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The single-layered ruthenate Sr2RuO4 has attracted a great deal of interest as a spin-triplet 

superconductor with an order parameter that may potentially break time reversal invariance 

and host half-quantized vortices with Majorana zero modes. While the actual nature of the 

superconducting state is still a matter of controversy, it has long been believed that it 

condenses from a metallic state that is well described by a conventional Fermi liquid. In this 

work we use a combination of Fourier transform scanning tunneling spectroscopy (FT-STS) and 

momentum resolved electron energy loss spectroscopy (M-EELS) to probe interaction effects 

in the normal state of Sr2RuO4. Our high-resolution FT-STS data show signatures of the β-band 

with a distinctly quasi-one-dimensional (1D) character. The band dispersion reveals 

surprisingly strong interaction effects that dramatically renormalize the Fermi velocity, 

suggesting that the normal state of Sr2RuO4 is that of a `correlated metal’ where correlations 

are strengthened by the quasi 1D nature of the bands. In addition, kinks at energies of 

approximately 10meV, 38meV and 70meV are observed. By comparing STM and M-EELS data 

we show that the two higher energy features arise from coupling with collective modes. The 

strong correlation effects and the kinks in the quasi 1D bands may provide important 

information for understanding the superconducting state. This work opens up a unique 

approach to revealing the superconducting order parameter in this compound. 
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The electronic properties of complex oxides are highly sensitive to electron-electron interactions 

as well as interactions of electrons with other collective modes1-4. Identifying these many-body 

effects is critical to understanding the driving forces behind many of their exotic phases. The 

unconventional p-wave superconductor Sr2RuO4 in particular, is a fundamentally interesting 

material system5-7. Understanding the nature of its unique superconducting state with spin-

triplet pairing symmetry requires an intimate knowledge of its normal state properties8. Yet, the 

effects of interactions in the normal state of this system are yet to be sorted out, with the 

conventional belief that it is a Fermi liquid conflicting with reports of large band dependent mass 

renormalizations and strong correlation effects8-12. Much of this uncertainty can be traced to the 

multiband nature, with the competition between 1D and 2D, the interplay between spin and 

lattice degrees of freedom13, as well as the strong k-dependent spin-orbital entanglement of the 

normal state wavefunction, which makes the description of superconductivity in terms of pure 

spin-triplet (and/or singlet) eigenstates questionable14. 

 

The overall band structure of Sr2RuO4 is well known8, 15 and consists of three Fermi surface (FS) 

sheets with distinct characteristics (Fig. 1a). The three bands are primarily derived from the 

ruthenium 4dt2g orbitals. Hybridization between dxz and dyz orbitals leads to two sets of quasi-1D 

FS sheets. One is the hole-like α sheet near X and the other is the electron-like β sheet near Γ. 

The in-plane dxy orbital on the other hand forms the electron-like, quasi-2D γ sheet centered at 

Γ. The dominant superconducting instability can be placed either on the γ band or the α and β 

bands in different theoretical approaches16-20. Consequently, the symmetry of the resulting 

superconducting state and the pairing `glue’ are still unclear. Thus, it is essential to distinguish 

the interaction effects on the different bands, which may generate or assist the superconducting 

pairing in this material. Angle-resolved photoemission spectroscopy (ARPES) data have revealed 

kinks at energies of 40meV, 50-60meV and 70-80meV in the dispersion of quasi-2D γ band4, 13, 21. 

While there have been some discussions of self energy effects for the α band21, no sharp features 

have been unambiguously identified on the quasi-1D bands 13, 21, 23.  

 

In this work we study the effects of interactions on the electronic structure of Sr2RuO4 using the 

complementary techniques of FT-STS and meV resolution M-EELS. FT-STS is a powerful tool to 

study electron behavior both in r-space and k-space simultaneously, and has been successfully 

used to study the nanoscale spectroscopic properties of high TC superconductors24, heavy 

fermion systems25, 26 and the bilayer strontium ruthenate27. M-EELS on the other hand is a 

powerful technique for measuring the energy and dispersion of collective excitations that couple 

strongly to electrons28. So far, neither of these techniques has been successfully applied to 

Sr2RuO4. Here, we use FT-STS to visualize the quasiparticle interference in the normal state and 

determine band dispersion with high precision which allows us to determine correlation effects 
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as well as the effects of lattice and spin excitations on the electronic structure. Our FT-STS data 

reveal that the β band displays signatures of quasi 1D behavior with a dispersion that reveals a 

dramatic suppression of Fermi velocity. We further find a low energy suppression of the density 

of states centered approximately at the Fermi energy. These combined observations suggest that 

quasi 1D band character accentuates correlation effects, which in turn has important 

consequences for the electronic properties of the quasi 1D bands in this system.  We note that 

while there are many studies of correlation effects in pure 1D systems, the effects on quasi 1D 

bands are less well known. At higher energies we find kinks in the dispersion which are also 

observed in our M-EELS data suggesting that they originate from the coupling of quasiparticles 

with collective bosonic modes such as phonons. The strong correlation effects and the 

identification of energy scale of the kinks in the quasi 1D bands may provide key information 

needed to obtain a microscopic model for the superconducting state.  Moreover, our success in 

obtaining high quality data using FT-STS for the first time provides a new pathway for exploring 

the quasiparticles below Tc which would reveal the momentum dependence of the 

superconducting energy gap, Δ(k) and help distinguish the pairing mechanism in Sr2RuO4. 

Sr2RuO4 has a layered perovskite structure similar to cuprate superconductors5 (Fig. 1b). Cleaving 

could in principle expose two kinds of natural non-polar surfaces, either SrO or RuO2 planes18, 

although cleaving at the SrO plane is thought to be more likely. The topographic features can be 

highly dependent on the cleave temperature15, 29. Sr2RuO4 single crystals studied here were 

cleaved at ~ 80K in situ and then transferred to a scanning tunneling microscope (STM) held at 

4.3K. Figure 1d shows a typical topographic image obtained on the cleaved surface, showing a 

square lattice with atomic spacing ~ 3.9 Å. The 6.3 Å atomic step height seen near this scan range 

(supplementary information part I) suggests a preferential termination layer, which we believe 

to be the SrO plane. The bright protrusions in the STM image are most likely Sr atoms30 while the 

impurities that look like dark crosses in our topography can be tentatively assigned to CO 

adsorbates31. Although a secondary modulation is almost invisible in the topographic images, 

their Fourier transforms show additional peaks at √2 × √2 positions arising from the (√2 ×

√2 )R45o surface reconstruction seen in low energy electron diffraction30 and ARPES 

measurments15.  Our energy-integrated M-EELS data taken along the (H, H) direction in reciprocal 

space also shows a peak near (1/2, 1/2), corresponding to this reconstruction (supplemental Fig. 

S2). A schematic of this reconstruction is shown in Fig. 1c. As a consequence of this 

reconstruction, the first Brillouin Zone (BZ) is reduced to half (dashed black square in Fig. 1a), 

which gives rise to band folding with respect to the (π/a0, 0)- (0, π/a0) line. This effect plays an 

important role in the quasiparticle interference (QPI) pattern, which we will return to in detail. 
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A typical differential conductance spectrum i.e., dI/dV (r, eV) is shown in Fig. 1e. This spectrum is 

representative of the sample: since the native impurity concentration is low, the density of states 

is quite homogeneous. There are features at approximately 38meV on both sides of the Fermi 

energy (EF), which is similar to earlier data on Ti-doped Sr2RuO4 samples32. The particle-hole 

symmetric nature of the 38meV peak can be clearly seen in the derivative of the spectrum (Fig. 

S3) and suggests that it originates from coupling with a collective mode33. In fact we find 

collective modes at this energy in both the STM derived dispersion and M-EELS data and we will 

return to this energy scale later. Interestingly, similar to the spectra measured below Tc in 

previous work32, our data show a low energy gap-like feature with an energy scale of 

approximately 10 meV. While the origin of this anomaly is unclear, one possibility is that it 

represents a suppression of the tunneling density of states of the α and β bands due to 

accentuated correlation effects arising from their quasi-1D nature34 as discussed later in this 

paper. Further temperature dependent studies would be necessary to elucidate the origin of this 

feature. 

 

We now apply the technique of FT-STS to Sr2RuO4. In FT-STS the spatial modulation arising from 

the elastic scattering of quasiparticles can be measured as dI/dV (r, eV) maps and Fourier-

transformed to extract scattering vectors (Q-vectors), which connect k-space electronic states 

under some selection rules.  High-resolution FT-STS measurements not only allow us to measure 

details of the band dispersion, but can also be used to reveal orbital/spin textures. Figures 2a-c 

show representative dI/dV (r, eV) maps on Sr2RuO4 at a few different energies. The Fourier 

transforms of of dI/dV maps demonstrating a rich array of scattering channels in this material are 

shown in Fig. 2d-l, where a sequence of inequivalent sets of scattering channels are labeled as qi: 

i=0,1,2,3,4. We find that q0 is rather non-dispersive. While this feature will be discussed in further 

detail elsewhere we note that it potentially originates from Friedel oscillations generated by 

impurities whose signatures are unusually strong due to the quasi-1D nature of the bands. Here 

we focus on the dispersing channels q1-q4. We note that although for ease of discussion we focus 

on the scattering vectors along the high symmetry directions (π, 0) and (π, π), there is of course 

a continuous array of scattering channels, which reflect the Fermi surface topology. These are 

marked as arcs in the appropriate colors in Fig. 2 with the understanding that all the scattering 

vectors along arcs of a particular color originate from a set of scattering processes connecting 

two particular bands.  

 

Identification of the origin of the Q-vectors requires comparison between the band structure (Fig. 

3a), predicted QPI (Fig. 3c and d) and the measured data (Fig. 2 and Fig. 3b). The detailed analysis 

of the Q-vectors is presented in the supplemental information part II, and here we only present 

a summary. The dominant signal in the FT is along (π, 0) direction, labeled q1. A complete analysis 
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of this feature indicates that q1 represents the intra-β-band scattering (pink arrows, also shown 

as pink arcs in Fig. 2). The corresponding umklapp scattering process, labeled as q1’, is also visible 

in our data (dashed pink arrows).  These two scattering processes are illustrated in figure 3a.  

 

To understand the remaining Q-vectors we require three essential pieces of information. First, 

ARPES data show two β-bands, one identified as the bulk β-band and the other as a surface β-

band attributed to rotated RuO6 octahedra at the surface35, 36. In our data we also observe a 

second dispersing square feature (orange arrows, also shown as orange arcs in Fig. 2) that 

emerges close to Fermi level (Fig. 2g). As discussed in detail after obtaining the dispersion, both 

the qualitative and quantitative behavior of q1 and q2 suggest a common origin with the two β-

ARPES bands.  We note that q2 may in principle originate from the α band (qα; gray arrows in Fig. 

3c and d) but the concave curvature of q2 is identical to the curvature of q1 (see Fig. 2i for 

example) and quite different from the convex curvature expected of qα (Fig. 3c and d) which 

indicates that this is unlikely.  

 

Second, most of the γ band (except around (π/a0, π/a0)) is composed of the planar dxy orbital. The 

matrix elements for the coupling of an STM tip to planar orbitals are typically small. 

Correspondingly, the signal from this band is therefore mostly absent from our data27. Around 

(π/a0, π/a0) however, a square-shaped feature q3 appears, which can be distinguished from q2 by 

a discontinuity as we trace the contours of β band. This signal potentially originates from small 

portion of the  band along X direction that acquires dxz/dyz orbital character due to 

hybridization14, thereby making it visible to STM measurements.  

 

Third, the rotation of the oxygen octahedra at the surface creates band folding at the surface. 

This has a distinct effect on the QPI as seen in the comparison of theoretical calculations of the 

QPI with (Fig. 3d) and without band-folding (Fig. 3c). One of the effects of band folding is the 

appearance of parallel lines inside the yellow rectangle in figure 3d. These folded features are 

labeled q4 and can be seen clearly in our data (Fig.3b, Fig 2h-l and SI part II). 

 

Having understood the dominant features in the Fourier transforms, we turn to their dispersions. 

Linecuts of the FTs were obtained in the two high symmetry directions, (π, 0) (corresponding to 

scattering vectors in the ΓM direction) and (π, π) (ΓX direction). The position of each peak in the 

linecut was determined by with Gaussian fitting function on a linear background (SI part III). The 

peak positions representing the energy and momentum resolved Q-vectors are plotted in Fig. 4a. 

This plot does not include q4 since it represents a folded band and is not an independent Q-vector. 

By comparing the shapes of q1 and q2 in the FTs shown in Fig. 2 as well as their dispersion, it is 
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apparent that q2 and q1 are related to each other with one branch being shifted in momentum 

with respect to the other. In essence q2 and q1 behave like two versions of the β band. While 

there are a few possible explanations for such a splitting such as surface induced spin-orbit effect 

or magnetic fluctuations, as mentioned earlier, a secondary β band was also observed in ARPES 

measurements35, 36 where the two bands were attributed to a surface β band arising from the 

rotated RuO6 octahedra at the surface and the bulk β band, respectively. Quantitatively, the two 

Fermi wavevectors (kF) observed by us are 0.62+-0.02 and 0.68+-0.02 (in units of π/a0). These 

values are identical those observed in multiple ARPES experiments35-37 indicating that the STM 

and ARPES bands have the same origin. ARPES studies identified the band with the larger kF (q1) 

to be the bulk branch while the band with the smaller kF (q2) was identified as a surface branch. 

Interestingly, we find support for this scenario by looking at band folding effects. We find that 

the band identified by ARPES to be a surface band (q2) shows clear folding (Fig. 2h-l) as evidenced 

by the presence of q4, while the band folding is non-existent for q1 below the Fermi energy as 

seen in Fig. 2d-g. The comparison with ARPES, as well as the differences in band folding effects 

for q1 and q2 suggest that we measure both the surface and bulk bands by STM with q1 being 

identified as the bulk band. 

 

A striking feature of the dispersion of the β band is the change in slope of q1 and q2 near EF, 

indicating a strong renormalization of the Fermi velocity in this band (Fig. 4a). From our data, the 

Fermi velocity of q1 is renormalized to 0.46 eV Å. This is smaller by a factor of 1.4 compared to 

the values obtained from de Haas-van Alphen oscillations. We believe that the discrepancy with 

dHvA indicates a momentum dependent renormalization. A more detailed comparison between 

STM, dHvA, and ARPES data is present in SI PART III. In essence, our high-resolution data reveals 

that the correlation effects on the β band are much larger than previously thought.  

 

In fact, the quasi 1D nature of the β band may play an important role in strengthening correlation 

effects.  Strong quasi-1D signatures of the β band are seen in many facets of our data. First, 

tracking the β band contours shown in Fig. 2, we see that the band is remarkably flat for much of 

its extension. Second, the brightness of the q1/ q2 scattering vectors in the ΓM direction 

(supplemental Fig. S7) indicate that there is a singularity in the numbers of scattering processes 

with the same magnitude in this direction. The quasi 1D nature is also reflected in the momentum 

dependent nature of the renormalization suggested by comparison with dHvA in the previous 

paragraph. In general, quasi 1D electronic states are expected to share many key features of true 

1D systems including non-Fermi liquid behaviors such as a suppression of the one-particle density 

of states, a large downward renormalization of the Fermi velocity and a large enhancement of 

the charge and spin susceptibilities at 2kF (Ref. 34). In quasi 1D systems however, these features 

are rounded by an eventual crossover to 2D Fermi liquid behavior38, 39. Many of the predicted 
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effects of 1D bands on the electronic structure are borne out by the STM data presented here, 

including a zero-bias anomaly in the tunneling DOS at an energy scale of about 10meV and a 

downward renormalization of the Fermi velocity over the same energy scale. These observations 

taken together support the scenario of enhanced correlation effects on the β band bolstered its 

quasi 1D nature. Our observations also suggest that this system may be close to a charge and/or 

spin density wave instability, as implied by earlier neutron scattering data40. 

 

In addition to interaction effects near EF, the dispersion in Fig. 4a reveals clear kinks at multiple 

energy scales. Kinks are ubiquitous in many correlated electron systems and reflect self-energy 

renormalizations, which carry important information about the effective interactions. Among 

high-TC superconductors for example, kinks in the dispersion and have been observed in 

cuprates2, 3 and Fe-based superconductors41. However, simply observing kinks in the dispersion 

is typically not sufficient to understand their origin since both electron-electron as well as 

electron boson interactions may result in kinks1. In the following discussion, we employ the 

complementary techniques of STM and M-EELS to not only identify the energy scales of the kinks 

but also their potential origin. Kinks were observed in the STM data at energies of ~35meV (1) 

and ~70meV (2) in the dispersion of q1, and one at about ~32meV above Fermi level for q2. 

These energy scales are also clearly visible in the extracted self-energy Re(k, ) shown in Fig. 

4b. The effective self-energy Re(k, ) was obtained by subtracting a bare band from the 

observed dispersion. To avoid artifacts, the bare band was simply chosen to be a straight line 

connecting two points of q(ω=0) and q(ω=±110 meV). The details of the bare band used would 

be very important if one were trying to obtain quantitative information on the self-energy22. 

However, this treatment is sufficient for our analysis where we concentrate on the peak positions. 

The peak energies of 1 and 2 in extracted Re(k, ) are ~37meV and ~73meV. To further pin 

down the energy scales and the potential origin of these kinks, we performed M-EELS 

measurements on the same samples. The results are shown in Fig. 4c. Interestingly M-EELS data 

predominantly shows the same two peaks, one near 38meV (corresponding to 1 in the STM data) 

and the other at 71meV (corresponding to 2). 1 disperses with momentum in a manner 

consistent with an optical phonon. 2 however shows anomalous momentum dependence 

disappearing abruptly as we move away from high symmetry points suggestive of a surface 

phonon merging with a bulk band. In essence, the comparison of the STM data with M-EELS 

provides unambiguous evidence that 1 and 2 arise from collective bosonic modes that strongly 

couple with the quasi-1D β band in Sr2RuO4. We note that similar modes were observed in ARPES 

studies of the 2D γ band4, 13. The similarity of these energy scales to the M-EELS data provides 

strong evidence that the ARPES kinks at these energies also arise coupling of quasiparticles with 

the same phonons. Interestingly, the dispersion of q3 along the ΓX direction (inset in Fig. 4a) 
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shows an additional kink near 10meV (3). The background subtracted q3 shown in Fig. 4b also 

clearly reveals 3. If one regards q3 as the intra--band scattering, 3 may be related to coupling 

with the 3 phonon which exhibits a sharp drop near the zone boundary (~1.9THz) and potentially 

enhances ferromagnetic (FM) spin fluctuations30.   

 

The order parameter (OP) of superconductivity and the associated gap structure in momentum 

space have been long-standing issues in Sr2RuO4. While compelling experimental evidence favors 

an odd parity (triplet) state and there is strong evidence that the SC order spontaneously breaks 

time reversal symmetry5, 6 suggesting a chiral p-wave state, this latter question has remained 

controversial primarily due to the possible different roles played by the quasi-1D and 2D bands. 

The most direct way to distinguish between the various predictions involving pairing on either 

the quasi-1D bands17 (α, β) or the quasi-2D band16 (γ) is to determine the momentum dependent 

OP, a task not yet done due to the low superconducting transition temperature of ~1K, sub-meV 

magnitude of the gap, and the subtle multiband nature. However, our present work gives a 

unique approach to directly confirm the gap structure on the 1D bands. In the superconducting 

state, if one places the dominant gap on 1D bands, the β band would be gapped out and the CECs 

of Bogoliubov quasiparticles would form around the nodes near (π, π) (ref. 18). As the result, the 

BQPI pattern, which is dominated by scattering between the ends of these banana-shaped CECs, 

will change dramatically compared to the normal state pattern (see Fig.5 in ref. 18). Detailed 

information about Δ(k) on the β band can then be obtained by tracking the energy evolution of 

this pattern, which will increase our understanding of the pairing symmetry as well as the 

microscopic pairing mechanism in this material. Finally, the results presented in this paper 

suggest that the quasiparticle states of the β band have a quasi-1D character and are strongly 

affected by electron interaction effects, thus raising doubts on the picture that the normal state 

is simply a weakly-correlated Fermi liquid metal. Additional experiments, including the effects of 

temperature and magnetic fields, will be needed to further elucidate this picture. 
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Methods 

High-quality Sr2RuO4 single crystals for the data shown in main text were grown at Kyoto 

University. The samples were cleaved at liquid Nitrogen temperature and all the dI/dV 

measurements were taken at 4.3K using a standard lock-in technique with 5meV peak to peak 

modulation at a frequency of 987.5Hz. Lawler-Fujita drift- correction algorithm is used for the FT-

QPI data to remove the drift effects42. The results were reproduced on other samples grown at 

UBC with different tungsten tips (see Supplementary Information Part III).   

M-EELS measures the bosonic, density response function, χ’’(q, ω), of a material surface28. These 

experiments were carried out at a beam energy of 50 eV on crystals of Sr2RuO4, cleaved under 

vacuum and subsequently cooled to 100 K. Elastic scattering from the (1, 0) and (1, 1) Bragg 

reflections were used in situ to construct an orientation matrix translating between 

diffractometer angles and reciprocal space. The Miller indices (H, K) designate the transferred 

momentum in tetragonal units, such that 𝐪 = 2π(H, K) a⁄ , where a = ~3.9 Å is the in-plane lattice 

parameter.  
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Figure 1 

  

Figure 1. Fermi surfaces and crystal structure of Sr2RuO4. a, Bulk Fermi surfaces of Sr2RuO4 calculated with tight 

binding model. Dashed lines denote the new Brillouin Zone caused by √2 × √2 surface reconstruction. b, Crystal 

structure of Sr2RuO4 showing the Ru-centered octahedra. c, A schematic top view of the surface reconstruction with 

rotated RuO6 octahedra. The unit cells with and without rotation are denoted by dashed black square and solid black 

square, respectively.  d, Topographic image of Sr2RuO4 showing a usual uniform and square lattice with spacing of 

~3.9 Å between atoms (bias voltage VS=70mV, tunneling current It=100pA). The inset shows its Fourier transform: 

Black circle represents Bragg peak and red circle for the √2 × √2  reconstruction peak. e, Typical differential 

conductance spectrum taken in defect-free region (It=265pA, VS=110mV). The red and black dashed lines denote two 

features with energy scales approximately 38meV and 10meV, respectively. 
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Figure 2 

                       

Figure 2. Quasiparticle interference (QPI) of Sr2RuO4. a-c, Spatially resolved dI/dV conductance maps at -12.7meV, 

-0.5meV and 35.4meV. For clarity, a 34-nm-square field of view (FOV) is cropped from a larger 78nm*78nm FOV 

which we used to obtain the Fourier transfer images. d-l, Drift-corrected and symmetrized Fourier transforms of 

dI/dV conductance maps. White dots in d indicate the Bragg peaks. The spectral weight near center has been 

reduced by removing low frequency signal originating from defects. Dominant scattering vectors are indicated by qi 

(i=0, 1, 2, 3, 4). Dashed arrows and arcs denote their umklapp processes.   
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Figure 3                                              

 

Figure 3. Comparison of the FT-STS images with predicted QPI patterns. a, Spectral density at Fermi level for the α, 

β and γ bulk bands. The relative contributions of each orbital to the bands are color-coded. Red, 4dxz; Blue, 4dyz; 

Green, 4dxy. Arrows with different colors denote the possible scattering. For a better view, we show CECs in the 

extended zone. b, QPI map at the Fermi energy (-0.5meV, same as in Fig.2h) and inequivalent Q- vectors are shown 

by arrows and colored squares. c, d, Theoretically simulated QPI patterns using T-matrix approaches for the original 

un-folded FSs (c), and including the folded replicas (d). q1 and q’1 represent intra-band scattering of bulk  band and 

its umklapp process, respectively, while q2 and q’2 for those of surface  band; q3 represents a small portion of intra-

γ-band scattering; q4 represents scattering processes between unfolded bands and its folded replicas; qα and q’α in 

c and d represent intra-α-band scattering and its umklapp process.   
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Figure 4 

 

Figure 4. Visualizing the electron-collective mode coupling in the Quasi-1D bands. a, Dispersions of β band (q1) and 

surface β band (q2) extracted by fitting peaks in line-cut along ΓM direction. These peaks reflect the dynamic nesting 

processes involving band structures as well as the quasiparticle self-energy. Kink features are seen at energies of 

about -35meV and -70meV for q1, and +32meV for q2, as shown by arrows. Inset, Dispersion of q3 along ΓX direction. 

An additional kink at -10meV is found. b, Corresponding effective real-part of quasiparticle self-energy (or ΔE) for 

the measured dispersion. A straight line connecting two points at EF and ±110meV (-60meV for q3) in the dispersion 

is used as the ‘bare’ band for each q dispersion. Peaks at multiple energy scales are marked with arrows: -37 and -

73meV for β band, 32meV for secondary β band and -11meV and -37meV for q3. c, Momentum-resolved electron 

energy loss spectra taken at T = 100K. Two peaks at 38meV and 71meV are clearly revealed, which match the energy 

scales of kinks seen in QPI.    




