Mahan and Sassone-Corsi, 2013). The circadian 

feedback loop is a highly conserved process controlling oscillating gene expression 

profiles every 24 hours. The core components CLOCK and BMAL1 heterodimerize and 

bind E-box motifs in the promoters of target genes, and drive the expression of period 

(Per1/2/3) and cryptochrome (Cry1/2) genes, which in turn work together to inhibit 

CLOCK:BMAL1 mediated expression. 

 Metabolic homeostasis can be defined as the balance of energy intake being equal 

to energy expenditure. In order for energy homeostasis to occur, rhythms in energy intake 

must coincide with rhythms in gene expression for metabolic homeostasis. Tissues 

throughout the body control their metabolic demands by using signaling molecules such 

as insulin, glucagon, leptin and ghrelin. The fact that many of these hormones oscillate 

throughout the day, or are dependent on energy intake, suggests a high level of 

interaction between metabolic and circadian processes. 

More than half of all NRs display rhythmic patterns of expression in multiple 

metabolic tissues including FXR, LXR, HNF4α, PPARα, PPARɣ to name a few (Yang et 

al., 2006). Some NRs, such as REV-ERBα, RORα, and PPARα, have been shown to 

directly regulate the expression of BMAL1, while RORα and PPARα have been shown to 

interact directly with PER2 to modulate its activity (Schmutz et al., 2010). These findings 
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suggest that fatty acids, sterols, and other hormones may be able to communicate 

information about nutrient and energy status to the clock via their cognate NRs. 

In Chapter 2, we investigate the roles of HNF4α isoforms as a result of alternative 

promoter usage. However, HNF4A is not the only NR gene with alternative promoters: 

PPARG (PPARɣ), NR3C1 (glucocorticoid receptor, GR), NR1H4 (FXR), NR1I2 (PXR) 

and VDR (vitamin D receptor) all have alternative promoters that produce distinct 

isoforms with functional differences (Crofts et al., 1998; Huber et al., 2002; Kurose et al., 

2005; Lee and Ge, 2014; Russcher et al., 2007). In the case of FXR, alternative promoter 

usage limits expression of FXRα1 to the liver and FXRα2 in the kidney and intestine 

(Huber et al., 2002; Zhang et al., 2003). PPARɣ alternative promoter usage also elicits a 

tissue-specific isoform response in adipose versus other tissues. During adipogenesis of 

3T3-L1 cells PPARɣ1 is expressed early on, followed by PPARɣ2, while both are 

expressed at similar levels later in differentiation (Cho et al., 2009). However, during 

adipogenesis of brown pre-adipocytes, PPARɣ1 is expressed early on and remains the 

dominant isoform through differentiation (Jitrapakdee et al., 2005). Relatively little is 

known about the exact functions of these alternative 5’ isoforms of NRs other than the 

fact that these alternative promoters provide an excellent means to control tissue-specific 

gene expression of these isoforms. 

Similarly, the alternative promoter isoforms of HNF4α control tissue-specific 

expression of the NR. It has been shown that both P1-HNF4α and P2-HNF4α are 

expressed in fetal liver, intestine and colon, while P1-HNF4α is exclusively expressed in 
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the kidney and adult liver and P2-HNF4α in the pancreas (Harries et al., 2008). While 

others have shown a potential role for P1- and P2-HNF4α in cancer (Tanaka et al., 2006; 

Walesky and Apte, 2015), a mechanism for how these two isoforms control 

transcriptional activation has yet to be established. The focus of Chapter 2 is on a series 

of genome-scale experiments using exon-swap mice to identify the unique functions of 

these two isoforms in the adult liver. ChIP-seq results show that P1- and P2-HNF4α 

isoforms have nearly identical DNA binding affinities, further confirmed by the use of 

PBMs. Transcriptomics and protein-protein interaction data suggest unique roles of 

HNF4α isoforms in circadian rhythms and the regulation of cytochrome P450s involved 

in lipid metabolism. 

In Chapter 3, we utilize PBMs to investigate the impact of common genetic 

variation on the DNA binding of a class of transcription factors known as nuclear 

receptors (NR). By probing DNA binding affinity with PBMs on genomic DNA flanking 

genetic variants found in the promoters of disease associated genes, NR ChIP-seq peaks, 

and significant eQTLs identified in the liver from the GTEx project, we identify 

thousands of in vitro affinity altering SNPs (aaSNPs) with the capability of disrupting NR 

binding to genomic DNA. 

With a similar approach in Chapter 4, we also expand on the power of the PBM 

data to analyze 100,000 genetic variants that fall within PPARγ ChIP peaks, as well as 

1,000 GWAS identified variants associated with Alzheimer’s, a neurodegenerative 

disease highly commonly treated with PPARγ agonists, and identify a genomic locus 
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with an enrichment of PPARγ aaSNPs around genes known to play a key role in the 

development of the disease. 
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Abstract 

The nuclear receptor (NR) hepatocyte nuclear factor 4α (HNF4α), a master regulator of 

liver-specific gene expression, is regulated by two promoters (P1 and P2) resulting in 

proteins with different N-terminal A/B domains. P1-HNF4α is expressed in fetal and 

normal adult liver while P2-HNF4α is expressed only in the fetal liver and in liver cancer. 

We compared wildtype mice, which express only HNF4α1 (P1) in the adult liver, to 

exon-swap mice that express only HNF4α7 (P2) for global changes in gene expression 

(RNA-seq), chromatin binding (ChIP-seq), and unique protein interactions (RIME). The 

results show that P1- and P2-HNF4α isoforms differentially regulate hundreds of 

transcripts in the adult liver, including the NR CAR (Nr1i3). They also exhibit altered 

metabolic pathways, especially cytochrome P450 (Cyp) genes. Protein binding 

microarrays (PBM), ChIP-seq and RIME show that while P1- and P2-HNF4α bind 

canonical HNF4α binding motifs with similar specificity, they may be recruited 

differentially to non-HNF4α binding sites by unique protein interactions. Wildtype and 

exon swap mice also show differential responses to fasting. All told, the results show that 

changes in just 16-30 amino acids in the AF-1 region of an NR can have profound effects 

on gene expression. 

 

Introduction 

Hepatocyte nuclear factor 4 alpha (HNF4α) is a liver-enriched transcription factor 

(TF) and a highly conserved member of the nuclear receptor (NR) superfamily (Sladek et 
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al., 1990). HNF4α is best known as a master regulator of liver-specific gene expression 

and mutated in Maturity Onset Diabetes of the Young 1 (MODY1) (Fajans et al., 2001; 

Yamagata et al., 1996). HNF4α is essential for fetal liver function (Battle et al., 2006) 

while Hnf4a adult liver knockout (KO) mice die within six weeks with a fatty liver 

phenotype (Hayhurst et al., 2001). 

The human HNF4A and mouse Hnf4a genes are highly conserved and regulated 

by proximal P1 and distal P2 promoters. P1 drives the expression of transcripts 

containing exon 1A while P2 transcripts contain exon 1D, resulting in a loss of the N-

terminal activation function 1 (AF-1). In the adult liver P1 is presumed to be the only 

active promoter, while during fetal liver development both P1 and P2 are active 

(Briançon et al., 2004; Torres-Padilla et al., 2001). The first P2-HNF4α transcript cloned, 

HNF4α7, was from the embryonal carcinoma cell line F9 (Nakhei et al., 1998), 

suggesting that it might play a role in cancer as well as fetal development. Indeed, P1-

HNF4α is down regulated in liver cancer and acts as a tumor suppressor (Hatziapostolou 

et al., 2011; Ning et al., 2010; Tanaka et al., 2006; Walesky and Apte, 2015), while 

overexpression of P2-HNF4α is linked to poor prognosis in hepatocellular carcinoma 

(HCC) (Cai et al., 2017).  

To address the physiological role of P2-HNF4α, we employed exon swap mice, 

which substitute exon 1A with exon 1D in the P1 promoter and demonstrate a subtle, 

albeit undefined role for the AF-1 domain in vivo (Briançon and Weiss, 2006). We 

compared these α7HMZ adult mice (express only P2-HNF4α) to wildtype (WT) mice 
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(express P1-HNF4α in adult liver) using RNA-seq, ChIP-seq, rapid immunoprecipitation 

mass spectrometry of endogenous proteins (RIME), protein binding microarrays (PBMs) 

and metabolomics. An orchestrated, altered hepatic transcriptome in P2-HNF4α livers 

reveals notable differences in cytochrome P450 transcripts and subtle differences in the 

circadian clock. The distinct P2-HNF4α transcriptome appears to be due to altered 

protein-protein interactions, as well as altered chromatin binding but not differences in 

innate DNA binding specificity, as determined by in vitro DNA binding reactions to 

~44,000 unique sequences. Interestingly, the P2-HNF4α metabolome is characterized by 

altered fatty acid metabolism and a fatty liver. Our results suggest that expression of P2-

HNF4α in the liver is an evolutionarily conserved mechanism to survive extreme 

metabolic challenges. 

 

Materials & Methods 

Animals 

WT and α7HMZ mice were maintained in isolator cages under 12-h light/dark 

cycles at ~21oC on bedding (Andersons bed OCOB Lab ⅛ 1.25CF) from Newco (Rancho 

Cucamonga, CA) and fed a standard lab chow (LabDiet, #5001, St. Louis, MO). They 

were bred and maintained in a specific pathogen free (SPF) vivarium, and all experiments 

were performed in an SPF vivarium. Young adult males were used for all experiments 

except the newborn liver analysis, for which gender was not identified. 
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The transgenic mice on a mixed 129/Sv plus C57BL/6 background carrying exon 

1A or exon 1D in both the P1 and P2 promoter (α1HMZ and α7HMZ, respectively) have 

been described previously (Briançon and Weiss, 2006). Both lines were maintained as 

heterozygotes; wildtype (WT) and homozygous (α7HMZ) were mated for a single 

generation to generate mice for the experiments. The WT and α7HMZ mice in the mixed 

background were used for all RNA-seq, ChIP-seq, and RIME experiments. Mice of the 

same genotype were housed 3-5 per cage and randomly selected to treatment groups at 

the beginning of the experiment. Mice were euthanized by CO2 asphyxiation and tissues 

harvested at the designated experiment time points. All mice used were adult males, aged 

16 to 20 weeks, unless otherwise noted. Time points were 10:30 (ZT 3.5), 13:30 (ZT 6.5) 

and 20:30 (ZT 13.5) (lights on at 7:00 and off at 19:00). 

Care and treatment of the animals were in strict accordance with guideline from 

the University of California Riverside Institutional Animal Care and Use Committee 

(Protocol# A200140014). 

 

Immunoblot (IB) analysis 

Immunoblots (IBs) in Figure 1 were carried out as previously described (Jiang et 

al., 1995). Proteins from nuclear extracts (NE) and whole cell extracts (WCE) were 

separated by 10% SDS-PAGE and then transferred to PVDF (Immobilon). Even loading 

was verified by Coomassie stain of the blot. Primary antibodies (Ab) were mouse 

monoclonal anti-HNF4α P1/P2 (R&D Systems #PP-H1415-00) which recognizes the C-
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terminus of both P1- and P2-HNF4α isoforms, and mouse monoclonal anti-HNF4α P1 

(R&D Systems # PP-K9218-00) which recognizes the N-terminus of P1-HNF4α. Both 

were used at 1:10,000 overnight. Secondary antibodies were horseradish peroxidase 

(HRP)-conjugated goat anti-mouse (GαM-HRP) Abs from Jackson ImmunoResearch 

Laboratories. The procedure for NE from COS-7 and liver are described below. WCE of 

liver in Figure 1 were prepared using RIPA buffer (see RIME below).  

 

Preparation of nuclear extracts (NE) for Immunoblot (IB) and Protein Binding 

Microarrays (PBM) analysis 

Following buffers and inhibitors were used: 

TE: 10 mM Tris-HCl, 1 mM EDTA pH 8.0 

2X HBS: 274 mM NaCl, 10 mM KCL, 1.4 mM Na2HPO4, 15 mM D-glucose, 42 mM 

HEPES (free acid), pH 7 

1X H Buffer: 100 mM HEPES, pH 7.8, 250 mM KCl, 1.5 mM spermine, 5 mM 

spermidine, 10 mM EGTA, 10 mM EDTA 

Buffer A: 1X H Buffer, 0.32 M Sucrose 

Low salt buffer: 1X H buffer, 20% glycerol 

High salt buffer: 1X H buffer, 20% glycerol, 1 M KCL (for COS-7 cells) or 0.5 M KCL 

(for liver).  

Inhibitors and DTT: Protease inhibitors (Sigma, #8340), Phosphatase inhibitor cocktail 

I (Sigma, #P-2850), Phosphatase inhibitor cocktail II (Sigma, #P-5726) and 200 mM 
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phenylmethylsulfonyl fluoride (PMSF) were added at the dilution 1:200 (for cell NE) and 

1:100 (for liver NE) to each buffer solution before each use. Dithiothreitol (DTT) was 

added to 1 mM final. 

 

Nuclear extracts (NE) were prepared from COS-7 cells transiently transfected via 

CaPO4 with HNF4α expression vectors for human HNF4α2 (NM_00457) and HNF4α8 

(NM_175914) as previously described (Jiang et al., 1995) with some modifications. Cells 

(3.5 x 106) were plated in 150-mm plates and incubated in 15 ml of DMEM 

supplemented with 10% BCS at 37°C for 24 to 48 hours. Twenty-five µg of plasmid 

DNA, HNF4α2 (NM_00457) or HNF4α8 (NM_175914) in pcDNA3.1, was mixed with 

450 µl TE and 500 µL 2X HBS buffer; 50 µL 2.5 M CaCl2 was added to the mixture, and 

25 min later the mixture was added to the cells. After approximately 10 h of incubation, 

the cells were washed 1x with PBS and then shocked with 3 mL 15% glycerol in 1X HBS 

buffer for 3 min 15 s, and then washed 2X with PBS, followed by DMEM plus 10% 

BCS. Then, 24 to 32 h later, the cells were harvested and NE were prepared. Cells were 

washed twice with cold PBS, then once with 1 ml of 0.25X Buffer H; 0.75 ml of 0.25X 

Buffer H was subsequently added to each 150-mm plate and incubated on ice for 5 to 20 

min. Cells were scraped and resuspended in equal volume of 2X Buffer H plus 20% 

glycerol. After centrifugation (10 min at 2,500 rpm) the supernatant was discarded and 

the nuclear pellet resuspended in an equal volume of Low Salt Buffer; 0.72X volumes of 

High Salt Buffer was used to resuspend the nuclei followed by nutation at 4°C for 1h 10 
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min. The soluble NE was separated from the chromatin pellet by centrifugation (25 min 

at 12,000 rpm). Samples were snap-frozen and subsequently used for IBs and PBMs.  

Liver NE from WT and α7HMZ mice were prepared as previously described 

(Yuan et al., 2009) by motorized homogenization of frozen or fresh liver in Buffer A plus 

0.3% Triton X-100, protease and phosphatase inhibitors. The homogenate was filtered 

using 100-µm cell strainers (Fisher #08-771-19) before passing through the dounce 

homogenizer (Fisher #06-435B) in Buffer A plus 0.3% Triton X-100 followed by nuclei 

separation via centrifugation (10 min at 3,300 rpm) and multiple washes of nuclei (1X 

wash in Buffer A plus 0.3% Triton X-100, followed by 2X wash in Low Salt Buffer). 

Each wash followed by centrifugation (10 min at 2,000 rpm). After washes, nuclear 

pellets were resuspended in 1X volume of Low Salt Buffer, 2X volume of High Salt 

Buffer was added, and extraction was performed as described above for cell NE. All 

incubations, separations and washes were at 4oC. 

 

Expression profiling (RNA-seq) and Analysis 

Next generation sequencing of RNA (RNA-seq) was carried out as previously 

described (Vuong et al., 2015). WT and α7HMZ male mice were sacrificed (n=3, aged 

16-18 weeks) at each time point: 10:30, 13:30, 20:30 PM (ZT 3.5, ZT 6.5, and ZT 13.5, 

respectively). The three mice were harvested in succession within a 30-min time frame. 

Two ~25 mg pieces from each liver were immediately frozen in liquid nitrogen and 

stored at -4OC. The miRNeasy Mini Kit (Qiagen, #74104) was used to extract and purify 
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total RNA; 4 µg of each sample was used to prepare a poly(A)+ RNA library using 

TruSeq RNA Sample Prep v2 Kit (Illumina, Cat# RS-122-2001). Libraries submitted for 

75-bp single-end sequencing with Illumina NextSeq 500 at the UCR IIGB Genomics 

Core. A total of 24 libraries (3 fed time points, 1 fasted time point, 2 genotypes each, 3 

replicates) were multiplexed and sequenced in two separate runs, each of which yielded 

~600 M reads, averaging ~50 M reads per sample. 

Reads were aligned to the mouse reference genome, mm10, with Illumina’s 

iGenome genes.gtf file using TopHat v2.1.1 using default parameters with the exception 

of allowing only 1 unique alignment for a given read. Raw read counts were calculated at 

the gene level for each sample using HTSeq v0.6.1. Library normalization was performed 

with EDASeq; within-lane normalization on GC content was performed with the LOESS 

method and between-lane normalization was performed with non-linear full quantile 

method. Normalization factors from EDASeq were used for differential expression 

analysis with DESeq2. Normalized read counts, FPKM (fragments per kilobase per 

million), and rlog (regularized log transformation) results were generated for downstream 

analysis. Pairwise contrasts were generated for all relevant comparisons. Sample distance 

matrix were generated using rlog transformed values from DESeq2. 

 

Chromatin Immunoprecipitation Sequencing (ChIP-seq) and Analysis 

A freshly minced chunk from the large lobe of the liver (approximately 100-200 

mg) of a 16 to 20-week old male mouse (WT and α7HMZ, 10:30) was fixed in 1% 
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formaldehyde (in ChIP Buffer: 1X PBS plus 1 mM PMSF, 1 mM DTT, 2 µg/mL 

leupeptin, 2 µg/mL aprotinin) for 15 min at room temperature (RT). The crosslink 

reaction was stopped with 0.125 M glycine for 5 min at RT and centrifuged (10 min at 

~2,000 rpm) at 4oC. All subsequent steps were performed at 4oC. Fixed tissue was further 

processed using motorized and glass dounce homogenizers (Fisher #06-435B) in cold 

ChIP Buffer. The homogenate was filtered using 100-µm cell strainers (Fisher #08-771-

19) before passing through the dounce homogenizer. Isolated liver cells were processed 

as previously described (Vuong et al., 2015). Briefly, cells were swelled in 1.0 mL cold 

Hypotonic Buffer (10 mM HEPES-KOH pH 7.9, 10 mM KCl, 1.5 mM MgCl2) plus 1 

mM PMSF and 1 mM DTT) for 10 min. The nuclei were collected by centrifugation and 

resuspended in 1.0 mL cold Nuclei Lysis Buffer (1% SDS, 50 mM Tris-HCl pH 8.0, 10 

mM EDTA) plus 1 mM PMSF, 1 mM DTT, 2 µg/mL leupeptin and 2 µg/mL aprotinin. 

The samples were sonicated using a Sonic Dismembrator Model 500 (Fisher Scientific) 

to obtain DNA fragments of about 200-500 bps, diluted 1:1 with Immunoprecipitation 

(IP) dilution buffer (0.01% SDS, 20 mM Tris-HCl pH 8.0, 1.1% Triton X-100, 167 mM 

NaCl, 1.2 mM EDTA), and pre-cleared with 20 µL of packed Protein G Agarose (Pierce) 

beads (1:1 slurry in IP dilution buffer) that were pre-blocked with 100 µg/µL BSA for 30 

min. The IP was performed with 4.2 µg of affinity-purified anti-HNF4α (α-445) (Sladek 

et al., 1990) or rabbit IgG control (Santa Cruz, cat#sc-2027). Thirty to forty microliters of 

packed protein G beads (1:1 slurry) were added to the IP sample and incubated overnight. 

All IPs were washed with three sequential buffers for 5 min each at RT: TSE I (0.1% 
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SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.0, 150 mM NaCl), TSE II 

(as TSE I but with 500 mM NaCl) and TSE III (0.25 mM LiCl, 1% NP-40, 1% 

Deoxycholate, 1 mM EDTA, 10 mM Tris-HCl pH 8.0). At the final wash, the IP sample 

was washed twice with 1X TE for 5 min at RT. The precipitated material was then eluted 

with IP elution buffer (1% SDS and 0.1 M NaHCO3) twice. For the first elution, the 

sample was eluted with 150 µL buffer, incubated at RT for 20 min, centrifuged at 

maximum speed for 1 min and the supernatant was transferred to a new tube. The second 

elution was the same as the first but with an additional 1 min boiling in a 100oC heat 

block preceding the 20-min incubation. The material from the first and second elutions 

were combined, incubated at 65oC for 4 to 5 h to reverse the crosslinks. DNA 

precipitation was performed with 1 mL of 100% ethanol overnight at -20oC. Protein and 

RNA digestions were performed for 1 h at 55oC with 11 µL of 10X Proteinase K buffer 

(100 mM Tris-HCl pH 8.0, 50 mM EDTA, 500 mM NaCl) and 1 µL of 19 mg/mL 

Proteinase K solution (in 10 mM Tris-HCl pH 8.0, 1 mM CaCl2 plus 30% glycerol) and 

25 min at RT with 1 µL of 10 µg/uL RNaseA in ddH2O, respectively. DNA material was 

purified with GeneJET PCR Purification Kit (Thermo Scientific, #K0701). Qubit 

fluorometer at the University of California Riverside (UCR) Institute for Integrative Gene 

Biology (IIGB) Genomics Core was used to measure DNA concentration; 2-22 µg of 

ChIP’d material was used to generate a library using the BIOO Scientific ChIPseq DNA 

Library Kit. Libraries were submitted for 50-bp single end sequencing by Illumina 

HiSEQ 2500 at the IIGB core facility.  
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Reads were aligned to the mouse reference genome, version mm10, with Bowtie2 

using the default parameters. Peaks were called with MACS2 using default parameters 

for individual samples, as well as a pooled peak dataset using the SPMR (signal per 

million reads) parameter. Aligned reads and MACS2 peak-sets were analyzed with 

DiffBind to identify common and uniquely bound regions of the genome. Livers from 

three mice were used for each genotype. After PCA analysis, one α7HMZ replicate was 

identified visually as an outlier from the other two replicates so a single WT and α7HMZ 

replicate were omitted from downstream analysis, leaving two replicates per genotype. 

DiffBind analysis was performed with default parameters using DESeq2 for analysis and 

library size calculated as total aligned reads. ChIP peaks were excluded from analysis if 

MACS2 results showed -log10(p-value) ≤ 10 to produce a filter removing peaks below 

six-fold enrichment over background, and unique peak IDs were manually annotated to 

each resulting peak. Manually curated peak lists were generated by filtering all results on 

peaks with “concentration” ≥ 5.5. Concentration defined by DiffBind as the “mean (log) 

reads across all samples” in contrast. 

 

Support Vector Machine (SVM) Predictions and Motif Generation 

The kernel-based SVM was trained as previously described using results from 

independent HNF4α PBM experiments (Bolotin et al., 2010). All possible 13-mers in 

both orientations from each uniquely bound ChIP peak were submitted to the HNF4α 

PBM SVM for score predictions using Kernlab package in R. Each ChIP peak was then 
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annotated with the score and sequence of the single highest predicted motif from all 

possible k-mers and categorized into four different bins. All sequences within each bin 

were submitted to seqLogo (Bembom 2017) to generate a position weight matrices 

(PWM) representing the strongest HNF4α binding motif within the category. 

For each SVM-score category, sequences from a 200-bp window around the peak 

center for each ChIP peak were submitted to MEME-ChIP (Machanick and Bailey, 2011) 

for de novo motif analysis with default parameters, with the exception of number of 

motifs to identify (6), max word size (24), and the transcription factor binding site 

(TFBS) database utilized was HOCOMOCO v10. 

 

Protein Binding Microarrays (PBM) 

Protein binding microarrays (PBMs) were carried out as previously described 

(Bolotin et al., 2010). A custom-designed array was ordered from Agilent (SurePrint G3 

Custom GE 4x180k), which contained oligonucleotides ~60 nucleotides (nt) in length, 

corresponding to the following sequences: sequences within 100 bp of the center of 

published HNF4α ChIP-seq peaks from proliferative Caco-2 cells (Verzi et al., 2010) 

were taken in 30-nt windows moving 5 nt at each step; 17,250 permutations of canonical 

HNF4α DR1 motifs (5’- AGGTCAAAGGTCA -3’); 500 permutations of DR2 motifs 

with variable spacer (5’- AGGTCNNNNGGTCA -3’); 900 random control 13-mer DNA 

sequences. A total of ~45,000 test sequences were spotted in quadruplicate on the slide as 

single-stranded DNA. The DNA was extended and made double-stranded on the slide 
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using a primer to a common linker sequence (5’-

TCGACCGATACTCTAATCTCCCTAGGC-3’), dNTPs (GE Healthcare) and Thermo 

Sequenase (Affymetrix, Cat# 78500). Extension and all incubation procedures were 

performed using hybridization chamber and gaskets (Agilent #G2534A, #G2534-60003, 

#G2534-60011). Before binding reaction, microarrays blocked with 2% milk in PBS for 

3-5 hours at room temp. Binding reactions carried out with ~0.25-4 µg of human 

HNF4α2 or HNF4α8 in NE from transfected COS-7 cells, or NE from WT and α7HMZ 

livers. NEs were diluted 1:10 in low salt PBM buffer (16 mM Hepes pH 7.8, 60 mM 

KCL, 8 mM EDTA, 8 mM EGTA) and processed through a 30 kDa cut-off column 

(Amicon, Cat# UFC503096) to a final concentration of 110 mM KCl and then applied to 

the arrays in PBM binding buffer (16 mM HEPES pH 7.8, 100 mM KCl, 8 mM EDTA, 8 

mM EGTA, 0.1% Tween 20 plus 4-20 µg sonicated salmon sperm DNA). After 2 h of 

incubation, arrays were washed 3X for 3 min each with PBS plus 0.1% Tween 20. Mouse 

monoclonal anti-HNF4α P1/P2 (R&D Systems #PP-H1415-00) diluted 1:100 in PBS 

buffer plus 2% non-fat milk, 0.1% Tween 20 were applied directly to the slide and 

incubated for 24 h at RT, followed by a conjugated secondary Ab (GαM IgG [H+L] 

DyLight 550, Pierce Cat# 84540) diluted 1:50 (as described above) and then incubated 

for 90 min. Three washes, 3 min each, in PBS plus 0.1% Tween 20 were performed after 

each antibody incubation. HNF4α binding was imaged with 2-µm resolution using 

Agilent G2565CA Microarray Scanner at the UCLA DNA Microarray Core. Extraction 
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and normalization of the data were as described previously (Bolotin et al., 2010). Position 

weight matrices (PWM) were generated using SeqLogo (Bembom 2017). 

 

Rapid Immunoprecipitation and Mass Spectrometry of Endogenous Proteins (RIME) 

Hypotonic Buffer: as in ChIP-seq 

Nuclei Lysis Buffer: as in ChIP-seq 

IP dilution buffer: as in ChIP-seq 

Shearing Buffer D3: 0.1% SDS, 10 mM Tris-HCl pH 7.6, 1 mM EDTA in biology-

grade water 

Inhibitors: 2 µg/mL leupeptin, 2 µg/mL aprotinin, 1:100 protease inhibitor (Sigma 

#8340) 

RIPA buffer: 15 mM Tris-HCl pH 8.0, 150 mM NaCl, 1% NP-40, 0.7% Deoxycholate 

DNaseI Buffer: 40 mM Tris-HCl pH 8.0, 1 mM CaCl2, 10 mM NaCl, 6 mM MgCl2 

  

RIME was performed as previously described (Mohammed et al., 2016) with the 

following modifications. WT and α7HMZ male mice (n=3, 16-18 weeks of age) were 

sacrificed at 10:30 (ZT 3.5). Roughly 250-mg chunks of liver were collected from the 

same livers used for RNA-seq samples and fixed in 5 mL formaldehyde solution (1.1% 

MeOH-free formaldehyde, 2 µg/ml aprotinin, 2 µg/ml leupeptin in 1X PBS) for 10 min at 

RT. Cross-linking was stopped with 0.125 M glycine at RT for an additional 5 to 8 min. 

Samples were centrifuged (4 min at 2,500 rpm) at 4oC. The fixative was aspirated, the 
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tissue immediately washed with cold PBS and centrifugation repeated. Fixed tissues were 

frozen and stored in liquid nitrogen. 

Frozen tissues were placed in 1X PBS plus inhibitors and homogenized with a 

motorized homogenizer at 4oC as described above. The homogenized samples were 

passed through nylon cell strainer, dounced eight times, and centrifuged (5 min at 2,500 

rpm) at 4oC. Cells were swelled in 1 mL Hypotonic Buffer for 10 min at 4oC, spun again 

to collect the nuclei, which were resuspended with Nuclei Lysis Buffer (see ChIP-seq for 

buffers), nutated for 20 min at 4oC and then gently resuspended in 0.5mL Shearing Buffer 

D3 (0.1% SDS, 10 mM Tris-HCl pH 7.6, 1 mM EDTA in biology-grade water) plus 

inhibitors. D3 buffer was added to fill the 1-ml sonication AFA milliTUBE (Covaris 

#520130). Samples were sonicated for 5.5 min, 30 s break, and again for 4 min in a 

Covaris S220 sonicator. Immediately after sonication samples were diluted 1:1 with IP 

dilution buffer plus all inhibitors. Samples were centrifuged (5 min at 11,000 rpm) and 

the pellet, if any, was discarded. Before IP, samples were pre-cleared for 40 min at 4°C 

with 10 µL of pre-washed magnetic Protein A/G beads (Pierce #0088802). One day 

before sonication, magnetic Protein A/G beads (20 µL per sample) were pre-washed 3X 

with 1 mL PBS plus 0.05% Tween 20. For each sample, 3 µg of P1/P2 Ab or mouse IgG 

diluted in 300-400 µL PBS plus 0.05% Tween 20 and inhibitors were added to pre-

washed beads and nutated for 20 h at 4°C. On the day of sonication, unbound Abs were 

removed from the beads, and the sonicated, precleared samples were added to the beads 

and nutated overnight at 4°C. The following day, the supernatant was removed and beads 
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were washed 3X with 1 mL ice-cold RIPA buffer, and then 1X with 400 µL DNaseI 

Buffer and incubated in DNaseI buffer with 8 µL DNaseI enzyme (4 µg/µL, Sigma 

#D5319) for 20 min at 30oC. Afterwards, samples washed 3x with 0.5 mL RIPA buffer at 

room temperature and then 2X with 1 mL ice-cold RIPA buffer. Parallel IP samples (± 

DNA digestion) were examined for the presence of DNA by Qubit fluorometer to 

confirm high efficiency digestion. IP’d material was washed 2x with 1 mL 50 mM 

NH4CO3. At the last wash, the suspension was transferred to a new non-stick tube. The 

wash buffer was removed and the IP beads were immediately frozen and later subjected 

to mass spectrometry as described below. 

Multidimensional protein identification technology (MudPIT) analysis was 

performed by the Proteomics Core Facility in the IIGB at the University of California, 

Riverside. Sample preparation following IP analysed by 2D nano-liquid chromatography 

tandem MS (2D nano-LC/MS/MS). Briefly, following IP, beads were washed in trypsin 

buffer [50 mM ammonium bicarbonate, 10% (vol/vol) acetonitrile] and digested 

overnight at 37 °C (1µg trypsin in 100 µL buffer) and washed one time [10 min 100 µL 

50% (vol/vol) acetonitrile, 5% (vol/vol) acetic acid]. Digest supernatant and post-digest 

wash supernatant were combined. Tryptic peptides were pelleted by SpeedVac 

concentrator and redissolved in 20 µL 0.1% formic acid. Peptides were separated by a 2D 

nano-Acquity ultra-performance LC system (2D nano-UPLC) (Waters) and analyzed 

with an Orbitrap Fusion MS system (Thermo Fisher). High-pH reversed-phase LC with 

20 mM ammonium formate pH 10 (solvent A) and 100% (vol/vol) acetonitrile (solvent 
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B) was used to fractionate the tryptic peptides into five fractions on an XBridge BEH130 

C18 trap column [5µm particle, 300-µm internal diameter (i.d.), 5-cm long; Waters 

#186003682]. Five fractions and a flush fraction were collected at (1) 13%, (2) 18%, (3) 

21.5%, (4), 27%, (5) 50%, and a final flush of 60% solvent B. Each of these fractions was 

first concentrated and then separated with a conventional reverse phase gradient in acidic 

condition. A Symmetry C18 column (5-µm particle, 180-µm i.d., 20-mm long, Waters 

#186003514) was used to concentrate and desalt the peptides of each fraction. The 

samples were further separated on a BEH130 C18 column (1.7-µm particle,75-µm i.d., 

20-cm long, Waters #186003544). The mobile phase A and B solvents for separation 

gradient were 0.2% formic acid in water and 0.2% formic acid in acetonitrile, 

respectively. The mobile phase nano-flow rate was 0.3 µL/min with the following 1-hour 

gradient: 0–1 min, 3%B; 1–30 min, 50% B; 30–31 min, 85%B; 31–35 min, 85% B; 35–

36 min, 1% B; and 36–60 min, 1% B. 

The MS analysis part of MudPIT was carried out with Orbitrap Fusion MS system 

(Thermo Fisher). A data-dependent acquisition (DDA) survey method using HCD (high-

energy collision dissociation) fragmentation technique was employed in a positive ion 

mode. The instrument parameter included ESI spray voltage at 2300 V, ion transfer tube 

temperature 275°C, and 0 sweep gas. MS1 scan was carried out with Orbitrap mass 

analyzer with its resolution set at 120,000 and normal mass range from 300 to 2000 m/z. 

S-Lens RF level was 60%. AGC target was set 200,000. 50 msec was set for maximal 

injection time. Microscan was set for 1. For MS2 scan, top-speed scanning method was 
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used with time window of 4 seconds. Monoisotopic selection was allowed, peptide ions 

with charge state from 2 to 5 and other undetermined charge states were all selected for 

MS2 fragmentation by HCD. Dynamic exclusion was activated after three MS2 spectra 

were acquired for each m/z within 1 min window. Dynamic exclusion duration was for 5 

min, and exclusion mass window was +/- 30 ppm. Ion selection for MS2 acquisition was 

arranged from most intense peak to least intense peak with minimal intensity of NL 

100,000. For HCD fragmentation, quadrupole isolation window was fixed at 2 m/z, 

collision energy was set at 30%, ion trap was chosen as mass detector to collect all MS2 

fragments for each individual peptide ions. Ion trap scan rate was set at rapid with scan 

range set at normal. First fragment mass was set at 120 m/z. AGC target was set at 10,000 

with maximal injection time of 0.1 second. All raw MS1 and MS2 spectra were processed 

with Proteome Discoverer 2.1 (Thermo Scientific) to generate mgf files, which were then 

submitted to Mascot searching engine to match against NCBI non redundant (nr) human 

protein database for protein identification. Only proteins with 1% FDR cut-off (q≤0.01) 

were considered for subsequent analysis. 

Area under the curve, as reported by Proteome Discoverer, were averaged 

together for WT and α7HMZ samples (n=3). IgG samples (n=3) from both WT and 

α7HMZ were averaged together to create a background sample. Areas were converted to 

log2 scale and the fold-change above IgG background was calculated for the WT and 

α7HMZ samples. Proteins with less than 10-fold change above background were omitted. 
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Similarly, a 10-fold difference between WT and α7HMZ samples was used to identify 

unique protein interactions. 

 

Dexamethasone treatment and Glucose Tolerance Test (GTT) 

WT and α7HMZ mice (16-24 weeks old, backcrossed into C57bl/6N) were 

injected with either 4 mg/kg body weight dexamethasone (Dexamethasone 21-phosphate 

di-sodium salt (Sigma #D1159-100 MG) dissolved in vehicle (0.9% sterile saline (NaCl)) 

or vehicle alone (0.9% saline) for 7 days at the same time (11 AM) each day. On the 

eighth day, mice were fasted for five hours before undergoing glucose tolerance test 

(GTT). GTT was performed as previously described (Deol et al., 2015). 

 

External expression datasets 

The following mouse differential expression analyses were used to generate 

scatterplots for Figure 2.1. The HNF4α mouse liver knockout (KO) data was generated 

by (Walesky et al., 2013) using Affymetrix Mouse430_2.0 genechips. Data were 

summarized to the gene level taking the largest fold change value and associated p-value 

for a single gene if more than one transcript was reported. The adult vs fetal differential 

expression analysis was generated by the ENCODE project (ENCSR000BYS, 

ENCSR000BZI). Gene quantifications files were downloaded and RSEM expected_count 

values treated as raw read counts for differential expression analysis with DESeq2, with 

log2 Fold Change (log2FC) and adjusted P-values (padj.) used for plotting and 
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highlighting values in scatterplots. The C57BL/6 vs Hepa1-6 differential expression 

analysis was generated with DESeq2 (Rudolph et al., 2016). Similarly, log2FC and padj 

were used for plotting and highlighting values in scatter plots, which were graphed using 

ggplot2 library in R. 

 

Oxylipin analysis 

For the analysis of non-esterified oxylipins, plasma aliquots (250 µL) or liver 

tissue homogenates (100 mg) were extracted and analyzed according to previously 

described protocols (Matyash et al., 2008; Yang et al., 2009). Briefly, samples were 

extracted by solid phase extraction and analyzed by ultrahigh performance liquid 

chromatography tandem mass spectrometry (UPLC-MS/MS) (Agilent 1200SL-AB Sciex 

4000 QTrap). Analyst software v.1.4.2 was used to quantify peaks according to 

corresponding standard curves with their corresponding internal standards. Oxylipin 

concentrations are presented as pmol/gm in tissue. Data are presented as mean +/- 

standard error of mean (SEM). Student’s T-test was used to determine statistical 

significance (p < 0.05) using GraphPad Prism v6. 

 

Graphical and statistical analysis 

Differential gene expression (DEG) was measured using raw read counts with 

DESeq2. Statistical significance was measured as adjusted p-value (padj.) ≤ 0.01, unless 

otherwise noted. Legends denote any thresholds using log2 fold change (log2FC) cutoffs. 
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ChIP-seq peaks were called with MACS2 and then filtered on -log10(P-value) ≥ 10, i.e., 

p-value ≤ 1e-10, to approach six-fold enrichment above control. Differentially bound 

peaks were identified using DiffBind with MACS2 output. RIME samples were analyzed 

with Proteome Discoverer 2.0: areas reported were converted to a log2 scale, thus fold 

changes were calculated on the log2 scale. Methods to filter RIME data discussed above. 

All heatmaps generated with pheatmap package in R. Heatmap data were row-normalized 

before plotting with the exception of NR heatmap in Figure 2.4. All barplots represent 

mean + SEM. Transcription Factor (TF) rankings for Cleveland plots were ordered at the 

13:30 (peak HNF4α expression) then manually curated with the aid of PANTHER; all TF 

genes with FPKM > 50 plotted using the 10:30 FPKM values. All Venn diagrams were 

generated with VennDiagram package in R. Unique and common RIME results were 

submitted to DAVID for ontology analysis. Individual statistical significance tests 

performed as two-way Student’s T-test unless otherwise noted. 

 

Results 

Impact of the P1- and P2- HNF4α N-terminal domain (NTD) on Liver Gene Expression 

When the HNF4α exon-swap mice were created, the expression of several liver 

genes were noted as being AF-1 dependent, including Apoa4, Apoc3, and Nr1i3 (CAR) 

(Briançon and Weiss, 2006). Subtle differences in metabolism were also noted under 

unstressed conditions but no global analysis of gene expression was performed. We 

therefore decided to explore in greater depth the impact of the P1-HNF4α isoform 
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(HNF4α1) expressed in WT livers compared to the P2-HNF4α isoform (HNF4α7) 

expressed in the exon swap α7HMZ mice (Fig 2.1A, top). To first verify that the livers 

express the correct isoforms, immunoblot (IB) assays were performed on adult liver 

nuclear extracts (NE) using antibodies that are either specific to P1-HNF4α (P1) or that 

recognize both P1- and P2-HNF4α (P1/P2) (Fig 2.1B). The P1 antibody detected P1-

HNF4α protein in WT adult (aged 16-18 weeks) and fetal livers (E18) but not in the 

α7HMZ livers, as anticipated. In contrast, the P1/P2 antibody detected a faster migrating 

protein in the α7HMZ adult and fetal livers, consistent with the reduced size of the 

HNF4α7 isoform, and the PCR genotype of the mice (not shown). There were also faster 

migrating bands in the WT IB detected by the P1/P2 antibodies which are most likely 

breakdown products as they do not migrate exactly as the bands in the α7HMZ samples 

and they vary from preparation to preparation. The P2-HNF4α protein was not detected at 

E18 in the WT fetal liver, even though transcripts have been detected by PCR (Torres-

Padilla et al., 2001).  

 

HNF4α isoforms preferentially regulate genes in fetal liver and liver cancer 

To investigate whether there are global differences in gene expression in the WT 

and α7HMZ livers, an RNA-seq study (n=3, aged 16-18 weeks) was performed on adult 

livers. The aligned reads confirmed expression of the correct first exons within the WT 

and α7HMZ livers (Fig 2.1C). A comparison of normalized FPKMs across the duplicate 

samples revealed a significant (padj. ≤ 0.01) difference in 1600 genes between WT and 
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α7HMZ livers, 831 up-regulated and 792 down-regulated in α7HMZ livers (Fig 2.1D), 

confirming an important role for the HNF4a NTD in the adult liver. The most down-

regulated genes in α7HMZ are Scnn1a, Cyp2c50, Rdh16f2, and Ces2e and the most up-

regulated are Rad51b, Cyp2b13, Pcp4l1, and Cyp2b9 (Fig. 2.1E). The differentially 

expressed genes (DEG) were next compared to murine HNF4α liver knockout (KO) 

microarray expression data (Walesky et al., 2013) to identify potential HNF4α target 

genes (Fig. 2.1F). A small number of the significantly (padj. ≤ 0.01) α7HMZ-expressed 

genes were up-regulated upon P1-HNF4α KO (red spots), whereas many of the 

significantly WT-expressed genes were down-regulated upon P1-HNF4α KO (blue 

spots). 

Since it has been shown that HNF4α is a tumor suppressor in mouse liver 

(Hatziapostolou et al., 2011; Lazarevich et al., 2004; Ning et al., 2010; Walesky et al., 

2013) the WT and α7HMZ DEGs were plotted against RNA-seq data from a murine liver 

cancer model (Fig 2.1G). Fold changes from a differential expression analysis of 

C57BL/6 against murine hepatoma cell line Hepa1-6 were compared against WT vs 

α7HMZ expression changes. Genes that were significantly (padj. ≤ 0.01) up-regulated in 

the WT liver were preferentially expressed at higher levels in normal liver tissue 

compared to liver cancer (562 vs. 87) and genes significantly better expressed in α7HMZ 

mice were up-regulated in both normal and cancer cell lines equally (293 vs. 281). It is 

known that P2-HNF4α is not normally expressed in a healthy adult liver, but that it is 

expressed, at least on the RNA level, during fetal liver development (Dean et al., 2010; 
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Torres-Padilla et al., 2001). Thus, WT vs α7HMZ DEGs were compared with a 

differential expression analysis of ENCODE-generated mouse adult liver vs fetal liver 

(embryonic 14.5, E14.5) (Fig 2.1H). Like the cancer model comparison, most of the 

genes more highly expressed in the WT livers were also up-regulated in the mouse adult 

liver, while only a small proportion were more highly expressed in fetal livers (562 vs. 

87). Genes that were up-regulated in the α7HMZ livers showed less preference for adult 

vs. fetal expression (335 vs. 269). 

 

In vivo chromatin binding of HNF4α isoforms 

To determine whether the altered gene expression in the WT and α7HMZ livers 

was due to alterations in the HNF4α isoforms binding DNA in the WT and α7HMZ 

livers, ChIP-seq analysis was performed with livers harvested at 10:30am. While the 

results revealed a large number of HNF4α binding events in the mouse liver (WT: 

40,429; α7HMZ: 40,472), only a small percentage of those sites were enriched for a 

particular isoform (WT: 336; α7HMZ: 379) (Fig 2.2A). An analysis of the feature 

distribution of the ChIP-peaks showed that both WT- and α7HMZ-specific peaks were 

less frequently located in the promoter region, specifically ≤ 2kb from +1, than the peaks 

common to both genotypes (Fig 2.2B). Additionally, while both isoforms exhibited an 

increase in the number of unique peaks in distal intergenic regions, compared to the 

common peaks, the α7HMZ unique peaks were more frequently found in the intronic 

regions compared to the WT-unique peaks.  
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To determine whether any of the isoform-unique ChIP peaks were due to isoform-

specific DNA binding specificity, we employed a support vector machine (SVM) trained 

on experimentally verified HNF4α DNA binding sites (Bolotin et al., 2010). For each 

uniquely bound peak, all possible 13-mers within a 200-bp window around the peak 

center, from both strands, were submitted to an SVM scoring algorithm. Each peak was 

categorized into one of four categories (>2, 2 to 1.75, 1.75 to 1.5 and <1.5) based on the 

the single highest-scoring SVM motif within the peak. Each bin of peaks was then 

submitted for de novo motif calling via MEME-ChIP. Both the SVM and MEME analysis 

highlight subtle changes in the canonical HNF4α motif between WT and α7HMZ, such as 

an adenine spacer between the two half sites of the direct repeat which creates a core 

CAAAG motif characteristic of HNF4α sites (Fang et al., 2012) (Fig 2.2C/D). The top 

MEME results from WT-specific peaks show HNF4α-centric CAAAG motifs in all the 

SVM categories except for the one with the weakest HNF4a motifs (<1.5), while 

α7HMZ-specific peaks had the HNF4α-centric core motif only in the top SVM category. 

Binding motifs for the STAT family of TFs appeared twice in the WT-specific peaks but 

were not found in the α7HMZ-specific peaks. In contrast, the GC-rich TF binding sites 

for Sp1/KLF-like factors were found in both WT- and α7HMZ-unique peaks although the 

Sp1-like motif was found in the second SVM category of α7HMZ-specific peaks (2 to 

1.75) and in the last SVM category (<1.5) of WT-specific peaks. These results suggest 

that in vivo there may be subtle differences in the DNA binding specificity of the HNF4α 

isoforms, despite containing identical DNA binding domains, and that other TFs such as 
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STAT and SP1/KLF may play a role in the differential chromatin binding of, and hence 

gene regulation by, the HNF4α isoforms. 

 

DNA binding affinity of HNF4α isoforms in vitro 

To further investigate the DNA binding specificities of HNF4α isoforms we 

designed protein binding microarrays (PBMs) to examine variations on NR consensus 

sequences (a direct repeat with a spacing of 1, DR1, AGGTCANAGGTCA, and a DR2, 

AGGTCANNAGGTCA) as well as genomic sequence mined from HNF4α ChIP-seq 

peaks from human colon adenocarcinoma cell line, Caco-2 (Fig 2.3A). The PBMs are a 

high throughput DNA binding assay in which one can examine 45,000 test sequences in 

quadruplicate for a total of 180,000 DNA binding reactions. Application of human 

HNF4α2 (P1-HNF4α) and human HNF4α8 (P2-HNF4α) ectopically expressed in COS-7 

cells to the PBM revealed that the two isoforms have nearly identical DNA binding 

affinity across all 45,000 test sequences (Fig 2.3B, left). PBM analysis of nuclear extracts 

from WT and α7HMZ mouse livers revealed two distinct groups of DNA sequences (Fig 

2.3B, right). Motif analysis of those two groups with MEME, shown in green and red, 

highlights a preference for WT HNF4α (P1-HNF4α) to interact with GC-rich sequences 

recognized by Sp1 (Fig 2.3C, right, red spots). These spots were identified in the COS-7 

scatterplot and highlighted in the same fashion to reveal a similar preference for P1-

HNF4α (HNF4α2) to interact with GC-rich binding sites.  

 



 
 
 
 

 
 
 
 45 

HNF4α is the most highly expressed NR in the liver 

NRs are known to play an important role in regulating and/or responding to 

circadian rhythms, especially RORα/β/γ, Rev-erbα/β, GR, and CAR (Schmutz et al., 

2010; Tahara and Shibata, 2016; Yang et al., 2006; Zhang et al., 2009; Zhao et al., 2014). 

Since HNF4α is an important regulator of liver-specific gene expression, RNA-seq in WT 

and a7HMZ livers was performed at three different time points (10:30am, 1:30pm, 

8:30pm) to determine whether the HNF4α isoforms play a role in regulating or 

responding to circadian rhythms (Fig 2.4A). Rapid immunoprecipitation and mass 

spectrometry of endogenous proteins (RIME) was also performed from the same liver 

samples at the 10:30am time point. The expression analysis revealed that HNF4α is the 

most highly expressed NR in the liver, followed closely by RXRα, LXRα (Nr1h3), and 

PPARα (Fig 2.4B). While many NRs display circadian changes in expression across all 

three time points, CAR (Nr1i3) is the only NR completely dysregulated between WT and 

α7HMZ livers. When comparing significant (padj. ≤ 0.01, absolute log2FC ≥ 1) DEGs 

between time points, WT livers showed an increased number of changes compared to 

α7HMZ at every comparison (Fig 2.4C, top). Furthermore, there was a larger number of 

genes down-regulated versus up-regulated in α7HMZ compared to WT livers at each 

time point (Fig 2.4C, bottom). A volcano plot of the DEGs between WT and α7HMZ 

livers at 10:30am highlights this effect, with more significantly WT-expressed genes 

(Rdh16f2, Cyp2c50, Ces2e, Nr1i3) with positive fold changes in the right half of the plot 
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and fewer α7HMZ-expressed genes (Rad51b, Cyp2b13) with negative fold changes in the 

left half (Fig 2.4D). 

After finding HNF4α to be the most highly expressed NR in the liver, based on 

transcript levels, we examined where it ranked among all the TFs in the liver. Genes were 

sorted by WT FPKM values at the 1:30pm time point and then manually curated to select 

all TFs with FPKM ≥ 50; liver-enriched transcription factors (LETF) Hnf1a and Hnf1b, 

which had FPKM <50, were added in manually for comparison. A Cleveland dot plot 

was generated to show both WT and α7HMZ FPKM values from the 10:30am time point, 

ranked by WT FPKM (Fig 2.4E). Hnf4a was the fourth most highly expressed TF after 

Atf5, Srebf1 and Btf3, with higher FPKM values than subunits of RNA polymerase (e.g., 

Polr2m, Polr2b), Stat3 and Stat6. Tellingly, the other LETFs (Cebpa, Onecut2, Foxa1, 

Hnf1a and HNF1b) all had much lower transcript levels than Hnf4a (<100 vs. >1000 

FPKM). It is also of interest to note that there were several TFs that showed statistically 

significant differences in gene expression between WT and α7HMZ (padj. ≤ 0.01), 

including Hnf4a (denoted by an asterisk in Fig 2.4E), which could contribute to the 

differential gene expression observed between WT and α7HMZ livers. 

 

HNF4α isoforms result in altered metabolic profiles 

Gene expression analysis showed very strong repression of the NR CAR (Nr1i3) 

at all three time points. CAR is a well-known regulator of cytochrome P450 (Cyp) genes, 

as well as many other Phase I and II enzymes involved in the detoxification of 
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xenobiotics and metabolism of drugs (di Masi et al., 2009; Tolson and Wang, 2010; 

Willson and Kliewer, 2002). Three families of Phase I and II enzymes showed 

dysregulation of several members -- Cyp enzymes, glutathione S-transferases (GST), and 

UDP glucuronosyltransferases (UGT) (Fig 2.5A). For all three families of enzymes there 

are multiple members up- or down-regulated in the α7HMZ livers. Generally, the 

circadian pattern of expression across the three time points is unchanged for these 

enzymes, but the amplitude, or absolute level of expression is dysregulated. For example, 

Cyp2c55 maintains a steady decreasing level of expression throughout the day in the WT 

liver, and a similar decreasing trend in the α7HMZ liver, but with lower values at each 

time point. Similarly, Ugt1a9 maintains a cyclical pattern by showing decreased levels of 

expression at 1:30pm and increased levels of expression at 8:30pm in WT liver, and the 

pattern is repeated for the α7HMZ liver but with much lower expression levels at each 

time point. 

While CAR (Nr1i3) is down-regulated in α7HMZ mice, PXR (Nr1i2), which is 

known to co-regulate many Phase I and II genes with CAR (di Masi et al., 2009; Tolson 

and Wang, 2010; Willson and Kliewer, 2002), is relatively unchanged between WT and 

α7HMZ (Fig 2.5B). Changes in gene expression in the steroid metabolism pathway were 

also observed in α7HMZ livers with an increase in Cyp17a1 and a decrease in Srd5a1 

(Fig 2.5B, top). To determine whether there are functional differences in steroid 

metabolism in the exon swap mice, mice were injected with dexamethasone, a steroid 

agonist of GR, daily for 7 days, and then fasted for 5 hours before undergoing a glucose 
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tolerance test (GTT). The results show that dexamethasone improves the glucose 

tolerance of WT mice, as evidenced by a smaller area under the curve in the GTT (Fig 

2.5C, left). In contrast, in α7HMZ mice the GTT profile was essentially identical for the 

dexamethasone- and saline-injected mice (Fig 2.5C, right), suggesting that the steroid 

was more rapidly metabolized in α7HMZ livers, consistent with increased expression of 

Cyp17a1, which metabolizes dexamethasone, and decreased expression of Srd5a, which 

is a 5α-reductase of steroids that can convert cortisol and corticosteroids into 5α-

dihydrocortisol and 5α-dihydrocorticosteroids, respectively. 

Potential changes in fatty acid metabolism pathways were also observed in 

α7HMZ livers with decreases in Cyp2b10 and Ephx2 (Fig 2.5B, bottom). It is known that 

both Cyp2b10 and Ephx2 play a role in fatty acid metabolism, specifically in converting 

arachidonic acid into oxylipins (Wagner et al., 2011). Oxylipin analysis of WT and 

α7HMZ livers showed that all four DiHETrE oxylipin substrates of arachidonic acid are 

found at significantly lower levels in α7HMZ livers (Fig 2.5D), confirming a functional 

effect of the lower levels of Cyp2b10 and Ephx2 transcripts. Interestingly, 14,15-

DiHETrE is a potent activator of PPARs (Fang et al., 2006; Ng et al., 2007). 

 

HNF4α isoforms have unique interactomes 

In order to determine whether the differences in chromatin binding between the 

two HNF4α isoforms are driving the changes in gene expression we cross-referenced the 

ChIP-seq and RNA-seq datasets at the 10:30am time point. For each uniquely bound 
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peak, the single closest transcription start site (TSS) was annotated in a 100 kb window 

(±50kb). To identify WT-specific correlations, we cross-referenced the TSS from 

annotated unique WT peaks with all genes significantly expressed in WT livers (padj. ≤ 

0.01 and log2FC ≥ 1) and found that 14.15% (45 out of 318) of these genes had a unique 

peak nearby (Fig 2.6A, left). Similarly, to identify α7HMZ-specific correlations, the TSS 

from annotated unique α7HMZ peaks was cross-referenced with all genes significantly 

expressed in α7HMZ livers (padj. ≤ 0.01 and log2FC ≥ 1): 11.73% (23 out of 196) of 

these genes had a unique peak nearby (Fig 2.6A, left). WT-specific genes matching these 

criteria included Nr1i3, Cyp2c50, Cyp2c54, Rarres1, Fmn1, Cdhr5, and Camk1d (Fig 

2.6B, left), and α7HMZ-specific genes matching this criteria included Cyp2b9, Fgfr1, 

Wnk4, Cyp4a14, Ppl, Vnn1, Acot1, and Cyp17a1 (Fig 2.6B, right). Many of the most 

dysregulated genes between these genotypes contained differentially bound peaks at +1, 

or within the first 2 kb downstream of +1, typically falling in intronic regions (Fig 2.6C). 

Since the majority of dysregulated genes had no nearby HNF4α isoform-specific 

ChIP-peaks, we compared the protein-protein interactions between these isoforms in 

order to help explain the transcriptional differences. Rapid immunoprecipitation and mass 

spectrometry of endogenous proteins (RIME) was performed on liver tissue from WT and 

α7HMZ mice. Area under the curve (AUC) for each identified peptide aligning to a 

protein was totaled and these values were used to measure for enrichment above 

background samples (IgG controls). To be included for analysis, proteins needed to show 

≥10 fold increase above background, and then to be considered uniquely interacting 
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proteins needed to show ≥10 fold change between WT and α7HMZ samples. The RIME 

results show several LETFs interacting with both isoforms (CEBPA, CEBPB, HNF1A, 

HNF1B, and ONECUT2) as well as several NRs (ESRRA, NR0B2, NR5A2, THRB) (Fig 

2.6D). GR and HNF4α regulate many of the same genes in the liver and was also 

identified in our RIME results to interact with both isoforms, but it was above 

background at only 3.4-fold change. Clock-related proteins BHLHE40 and CRY1 were 

also identified in the common interacting proteins, along with other TFs (KLF13, 

PROX1, RELA, RBBP4, and RBBP7). Several NRs were shown to interact specifically 

with P1-HNF4α (NR1H2, NR2C1, NR2C2, and PPARA) while only one NR (PXR, 

Nr1i2) interacted specifically with P2-HNF4α. Core circadian components CLOCK and 

BMAL (ARNTL) were shown to interact uniquely with P2-HNF4α while clock-related 

transcription factor NFIL3 interacted uniquely with P1-HNF4α. In total, more than 130 

transcription factors (TF) came down with either isoform, of which nearly half interacted 

uniquely with HNF4α in either WT or α7HMZ livers (Fig 2.6E, left). Interestingly, many 

more RNA processing related proteins were identified in the α7HMZ-only samples 

compared to both common and WT-only samples (Fig 2.6E, left). Normalizing these 

counts to the total number of proteins identified in the sample revealed that the proportion 

of uniquely bound TFs between the isoforms was nearly equal although there was a slight 

increase in the proportion of RNA processing proteins among the α7HMZ-only proteins 

(Fig 2.6E, right). 
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HNF4α isoforms impact the circadian response 

Interactions with circadian-related proteins in the RIME data suggest that HNF4α 

may potentially play a role in regulating or responding to circadian stimuli in the adult 

liver. Differentially expressed genes (DEG) were identified between any two time points 

(10:30am, 1:30pm, and 8:30pm) for both the WT and α7HMZ livers (padj. ≤ 0.01 & 

log2FC ≥ 2). There were 53 genes that showed extreme fluctuations of expression 

throughout the day, including commonly known circadian genes (Cry1, Rorc, Dbp, 

Bhlhe41, Usp2, Per2, Per3, Arntl, and Nr1d1) as well as many metabolism-related genes 

(Fmo3, Lpl, Car3, Corin, Npas2, Hmgcs1, Mme, Slc45a3, Hsd3b4, Hsd3b5, Slc10a2). 

Visualizing the normalized expression in a heatmap shows that while many of these 

genes do show wide ranges of expression across the three time points, nearly all of them 

show the same pattern of expression between the WT and α7HMZ livers (Fig 2.7A). 

Most of the differences between the genotypes appear to be either an increase or decrease 

of expression at a specific time point and not a change in the pattern of expression 

throughout the day. Aqp8 is a good example of this: transcript levels go from high levels 

at 10:30am to moderate levels at 8:30pm in WT livers, and have the same trend in 

expression in α7HMZ livers except that they start at much lower levels.  

In order to determine whether HNF4α isoforms play a role in responding to or 

regulating the circadian clock, we looked for differential expression of core circadian 

components and a few metabolism-related clock controlled genes across all three time 

points. Significant differences in expression between WT and α7HMZ livers were found 
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in BMAL (Arntl) at both 10:30am and 8:30pm Clock and Cry1 at 8:30pm; Per3 and 

Ppara at 1:30pm; and Rorc at 10:30am (Fig 2.7B). The fact that other core components 

of the clock machinery did not show significant differences between the two genotypes 

(Per1, Per2, Rora), (Fig. 2.7B) also suggests that the effect of the HNF4α isoforms is a 

specific one. A heatmap of the core circadian components shows that apart from a few 

small perturbations, the core components maintain cyclic expression throughout the day 

in both genotypes (Fig 2.7C).  

A sample distance matrix heatmap, generated as part of quality control, confirmed 

a subtle yet real effect of the HNF4α isoforms on the global clock (Fig. 2.7D). In the WT 

mouse the three samples for each time point are much more similar to each other than 

they are to any other time point. In contrast, in the α7HMZ samples, the only strong self-

identity was seen in the 1:30pm samples (Fig 2.7D). The 10:30am and 8:30pm time 

points share nearly as much similarity across all three time points than they do to 

themselves. Since a principal component analysis (PCA) (Fig 2.S1) showed a good 

separation and categorization of each sample group, the differences revealed in the 

sample distance matrix are not likely to be due to more quality of data. 

 

HNF4α isoforms exhibit distinct fasting response 

To further examine the role of the HNF4α isoforms in the adult liver, we 

examined how each isoform responded to the stress of fasting. Mice from both WT and 

α7HMZ backgrounds were fasted for 12 hours prior to harvesting liver samples at 
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10:30am for RNA-seq. Categorizing significant DEGs (padj. < 0.01 and log2FC ≥ 1) 

between the fed and fasted states revealed 679 and 549 dysregulated genes for WT and 

α7HMZ, respectively (Fig. 2.8A). Looking more closely at the dysregulation between 

WT and α7HMZ in the fasted state, we found 341 genes up-regulated and 330 down-

regulated in α7HMZ livers compared to WT (Fig 2.8A). These numbers were much 

higher than those in the fed state, especially in terms of the up-regulated genes: 176 up 

and 289 down in α7HMZ livers compared to WT.  

In order to determine how many of the genes up- and down-regulated in both 

livers are uniquely regulated, we compared the fasted vs. fed datasets for each genotype. 

We found that of all the up-regulated genes in fasted WT livers, 56.77% (197 of 347) 

were uniquely regulated and of all the up-regulated genes in fasted α7HMZ livers, 

50.33% (152 of 302) were uniquely regulated (Fig 2.8B, left). Similarly, up-regulated 

genes in WT livers showed 62.65% (208 of 332) uniquely down-regulated and α7HMZ 

livers showed 49.79% (123 of 247) uniquely regulated (Fig 2.8B, right). Finally, the 

sample distance matrix shows that the fasted livers are distinct even when compared to 

any time point from their own genotype, although in this case the three α7HMZ samples 

were more tightly correlated than the three WT samples (Fig. 2.8C). Taken together, the 

results from the fasting RNA-seq show that the HNF4α isoform-specific mice respond in 

a differential fashion to fasting on the level of gene expression, consistent with the 

original report of the α7HMZ mice showing a fattier liver upon fasting than the WT mice 

(Briançon and Weiss, 2006). 
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Discussion 

Alternative promoter usage has been observed for many genes in the human 

genome, and it is estimated that over 50% of genes in the human and mouse genomes 

contain at least one alternative promoter (Baek et al., 2007; Pal et al., 2011). For most of 

these genes the physiological relevance of the transcript variants is unknown. The mouse 

(and human) Hnf4a gene has two highly conserved promoters, the proximal P1 and distal 

P2, that drive expression of alternative first-exons which result in alternative N-terminal 

domains (NTD). Both promoters are expressed in fetal livers while only the P1 promoter 

is expressed in adult livers. HNF4α knockout mice are embryonic lethal and adult liver 

HNF4α knockout mice die within six weeks with a fatty-liver phenotype. While P1-

HNF4α has been shown to be a tumor suppressor in the adult liver and P2-HNF4α has 

been shown to up-regulated in some liver cancers, very little is known about the role that 

P2-HNF4α plays in the liver. Regulating expression of this isoform via an alternative 

promoter allows for tissue- and developmental-specific expression of a slightly modified 

protein with altered function. 

 

Dysregulation of genes in the liver by P2-HNF4α  

Since the only active promoter in the adult liver is the P1 promoter, we utilized 

previously characterized exon-swap mice to express P2-HNF4α in the adult liver. Here, 

we show that a 16 amino acid difference in the NTD of HNF4α is enough alter the 

expression of nearly 1,600 genes (Fig. 2.1D). Comparison with P1-HNF4α knockout data 
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suggests that while P2-HNF4α may be sufficient for developing and maintaining a 

functioning adult liver, much of the dysregulation between WT and α7HMZ adult livers 

may actually be due to a loss of P1-HNF4α. Our results also show that genes more highly 

expressed in WT livers are preferentially expressed in normal liver tissue compared to 

hepatoma cell lines, while α7HMZ livers seem to be more permissive to cancer-specific 

gene expression with nearly an equal number of these genes up-regulated in either normal 

liver tissue or hepatoma cell lines (Fig. 2.1). These transcriptomic results are completely 

consistent with what is already known about the role of P1- and P2-HNF4α in liver 

cancer: P1-HNF4α is a tumor-suppressor and P2-HNF4α is up-regulated in many liver 

HCC cell lines. 

Our results also show that in adult α7HMZ livers there is a large number of genes 

that normally exhibit fetal liver-specific expression, suggesting that P2-HNF4α plays an 

important role in the developing liver even though it is expressed at a lower level than 

P1-HNF4α (Briançon et al., 2004). Furthermore, it has been shown that P2-HNF4α is the 

primary HNF4α isoform expressed in the pancreas (Harries et al., 2008) and that, while 

fetal livers show dramatic gene expression changes when compared to adult livers, they 

also exhibit a gene expression profile similar to that of the pancreas (Lee et al., 2012), 

confirming a role for P2-HNF4α in the fetal liver. 

One of the most notable findings from our study is a near complete repression of 

NR CAR (Nr1i3) expression in the α7HMZ livers while the expression of PXR (Nr1i2), 

which often partners with CAR, was not affected (Fig. 2.5B). It has been previously 



 
 
 
 

 
 
 
 56 

suggested that CAR accelerates the maturation of human hepatic-like cells derived from 

hESCs but that the NR PXR plays no role (Chen et al., 2013). While those findings are 

consistent with CAR (but not PXR) being up-regulated by P1- but not P2-HNF4α, since 

the α7HMZ mice are viable and develop apparently normal livers, it also suggests that 

CAR is not absolutely required for liver development in vivo, at least in the artificial 

environment of a research vivarium.  

Nonetheless, there was a whole-scale dysregulation of genes encoding Phase I and 

II drug and xenobiotic metabolizing enzymes in α7HMZ livers (Fig. 2.5A), presumably 

due to the downregulation of CAR, which is well known to regulate those genes. 

Therefore, under more realistic conditions of exposure to environmental toxicants, the 

isoform of HNF4α that is expressed in the liver is likely to be very important. Finally, the 

finding that an HNF4α isoform that is specifically expressed in the fetal liver alters the 

expression of many of the genes involved in Phase I/II metabolism is consistent with the 

well-established difference in drug and xenobiotic metabolism between infants and adults 

(Cui et al., 2012; Hart et al., 2009). 

 

HNF4α isoforms exhibit similar DNA binding specificity but altered partners in 

chromatin binding  

Our results from ChIP-seq and PBM experiments show that both in vitro and in 

vivo the HNF4α isoforms exhibit nearly identical DNA binding affinity. Considering that 

the P1- and P2-HNF4α isoforms only differ by 16 amino acids in the N-terminal domain 
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(NTD) and share 100% identical DNA binding domains, this result does not come as a 

surprise. ChIP-seq followed by HNF4α SVM motif search revealed a small percentage of 

peaks were uniquely bound and contained minor variations to canonical HNF4α binding 

motif. Categorization of uniquely bound peaks by SVM results allows us to identify 

peaks with potentially direct- and indirect-binding of HNF4α isoforms based on the 

strength of the HNF4α binding motif identified. Thus, TF DNA binding motifs found in 

the “strong” SVM categories (≥2, 2-1.75 and 1.75-1.5) are highlighting direct HNF4α 

binding sites with other TFs interacting with complexes or co-binding with HNF4α and 

motifs found in the “weak” SVM categories (1.5-1.25) are highlighting indirect HNF4α 

binding sites with other TFs tethering HNF4α to these binding sites. This interpretation 

helps explain the Sp1-like binding motifs that were differentially bound in the PBM 

results. While these sequences showed a preference to the WT samples, we did not find 

binding motif results for Sp1-like motifs in the strongest SVM categories, but rather in 

the weakest. This would suggest that in our WT-specific ChIP-peaks with Sp1-like motifs 

we may be seeing the indirect binding of HNF4α to the DNA via tethering interaction 

with Sp1, or another Klf protein. Conversely, α7HMZ samples identified an Sp1-like 

motif in a strong SVM category where we are seeing direct HNF4α binding to a strong 

HNF4α motif, and Sp1/Klf is binding nearby. 

 

 

 



 
 
 
 

 
 
 
 58 

Differential regulation of Cyp genes and gender differences in a7HMZ mice 

Perhaps the most notably dysregulated gene between the two livers is the NR 

CAR (Nr1i3) which has been shown to play a crucial role in coordinating responses to 

exogenous and endogenous chemicals by the regulation of its target genes. Our results 

have shown that the loss of CAR leads to dysregulation of many Phase I & II enzymes, 

including cytochrome P450s (Cyp), and that these changes seem to have an impact on not 

only fatty acid metabolism but also on response to glucocorticoid signaling.  

The regulation of steroid hormone metabolism and signaling from the liver also 

plays a considerable role in the maintenance of sexually dimorphic gene expression. One 

TF that plays a crucial role in the regulation of sexual dimorphism in the adult liver is 

STAT5b which responds to a variety of growth factor signals, one of which is growth 

hormone (GH). The cyclical release of GH into the bloodstream by the pituitary gland is 

stimulated by exercise, nutrition, sleep and inhibited by free fatty acids and glucose 

(Hartman et al., 1993). The clearance and metabolism of xenobiotics differs between 

males and females due largely in part to differences in expression of Cyp genes and 

different patterns of secretion of hormones like GH (Dhir et al., 2006; Mugford and 

Kedderis, 1998; Wolbold et al., 2003). STAT5b is a major mediator of sex-dependent 

gene expression in the liver and impacts the expression of many genes involved in the 

metabolism and clearance of xenobiotics. The dysregulation of many of these sex-

dependent enzymes in the α7HMZ mice was perplexing at first until ChIP-seq motif 

analysis showed that peaks bound uniquely by P1-HNF4α were often accompanied by 
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STAT-like motifs. While we did not see any evidence for unique protein-protein 

interactions between STAT5b and either HNF4α isoform, these data would suggest a 

potential regulatory difference between P1- and P2-HNF4α with regards to STAT5b and 

sex-dependent gene expression in the liver. 

 

Altered protein-protein interactions among the HNF4a isoforms 

Mass spectrometry results identified many TFs in both WT and α7HMZ datasets 

of interacting proteins. Gene ontology analysis revealed slight deviations in the number 

of DNA repair and RNA processing related proteins, with α7HMZ having a much higher 

representation of RNA processing related proteins. Recent studies increasingly link RNA 

processing proteins with DNA damage repair (Naro et al., 2015; Wickramasinghe and 

Venkitaraman, 2016). Taking into context that the natural environment for P2-HNF4α is 

in the developing fetal liver, there may be a role for this isoform in regulating DNA 

damage repair and RNA processing to facilitate a safer proliferative environment. We 

also find that two of the top three largest common HNF4α ChIP-seq peaks are found 

within 10kb of TSS for Holliday junction recognition protein (Hjurp), a known HNF4α 

target, which is a histone chaperone that is often significantly overexpressed in many 

cancers (Filipescu et al., 2017; Hu et al., 2010; Montes de Oca et al., 2015). While Hjurp 

was not dysregulated in our RNA-seq analysis, the analysis was carried out under non-

stressed conditions, leaving open the possibility that under conditions of DNA damage 

Hjurp might be dysregulated by the HNF4α isoforms. 
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The protein interaction results also suggest that HNF4α isoforms are capable of 

preferential interactions with circadian rhythm components as demonstrated by the 

unique interactions of P2-HNF4α with both BMAL (Arntl) and CLOCK (Clock). While 

we did not see complete dysregulation of the circadian pathway in the α7HMZ mice, we 

do find many perturbations of the timing of the cyclic expression. Arntl and Clock 

expression look as if they are cycling slightly faster or earlier in α7HMZ mice compared 

to WT. We also find significant changes in Cry1, Per3, and Rorc, which are known to be 

involved the cyclic maintenance of circadian rhythms. Several clock-controlled genes 

(Mdr1, Oat) are dysregulated between α7HMZ and WT livers as well, perhaps because of 

these changes. Noting the subtle changes circadian gene expression, interaction with 

BMAL and CLOCK, and fewer differentially expressed genes between all time points for 

α7HMZ mice might explain why there is a clear distinction between the three WT time 

points in the sample distance matrix but this distinction is less clear for the α7HMZ mice. 

 

Since HNF4α plays a major role in the regulation of energy homeostasis in the 

liver and its natural ligand, linoleic acid, is an essential fatty acid that can only be 

obtained through the diet, we decided to determine whether these HNF4α isoforms would 

respond differently to the stress of fasting. What we found was that while both WT and 

α7HMZ livers showed a similar number of genes being up- and down-regulated in 

response to fasting, there seems to be a much larger difference in the transcriptomes of 

these two livers. In the normal fed state (n=3, 10:30am) when comparing expression 
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levels between α7HMZ and WT we found 166 and 291 genes up- and down-regulated, 

respectively. These data would suggest that the loss of the AF-1 domain in the P2-HNF4α 

N-terminal domain may lead to a loss of activation of many P1-specific genes but retain 

the capability to repress negative HNF4α targets. However, in a fasted state (n=3, 

10:30am) we found 458 and 382 genes up- and down-regulated respectively in α7HMZ 

when compared to WT levels of expression. Many of these genes are also up- and down-

regulated in the fed state, but when we examine only the genes whose expression levels 

were significantly dysregulated in response to fasting we find hundreds of genes 

differentially regulated. When considering genes that are normally up-regulated in 

response to fasting, the α7HMZ livers have lost the ability to properly regulate 195 of 

these genes and gained the ability to increase 141. Similarly, α7HMZ livers have lost the 

ability to repress 204 fasting response genes and gained the ability to repress 116 others. 

The GTT results show the physiological effects of many of these changes resulting in 

potentially dysregulated glucose metabolism or insulin resistance from chronic 

dexamethasone treatments. 

 

The loss of the expression of NR CAR could be playing a role in these changes. 

CAR is known to be important for the regulation of energy homeostasis and fasting 

typically induces CAR expression, while CAR-deficient mice do not respond to fasting 

well (Maglich et al., 2004). It is known that fatty acids are natural ligands for PPARα and 

a fasting-induced increase in fatty acid levels would increase PPARα activity (Nakamura 
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et al., 2004, 2014). It was also shown that induction of CAR by fasting was ablated by 

PPARα knockout mice. It should be noted that RIME results showed unique protein-

protein interactions with PPARα for P1-HNF4α suggesting that P2-HNF4α’s inability to 

interact with PPARα may lead to a loss of activation of CAR in both fed and fasted 

states.  

  



 
 
 
 

 
 
 
 63 

 

  



 
 
 
 

 
 
 
 64 

Figure 2.1 HNF4α isoforms preferentially regulate genes in fetal liver and liver 

cancer. 

(A) Top: Diagram of Hnf4a P1 and P2 promoters and first exons in wildtype (WT) and 

α7HMZ exon-swapped mice. Bottom: Protein domains of P1-HNF4α (HNF4α1/2) and 

P2-HNF4α (HNF4α7/8) with the A/B domain color-coded to exons 1A and 1D. Other 

domains (DNA binding domain, DBD; ligand binding domain, LBD; and F domain) are 

not changed. Epitopes for P1-specific and P1/P2-common antibodies are indicated. (B) 

Immunoblots of adult liver nuclear extracts (NE) and fetal liver whole cell extracts 

(WCE) using P1 and P1/P2 antibodies as indicated. M, molecular weight markers, top 

band is 54 kD. Cos7 α2, NE of Cos7 cells transfected with human HNFα2. (C) UCSC 

Genome Browser view of RNA-seq data from WT and α7HMZ livers showing unique 

reads in Exons 1A and 1D in each genotype. (D) Venn diagram of number of genes from 

WT and α7HMZ adult male livers at 10:30am. Uniquely expressed genes have an 

adjusted P-value (padj.) ≤ 0.01. (E) FPKM barplots of the most up- and down-regulated 

genes in α7HMZ livers compared to WT. (F) Scatterplot of RNA-seq log2 fold-change 

(log2FC) values between WT and α7HMZ livers, plotted against microarray log2FC 

values between HNF4α knockout (KO) and control mouse liver. Colored data points with 

padj ≤ 0.01 in both datasets. Blue dots, up in WT versus α7HMZ. Red dots, up in α7HMZ 

versus WT. (G) As in (F) except that the WT and α7HMZ RNA-seq data are plotted 

versus RNA-seq data from a murine hepatoma cell line (Hepa1-6) and WT C57BL/6 

livers. Numbers indicate number of colored dots (genes) in each quadrant. (H) As in (F) 
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except that the RNA-seq data from WT and α7HMZ livers are plotted versus adult and 

E14.5 fetal mouse livers. 
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Figure 2.2 HNF4α isoforms exhibit similar but not identical chromatin binding 

profiles in vivo. 

(A) HNF4α ChIP-seq peaks were categorized as common (40,093), WT unique (336) or 

α7HMZ unique (379) peaks. (B) Feature distribution plots for common, WT, and α7HMZ 

unique peaks as determined by ChIPseeker. (C) Categorization of WT unique ChIP 

peaks, based on highest SVM HNF4α motif score, into four groups. The top four DNA 

motifs from de novo MEME-ChIP analysis are shown along with the transcription factor 

family known to bind the motifs. Numbers refer to the MEME motif. Transcription 

factors in bold are discussed in the text. (D) As in (C) except for α7HMZ unique ChIP 

peaks. 
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Figure 2.3 HNF4α isoforms exhibit similar DNA binding profiles in vitro but differ 

in binding Sp1-like motifs. 

(A) Schematic of the protein binding microarray (PBM). Arrays are extended in vitro and 

nuclear extracts from COS-7 cells transfected with human HNF4α or mouse livers were 

applied to slides. containing ~45,000 test sequences data-mined from HNF4α ChIP-seq 

peak centers from a colorectal adenocarcinoma cell line (Caco-2) as well as DR1 and 

DR2 motif permutations and 900 random DNA test spots. All sequences were printed in 

quadruplicate on the slide for a total of 180,000 spots. (B) Scatter plots of log2 average 

binding intensities for each test sequence with ectopically expressed human HNF4α8 

plotted against ectopically expressed human HNF4α2, in COS-7 cells and mouse liver 

nuclear extracts from α7HMZ mice plotted against WT mice. (C) Right, two groups, 

indicated in green and red, were selected from the α7HMZ vs WT mouse liver plot for de 

novo motif analysis. Middle, PWMs for the red (Sp1-like) and green (HNF4α) groups. 

Left, The red and green groups of sequences are highlighted in the COS-7 plots. 
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Figure 2.4 HNF4α isoforms result in different transcriptional profiles: HNF4α is the 

most highly expressed NR in the liver. 

(A) Overview of analyses performed on WT and α7HMZ livers with the time of day the 

livers were harvested. (B) Heatmap of regularized log-transformed read counts for all NR 

genes sorted from highest to lowest for the 10:30 AM fed WT mice. (C) Top, number of 

genes with significant gene expression changes between the indicated time points. 

Bottom, number of genes significantly up- or down-regulated in α7HMZ livers compared 

to WT at each time point. Significance measured by padj ≤ 0.01 and log2FC ≥ 1. (D) 

Volcano plot of gene expression between WT and α7HMZ at the 10:30 AM fed time 

point. Spots representing genes with log2FC ≥ 1.75 are in bold. Select genes are 

indicated. (E) Cleveland plots of WT (blue) and α7HMZ (red) FPKM values for the top 

85 expressed transcription factors in WT fed livers at 10:30 AM. Arrows point to known 

liver-enriched transcription factors. Significant gene expression differences with padj ≤ 

0.01 between WT and α7HMZ are marked with asterisks. 
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Figure 2.5 HNF4α isoforms result in altered metabolic profiles. 

(A) Heatmaps of regularized log-transformed read counts for Phase I and II detoxification 

enzymes: select cytochrome P450s (Cyp), glutathione S-transferases (Gst), and UDP 

glucuronosyltransferases (Ugt) across all three time points in WT and α7HMZ livers. (B) 

Bar plots of FPKM values for NRs CAR (Nr1i3) and PXR (Nr1i2) and select metabolic 

genes. * padj ≤ 0.01 between WT and α7HMZ. (C) GTT assays and area under the curve 

(AUC) with intraperitoneal injection (i.p.) of glucose in WT and α7HMZ male mice 

(n=4-7, 16-24 weeks old) after daily injections with 4 mg/kg body weight dexamethasone 

(pink) or saline (black) for 7 days. On eighth day mice were fasted for 5 hours prior to 

GTT. * Significantly greater (P-value ≤ 0.05). (D) Top, Schematic of arachidonic acid 

metabolic pathway, shown are enzymes down-regulated in α7HMZ livers, Cyp2b10 and 

Ephx2. Bottom, Levels of DiHETrE oxylipins (dihydroxytrienoic acids) in livers of WT 

or α7HMZ mice (n=3, 12-13 weeks old). * Significantly different (P-value ≤ 0.05; Ttest). 
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Figure 2.6 HNF4α isoforms have unique protein-protein interactions. 

(A) Venn diagrams showing overlap between genes with uniquely bound ChIP-peaks 

within a 50-kb window and differentially expressed genes in WT and α7HMZ livers. (B) 

Select genes from the intersection of ChIP-seq and RNA-seq in the Venn diagram. (C) 

UCSC Genome Browser view of differentially expressed genes with a unique ChIP-

signal near +1, Nr1i3 (CAR) and Cyp2b9. ChIP-seq and uniquely bound regions are in 

the top two tracks and RNA-seq from 10:30 AM is in the bottom two tracks. (D) Venn 

diagram summarizing RIME results. All nuclear receptors (NR), clock related proteins, 

and liver enriched TFs (LETF) are shown with other selected proteins of interest. NR3C1 

shown in grey because it did not pass the arbitrary cut-off but is a gene of interest. (E) All 

proteins 10-fold above background categorized into three categories; transcription factors 

(Txn Regula.), DNA repair, and RNA processing. Left, counts of total proteins in WT, 

α7HMZ, and common groups. Right, counts of proteins in each category normalized to 

total number of proteins in unique and common datasets. 
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Figure 2.7 HNF4α isoforms impact the circadian response. 

(A) Heatmap of regularized log-transformed read counts for all genes with significant 

gene expression difference (padj. ≤ 0.01 and log2FC ≥ 2) between any pair of time points 

for either genotype. (B) Barplots for select core circadian clock genes and several 

metabolic clock-controlled genes. Significant expression changes between genotypes at a 

given time point are denoted with asterisks (padj. ≤ 0.01). (C) Heatmap of regularized 

log-transformed read counts for core circadian machinery. (D) Distance matrix for all fed 

RNA-seq samples across all three time-points (N=3 per condition). Dark blue indicates 

smaller distance which implies high degree of similarity. 
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Figure 2.8 HNF4α isoforms impact the fasting response. 

(A) Top, total number of genes dysregulated (padj. ≤ 0.01 & log2FC ≥ 1) in WT and 

α7HMZ livers between the fed and the fasted state. Bottom, total number of genes up- 

and down-regulated (padj. ≤ 0.01 & log2FC ≥ 1) in α7HMZ livers compared to WT in 

both fed and fasted mice. (B) Venn diagrams of total genes up or down (padj. ≤ 0.01 & 

log2FC ≥ 1) in WT and α7HMZ livers in fasted versus fed mice. (C) Distance matrix for 

all RNA-seq samples, including fasted (n=3 per condition). Dark blue indicates smaller 

distance which implies high degree of similarity.  
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Figure 2.S1 PCA Analysis of WT vs ɑ7HMZ Samples 

PCA analysis of rlog transformed read counts from DESeq2 for all WT and ɑ7HMZ 

samples, including fed and fasted (-F).  

 
  



 
 
 
 

 
 
 
 82 

References 

Bembom O. 2017. seqLogo: Sequence logos for DNA sequence alignments. R package 
version 1.40.0. 

Baek, D., Davis, C., Ewing, B., Gordon, D., and Green, P. (2007). Characterization and 
predictive discovery of evolutionarily conserved mammalian alternative 
promoters. Genome Res. 17, 145–155. 

Battle, M.A., Konopka, G., Parviz, F., Gaggl, A.L., Yang, C., Sladek, F.M., and Duncan, 
S.A. (2006). Hepatocyte nuclear factor 4alpha orchestrates expression of cell 
adhesion proteins during the epithelial transformation of the developing liver. 
Proc. Natl. Acad. Sci. U. S. A. 103, 8419–8424. 

Bolotin, E., Liao, H., Ta, T.C., Yang, C., Hwang-Verslues, W., Evans, J.R., Jiang, T., and 
Sladek, F.M. (2010). Integrated approach for the identification of human 
hepatocyte nuclear factor 4alpha target genes using protein binding microarrays. 
Hepatology 51, 642–653. 

Briançon, N., and Weiss, M.C. (2006). In vivo role of the HNF4α AF-1 activation 
domain revealed by exon swapping. EMBO J. 25, 1253–1262. 

Briançon, N., Bailly, A., Clotman, F., Jacquemin, P., Lemaigre, F.P., and Weiss, M.C. 
(2004). Expression of the alpha7 isoform of hepatocyte nuclear factor (HNF) 4 is 
activated by HNF6/OC-2 and HNF1 and repressed by HNF4alpha1 in the liver. J. 
Biol. Chem. 279, 33398–33408. 

Cai, S.-H., Lu, S.-X., Liu, L.-L., Zhang, C.Z., and Yun, J.-P. (2017). Increased expression 
of hepatocyte nuclear factor 4 alpha transcribed by promoter 2 indicates a poor 
prognosis in hepatocellular carcinoma. Therap. Adv. Gastroenterol. 10, 761–771. 

Chen, F., Zamule, S.M., Coslo, D.M., Chen, T., and Omiecinski, C.J. (2013). The human 
constitutive androstane receptor promotes the differentiation and maturation of 
hepatic-like cells. Dev. Biol. 384, 155–165. 

Cui, J.Y., Renaud, H.J., and Klaassen, C.D. (2012). Ontogeny of novel cytochrome P450 
gene isoforms during postnatal liver maturation in mice. Drug Metab. Dispos. 40, 
1226–1237. 

Dean, S., Tang, J.I., Seckl, J.R., and Nyirenda, M.J. (2010). Developmental and tissue-
specific regulation of hepatocyte nuclear factor 4-alpha (HNF4-alpha) isoforms in 
rodents. Gene Expr. 14, 337–344. 

 



 
 
 
 

 
 
 
 83 

Deol, P., Evans, J.R., Dhahbi, J., Chellappa, K., Han, D.S., Spindler, S., and Sladek, F.M. 
(2015). Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and 
Fructose in Mouse: Potential Role for the Liver. PLoS One 10, e0132672. 

Dhir, R.N., Dworakowski, W., Thangavel, C., and Shapiro, B.H. (2006). Sexually 
dimorphic regulation of hepatic isoforms of human cytochrome p450 by growth 
hormone. J. Pharmacol. Exp. Ther. 316, 87–94. 

Fajans, S.S., Bell, G.I., and Polonsky, K.S. (2001). Molecular mechanisms and clinical 
pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med. 345, 
971–980. 

Fang, B., Mane-Padros, D., Bolotin, E., Jiang, T., and Sladek, F.M. (2012). Identification 
of a binding motif specific to HNF4 by comparative analysis of multiple nuclear 
receptors. Nucleic Acids Res. 40, 5343–5356. 

Fang, X., Hu, S., Xu, B., Snyder, G.D., Harmon, S., Yao, J., Liu, Y., Sangras, B., Falck, 
J.R., Weintraub, N.L., et al. (2006). 14,15-Dihydroxyeicosatrienoic acid activates 
peroxisome proliferator-activated receptor-alpha. Am. J. Physiol. Heart Circ. 
Physiol. 290, H55–H63. 

Filipescu, D., Naughtin, M., Podsypanina, K., Lejour, V., Wilson, L., Gurard-Levin, 
Z.A., Orsi, G.A., Simeonova, I., Toufektchan, E., Attardi, L.D., et al. (2017). 
Essential role for centromeric factors following p53 loss and oncogenic 
transformation. Genes Dev. 31, 463–480. 

Harries, L.W., Locke, J.M., Shields, B., Hanley, N.A., Hanley, K.P., Steele, A., Njølstad, 
P.R., Ellard, S., and Hattersley, A.T. (2008). The diabetic phenotype in HNF4A 
mutation carriers is moderated by the expression of HNF4A isoforms from the P1 
promoter during fetal development. Diabetes 57, 1745–1752. 

Hart, S.N., Cui, Y., Klaassen, C.D., and Zhong, X.-B. (2009). Three patterns of 
cytochrome P450 gene expression during liver maturation in mice. Drug Metab. 
Dispos. 37, 116–121. 

Hartman, M.L., Veldhuis, J.D., and Thorner, M.O. (1993). Normal control of growth 
hormone secretion. Horm. Res. 40, 37–47. 

Hatziapostolou, M., Polytarchou, C., Aggelidou, E., Drakaki, A., Poultsides, G.A., 
Jaeger, S.A., Ogata, H., Karin, M., Struhl, K., Hadzopoulou-Cladaras, M., et al. 
(2011). An HNF4α-miRNA inflammatory feedback circuit regulates 
hepatocellular oncogenesis. Cell 147, 1233–1247. 

 



 
 
 
 

 
 
 
 84 

Hayhurst, G.P., Lee, Y.H., Lambert, G., Ward, J.M., and Gonzalez, F.J. (2001). 
Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for 
maintenance of hepatic gene expression and lipid homeostasis. Mol. Cell. Biol. 
21, 1393–1403. 

Hu, Z., Huang, G., Sadanandam, A., Gu, S., Lenburg, M.E., Pai, M., Bayani, N., Blakely, 
E.A., Gray, J.W., and Mao, J.-H. (2010). The expression level of HJURP has an 
independent prognostic impact and predicts the sensitivity to radiotherapy in 
breast cancer. Breast Cancer Res. 12, R18. 

Jiang, G., Nepomuceno, L., Hopkins, K., and Sladek, F.M. (1995). Exclusive 
homodimerization of the orphan receptor hepatocyte nuclear factor 4 defines a 
new subclass of nuclear receptors. Mol. Cell. Biol. 15, 5131–5143. 

Lazarevich, N.L., Cheremnova, O.A., Varga, E.V., Ovchinnikov, D.A., Kudrjavtseva, 
E.I., Morozova, O.V., Fleishman, D.I., Engelhardt, N.V., and Duncan, S.A. 
(2004). Progression of HCC in mice is associated with a downregulation in the 
expression of hepatocyte nuclear factors. Hepatology 39, 1038–1047. 

Lee, J.S., Ward, W.O., Knapp, G., Ren, H., Vallanat, B., Abbott, B., Ho, K., Karp, S.J., 
and Corton, J.C. (2012). Transcriptional ontogeny of the developing liver. BMC 
Genomics 13, 33. 

Machanick, P., and Bailey, T.L. (2011). MEME-ChIP: motif analysis of large DNA 
datasets. Bioinformatics 27, 1696–1697. 

Maglich, J.M., Watson, J., McMillen, P.J., Goodwin, B., Willson, T.M., and Moore, J.T. 
(2004). The nuclear receptor CAR is a regulator of thyroid hormone metabolism 
during caloric restriction. J. Biol. Chem. 279, 19832–19838. 

di Masi, A., De Marinis, E., Ascenzi, P., and Marino, M. (2009). Nuclear receptors CAR 
and PXR: Molecular, functional, and biomedical aspects. Mol. Aspects Med. 30, 
297–343. 

Matyash, V., Liebisch, G., Kurzchalia, T.V., Shevchenko, A., and Schwudke, D. (2008). 
Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. 
Lipid Res. 49, 1137–1146. 

Mohammed, H., Taylor, C., Brown, G.D., Papachristou, E.K., Carroll, J.S., and D’Santos, 
C.S. (2016). Rapid immunoprecipitation mass spectrometry of endogenous 
proteins (RIME) for analysis of chromatin complexes. Nat. Protoc. 11, 316–326. 

 

 



 
 
 
 

 
 
 
 85 

Montes de Oca, R., Gurard-Levin, Z.A., Berger, F., Rehman, H., Martel, E., Corpet, A., 
de Koning, L., Vassias, I., Wilson, L.O.W., Meseure, D., et al. (2015). The 
histone chaperone HJURP is a new independent prognostic marker for luminal A 
breast carcinoma. Mol. Oncol. 9, 657–674. 

Mugford, C.A., and Kedderis, G.L. (1998). Sex-dependent metabolism of xenobiotics. 
Drug Metab. Rev. 30, 441–498. 

Nakamura, M.T., Cheon, Y., Li, Y., and Nara, T.Y. (2004). Mechanisms of regulation of 
gene expression by fatty acids. Lipids 39, 1077–1083. 

Nakamura, M.T., Yudell, B.E., and Loor, J.J. (2014). Regulation of energy metabolism 
by long-chain fatty acids. Prog. Lipid Res. 53, 124–144. 

Nakhei, H., Lingott, A., Lemm, I., and Ryffel, G.U. (1998). An alternative splice variant 
of the tissue specific transcription factor HNF4alpha predominates in 
undifferentiated murine cell types. Nucleic Acids Res. 26, 497–504. 

Naro, C., Bielli, P., Pagliarini, V., and Sette, C. (2015). The interplay between DNA 
damage response and RNA processing: the unexpected role of splicing factors as 
gatekeepers of genome stability. Front. Genet. 6, 142. 

Ng, V.Y., Huang, Y., Reddy, L.M., Falck, J.R., Lin, E.T., and Kroetz, D.L. (2007). 
Cytochrome P450 Eicosanoids are Activators of Peroxisome Proliferator-
Activated Receptor. Drug Metab. Dispos. 35, 1126–1134. 

Ning, B.-F., Ding, J., Yin, C., Zhong, W., Wu, K., Zeng, X., Yang, W., Chen, Y.-X., 
Zhang, J.-P., Zhang, X., et al. (2010). Hepatocyte nuclear factor 4 alpha 
suppresses the development of hepatocellular carcinoma. Cancer Res. 70, 7640–
7651. 

Pal, S., Gupta, R., Kim, H., Wickramasinghe, P., Baubet, V., Showe, L.C., Dahmane, N., 
and Davuluri, R.V. (2011). Alternative transcription exceeds alternative splicing 
in generating the transcriptome diversity of cerebellar development. Genome Res. 
21, 1260–1272. 

Rudolph, K.L.M., Schmitt, B.M., Villar, D., White, R.J., Marioni, J.C., Kutter, C., and 
Odom, D.T. (2016). Codon-Driven Translational Efficiency Is Stable across 
Diverse Mammalian Cell States. PLoS Genet. 12, e1006024. 

Schmutz, I., Ripperger, J.A., Baeriswyl-Aebischer, S., and Albrecht, U. (2010). The 
mammalian clock component PERIOD2 coordinates circadian output by 
interaction with nuclear receptors. Genes Dev. 24, 345–357. 

 



 
 
 
 

 
 
 
 86 

Sladek, F.M., Zhong, W.M., Lai, E., and Darnell, J.E., Jr (1990). Liver-enriched 
transcription factor HNF-4 is a novel member of the steroid hormone receptor 
superfamily. Genes Dev. 4, 2353–2365. 

Tahara, Y., and Shibata, S. (2016). Circadian rhythms of liver physiology and disease: 
experimental and clinical evidence. Nat. Rev. Gastroenterol. Hepatol. 13, 217–
226. 

Tanaka, T., Jiang, S., Hotta, H., Takano, K., Iwanari, H., Sumi, K., Daigo, K., Ohashi, R., 
Sugai, M., Ikegame, C., et al. (2006). Dysregulated expression of P1 and P2 
promoter-driven hepatocyte nuclear factor-4alpha in the pathogenesis of human 
cancer. J. Pathol. 208, 662–672. 

Tolson, A.H., and Wang, H. (2010). Regulation of drug-metabolizing enzymes by 
xenobiotic receptors: PXR and CAR. Adv. Drug Deliv. Rev. 62, 1238–1249. 

Torres-Padilla, M.E., Fougere-Deschatrette, C., and Weiss, M.C. (2001). Expression of 
HNF4a isoforms in mouse liver development is regulated by sequential promoter 
usage and constitutive 3 end splicing. Mech. Dev. 109, 183–193. 

Verzi, M.P., Shin, H., He, H.H., Sulahian, R., Meyer, C.A., Montgomery, R.K., Fleet, 
J.C., Brown, M., Liu, X.S., and Shivdasani, R.A. (2010). Differentiation-specific 
histone modifications reveal dynamic chromatin interactions and partners for the 
intestinal transcription factor CDX2. Dev. Cell 19, 713–726. 

Vuong, L.M., Chellappa, K., Dhahbi, J.M., Deans, J.R., Fang, B., Bolotin, E., Titova, 
N.V., Hoverter, N.P., Spindler, S.R., Waterman, M.L., et al. (2015). Differential 
Effects of Hepatocyte Nuclear Factor 4α Isoforms on Tumor Growth and T-Cell 
Factor 4/AP-1 Interactions in Human Colorectal Cancer Cells. Mol. Cell. Biol. 35, 
3471–3490. 

Wagner, K., Inceoglu, B., and Hammock, B.D. (2011). Soluble epoxide hydrolase 
inhibition, epoxygenated fatty acids and nociception. Prostaglandins Other Lipid 
Mediat. 96, 76–83. 

Walesky, C., and Apte, U. (2015). Role of hepatocyte nuclear factor 4α (HNF4α) in cell 
proliferation and cancer. Gene Expr. 16, 101–108. 

Walesky, C., Gunewardena, S., Terwilliger, E.F., Edwards, G., Borude, P., and Apte, U. 
(2013). Hepatocyte-specific deletion of hepatocyte nuclear factor-4α in adult mice 
results in increased hepatocyte proliferation. Am. J. Physiol. Gastrointest. Liver 
Physiol. 304, G26–G37. 

 



 
 
 
 

 
 
 
 87 

Wickramasinghe, V.O., and Venkitaraman, A.R. (2016). RNA Processing and Genome 
Stability: Cause and Consequence. Mol. Cell 61, 496–505. 

Willson, T.M., and Kliewer, S.A. (2002). PXR, CAR and drug metabolism. Nat. Rev. 
Drug Discov. 1, 259–266. 

Wolbold, R., Klein, K., Burk, O., Nüssler, A.K., Neuhaus, P., Eichelbaum, M., Schwab, 
M., and Zanger, U.M. (2003). Sex is a major determinant of CYP3A4 expression 
in human liver. Hepatology 38, 978–988. 

Yamagata, K., Furuta, H., Oda, N., Kaisaki, P.J., Menzel, S., Cox, N.J., Fajans, S.S., 
Signorini, S., Stoffel, M., and Bell, G.I. (1996). Mutations in the hepatocyte 
nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). 
Nature 384, 458–460. 

Yang, J., Schmelzer, K., Georgi, K., and Hammock, B.D. (2009). Quantitative profiling 
method for oxylipin metabolome by liquid chromatography electrospray 
ionization tandem mass spectrometry. Anal. Chem. 81, 8085–8093. 

Yang, X., Downes, M., Yu, R.T., Bookout, A.L., He, W., Straume, M., Mangelsdorf, 
D.J., and Evans, R.M. (2006). Nuclear receptor expression links the circadian 
clock to metabolism. Cell 126, 801–810. 

Yuan, X., Ta, T.C., Lin, M., Evans, J.R., Dong, Y., Bolotin, E., Sherman, M.A., Forman, 
B.M., and Sladek, F.M. (2009). Identification of an endogenous ligand bound to a 
native orphan nuclear receptor. PLoS One 4, e5609. 

Zhang, Y.-K.J., Yeager, R.L., and Klaassen, C.D. (2009). Circadian expression profiles 
of drug-processing genes and transcription factors in mouse liver. Drug Metab. 
Dispos. 37, 106–115. 

Zhao, X., Cho, H., Yu, R.T., Atkins, A.R., Downes, M., and Evans, R.M. (2014). Nuclear 
receptors rock around the clock. EMBO Rep. 15, 518–528. 

  



 
 
 
 

 
 
 
 88 

 

 

 

 

 

 

 

 

Chapter 3 
 

Identification of Affinity Altering SNPs (aaSNPs) Using Protein Binding 
Microarrays 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contributions from others: 
Dr. Nina Titova: Extract preparation and application to PBMs 
Dr. Eugene Bolotin: Design of Disease SNP-PBM 
Dr. Bin Fang: Design of HNF4a-ChIP-SNP PBM 



 
 
 
 

 
 
 
 89 

Abstract 

Gene expression is regulated by transcription factors (TFs) that bind specific DNA 

sequences in regulatory regions. There are more than 1000 TFs encoded in the human 

genome and each one may bind 1000s of different sequences, making it very difficult to 

predict which TFs regulate which genes. This problem is compounded by individual 

genetic variation, referred to as single nucleotide polymorphisms (SNPs) which are often 

located in TF binding sites in noncoding regions of the human genome. More than 150 

million SNPs have been identified among human populations and more than 70,000 

associations between SNPs and disease have been made. In this chapter, we developed a 

high throughput DNA binding assay called protein binding microarrays (PBM) to better 

define the DNA sequences to which TFs bind. We created several different PBM 

platforms with which we could perform one million DNA binding reactions in a single 

experiment in order to identify SNPs that alter the ability of TFs to bind DNA, referred to 

as affinity altering SNPs (aaSNP). This PBM technology allowed us to identify more than 

9,700 aaSNPs with a high degree of confidence (padj. ≤ 0.01) for a subset of nuclear 

receptors, ligand-dependent TFs that play important roles in physiology and disease. 

Since nuclear receptors are popular drug targets and since these aaSNPs are just 

beginning to scratch the surface of common genetic variation, the high throughput PBM 

system could play an important role in personalized medicine in the future. 
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Introduction 

Recent efforts with genome-wide association studies (GWAS) to identify genetic 

variations linked to common human disease and phenotypes have identified many 

variants in intergenic regions of the genome. Until recently, it has been very challenging 

to identify which genes are affected by these variants, and by what mechanism. The 

genotype-tissue expression project (GTEx) is a resource aimed at providing insight into 

human gene expression and regulation and its relationship to genetic variation (Lonsdale 

et al., 2013). The project collects multiple tissues from organ donors, which are also 

densely genotyped by whole genome sequencing or Illumina OMNI 5M Array. By 

analyzing RNA-seq transcriptome data for each tissue and treating expression levels of 

every transcript as a quantitative trait, genomic variants that are highly correlated can be 

identified as expression quantitative trait loci (eQTLs). These data are pre-computed by 

the GTEx project, comparing every variant against transcript expression levels within a 

±1 megabase window. 

The identification of eQTLs has now provided a very large dataset of correlations 

between gene expression changes and genetic variants with the added context of the 

tissue the data was taken from. One limitation of eQTL data, as well GWAS results, is 

that this type of information only has the power to identify trait loci as opposed to causal 

variants. This means there may be one or more variants in the immediate vicinity that 

could also be contributing to the traits being identified because of linkage disequilibrium 

(LD) and co-inherited traits. Likewise, frequently eQTLs are linked to changes in 
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expression of more than gene (eGene) at a time. The next step in utilizing this power data 

lies in ascribing a specific mechanism by which any of these eQTLs might be acting to 

alter the gene expression of nearby genes. One possible mechanism is that these eQTLs 

may be disrupting the binding sites of transcription factors (TFs) and thereby reducing 

their effectiveness in transcriptional activation. 

  

The nuclear receptor superfamily also plays a role in modern medicine as they are 

common drug targets (Kojetin and Burris, 2014; Roshan-Moniri et al., 2014; Sladek, 

2003). This is because many of these proteins can have their transcriptional activity 

modulated by the presence or absence of their corresponding ligands. Additionally, many 

of these proteins have a tissue-specific expression profile and the result is that synthetic 

drugs that target the NR ligand binding domain should, in theory, impact only the tissues 

that express those NRs, thereby reducing the number of off-target effects. 

Drugs and endogenous ligands will bind to NRs in the cytosol (class I) or nucleus 

(class II) and result in receptor localization to the nucleus. Here the NR will bind 

promoters and enhancers of target genes in a sequence-specific manner. Thus, human 

genetic variation can play a key role in the effectiveness of a NR. Should an individual 

contain a SNP that disrupts a binding site for an NR such as HNF4α there is an increased 

chance of reduced effectiveness of transcriptional activation at the locus. Similarly, it is 

possible there exist SNPs that convert non-functional promoter binding sites at off-target 

promoters and enhancers into fully functional binding sites, thus increasing 
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transcriptional activity of genes causing unintended consequences. Here, we investigate 

whether human genetic variation can lead to a disruption of NR DNA binding sites and 

whether the identified variants could in turn be linked to changes in nearby gene 

expression. 

 

By utilizing the high-throughput protein binding microarray (PBM) technology 

we can investigate in vitro the potential of 125,000 SNPs to alter the DNA binding 

affinity of a NR in a single experiment. The results of these PBM experiments can be 

cross-referenced with NR regulatory networks to identify disruptive genetic variants 

within regulatory regions near their target genes. The ultimate goal is to develop a 

knowledge base of aaSNPs that impact the regulation of NR target genes to better 

understand NR regulatory networks with an outlook on personalized medicine. 

The GTEx project adds another exciting layer to this experiment because we now 

have access to hundreds of RNA-seq datasets that have paired genotyping across millions 

of variants. GTEx provides pre-computed eQTL analysis for 53 tissues and many of these 

tissues have ≥100 samples. Pairing this data with aaSNP PBM datasets will allow for a 

high-throughput approach to identify human variants that disrupt or enhance NR binding 

and, importantly, that are highly correlated with allele-specific gene expression from 

human tissue samples. While the PBM approach does not prove causality, it can show 

that variants correlated with gene expression changes can alter in vitro the DNA binding 

affinity of nuclear receptors that are known to be enriched in those tissues. 
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The knowledge that a variant disrupts NR binding and correlates with a change in 

gene expression of a nearby gene is not sufficient to prove that the change is due to the 

disruption of binding of the NR. In order to provide some evidence for that causality, we 

can use the Nuclear Receptor Signaling Atlas (NURSA) Transcriptomine (TM) database, 

which contains curated RNA-seq and qPCR fold-change data specific to NRs in ligand 

treatment or NR knockout experiments. (Becnel et al., 2017; Ochsner et al., 2012). The 

database is updated quarterly to identify new transcriptomics studies involving NR, NR-

ligand, and coregulator-dependent gene expression. The fold change values extracted are 

the processed (summarized and normalized) values submitted by investigators to NCBI’s 

GEO database and EBI ArrayExpress.  

 In this chapter, we use custom-designed PBMs to identify aaSNPs in NR binding 

sites and cross reference the associated genes to both GTEx and TM. The net result are 

eGenes that are targets of specific NRs and whose expression is correlated with SNPs that 

alter the ability of the NR to bind DNA. 

 

Materials and Methods 

Preparation of nuclear extracts for Protein Binding Microarrays 

COS-7 cells were transiently transfected with expression vectors for human 

HNF4α2 (NM_00457), HNF4α8 (NM_175914), RXRα (NM_002957), COUPTFII 

(NM_021005), GR (NM_000176), TRβ1 (NM_000461), RARα (NM_000964), PPARα 

(NM_005036) and nuclear extracts were prepared as in Chapter 2. GR applied to Liver 



 
 
 
 

 
 
 
 94 

GTEx PBM was extracted from H1993 lung cancer cell line. The concentrations of 

ligands added 2 h 30 min before harvesting was: GW7647 for PPARα (0.2µM, Cayman 

Chemicals), 9-cis retinoic acid for RXRα (2µM, Sigma), trans-retinoic acid for RARα 

(2µM, Sigma #R2500), T3 (3,3′,5-Triiodo-L-thyronine sodium salt) for TRβ1 (70nM, 

Sigma #T6397), Dexamethasone for GR (100nM, Sigma). The RXRa ligand, 9-cis 

retinoic acid (Sigma) was also simultaneously added to the PPARα cells at the same 

concentration as the PPAR ligand. 

 

Protein Binding Microarrays 

Protein Binding Microarrays (PBMs) were designed and processed as in Chapter 

2 and Bolotin et al. (Bolotin et al., 2010). Protease inhibitor (Sigma) and ligands were 

added at all incubation steps starting from hybridization. 1µM of each ligand was added 

to all washes. After purification, NR complexes were applied to arrays and incubated for 

15h at 4°C, arrays were washed 3x for 2 min 30 sec each with PBS plus 0.1% Tween 20. 

Mouse monoclonal anti-Flag antibody (Ab) (Sigma, #F3165) diluted 1:100 in PBS buffer 

plus 2% non-fat milk, 0.1% Tween 20 were applied directly to the slide and incubated for 

48h at 4°C, followed by a conjugated secondary Ab (GαM IgG [H+L] DyLight 550, 

Pierce #84540) diluted 1:50 (as described above) and then incubated for 4h at room 

temperature. Three washes, 2 min 30 sec each in PBS plus 0.1% Tween 20 were 

performed after each antibody incubation. 



 
 
 
 

 
 
 
 95 

The same method with the following modifications was used for GR: lung cancer 

H1993 cells were treated with 0.1 µM Dexamethasone for 1h before harvesting; rabbit 

monoclonal anti-GR Abs ((D6H2L) XP® Rabbit mAb #12041, Cell Signaling) were used 

at 1:60 dilution, followed by a conjugated secondary Ab (GαR IgG [H+L] DyLight 550, 

ThermoFisher #84541) at 1:30 dilution. For RARα, co-expression with RXRα, cells were 

treated with 9-cis-retinoic acid + trans-retinoic acid (1µM each), mouse monoclonal anti-

RARPα Ab (Sigma, #WH0005914M1). For TRβ1, co-expression with RXRα, cells were 

treated with T3 (3,3′,5-Triiodo-L-thyronine sodium salt) (Sigma #T6397) at 50nM added 

3 h before harvesting. Flag Ab as described above but method as in Chapter 2. 

 
Disease SNP-PBM Design 

The Disease SNP-PBM was designed by extracting 3000 genes associated with 

disease from the Genetic Association Database at the time (2011) and extracting all 

common SNPs (appear in ≥ 1% of the population or are 100% non-reference) from 

dbSNP v130 within a -6kb to +1kb window around transcription start site (TSS). The net 

result was 119,743 SNPs. Both major and minor alleles were selected as 29-mers with 14 

nucleotides (nt) of genomic DNA before and after the variant to accommodate a full NR 

binding site of up to 15 nt. As a negative control, 400 random in silico 29-mer DNA 

sequences were included in the design. All alleles plus negative controls were replicated 

four times on the slide, resulting in a one-million (1M) spot design. Nuclear extracts 

containing receptors HNF4α2, COUPTFII, RXRα, GR, and TRb1 were applied and 

PBMs were processed as in Chapter 2.  
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HNF4α ChIP-SNP-PBM Design 

The HNF4α ChIP-SNP-PBM was designed by extracting all common SNPs (≥1% 

population or 100% non-reference) from dbSNP v132 within a 200-bp window (±100 bp) 

of the peak center of ChIP-seq data from HepG2 and CaCo-2 (proliferating & 

differentiated) cell lines for HNF4α (Verzi et al., 2010; Wallerman et al., 2009), and 

HepG2 cell line for RXRα from the Myers Lab (ENCSR000BHU) (ENCODE Project 

Consortium, 2012). As in the Disease SNP-PBM, both major and minor alleles were 

spotted as 29-mers. The same set of negative controls from Disease SNP-PBM were 

included in this design. All alleles and controls were spotted in four replicates to yield a 

1M spot design. Nuclear extracts for receptors HNF4α2, HNF4α8, and RXRα were 

applied as in Chapter 2. 

  

Liver GTEx SNP-PBM 

The Liver GTEx SNP-PBM was designed by taking all variant-gene associations 

from Liver GTEx v6 database and filtering for the top 140,000 unique eQTLs with an 

absolute Beta (slope) score ≥ 0.3, P-value ≤ 0.0001, and median RPKM ≥ 1. Variants 

were ranked in descending order by median RPKM values reported by GTEx to select the 

top 120,000 unique variants. Alleles were tested as ref and alt as denoted by GTEx ids. 

The reported chromosome position from GTEx ids was used to extract flanking 14 nt to 

create a 29mer, like previous designs. The same set of negative controls from previous 

designs were included. As in previous designs all spots replicated 4 times, resulting in 1 
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million spot design. Nuclear extracts for receptors HNF4α2, COUPTFII, RXRα, RARα, 

PPARα, GR, and TRβ1 were applied as in Chapter 2.  

  

Graphical and statistical analysis 

Due to the technical variability of the PBM slides, some quality control and 

normalization steps were necessary. Slides were spatial normalized using the MANOR 

library in R. Averages and standard deviation were calculated across replicated spots. To 

identify test sequences with potential outliers, a coefficient of variation (cv) adjusted for 

small sample sizes was calculated with non-log values as follows:  

𝑠𝑑
𝑎𝑣𝑔 ∗ (1 + (

1
4𝑛)) 

Any set of replicated spots with cv ≥ 0.5 are selected for outlier removal with a 

custom Python script. The distance from lowest to second highest score, and distance 

from highest to second lowest score are measured and compared within each group of 

four replicates. Outliers were removed with the following criteria; lowest value removed 

if first comparison was the largest, highest value removed if second comparison was the 

largest. Averages, standard deviation, and cv of the remaining three replicates are 

returned to the dataset. 

To calculate binding levels of each test sequence in the experiment the entire 

population of negative controls are averaged together and used as a control population. 

Each individual test sequence is measured against the control with a one-tailed Student’s 

T-test. Reported P-values are corrected for multiple hypothesis testing using the 
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Benjamini-Hochberg (“fdr”) option with the p.adjust function from the stats library in R. 

These values are reported as “padj.” or adjusted P-values. 

  To calculate affinity altering SNPs (aaSNPs), the PBM binding score of the major 

and minor (ref and alt) allele averages were compared with a two-tailed Student’s T-test, 

using standard deviation from control population as pooled variance. P-values were 

corrected with Benjamini-Hochberg option of the p.adjust function as above. To measure 

the effect size between the two alleles a Cohen’s D value was calculated by dividing the 

difference of means by the standard deviation of the pooled negative controls. 

  All scatterplots were generated in R with ggplot2 library. All receptors applied 

within a single design were quantile normalized with ‘preprocessCore’ package in R, 

before plotting. Since aaSNPs were calculated prior to quantile normalization their 

significance was matched to quantile normalized values before highlighting on the 

scatterplots. Venn diagrams were generated with the ‘VennDiagram’ package in R. 

 NR regulatory network datasets from nuclear receptor signaling atlas (NURSA) 

Transcriptomine (TM) database (https://www.nursa.org/nursa/transcriptomine/) were 

downloaded in July 2017. Datasets for each NR derived from human or mouse liver were 

filtered on P-value ≤ 0.05.  
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Results 

Identification of disease-associated aaSNPs 

To identify genetic variants that may alter the binding of nuclear receptors (NRs) 

and also impact transcriptional regulation of disease-associated genes, common SNPs 

(≥1% in population or 100% non-reference) were extracted from the promoter regions 

(+6kb to -1kb) of about 3000 genes identified in the Genetic Association Database. 

Utilizing protein binding microarrays (PBMs) we can measure the binding affinity of a 

single NR to both the major and minor alleles of about 125,000 SNPs in a single 

experiment. Slides are designed with a 26-bp “linker” sequence that is attached to the 

slide which raises the test sequence away from the surface of the slide, and allows for the 

annealing of a primer that can be extended in vitro to make the test sequence double-

stranded DNA. For each allele we construct a test sequence by taking the leading and 

trailing 14 nucleotides (nt) around the variant, and end with a gcgcg cap (Fig 3.1A). Each 

test sequence is replicated on the slide in quadruplicate to allow for the single removal of 

an outlier in case of technical variability of the slide (Fig 3.1B). 

A total of five NRs were applied to the Disease SNP-PBM -- hepatocyte nuclear 

factor 4-alpha 2 (HNF4α2, NR2A1), COUP transcription factor 2 (COUPTFII, NR2F2), 

retinoic acid receptor alpha (RXRα, NR2B1), glucocorticoid receptor (GR, NR3C1), 

thyroid hormone receptor beta (TRβ1, NR1A2). Results for the total number of 

significantly bound alleles (Binders, padj. ≤ 0.01) and the number of affinity altering 

SNPs (aaSNPs, padj. ≤ 0.01 & Cohen’s ≥ 2) are reported, along with the ratio of aaSNPs 
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to total binders (Fig 3.1C). All receptors, except for TRβ1, averaged around 250 aaSNPs 

with a ratio less than 1% of total aaSNPs to total binders. We find nearly 1,000 aaSNPs 

for TRβ1with a ratio of roughly 2% of aaSNPs to total binders. 

 

Comparison of disease aaSNPs between receptors 

To further characterize this population of aaSNPs, Venn diagrams were generated 

comparing all receptors against HNF4α2. When looking at significant (padj. ≤ 0.01 & 

Cohen’s ≥ 2) aaSNPs for each receptor, there were very few (a total of 34) that altered the 

binding affinity of both HNF4α2 and another NR (Fig 3.2A). The NRs that had the 

greatest number of aaSNPs in common were RXRα and its heterodimeric partners 

COUTPF and TRβ1: nearly half of all RXRα aaSNPs (113/145, 43.79%) were also 

aaSNPs for TRβ1 (Fig 3.2B). The low number of shared aaSNPs between HNF4α2 and 

other NRs gives more evidence that HNF4α2 binds DNA as a homodimer and cannot for 

heterodimers with other NRs (Bogan et al., 2000; Jiang et al., 1995). 

To visualize the aaSNP data between two NRs, scatterplots were generated 

showing the entire population of test sequences for each receptor and highlighting 

significant aaSNPs. These plots help to further highlight differences in binding affinities 

between the receptors, and the diverging profiles of aaSNPs specific to each receptor (Fig 

3.2C). While most aaSNPs specific to COUTPF showed low binding affinity for 

HNF4α2, as seen by the clustering of blue points from (-2,2) on the x-axis, there is a 

population of HNF4α2-specific aaSNPs that show very high binding affinity for 
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COUPTF, seen by the yellow points from (2,4) on the y-axis. These are SNPs which 

successfully altered HNF4α2 DNA binding on the PBM and yet resulted in very high 

PBM binding scores for COUPTF without altering DNA binding affinity. The 

distribution of PBM binding scores for COUPTF and RXRα reveal that these two NRs 

show much more similar DNA binding affinity across all test sequences than any other 

combination of NRs (Fig 3.2C, Top Right). There are many uniquely identified aaSNPs 

along the diagonal of this plot, suggesting that while statistically these aaSNPs are not 

identified as common aaSNPs between the two NRs, they are resulting in relatively 

similar PBM binding scores for the two receptors. Lowering the cut off for designation as 

an aaSNP to padj ≤ 0.05 increased the shared aaSNPs ratios for COUPTF and RXRα 

from 16.36% to 42.62% for COUPTF, and from 13.95% to 35% for RXRα for a total of 

286, suggesting the initial statistical thresholds might be too strict. 

Of particular note is the divergence of PBM binding scores for GR and HNF4α2, 

which is not surprising given that GR classically binds inverted repeat 1 (IR1; 

AGAACANTGTTCT) while HNF4α2 prefers DR1 response elements. Similarly, we see 

a broad range of PBM binding scores between HNF4α, COUPTF, and RXRα despite all 

three receptors having common binding motifs (DR1).  

 

Identification of aaSNPs Derived from ChIP-seq Peaks 

The Disease SNP-PBM is a generic design that can be used to test any given NR, 

or TF, for aaSNPs within the promoter region of disease-associated genes, but it does 
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have its limitations. Even though we examine the promoter region of the disease-

associated genes (-6000 to +1000 of the TSS), we do not know that the NRs actually bind 

to those promoters. Furthermore, we know that there are many NR binding sites in 

intergenic and intragenic regions that could be contribute to transcriptional regulation. 

Therefore, we designed the HNF4a CHIP-SNP PBM using ChIP-seq datasets for HNF4α 

from HepG2 and CaCo-2 cell lines, both of which express high levels of HNF4α. Even 

though we used all HNF4α ChIPseq peaks, there was room on the slide for RXRα 

CHIPseq data from HepG2 cells as well. All common SNPs from a 200 bp (±100 bp) 

window around peak center were extracted to create the HNF4α ChIP-SNP-PBM (Fig 

3.3A). As in the Disease-SNP design, we selected 125,000 SNPs and spotted both alleles 

with 14 nt of genomic sequence flanking each variant, and included the same set of 

negative controls. 

Three receptors were applied to this design, the two alternative promoter-driven 

isoforms of HNF4α (HNF4α2 and HNF4α8) and RXRα. This design resulted in a greater 

number of total binders as well as aaSNPs compared to the Disease SNP-PBM (total 

bidners for HNF4α2: 84,767 vs 28,415, respectively; aaSNPs for HNF4α2: 1,104 vs 277, 

respectively) (Fig 3.3B). The same was true for RXRα: (total binders for RXRα: 65,936 

vs 27,511, respectively; aaSNPs for RXRα: 822 vs 258, respectively) 

HNF4α8 had the largest ratio of aaSNPs identified compared to total binding 

alleles. While the HNF4α isoforms have identical DNA binding domains, we find that 

they only share 56.61% (HNF4α2) and 27.77% (HNF4α8) of their aaSNPs with each 
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other. These differences could be due either to subtle but real differences in DNA binding 

specificity, and/or to technical issues of the variance of the negative controls for that 

slide, resulting in both fewer binders as well as more aaSNPs. It should be noted that the 

HNF4α ChIP-seq datasets used to make this design were from HepG2, which expresses 

both P1- and P2-HNF4α, but mostly P1-HNF4α, and CaCo-2 differentiated and 

proliferative cells. 

 

RXRα shares fewer aaSNPs with HNF4α2 (24.13%) than with HNF4α8 (39.97%) 

but these represent a similar, albeit lower, percentage of the HNF4α2 and HNF4α8 

aaSNPs -- 17.66% and 14.32%, respectively (Fig 3.3B). It is interesting to note that 

Spearman’s coefficient for RXRα and HNF4α8 are worse (0.29, P-value: 2.2e-16) than 

between RXRα and HNF4α2 (0.70, P-value: 2.2e-16).  

Scatter plots of PBM binding scores for these receptors shows that the HNF4α 

isoforms bind relatively similarly to most alleles (Fig 3.3C, left). The similar PBM 

binding scores between HNF4α2 and HNF4α8 taken together with the distribution of 

many of the shared aaSNPs (green) overlaying HNF4α8-specific aaSNPs suggests that a 

less strict statistical analysis would likely reveal an even greater overlap between the two 

isoforms. 

Comparing RXRα to both HNF4α isoforms we find a broader range of PBM 

binding scores within each comparison. Highlighting unique (red, yellow, and blue) and 

common (purple) aaSNPs we can see that most of the RXRα-unique aaSNPs (red spots) 
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result in low PBM binding scores for HNF4α isoforms as seen by the vertical clustering 

of red (0,2.5) in the x-axis of both the HNF4α2 and HNF4α8 plots. Many of the HNF4α2 

and HNF4α8 aaSNPs are scattered vertically throughout the plot suggesting that while 

they significantly alter the binding of HNF4α isoforms, RXRα still binds many of these 

variants (Fig 3.3.C, right). 

 While both HNF4α and RXRα are known to bind DR1 motifs, these results show 

that there is a wide range of sequences derived from ChIP-seq datasets of both factors 

that bind the NRs. In comparing predicted HNF4α binding sites we find a few interesting 

features between the common, HNF4α-, and RXRα-specific aaSNPs. Many of the 

HNF4α-specific aaSNPs showed a genetic variant within the central “CAAAG” of the 

consensus HNF4α motif (Fig 3.4A). The aaSNPs shared between the two NRs generally 

resulted in genetic variants in the right half site, but still showed a preference for the 

“CAAAG” motif in the center of the motif (Fig 3.4B). Perhaps because of the preference 

for the “GGTCA” in the right half site by RXRα we also find that many of these shared 

aaSNPs disrupt a near perfect “AGGTCA” right half site. As expected, RXRα-specific 

aaSNPs have almost completely lost the central “CAAAG” that HNF4α prefers, but 

retain the “GGTCA” ending to the right half-site that is so prevalent in RXRα-specific 

motifs (Fig 3.4C). Considering the importance of the right half-site in the DR1 for 

RXRα-specific binding, we would have expected more aaSNPs to disrupt the last 4 nt of 

that motif. Nonetheless, we find most of the RXRα-specific aaSNPs in the first 2 nt of the 

half site “AGGTCA”. Thus, genetic variants that disrupt HNF4α-specific binding do so 
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via the central “CAAAG”, and those that disrupt RXRα-specific binding do so via the 

right half-site of DR1 motifs lacking a “CAAAG” motif. 

 

Identification of aaSNPs in NR Regulatory Pathways 

While the ChIP-SNP-PBM successfully identified a large number of genetic 

variants with the capability of altering the binding affinity of a NR, still missing was any 

information about the impact of the variants on gene expression. With the release of v6 of 

the GTEx Project we gained access to 97 RNA-seq and genotyped human liver samples. 

Utilizing the eQTLs calculated by the GTEx Project we identified the top 125,000 genetic 

variants correlated with the largest and most significant changes in gene expression of the 

most highly expressed genes in the liver (Slope ≥ 3, P-value ≤ 0.0001, FPKM ≥ 1) (Fig 

3.5A). As in the previous designs, both alleles for each variant were spotted with the 

flanking 14 nt, and spotted in quadruplicate. The same set of 400 negative controls from 

the previous designs were included as controls for the Liver GTEx SNP-PBM design. 

Since this design was not derived from any specific ChIP-seq binding profiles, we 

applied a wide array of NRs expressed in the liver in order to identify additional genetic 

variants that correlate with changes in gene expression and that alter the binding affinity 

for a NR. Overall, the total number of alleles with significant levels of binding (padj. ≤ 

0.01) were much lower than the previous ChIP-SNP-PBM design, but in a similar range 

as the Disease SNP-PBM (Fig 3.5B, top). The number of significant aaSNPs (padj. ≤ 

0.01 and Cohen’s ≥ 2) identified for each receptor was highly variable with the highest 
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number found for HNF4α2 (1,713) and the lowest number found for GR (48). A 

comparison of the significant aaSNPs between HNF4α2 and the other receptors show 

similar results as with the Disease SNP-PBM; namely, a small number of aaSNPs that 

disrupt more than one NR (Fig 3.5B, bottom). Plotting quantile normalized PBM binding 

scores for reference and alternate alleles of a genetic variant against themselves reveals 

that for most NRs there does not appear to be any allelic bias, except for HNF4α2 and 

GR (Fig 3.5C): HNF4α2 has a slight preference for the reference allele (1,113 vs 600) 

while GR has a preference for the alternate allele (20 vs 28). At first, these results might 

suggest that HNF4α2 binds the most prevalent alleles, perhaps due to conservation of 

functional binding sites. However, the reference allele of a SNP is not always the major 

frequency allele most commonly found in a population. Why these two NRs would show 

any preference to a SNP designation given based on genotyping the reference genome is 

beyond us at this point, but would warrant further research. 

To visualize the overlap in the aaSNP data between the receptors, scatterplots of 

PBM binding scores were generated as done for the previous designs (Fig 3.6). The 

profiles between HNF4α2 and the other NRs were strikingly similar to those from the 

Disease-SNP design: this is not unexpected as both PBMs contain genomic sequences 

with unknown TF DNA specificity from the human genome. 

Highlighting significant aaSNPs in each plot shows that most of the variants, 

while capable of altering the DNA binding affinity of one receptor, do not alter the 

binding of a second NR. This can be easily seen in the COUPTF vs HNF4α2 plot where 
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most COUPTF-specific aaSNPs (blue spots) cluster on the x-axis at (0,2), and likewise 

most HNF4α2-specific aaSNPs (yellow spots) cluster on the y-axis at (0,2). Again, the 

NR that is most divergent from HNF4α2 in this dataset is GR, which binds a different 

half site from HNF4α (AGAACA vs AGGTCA) and as an inverted, not a direct, repeat. 

While all the genetic variants chosen for this PBM design were statistically 

significant eQTLs in human livers, and while the PBM results show that >1000 

significantly disrupt DNA binding affinity of NRs expressed in the liver, we still needed 

to verify that the related eGenes can actually be regulated by the cognate receptor. To 

accomplish this, we examined NR regulatory datasets from the TM database to identify 

potential target genes for each NR. Statistically significant changes in gene expression in 

either knockout or ligand-treated studies were cross-referenced with the eGenes from 

GTEx based on the PBM results. HNF4α2 showed the largest number of target genes 

implicated in this aaSNP-eQTL analysis (125), while the other receptors showed 11 or 

less, with GR resulting in no overlap (Fig 3.7A). The top 25 aaSNP-eGene comparisons 

for HNF4α2 based on PBM padj are shown in Fig 3.7B. These (and 100 other aaSNP-

eGenes) all have statistically significant aaSNP values from the PBM, eQTL values from 

GTEx and fold change in TM based on HNF4α knockout. For example, in SCG5 the alt 

allele of “15_33065311_G_A_b37” decreases HNF4α2 binding (Cohen’s 4.31, padj 

4.57e-04) and results in a an associated decrease in expression in GTEx and is a verified 

positive target of HNF4α2 in TM being downregulated -5.03-fold in HNF4α knockout 

experiment. It is interesting to note that all the top 25 aaSNP-eGenes in this table report 
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stronger binding of HNF4α2 to the reference allele, while GTEx and TM associations are 

quite mixed in their directionality. 

We find two aaSNPs with ≥1 eGene associated with them, 6_32610868_C_T_b37 

(C4A and HLA-DQB1) and 6_32633354_C_CT_b37 (C4A and TAPBP), and four 

separate aaSNPs correlated with changes in gene expression of complement gene C4A 

(Fig 3.7B). 

To highlight the advantages of the PBM approach for identifying aaSNPs in vitro 

with potential in vivo implications, we compared the impact of reference and alternate 

alleles within the dataset. The eQTL beta score, or slope as it is referred to in GTEx v7, 

indicates whether the associated transcripts are up- or down-regulated in individuals with 

the alternate allele. Similarly, we can indicate whether the alternate alleles increase or 

decrease the DNA binding affinity of a given NR. After identifying the regulatory role of 

the NR on a given target gene using the TM dataset, we can identify aaSNPs with 

positive or negative correlations with the changes in gene expression. 

We find two positive correlated eQTLs with variants 7_940267_T_C_b37 and 

6_32610868_C_T_b37. The former showing increased expression of PRKAR1B and 

increased DNA binding affinity with the alternate allele (C), and a -2.08-fold change in 

expression in HNF4α mouse liver knockout, suggesting that PRKAR1B is activated by 

HNF4α2 (Fig 3.8A). The genetic variant 7_940267_T_C_b37, with minor allele 

frequency T=0.331, is associated with an increase in PRKAR1B gene expression in 

individuals with the alternate allele and the PBM results show increased DNA binding 
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affinity with the alternate allele. This means that in an individual carrying the alternate 

allele, 66.9% of the population, HNF4α2 will bind better and expression of PRKAR1B 

will increase. PRKAR1B encodes protein kinase cAMP-dependent type I regulatory 

subunit beta, a regulatory subunit of cAMP protein kinase A (PKA) and is involved in the 

signaling of the second messenger cAMP. It has been shown that HNF4α DNA binding 

activity can be inhibited by PKA phosphorylation of the DBD (Viollet et al., 1997), 

suggesting individuals with the alternate allele could see decrease HNF4α binding 

activity in response to cAMP inducers. 

The variant 6_32610868_C_T_b37 is associated with a decreased expression of 

C4A and decreased DNA binding affinity with the alternate allele (T), and a -3.08-fold 

change in expression in HNF4α2 mouse liver knockout, suggesting that C4A is positive 

target of HNF4α2 (Fig 3.8B). This variant, with minor allele frequency T=0.206, is 

associated with a decrease in C4A gene expression in individuals with the alternate allele 

and PBM results also show decreased DNA binding affinity for this allele. This means 

someone with the alternate allele, 79.4% of the population, will have reduced HNF4α2 

binding and the expression of C4A will decrease. The C4A gene encodes complement 

C4A, the acidic form of complement factor 4 and is essential for the classical 

complement pathway. Proteolytic degradation cleaves C4 into three chains (alpha, beta, 

and gamma). The alpha chain, C4a anaphylatoxin, an antimicrobial peptide and a 

mediator of local inflammation. Deficiency of C4A is associated with systemic lupus 

erythematosus and type I diabetes mellitus. 
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In a third example, the correlation between the PBM and GTEx data holds even 

for a negative target gene of HNF4α2. CTSS is up-regulated 5-fold in HNF4α knockout in 

mouse liver data, suggesting that HNF4α2 represses the expression of CTSS (Fig 3.8C). 

The genetic variant 1_150821847_G_A_b37 is associated with an increase in CTSS gene 

expression in individuals with the alternate allele and the PBM results show disruption of 

DNA binding affinity with the alternate allele. Thus, in individuals carrying the alternate 

allele, HNF4α2 will bind less well and expression of the gene will increase. CTSS 

encodes cathepsin S, a member of the peptidase C1 family and a lysosomal cysteine 

proteinase that may participate in the degradation of antigenic proteins to peptides for 

presentation on MHC class II molecules. It is not too surprising that we find aaSNPs in 

genes such as CTSS and C4A that are part of the immune system, which is known to have 

a high degree of variability between individuals. Indeed, there are a total of four aaSNP-

eQTLs in C4A among the top 25 most statistically significant aaSNPs for HNF4α2 (Fig. 

3.7B). 

 

Discussion 

Over the past decade GWAS studies have identified thousands of noncoding 

genetic variants associated with various human diseases and phenotypes. An important 

step in elucidating the mechanism by which these variants may impact gene expression is 

to determine whether the variants disrupt TF recruitment to promoters and enhancers. 

Other techniques to measure protein-TF interactions (EMSA gel shifts, DNAse 
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footprinting, ChIP, and Yeast two-hybrid assays) prove to be either low-throughput or too 

time-consuming to generate data for multiple TFs in parallel. PBMs have the advantage 

of simultaneous measurement of DNA binding affinity of a TF against tens of thousands 

(15,000-225,000) of DNA sequences in a single experiment. Additionally, once a slide is 

designed the experiment can be repeated for additional replicates, or compared across any 

TF with western blot quality antibody.  

Potential in vivo approaches to determine DNA binding affinity of a TF involve 

chromatin immunoprecipitation (ChIP) to cross-link and pull down genomic DNA 

fragments bound a given TF. The results of these experiments will differ largely based on 

cell conditions and cell type. Additionally, to analyze rare genetic variants many samples 

may be required until a sample is processed from an individual carrying the rare minor 

allele. With the PBM technology, a rare minor allele with flanking DNA sequence can be 

printed on the slide and analyzed for DNA binding affinity with any number of TFs. This 

makes PBMs the ideal technique for initial identification of aaSNPs from any GWAS and 

eQTL datasets. 

Our results show that the “broad” aaSNP approaches, such as those used in the 

Disease SNP-PBM and Liver GTEx PBM designs derived from genomic sequence with 

unknown TF binding specificity are useful in their wide application towards many TFs, 

but are limited in their power to identify as many aaSNPs as possible. This can be seen by 

the lower aaSNP/binder ratio in both broad designs compared to higher ratios seen in the 

HNF4α ChIP-SNP-PBM.  
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The Disease SNP-PBM results show that for significant aaSNPs there is very little 

overlap between two NRs, except for TRβ1 and RXRα which are known to 

heterodimerize: nearly 43% of RXRα aaSNPs also disrupt binding of TRβ1 (Fig 3.2A). A 

major drawback of the Disease SNP-PBM is that without an in vivo DNA binding assay, 

such as ChIP-seq, we lack any knowledge about the physiological relevance of any 

aaSNPs identified from the PBM. These results can be easily cross-referenced with ChIP-

seq datasets, if available, to verify that a given TF does in fact bind the locus in vivo. 

CHIP-seq results can also inform about tissue- or condition-specific binding in the 

promoters of disease-associated genes. 

The HNF4α ChIP-SNP-PBM attempts to improve upon the previous design by 

coupling the genetic variant selection with ChIP-seq datasets for HNF4α2 from HepG2 

and CaCo-2 cell lines, and RXRα from HepG2. While the scope of this design allows us 

to identify aaSNPs from in vivo DNA binding data, there may be more HNF4α and 

RXRα loci from different tissues and conditions that are not captured from in these three 

datasets. As a result of this more narrow approach we identified a much higher ratio of 

aaSNPs to binders for both HNF4α isoforms. In contrast, the aaSNP/binder ratio was not 

increased in the RXRα dataset, which could be due to either noisier data from the slide or 

to the fact that most of the sites were from HNF4a CHIP-seq peaks, not RXRa peaks. 

Perhaps the most interesting result from this experiment was the broad range of 

PBM binding scores between HNF4α isoforms and RXRα. Looking more closely at the 

aaSNPs shared and unique to both NRs reveals some insight into why the two receptors 
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do not bind so similarly. Many of the RXRα-specific aaSNPs are for DNA sequences 

which do not contain very strong HNF4α motifs, as noted by the lack of “CAAAG”, but 

still contain a strong right half site “NGGTCA” that is critical for RXRα binding. 

Similarly, the HNF4α2-specific motifs contain the “CAAAG” preferred by HNF4α2 but 

have slightly degenerated right half sites like “AGTCCA” which do not contain the 

“TCA” in the last three positions that RXRα seems to prefer. It is interesting to note that 

while the scope of the project is to identify common genetic variants that can alter DNA 

binding affinity of NRs for potential impact on transcriptional regulation, the data can 

still be used to further define NR-specific motifs, as we did previously (Fang et al., 

2012).  

 

Linking aaSNPs to in vivo gene expression 

The Liver GTEx PBM was successful in identifying many aaSNPs associated 

with changes in gene expression of target genes of HNF4α2. Many of the other NRs were 

less successful, in part due to the smaller TM datasets available but also potentially 

because of the broad approach taken in the design. 

As the GTEx project continues to grow we should gain more power in identifying 

eQTLs in the liver, but with nearly 11 million genetic variants in total we will need to 

continue to be scrutinous in our selection of eQTL for testing. ChIP-seq datasets can help 

inform designs to select genetic variants from regions where NRs bind in normal liver 

tissue. Alternative approaches could include first selecting a set of target genes for each 
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NR and filling the design with all significant eQTLs related to those genes. If that number 

does not reach 125,000, then the design could be completed with the next most 

significant eQTLs that fall within known in vivo binding sites, but we are currently 

limited in the number of ChIP-seq datasets for TFs from normal tissues publicly 

available. 
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Figure 3.1 Identification of aaSNPs in Promoter Regions of Disease-Associated 

Genes 

(A) Schematic of protein binding microarray (PBM) and workflow. (B) Disease SNP-

PBM design. About 3000 disease associated genes were collected from the Genetic 

Association Database. All common SNPs that appear in at least 1% of the population or 

are 100% non-reference were selected from a -6kb to +1 kb window around TSS to a 

total 125,000 SNPs. Both reference (ref) and alternate (alt) alleles spotted in 

quadruplicate generating a total of 1 million (1M) spots. Included in the design were 400 

random DNA control sequences to measure a population of non-specific binding. 

Diagram showing total number of SNPs, alleles, and replicates spotted on 1M design, 

with image of COUPTFII binding intensities as seen on microarray scanner. (C) Shown 

are the total number of significantly bound alleles (adjusted P-value; padj. ≤ 0.01) and 

total number of affinity altering SNPs (aaSNP; padj. ≤ 0.01 & Cohen’s ≥ 2) for the five 

NRs applied to this design. Cohen’s D statistic was calculated using the standard 

deviation of 400 random controls. The ratio of aaSNPs to total binders is also shown. 
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Figure 3.2 Low Occurrence of aaSNPs Disrupting Multiple Receptors in Disease-

SNP PBM 

(A) Venn diagrams comparing aaSNPs identified for each NR based on PBM binding 

scores. A difference of binding between reference and alternate alleles is counted as a 

single aaSNP (padj. ≤ 0.01 & Cohen’s ≥ 2). (B) Scatterplots of quantile normalized PBM 

binding scores, each point is the average binding score of a single allele. All binders 

(padj. ≤ 0.01) plotted in dark grey, ref and alt alleles for aaSNPs are highlighted with 

same coloring from Venn diagrams. Common aaSNPs are highlighted with an alternate 

color for each grid. 
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Figure 3.3 Identification of aaSNPs in HepG2 and CaCo-2 ChIP-seq Peaks 

(A) HNF4α ChIP-SNP-PBM design. All common SNPs within ±100 bp of peak center in 

HNF4α ChIP-seq peaks from HepG2 and CaCo-2 cell lines, and RXRα ChIP-seq peaks 

from HepG2 cell line were spotted with reference and alternate alleles in quadruplicate. 

Roughly 125,000 total SNPs were selected for a 1 million spot slide. (B) Top, three NRs 

were applied to this design; alternative-promoter isoforms of HNF4α, HNF4α2 and 

HNF4α8, and RXRα. Reported are total number of significantly bound alleles (padj. ≤ 

0.01), number of significant aaSNPs (padj. ≤ 0.01 & Cohen’s ≥ 2), and the ratio of 

aaSNPs to total binders. Bottom, Venn diagrams of aaSNPs identified between NRs. (C) 

Scatter plots of quantile normalized comparisons. All significant binders (padj. ≤ 0.01) 

plotted in dark grey, reference and alternate alleles for aaSNPs are highlighted with same 

color code from venn diagrams. aaSNPs common to both NR are highlighted with an 

alternate color for each grid. 

  

  



 
 
 
 

 
 
 
 121 

  



 
 
 
 

 
 
 
 122 

Figure 3.4 ChIP-SNP-PBM Examples 

Shown are examples of aaSNPs (padj. ≤ 0.01 & Cohen’s ≥ 2) from the HNF4a CHIP-

SNP PBMs. (A) Spotted test sequences and PBM binding scores for HNF4α2-specific 

aaSNPs. Minor allele frequency and nearest TSS with distance shown below dbSNP rs 

number. HNF4α2 binding scores in green, RXRα binding scores in red. Underlined 

sequence represents best HNF4α motif alignment with consensus HNF4α2 motif shown 

below. (B) As in (A) but with aaSNPs common to HNF4α2 and RXRα with HNF4α2 

motif shown above and RXRα motif shown below. (C) as in (A) but with aaSNPs unique 

to RXRα and RXRα motif shown below.  
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Figure 3.5 Identification of aaSNPs in Tissue-Specific eQTLs 

(A) Liver GTEx SNP-PBM design. All significant SNP-gene associations were extracted 

from GTEx project v6 with effect size ≥ 0.3 (Slope), P-value ≤ 0.0001, and median 

RPKM ≥ 1 across all liver samples. (B) Top, seven nuclear receptors were applied to this 

design. Reported are total number of significantly bound alleles (padj. ≤ 0.01), significant 

aaSNPs (padj. ≤ 0.01 & Cohen’s ≥ 2), and ratio of aaSNPs to total binders. Bottom, Venn 

diagrams of comparisons of aaSNPs identified for multiple NRs. (C) Scatterplots of 

quantile normalized PBM binding scores of reference alleles plotted against alternate 

alleles. Highlighted (black) spots are significantly different (padj. ≤ 0.01 & Cohen’s ≥ 2; 

aaSNPs). 
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Figure 3.6 Distribution of aaSNPs between receptors 

Scatterplots of quantile normalized PBM binding scores for each allele. All binders (padj. 

≤ 0.01) plotted in dark grey, ref and alt alleles for aaSNPs are highlighted with same 

coloring from Venn diagrams in Fig 3.5. Common aaSNPs are highlighted with an 

alternate color for each grid. 
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Figure 3.7 eQTLs of Nuclear Receptor Target Genes 

(A) Venn diagrams of distinct gene symbols from all significant aaSNPs (padj. ≤ 0.01 & 

Cohen’s ≥ 2) for the indicated NR cross-referenced with distinct gene symbols from 

related Transcriptomine (TM) NR regulatory networks. (B) Table of the 25 most 

significant (based on PBM padj.) aaSNPs identified for HNF4α2 with associated TM 

fold-change values based on HNF4α knockout data. Green columns refer to PBM-based 

data; GTEx/Spot ID, ref and alt allele PBM binding scores, Cohen’s D effect size of 

aaSNP, observed effect (ref-alt), and FDR corrected P-values (padj.). Yellow columns 

refer to GTEx-based data (v6); P-value and Beta (Slope) of the eQTL analysis, median 

RPKM, and gene symbol of associated eGene. Blue columns refer to Transctiptomine-

based data; fold change of eGene in HNF4α knockout and P-value associated with effect.  
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Figure 3.8 Examples of aaSNP-eGenes for HNF4α2 

(A) Left, normalized gene expression associated with genotype (reference, heterozygous, 

alternate) for eQTL linking 1_150821847_G_A_b37 to CTSS. Middle, average PBM 

binding scores represented as mean ± standard error of the mean. Right, Summary and 

motif analysis of aaSNP. Shown below eQTL id are GTEx derived stats for Beta/Slope 

and P-value, Cohen’s effect size and padj associated with aaSNP, and Transcriptomine 

(TM) reported expression change of gene in HNF4α knockout. (B) as in (A) but with 

aaSNP-eQTL: 7_940267_T_C_b37 to PRKAR1B. (C) as in (A) but with aaSNP-eQTL: 

6_32610868_C_T_b37 to C4A. 
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Abstract 

Alzheimer’s disease is an age-associated neurodegenerative disease characterized by 

progressive loss of memory and cognition. Alzheimer’s is the most common form of 

dementia in North America with an estimated 5.4 million Americans afflicted in 2016 

and is anticipated to grow to 13 million by the year 2050. Peroxisome proliferator-

activated receptors (PPARs) are ligand-sensitive transcription factors and members of the 

nuclear receptor superfamily; they are promising drug targets for neurodegenerative 

disorders such as Parkinson’s, Alzheimer’s, Huntington’s, and ALS diseases. PPARγ is a 

member of the PPAR subfamily and has been shown to regulate lipid and glucose 

metabolism; agonists of PPARγ exhibit anti-inflammatory and antioxidant effects. With 

the growing rate of occurrence of Alzheimer’s disease, PPARγ agonists will be used 

against an increasingly wider population of individuals with rare and common genetic 

variations. In this chapter, we developed a high throughput DNA binding assay called 

protein binding microarrays (PBM) to better define the DNA sequences to which PPARs 

bind. We created a PPARγ PBM by data-mining single nucleotide polymorphisms (SNP) 

from PPARγ adipose tissue ChIP-seq and Alzheimer’s genome wide association studies 

(GWAS) in order to identify SNPs that alter the ability of PPARs to bind DNA, referred 

to as affinity altering SNPs (aaSNP). This PBM technology allowed us to identify >2,000 

aaSNPs with a high degree of confidence (padj. ≤ 0.01), and a cluster of PPARγ aaSNPs 

within the APOE gene locus. 
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Introduction 

The peroxisome proliferator-activated receptors (PPARα/δ/γ) are ligand-sensitive 

nuclear receptors (NR). PPARα/δ play a key role in fatty acid metabolism and energy 

homeostasis, while PPARγ plays a key role in insulin signaling and glucose metabolism. 

The PPARs have also been implicated in many human diseases, such as diabetes, cancer, 

lung disease, and several neurodegenerative disorders like Alzheimer’s disease. 

 All three members of the PPAR family heterodimerize with retinoic acid receptor 

(RXR) to bind DNA sequences characterized as direct repeat 1 (DR1; 

AGGTCANAGGTCA) response elements; their endogenous ligands are lipid-derived 

substrates. In the absence of ligands, PPARs associate with co-repressor complexes to 

inhibit expression of target genes. Each member plays a role in fatty acid and glucose 

metabolism, but differ in their tissue-specificity and transcriptional activity. PPARα is 

primarily expressed in kidney, liver, muscle and heart tissues and is known to play a key 

role in fatty acid oxidation. In a fasted state, PPARα is activated by adipose-derived fatty 

acids promoting the synthesis of ketone bodies via fatty acid β-oxidation in the liver. 

PPARδ is ubiquitously expressed throughout the body where it promotes fatty acid 

metabolism and suppresses macrophage derived inflammation. PPARγ is primarily 

expressed in adipose tissue and is known to regulate adipocyte differentiation, fatty acid 

storage, and glucose metabolism. 

PPARγ has been shown not only to be a master regulator of adipogenesis and 

lipid metabolism (Lee and Ge, 2014; Oger et al., 2014) but also a negative regulator of 
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the cell cycle (Lin et al., 2007). PPARγ agonists have been shown to increase expression 

of tumor suppressor PTEN (Teresi et al., 2006), and activation of PPARγ inhibits 

proliferation of carcinoma cells (Borbath and Horsmans, 2008; Fukumoto et al., 2005; 

Grommes et al., 2006; Shappell et al., 2001). PPARγ agonists have also shown increased 

efficacy, partly due to anti-inflammatory effects, of various neurodegenerative diseases 

such as Parkinson’s, Alzheimer’s, and amyotrophic lateral sclerosis (ALS) (Gray et al., 

2012; Heneka et al., 2011; Schintu et al., 2009). 

Alzheimer’s disease is a neurodegenerative disorder characterized by the gradual 

loss of memory and cognitive function (Salmon and Bondi, 2009; Serrano-Pozo et al., 

2011). It is one of the most prevalent diseases in America affecting nearly 5.4 million 

adults and has become a serious health concern with the aging demographic and longer 

life spans world-wide (Lutz et al., 2008). There is growing evidence suggesting that 

individuals with type 2 diabetes have significantly increased risk of developing 

Alzheimer’s, and vice versa. Inflammation, insulin resistance, and mitochondrial 

dysfunction are common pathological features of both Alzheimer’s and type 2 diabetes. 

PPARγ is expressed at low levels in the brain in normal conditions, but there is evidence 

it can be up-regulated in Alzheimer’s (de la Monte and Wands, 2006). Over the past 

decade PPARγ agonists have been used to treat the symptoms of Alzheimer’s disease due 

to PPARγ’s ability to increase insulin sensitivity and inhibit inflammation, and, as a 

result, improve cognition. While PPARγ agonists ameliorate Alzheimer’s pathology by 

improving memory and cognition, they have not been able to cure the disease. 
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Materials and Methods 

Preparation of nuclear extracts for Protein Binding Microarrays 

Nuclear extracts were prepared as in Chapter 2. Extracts were prepared from 

COS-7 cells transiently co-transfected with Flag-tagged human PPAR (PPARα 

(NM_005036), PPARδ (NM_006238) or PPARγ (NM_005037)) and untagged human 

RXRα. Ligands were added to media 2h before harvesting: rosiglitizone (1µM, Cayman 

Chemicals) for PPARγ; GW7647 for PPARα (0.1µM, Cayman Chemicals) and GW0742 

for PPARδ (0.1µM, Cayman Chemicals). The RXRa ligand, 9-cis retinoic acid (Sigma) 

was simultaneously also added to the cells at the same concentration as each PPAR 

ligand. 

  

Protein Binding Microarrays 

Protein Binding Microarrays (PBMs) were designed and processed as in Chapter 

2 and in Bolotin et al. (Bolotin et al., 2010). Protease inhibitor (Sigma) and ligands were 

added at all incubation steps starting from hybridization. 1µM of each ligand was added 

to all washes. After purification, PPAR protein complexes were applied to arrays and 

incubated for 15h at 4°C, arrays were washed 3x for 2 min 30 sec each with PBS plus 

0.1% Tween 20. Mouse monoclonal anti-Flag antibody (Ab) (Sigma, #F3165) diluted 

1:100 in PBS buffer plus 2% non-fat milk, 0.1% Tween 20 were applied directly to the 

slide and incubated for 48h at 4°C, followed by a conjugated secondary Ab (GαM IgG 

[H+L] DyLight 550, Pierce #84540) diluted 1:50 (as described above) and then incubated 



 
 
 
 

 
 
 
 138 

for 4h at room temperature. Three washes, 2 min 30 sec each in PBS plus 0.1% Tween 20 

were performed after each antibody incubation. The anti-Flag Ab is likely detecting 

PPAR:RXR heterodimeric complexes as PPAR in the absence of RXR does not bind 

DNA well. 

  

PPARγ ChIP-SNP PBM Design 

The PPARγ ChIP-SNP PBM was designed by extracting all common SNPs (1% 

of the population or 100% non-reference, dbSNP v142) from eight human PPARγ ChIP-

seq datasets -- five human adipocyte tissue samples and three human adipocyte cell lines, 

two from SGBS cells and one from hASC cells (Mikkelsen et al., 2010; Schmidt et al., 

2011; Soccio et al., 2011, 2015). Human adipose samples were all obese (BMI>30) 

females, aged 26-57 years, and two had pre-diabetes. ChIP peaks were filtered with 

length ≤ 800 nt and genetic variants were selected from a 170-nt window around the peak 

center or a 170-nt window in the middle of peak if no peak centers were reported. 

Reference and alternate alleles, up to four total alleles, were selected as 29-mers with 14-

nt flanking genomic DNA around the variant to accommodate a full direct repeat 1 (DR1; 

13nt, AGGTCAAAGGTCA) binding site. Two Alzheimer’s genome wide association 

studies (GWAS) databases were also mined for genetic variants associated with 

Alzheimer's disease: The Late Onset Alzheimer’s Disease (LOAD, 1e-5 pval) and 

International Genomics of Alzheimer’s Project (IGAP, 1e-10 pval) totalling roughly 965 

variants (Lambert et al., 2013; Naj et al., 2011). Finally, 600 in vivo-identified mouse 
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aaSNPs for PPARγ were included in the PBM to compare to in vitro PPARγ binding 

(Soccio et al., 2015). These aaSNPs were derived from adipose PPARγ ChIP-seq datasets 

from two distantly related mouse strains that show differences in susceptibility to insulin 

resistance and obesity (C57Bl/6J and 129S1/SvlmJ). As a negative control, 400 random 

29-mer DNA sequences generated as in Chapter 3 were included in the design. All alleles 

plus negative controls were spotted in quadruplicate on the slide, resulting in a one-

million spot design. 

 

Graphical and statistical analysis 

Due to the technical variability of the PBM slides, some quality control and 

normalization steps were necessary. Slides were spatial normalized using the MANOR 

library in R. Averages and standard deviation were calculated across replicated spots. To 

identify test sequences with potential outliers, a coefficient of variation (cv) adjusted for 

small sample sizes was calculated with non-log values as follows: 

𝑠𝑑
𝑎𝑣𝑔 ∗ (1 +

1
4𝑛 ) 

Any set of replicated spots with cv ≥ 0.5 are selected for outlier removal with a 

custom Python script. The distance from lowest to second highest score, and distance 

from highest to second lowest score are measured and compared within each group of 

four replicates. Outliers were removed with the following criteria; lowest value removed 

if first comparison was the largest, highest value removed if second comparison was the 
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largest. Averages, standard deviation, and cv of the remaining three replicates are 

returned to the dataset. 

To calculate binding levels of each test sequence in the experiment the entire 

population of negative controls are averaged together and used as a control population. 

Each individual test sequence is measured against the control with a one-tailed Student’s 

T-test. Reported P-values are corrected for multiple hypothesis testing using the 

Benjamini-Hochberg (“fdr”) option with the p.adjust function from the stats library in R. 

These values are reported as “padj.” or adjusted P-values. 

  To calculate affinity altering SNPs (aaSNPs), the PBM binding score of the major 

and minor (ref and alt) allele averages were compared with a two-tailed Student’s T-test, 

using standard deviation from control population as pooled variance. P-values were 

corrected with Benjamini-Hochberg option of the p.adjust function as above. To measure 

the effect size between the two alleles a Cohen’s D value was calculated by dividing the 

difference of means by the standard deviation of the pooled negative controls. 

  All scatterplots were generated in R with ggplot2 library. All receptors applied 

within a single design were quantile normalized with ‘preprocessCore’ package in R, 

before plotting. Since aaSNPs were calculated prior to quantile normalization their 

significance was matched to quantile normalized values before highlighting on the 

scatterplots. Venn diagrams were generated with the ‘VennDiagram’ package in R. 
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Results 

Identification of affinity altering SNPs (aaSNPs) in PPAR DNA binding sites 

To identify genetic variants that impact the DNA binding affinity of the PPAR 

subfamily of NRs, we designed a 1 million (1M) spot PBM. Approximately 108,000 

Common SNPs (≥1% in population or 100% non-reference) from dbSNP v142 were 

extracted from a 200-nt window (±100 nt) around the peak center of eight PPARγ ChIP-

seq datasets: three from human adipocyte cell lines and five from human adipocyte tissue 

samples. Roughly 965 genetic variants associated with Alzheimer’s were included from 

two Alzheimer’s GWAS datasets, the Late Onset Alzheimer’s Disease (LOAD; 1e-5 

pval) and International Genomics of Alzheimer’s Project (IGAP; 1e-10 pval). Finally, 

600 in vivo mouse PPARγ aaSNPs (Soccio et al., 2015) were included as controls to 

compare to the in vitro binding. Each test sequence is replicated on the slide in 

quadruplicate to allow for the single removal of an outlier in case of technical variability 

of the slide (Fig 4.1A). 

The PPAR subfamily of NRs (α,δ,γ) were applied to the PBM as heterodimers 

with RXRα. Results of the total number of significantly bound alleles (Binders, padj. ≤ 

0.01, 14,470 to 24,079) and number of affinity altering SNPs (aaSNPs, padj. ≤ 0.01 and 

Cohen’s ≥ 2, 654 to 2,108) are given in Fig 4.1B. PPARγ showed the highest ratio of 

aaSNPs/binders with 8.755% (Fig 4.1B), likely because the datasets mined were all 

PPARγ ChIP-seq with the exception of the GWAS variants. The aaSNPs for each 

receptor were compared against the other two family members: considerable overlap was 
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found. PPARα and PPARδ had 256 common aaSNPs (39.14% of the 654 total aaSNPs 

for PPARα); PPARα and PPARγ had 214 common aaSNPs (32.7% of PPARα), while 

PPARγ and PPARδ share more than twice that at 507 (34.4% of PPARδ and 24.1% of 

PPARγ) (Fig 4.1B).  

To visualize the aaSNPs distributed between NRs, scatterplots were generated 

showing the entire population of test sequences for each receptor and highlighted 

significant aaSNPs. PPARα and PPARδ show the most similar distribution of PBM 

binding scores across the entire design (Fig 4.2A). It is interesting to note that sequences 

with the highest PBM binding scores were bound equally well by both receptors, 

resulting in a large number of common aaSNPs (magenta spots). Both NRs show small 

groupings of unique aaSNPs in the range of (0,2) that were not bound well by the other 

receptor. PPARγ shows a very different binding profile compared to both PPARα and 

PPARδ as seen by the wide distribution of PBM binding scores (Fig 4.2B/C). Both 

PPARα- and PPARδ-specific aaSNPs show large clusters binding moderately well (0,2) 

on the x-axis with very poor binding for PPARγ on the y-axis. Nonetheless, even with 

these PPAR comparisons many of the considerable number of common aaSNPs have 

high PBM binding scores for both receptors (Fig 4.2B/C). The close similarity in DNA 

binding specificity for PPARα and PPARδ, as well as the greater difference with PPARγ, 

could be due to differences in the respective DNA binding domains (DBD) -- PPARα 

differs from PPARδ by nine amino acids while both PPARα and PPARδ differ from 

PPARγ by 11 aa (Fig 4.S1). Interestingly, most of the differences with PPARγ are in the 
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second zinc finger which is involved in heterodimerization (Tsai and O’Malley, 1994). 

We have shown previously that just one amino acid change in a critical region of a NR 

DBD can lead to considerable changes in binding of a large number of sequences that are 

easily detected in the PBMs (Fang et al., 2012). 

 

PBM aaSNP identification is validated by in vivo results 

To measure the ability of the high-throughput PBM methodology to identify 

aaSNPs in vitro that might be relevant in vivo, 600 in vivo mouse PPARγ aaSNPs were 

included in the design. Adipose PPARγ ChIP-seq datasets from two distantly related 

mouse strains that show differences in susceptibility to insulin resistance and obesity 

(C57Bl/6J and 129S1/SvlmJ) were compared to identify allele-specific binding that 

disrupted predicted PPARγ binding in vivo (Soccio et al., 2015). Reference and alternate 

alleles along with 14-nt flanking sequences from the mouse reference genome (mm9) 

were spotted on the PPARγ ChIP-SNP-PBM. The human PPARγ PBM successfully 

identified 125 (21.18%) of the in vivo mouse PPARγ aaSNPs (padj. ≤ 0.01 and Cohen’s ≥ 

2) (Fig 4.3A). This is a considerable success rate considering that the PBM was probed 

with human PPARγ expressed in monkey kidney cells (COS-7) while the in vivo aaSNPs 

were identified in the context of mouse adipose tissue, although the human and mouse 

PPARγ are 99% identical and the DBD is 100% identical.  

In contrast, human PPARα and PPARδ identified fewer of the murine PPARγ 

aaSNPs: 36 (6.1%) and 61 (10.33%), respectively. 
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Visualizing the shared mouse PPARγ aaSNPs for each receptor on scatterplots of 

PBM binding scores for the human receptors shows that many of the PPARα-specific 

mm9 aaSNPs (yellow lines) had very high binding scores for PPARγ, but did not show 

enough of a difference between the alleles to be considered a shared aaSNP (Fig 4.3B).  

Considering the source of these aaSNPs was from PPARγ ChIP peaks it is not 

surprising to find so many PPARγ-specific aaSNPs essentially non-binding for PPARα as 

seen by the cluster of vertical blue aaSNPs in the left side of the plot. Similar trends in 

binding can also be seen between PPARγ and PPARδ (Fig 4.3C). In contrast, PPARα and 

PPARδ, with such similar binding profiles, show many more shared aaSNPs (magenta 

lines) as well as many unique aaSNPs (yellow and red lines) along the diagonal with 

trajectories similar to the shared aaSNPs but not quite reaching the threshold of 

significance. 

 

Alzheimer’s GWAS aaSNPs 

Between the two Alzheimer’s GWAS studies there was a total of 965 genetic 

variants that were tested in the PBM for their ability to disrupt DNA binding of all three 

PPAR receptors. Using relatively strict significance thresholds (padj. ≤ 0.01 and Cohen’s 

≥ 2) we successfully identified 45 aaSNPs (PPARα: 5; PPARδ: 17; PPARγ: 23), of which 

seven were shared with more than one receptor, resulting in a total of 36 unique aaSNPs 

that alter the ability of one or more PPAR to bind DNA (4.6% of the 965 total) (Fig 

4.4A). Annotating each variant to find the nearest TSS we noticed that 19 of these 
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GWAS aaSNPs were located on chromosome 19, and of those 19, there were 10 aaaSNPs 

within a 100 kb window of APOE, the gene most highly linked to Alzheimer’s (Yu et al., 

2014) (Fig 4.4B). When we overlay these data with histone marks from the ENCODE 

project, three of these variants fall within H3K4Me1 marks, which are often found near 

regulatory elements (Fig 4.4B, blue arrows). Looking more closely at the two aaSNPs 

closest to the APOE TSS we find that the PPARγ-specific aaSNP rs440446, which falls 

within the first intron of APOE, also sits directly within H3K4Me1, H3K27Ac, and 

H3K4Me3 histone marks that are often found near active regulatory elements and 

promoters (Fig 4.4C). The sequence of the minor allele (C) of rs440446 bound with a 

relatively high PBM score of 3.8, while the major allele (G) did not (score = 0.24) (padj 

0.001, Cohen’s D 4.42). This suggests that 37.3% of the population carrying the minor 

allele may have increased PPARγ binding at the APOE locus, resulting in greater 

expression of APOE and hence less Alzheimer’s. Indeed, Transcriptomine shows that 

pioglitazone, a ligand for PPARγ, increases the expression of Apoe 7.2-fold while 

rosiglitazone, another PPARγ ligand, increases it 5.9-fold in mouse adipocytes; 

rosiglitazone also increased expression of APOE in human dendritic cells by 3.6-fold. 

Whether rs440446 plays a role in the PPARγ-directed regulation of APOE in humans 

remains to be determined. Transcriptomine also shows that Apoe expression is decreased 

in a PPARδ KO, indicating that Apoe is also a target of PPARδ: our PBM data suggests 

that it might be a direct target. 
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We next examined whether either of the aaSNPs (rs35568738 or rs440446) is 

listed as an eQTL in GTEx. While rs35568738 is not an eQTL in GTEx v7, rs440446 is 

indeed shown as an eQTL with effect size (Slope) of -0.23 and a p-value of 1.1e-10 (Fig 

4.5). The alternate allele (G) has a lower level of expression than the reference allele (C) 

in skin, consistent with PPARγ binding better to the C allele (Fig 4.4). While APOE 

expression in the skin is not likely to be relevant to Alzheimer’s, this result nonetheless 

shows that an aaSNP (rs440446) that is linked to Alzheimer’s decreases PPARγ binding 

in vitro and correlates with reduced expression of APOE in human samples. The only 

caveat is that we do not know if the altered expression in the skin is due to changes in 

PPARγ binding in that tissue -- but PPARγ as well as APOE are expressed in the skin but 

only at very low levels. 

 

Discussion 

PPARγ is a promising drug target to treat neurodegenerative disease, especially 

one as prevalent as Alzheimer’s. Currently, more than 5 million adults in the United 

States are diagnosed with Alzheimer’s which means that therapeutics administered 

against the disease will be taken by a broad range of individuals with rare and common 

genetic variations. We already have a basic understanding of the effect of PPARγ 

agonists in Alzheimer’s disease as well as thousands of SNPs identified by GWAS 

studies associated with the disease. Having a better understanding of how common and 

rare genetic variations impact PPARγ DNA binding will have implications not only for 
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determining who is most susceptible to getting Alzheimer’s but also for who is most 

likely to respond to PPARγ agonists. The knowledge of which genetic variants are 

capable of disrupting PPARγ recruitment to promoters and enhancers will help further the 

field of personalized medicine and set the stage for revealing how NR therapeutics result 

in altered phenotypes in individuals with Alzheimer’s disease. 

 

Our results show that while all three members of the PPAR family of NRs 

(PPARα/δ/γ) are affected by aaSNPs found in PPARγ ChIP peaks, there is a clear 

distinction between the overall DNA binding affinity of PPARγ compared to the other 

two members, PPARα and PPARδ. These receptors have highly conserved DNA binding 

domains (DBD) with high conservation of the first zinc finger domain, typically involved 

in DNA binding (Fig 4.S1). However, PPARγ contains a two amino acid difference in the 

second zinc finger that was found some time ago to be involved in heterodimerization 

which could impact DNA binding (Tsai and O’Malley, 1994). PBMs could be used to 

determine whether those amino acids are indeed involved in DNA binding specificity 

across thousands of sequences, as we did previously for HNF4α (Fang et al., 2012). 

The analysis of in vivo derived aaSNPs from differential murine PPARγ ChIP 

peaks identified fewer aaSNPs in vitro with the PBM technology than expected. 

Obviously, there other conditions present in the adipose tissue samples from C57BL/6J 

and 129S1/SvlmJ that could be contributing to differences in PPARγ chromatin binding 

that are not represented in our PBMs, including DNA methylation and other epigenetic 
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factors. In fact, many murine aaSNPs that failed to be identified with the PPARγ-ChIP-

SNP PBM show low PBM binding scores for both alleles, suggesting that some of the 

altered PPARγ ChIP peaks may have been due to PPARγ recruitment to the DNA via 

other TFs. It would be of interest to examine other TFs known to work with PPARγ to 

regulate adipogenesis, such as RXRα and C/EBPα (Siersbæk et al., 2010), for DNA 

binding affinity on the PPARγ ChIP-SNP PBM to see if any additional murine aaSNPs 

can be verified. 

 

The analysis of GWAS-identified SNPs associated with Alzheimer’s resulted in 

3.73% of the variants showing the capability to alter DNA binding affinity of any PPAR 

isoform. In comparison to Disease SNP-PBM results from Chapter 3, these results are in 

line with the expected ratio of aaSNPs to binders identified from datasets with no prior in 

vivo binding data. Out of the 36 total aaSNPs identified, a total of 19 variants were 

associated with chromosome 19 and 9 variants associated with chromosome 11. While 

the localization bias of these data may be a result of the GWAS studies identifying 

clusters of variants of regions associated with Alzheimer’s disease phenotypes, the fact 

that so many of them are capable of disrupting PPAR DNA binding affinity may not be 

coincidental. 

While these data suggest that PPARγ aaSNPs may play a role in Alzheimer’s 

disease, specifically involving regulation of APOE, more in vivo analysis will be needed 

to causally associate these aaSNPs with PPARγ transcriptional activity. The first step in 
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an analysis of this nature would be to utilize CRISPR technology with human cell lines to 

sequence and point mutate the aaSNP of interest, followed by ChIP and luciferase assays 

to show that the aaSNP does in fact impact PPARγ DNA binding in normal cell 

conditions and that as a result expression levels of APOE would indeed be affected. 

  



 
 
 
 

 
 
 
 150 

  



 
 
 
 

 
 
 
 151 

Figure 4.1. Design of PPARγ ChIP-SNP PBM 

(A) PPARγ ChIP-SNP PBM design. SNPs were extracted from PPARγ ChIP-seq datasets 

derived from 5 adipocyte samples and 3 adipose cell lines, along with genetic variants 

from two Alzheimer’s GWAS studies, and 600 PPARγ in vivo mouse aaSNPs. All 

common variants (2-4 alleles) from dbSNP v142 spotted in quadruplicate for a 1 million 

spot design. (B) Top, all three human PPARs were applied to this design (PPARα/δ/γ) as 

NEs from COS-7 cells ectopically expressing PPAR and RXRα; shown are total number 

of significantly bound alleles (padj. ≤ 0.01) and total number of affinity altering SNPs 

(aaSNP, padj. ≤ 0.01 & Cohen’s ≥ 2). Cohen’s D statistic was calculated using the 

standard deviation of 400 random controls. The ratio of aaSNPs to total binders is also 

reported. Bottom, Venn diagrams comparing aaSNPs identified for each NR. A difference 

of binding between reference and alternate alleles is counted as a single aaSNP 

measurement (padj. ≤ 0.01 & cohen’s ≥ 2).  
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Figure 4.2. Visualizing aaSNPs within the PPAR family 

(A) Scatterplots of quantile normalized PBM binding scores. Every spot is the average 

PBM binding score of a single allele. All binders (padj. ≤ 0.01) plotted in dark grey. Best 

and worst binding alleles for aaSNPs are highlighted designated in legend. Shared 

aaSNPs are highlighted in magenta. 
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Figure 4.3. In vivo aaSNPs verified with in vitro PBM methods 

(A) Venn diagrams showing total aaSNPs (padj. ≤ 0.01 and Cohen’s ≥ 2) for each 

receptor compared to all mouse PPARγ (mm9) in vivo aaSNPs from (Soccio et al., 2015). 

(B) Scatterplot of quantile normalized PBM binding scores with highlighted aaSNPs 

found in the mm9 in vivo dataset. Lines link best and worst alleles of each aaSNP. Shared 

aaSNPs are highlighted in magenta. (C) As in (B) but with different PPAR comparisons. 
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Figure 4.4. Alzheimer’s GWAS aaSNPs disrupt PPAR binding the APOE gene locus 

(A) Counts of total aaSNPs (padj. ≤ 0.01 and Cohen’s ≥ 2) identified from GWAS 

datasets, and Venn diagram of shared and unique variants between PPARs. (B) UCSC 

Genome browser view of APOE gene locus displaying locations of significant GWAS 

aaSNPs identified in this study in the top track (red arrowhead), three layered histone 

mark tracks across 7 cell lines from the ENCODE project, and UCSC gene list with 

APOE highlighted in black. (C) UCSC Genome browser view as in (B) of 20 kb window 

around APOE TSS. Highlighted in blue an aaSNP for PPARδ and PPARγ. Shown is the 

dbSNP id and distance to TSS along aaSNP values for PPARδ and PPARγ respectively. 

Shown below are PBM binding scores and test sequences for major and minor alleles, 

and underlined is the best predicted DR1 binding site. Similarly, highlighted in black is a 

PPARγ-specific aaSNP. 
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Figure 4.5. Alzheimer’s GWAS aaSNP rs440446 is an eQTL in GTEx. 

Screenshot from GTEx showing rs440446 as an eQTL in skin. No other tissue was found 

to have a significant eQTL for this SNP.  
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Figure 4.S1. Alignment of DNA Binding Domain of human PPARs. 

Shown is the conserved 64-amino acid (aa) DNA binding domain of human PPARγ 

(NP_001341596), PPARα (NP_001001928) and PPARδ (NP_001165289). Underline, 

DNA recognition sequence in first zinc finger. Red, aa that differ among the NRs. The 

DNA recognition sequence is critical for distinguishing the half-site specificity of 

HNF4α, RXRα and COUP-TF (Fang et al., 2012). It is identical amongst all three human 

PPARs suggesting that one or more of the other variations noted in red are responsible 

for the differences in DNA binding specificity noted in the PBMs.  
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Conclusion 
 
 
 
 
 
 

 
 
 
 

  



 
 
 
 

 
 
 
 166 

The primary focus of this dissertation is on how genetic variation, single 

nucleotide polymorphisms (SNPs) and alternative promoter usage, can impact nuclear 

receptor (NR) function. There is a vast amount of variant-phenotype association data 

available, but many of these variants are noncoding and we do not know how many of 

them may influence the regulation of gene expression (Maurano et al., 2012; Ward and 

Kellis, 2012). Expression quantitative trait loci (eQTL) studies get us one step closer to 

understanding how these variants associate with disease or phenotypes (Schadt et al., 

2008). Gene expression levels between individuals and cell types are regulated by 

transcription factors (TF) through sequence-specific interactions with genomic DNA. 

While chromatin immunoprecipitation followed by high-throughput DNA sequencing 

(ChIP-seq) allows for the identification of genome-wide occupancy of a TF, it can often 

be challenging to identify the true binding site within a single peak. Attempting to 

identify genetic variants that can disrupt or alter DNA binding affinity of a TF via ChIP-

seq experiments would require a large number of samples and would be a time-

consuming process. Protein binding microarrays (PBM) are high-throughput DNA 

binding assays where custom-designed microarrays are extended to double-stranded 

oligonucleotides and probed for TF binding directly to the DNA on the slide with a 

fluorophore-conjugated antibody.  

Another level of genetic diversity with impact on tissue-specific gene expression 

between cell types is the use of alternative promoters. The primary role of alternate 

promoters is thought to be the control of gene expression under different cellular 
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conditions, including tissue specific gene-expression (Davuluri et al., 2008). However, 

very little is known about the physiological functions of the different proteins resulting 

from the alternative promoter usage. 

Nuclear receptors (NR) are ligand-sensitive TFs that regulate a wide array of 

biological processes including development, metabolism, and circadian rhythms. It is not 

surprising then that they also play a role in many diseases including obesity, diabetes, 

cancer, atherosclerosis, and inflammation. NRs may interact with many variations of a 

consensus DNA response element (AGGCTA or AGAACA) throughout the genome as 

monomers, homodimers, or heterodimers in a wide array of conformations, including 

direct or inverted repeats with anywhere from 0 to 6 nucleotides (nts) as spacers between 

each element. At these response elements, NRs recruit transcriptional co-regulators which 

interact with the general transcription machinery to either repress or activate their target 

genes. 

Since NR activity is modulated by the presence of ligands, naturally ligand 

synthesis and degradation play a crucial role in tissue-specific hormonal signaling and 

gene expression. Ligands must be synthesized and delivered throughout the body and the 

degradation of ligands helps to limit both the duration and the intensity of the NR-ligand 

response. The enzymes that regulate these processes are the cytochrome P450s (Cyp) 

enzymes and they play a major role in the oxidative metabolism of cholesterol, steroids, 

bile acids, and fatty acids (Furge and Guengerich, 2006; Nebert and Russell, 2002). 
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The A/B domain of NRs is the most variable domain within the superfamily, with 

no conservation in either length or structure, and is thought to be highly flexible and 

unstructured in the absence of binding partners (Chandra et al., 2008; Wärnmark et al., 

2001). This flexibility has led to difficulties in deciphering the structure of A/B domains, 

which remain poorly understood. 

Hepatocyte nuclear factor 4 alpha (HNF4α) is a liver-enriched transcription factor 

and a member of the NR superfamily (Sladek et al., 1990). HNF4α is expressed in the 

liver, kidney, colon, pancreas, stomach, and intestine. It is highly expressed in the liver 

where it is best known as a master regulator of liver-specific gene expression (Bolotin et 

al., 2010; Odom et al., 2004) and is essential for adult and fetal liver function. The human 

HNF4A and mouse Hnf4a genes are highly conserved and both are regulated by 

alternative promoters, the proximal P1 and distal P2 promoters. In the adult liver the P1 

promoter is the only active promoter, while during fetal development both P1 and P2 

promoters are active (Torres-Padilla et al., 2001). P1-HNF4α is expressed in the liver, 

small intestine, colon, and kidney while P2-HNF4α is expressed in the fetal liver, 

pancreas, stomach, small intestine, and colon. While it has been shown that P1-HNF4α 

acts as a tumor suppressor in the liver (Hatziapostolou et al., 2011; Walesky and Apte, 

2015), the specific roles of the isoforms remain unclear. 

Isoforms from the alternate promoters of HNF4α share >90% homology with each 

other and have identical DNA-binding and ligand-binding domains. The main difference 

between P1 and P2 isoforms are alternative first exons that result in an altered A/B 
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domain and the loss of the AF-1 domain for the P2 isoforms (Briançon and Weiss, 2006; 

Torres-Padilla et al., 2002). P2-HNF4α is not normally expressed in the adult liver, thus, 

to study the role of P1- and P2-HNF4α in the mouse liver we used genetically engineered 

(exon swap) mice that express exclusively the P1- or the P2-HNF4α isoforms (Briançon 

and Weiss, 2006). 

 

In Chapter 2, we investigate the roles of HNF4α isoforms resulting from 

alternative promoters in a series of genome-scale experiments using exon-swap mice. 

RNA-seq analysis showed that a 16 amino acid change in the A/B domain of HNF4α can 

drastically alter the transcriptome of the adult liver, with hundreds of significantly 

dysregulated. The P2-HNF4α profile showed a loss of expression of CAR (Nr1i3) and 

dysregulated of dozens of phase I, II, and III enzymes. The implications of these 

differences can be seen in altered lipid and steroid hormone metabolism. In comparing 

the α7HMZ gene expression profile with HNF4α KO we show that many of the 

differentially expressed genes found in α7HMZ livers are due to reduced activation 

potential of P2-HNF4α, most likely due to the loss of AF-1. In comparing with fetal liver 

expression and liver cancer cell line Hepa1-6 we show that P1- and P2-HNF4α 

preferentially regulate genes in fetal and liver cancer. ChIP-seq results show that P1- and 

P2-HNF4α isoforms have nearly identical DNA binding affinities with only roughly 600 

(1.5%) differential ChIP peaks. Protein binding microarrays further confirmed these 

findings highlighting only minor changes specificity of spacer nucleotide DR1 preferred 
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P2-HNF4α. De novo motif calling of uniquely bound peaks revealed a set of TFs that 

may help orchestrate altered transcriptional activity between P1- and P2-HNF4α 

isoforms. Protein-protein interaction from rapid immunoprecipitation and mass 

spectrometry of endogenous proteins (RIME) highlights unique interactions with other 

NRs and interactions between BMAL (Arntl) and CLOCK (Clock) suggest unique roles 

of HNF4α isoforms in circadian rhythms. Additionally, we observe fewer genes 

dysregulated throughout the day in α7HMZ livers compared to WT suggesting that P1- 

and P2-HNF4α play different roles in the maintenance of circadian rhythms. 

 

In Chapter 3, we utilized PBMs to investigate the impact of common genetic 

variation on the DNA binding of nuclear receptors (NR). By probing DNA binding 

affinity on genomic DNA flanking genetic variants found in the promoters of disease-

associated genes, we were able to identify hundreds of affinity altering SNPs (aaSNPs). 

As expected, NRs that heterodimerize shared the largest number of aaSNPs between 

them, while NRs that bind completely different response elements (HNF4α, DR1; GR, 

IR3), displayed very little similarity in PBM binding scores and almost no shared aaSNPs 

(2). To identify more physiologically relevant aaSNPs a PBM was designed by extracting 

common variants near the center of ChIP-seq peaks for HNF4α and RXRα. The results of 

this design show that while data-mining in vivo DNA binding assays identifies more 

aaSNPs, >1,000 for HNF4α2, the usefulness of the slide is limited to the NRs the slide 

was design for, and any other NRs that may heterodimerize or co-occupy those binding 
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sites. While both designs were successful in identifying many aaSNPs for many NRs, we 

lacked any physiological relevance for disease or phenotype. The genotype-tissue 

expression (GTEx) project was data-mined for significant eQTLs in the liver associated 

with changes in gene expression and we successfully identified thousands of aaSNPs in 

vitro. By cross-referencing these data with NR regulatory networks from the nuclear 

receptor signaling atlas (NURSA) tool, Transcriptomine, we were able to find hundreds 

of aaSNPs associated with changes in gene expression of a target gene for the NR they 

are affecting. 

 

With a similar approach in Chapter 4, we also showed the power of the PBMs to 

analyze 100,000 genetic variants from PPARγ ChIP peaks, and 1,000 GWAS identified 

variants associated with Alzheimer’s, a neurodegenerative disease commonly treated with 

PPARγ agonists. The results show that PPARα and PPARδ are more similar in DNA 

binding affinities than PPARγ is to either, despite having highly conserved DBDs. 

Analysis of in vivo derived murine PPARγ aaSNPs only verified 21.11% at our most 

strict cut-offs. Relaxing the effect size and p-value threshold can improve this rate to 

nearly 43.55%. Analysis of the Alzheimer’s GWAS SNPs reveals a 100 kb window 

around APOE enriched with aaSNPs for PPARγ, one of which sits in a regulatory region 

inside the first intron. 
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The work in this dissertation shows that alternative promoters may play more 

important roles in genomic diversity than simply providing tissue- or condition-specific 

expression of TFs. We show that a small (16 amino acid) difference in the A/B domain of 

HNF4α, can impact the expression of hundreds of genes. The implications of this suggest 

that the role of the P2 promoter is not simply to control tissue-specific HNF4α 

expression, but to express a form of HNF4α with an alternate transcriptional profile. 

 We also show that the high-throughput PBM DNA binding assays are a very 

powerful tool for measuring DNA binding affinity for a given TF across hundreds of 

thousands of oligonucleotide probes in a single experiment. Data derived from these 

experiments can be used to elucidate preferred DNA binding sequences of a TF, as seen 

in Chapter 2, or to identify SNPs with the capability to disrupt the DNA binding potential 

of a TF, as seen in Chapters 3 & 4. In total, 14,000 aaSNPs were identified from four 1 

million spot PBMs (500,000 total SNPs tested). While GWAS studies have the 

capabilities to identify thousands of variants associated with disease and phenotype, our 

PBM analysis shows that a large proportion of these variants may not significantly affect 

the DNA binding capabilities of many NRs. While we have not extensively probed for 

DNA binding affinity of all human NRs, we have tested a large number that bind DR1 

sequences. Many of these NRs have shown a wide range of DNA binding affinities, even 

within the same NR subfamily as seen by the diversity between the PPARs in Chapter 4. 

Testing the rest of the NR family would likely reveal tens of thousands more aaSNPs all 

while helping to further define the DNA binding specificities of NR subfamilies. 
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Similarly, this approach can be used for any class of TF with western blot quality 

antibodies and can be incorporated with many TF regulatory networks. 

We propose that aaSNPs could be extremely an important aspect of personalized 

medicine, and medical genetics, by allowing insight into how common drug targets like 

NRs (and other TFs) can be differentially recruited to enhancers and promoters in two 

different individuals and the potential impact on gene expression this may have. In 

Chapter 3 we have shown that a rare or common genetic variation in an enhancer or 

promoter that results in a change of DNA binding affinity for a NR may result in a loss of 

expression in a nearby target gene. As the number of individuals with diseases treated 

with NR agonist and antagonists increases we greatly increase to population of genetic 

variants that these medications are being exposed to. Should any of these variants 

successfully alter the intended NR regulatory networks by altered DNA binding affinity 

to key response elements, we would expect for there to off-target or unexpected 

consequences. By incorporating known aaSNPs into NR regulatory networks we start to 

understand how these altered networks might act upon NR-mediated activation or 

repression. We hope that this information could be useful in determining the risk of 

administering drugs targeting NRs before they are prescribed to avoid potentially 

dangerous side effects. 
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aaSNP Database 

All of the PBM and aaSNP data derived from this dissertation can be accessed 

online via the aaSNP Database (http://nrmotif.ucr.edu/aaSNP/) hosted by the Sladek Lab. 

Here we allow researchers to search, interact with, and download aaSNP results. Search 

parameters can be set to look for aaSNPs by NR, genetic variant, or gene symbol (nearest 

TSS to SNP, or eGene for GTEx derived data) (Fig 5.1). Search results will display basic 

information about the SNP such as ID, chromosomal location, and nearest TSS, along 

with information about the test sequence, PBM binding score, and aaSNP effect size and 

adjusted p-value (Fig 5.2). 
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Figure 5.1. aaSNP Database Search Form 

Shown here is a screenshot from December 2017 of the aaSNP Database hosted by the 

Sladek Lab. Current aaSNP datasets are searchable by multiple NRs (filtering on 

significance), SNP/GTEx id to identify all NRs disrupted, and by gene symbol to identify 

aaSNPs nearest a specific transcription start site. 
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Figure 5.2. aaSNP Database Results Page 

Shown here is the results page from December 2017 of an aaSNP search for significant 

variants affecting HNF4α2. Shown are SNP id, chromosome, SNP location, and nearest 

gene information including symbol, strand, and distance to TSS. Information related to 

the aaSNP show an allele specific id used on our PBMs, the allele that was tested along 

with allelic frequency, and the test sequence, PBM binding score and Z-score of the 

aaSNP.  
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