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The sensory mechanisms used by baleen whales (Mysticeti) for locating
ephemeral, dense prey patches in vast marine habitats are poorly understood.
Baleen whales have a functional olfactory system with paired rather than single
blowholes (nares), potentially enabling stereo-olfaction. Dimethyl sulfide
(DMS) is an odorous gas emitted by phytoplankton in response to grazing
by zooplankton. Some seabirds use DMS to locate prey, but this ability has
not been demonstrated in whales. For 14 extant species of baleen whale,
nares morphometrics (imagery from unoccupied aerial systems, UAS) was
related to published trophic level indices using Bayesian phylogenetic
mixed modelling. A significant negative relationship was found between
nares width and whale trophic level (β=−0.08, lower 95% CI =−0.13, upper
95% CI =−0.03), corresponding with a 39% increase in nares width from
highest to lowest trophic level. Thus, species with nasal morphology best
suited to stereo-olfaction are more zooplanktivorous. These findings provide
evidence that some baleen whale species may be able to localize odorants
e.g. DMS. Our results help direct future behavioural trials of olfaction in
baleen whales, by highlighting the most appropriate species to study. This is
a research priority, given the potential for DMS-mediated plastic ingestion
by whales.
1. Introduction
Baleen whales (or Mysticeti) represent some of the most extreme trophic
ecologies among vertebrates. Not only do they engage in highly energetically

http://crossmark.crossref.org/dialog/?doi=10.1098/rsbl.2023.0479&domain=pdf&date_stamp=2024-01-31
mailto:miolmor@gmail.com
https://doi.org/10.6084/m9.figshare.c.7035957
https://doi.org/10.6084/m9.figshare.c.7035957
http://orcid.org/
http://orcid.org/0000-0002-3654-7345
https://orcid.org/0000-0001-7895-7492
https://orcid.org/0000-0002-3548-6253
https://orcid.org/0000-0001-8138-8606
http://orcid.org/0000-0001-5880-5969
https://orcid.org/0000-0001-9090-8458
https://orcid.org/0000-0002-0791-8370
https://orcid.org/0000-0002-4599-3339
http://orcid.org/0000-0002-2822-233X
https://orcid.org/0000-0001-7426-9975
https://orcid.org/0000-0001-9378-1974
https://orcid.org/0000-0002-2396-2670
https://orcid.org/0000-0002-0477-2150
https://orcid.org/0000-0002-2052-5037
https://orcid.org/0000-0003-3074-6631


2

royalsocietypublishing.org/journal/rsbl
Biol.Lett.20:20230479
demanding methods of feeding [1,2], but they must also
locate ephemeral, energetically dense food patches within
the expanse of their oceanic habitats. How they locate such
prey patches, however, remains poorly understood. While
known to use a combination of acoustic and visual sensory
modalities, the role of chemoreception, including olfaction,
has not been clearly resolved [3].

Several lines of evidence support the use of olfaction
(smelling in air) by baleen whales [4–7]. They exhibit features
only found in those mammals with a functioning sense of
smell, including a cribriform plate supporting olfactory
bulbs [4,5] and the olfactory marker protein is expressed in
baleen whales [6,8]. Theoretical evidence suggests that
gradients of dimethyl sulfide gas (DMS) could orient zoo-
planktivores such as baleen whales to areas of higher prey
biomass than by randomly searching by other means [7].

For those baleen whale species that forage at lower
trophic levels, olfaction might be used to locate planktonic
food patches that produce DMS [9], an odorous secondary
metabolite released by phytoplankton in response to grazing
by zooplankton [10,11]. For example, seabirds are known
to use DMS as a cue for zooplankton availability and hence
feeding opportunities at distances in excess of 20 km
downwind of the source [12]. Studies exploring the response
of baleen whales to DMS have provided inconclusive
evidence suggesting that this may also be an important cue
for these species, albeit at a smaller spatial scale of several
hundreds of metres [9]. However, while DMS may indicate
the presence of high-density food patches, whether baleen
whales use olfaction to gain more directional cues has not
been tested.

All cetaceans have paired bony nasal passages underlying
a blowhole (nares hereafter), which comprises soft tissue
[13–15]. Nares are paired in baleen whales [15] while they
have evolved into a single conduit in toothed whales (Odon-
toceti) [4]. Baleen whales have also retained functional
olfactory bulbs, unlike odontocetes which apparently lack
olfaction [4,16]. Paired nares are associated with stereo-olfac-
tion, a trait found in a range of species, including humans
[17–19] and can play an important role in directionally loca-
lizing odorants, as demonstrated in experimental studies on
a range of taxa from mammals to insects [20,21].

In baleen whales, which must rely on coming to the sea
surface to gain orthonasal olfactory (smelling in air) infor-
mation, the presence of widely spaced nares may provide
additional directional information for odorous cues. How-
ever, the importance of such cues is likely to vary across
baleen whale species, given their trophic diversity. For
example, balaenid species such as right (Eubalaena australis,
E. glacialis, E. japonica) and bowhead whales (Balaena mystice-
tus), predominately feed on zooplankton (e.g. calanoid
copepods and euphausiids) that, in turn, are directly
associated with DMS-emitting phytoplankton [22–24].

While right and bowhead whales can feed at depth, they
also take advantage of prey concentrations at the sea surface
and employ surface-skimming [24,25]. Sei whales (Balaenop-
tera borealis) are able to switch between subsurface lunging
and surface skimming, depending on availability and type
of prey species [2], as they can target both small fishes
or zooplankton at a range of depths [26,27]. Here we use
vertical, overhead images and video stills collected non-
invasively from unoccupied aerial systems (UAS; drone)
to measure baleen whale nares. We test the hypothesis
that those baleen whale species occupying lower trophic
levels have wider nares, associated with the capacity for
stereo olfaction.

2. Methods
(a) Data collection
Morphometric measurements were made for free-ranging
whales mostly using UAS or aircraft-based imagery, including
stills from video footage (electronic supplementary material,
figure S1, table S1). The selection criteria for images were that
they were vertical, in focus and clearly showed the nares. Alti-
tude was typically between 10–60 m, however accurate
altimetry data were not available for all flights and therefore
relative measurements (i.e. pixel counts) were used. Because
images were compiled from a range of different studies, the
UAS, camera, camera sensor, lens focal length, altitude and
thus pixel resolution will have varied among sampling events
(electronic supplementary material, table S1). Similarly, lens dis-
tortion will vary in its effect on whale measurements due to
differences among UAVs. To mitigate possible effects from
image distortion, only images where the subject of interest
(head) was in the centre of the frame (≥30% from all frame
edges) were used (electronic supplementary material, table S2).

Absolute measurements were not generated in this study,
rather those previously published (total body length) estimates
were used (electronic supplementary material, tables S1 and
S2). To compile a dataset of 14 extant species of baleen whales,
additional images for those rarely documented species were
sourced from publications and reports [28–32]. Two of these
photographs were taken from a ship [30] or underwater [28],
but all clearly showed the nares. For each individual whale, the
clearest available overhead image (i.e. photograph or video
still) was used to measure the maximum width (pixels) of the
open or closed nares and the maximum width of the head
(pixels) at the nares using the straight-line tool in ImageJ
Analyze and Measure (https://imagej.nih.gov/ij/index.html).

The maximum-nares-width measurements could vary
depending on what point during the respiration cycle the
measurement was made, from fully closed through to fully
open [33]. We considered this by assigning two simplified
nares states which were assigned to each set of measurements:
open (ranging from fully to partially open: bubbles, vapour
or respiratory tract visible) and closed (no bubbles, vapour or
respiratory tract visible). The aim was to obtain a set of measure-
ments for both states for each whale, which was not
always possible.

To assign a trophic level to each whale species, we used avail-
able estimates based on diet from the SeaLifeBase database [34].
There were no available estimates in the database for pygmy
right (Caperea marginata), Rice’s (B. ricei) and Omura’s (B. omurai)
whales. Instead, we determined the preferred prey for these
whale species from published sources [27–29,35] and applied
trophic level estimates of the preferred prey plus 1 [34]. For phylo-
geny,we used the datedmammal phylogeny fromUpham et al. [36]
which was truncated to include only those species present in our
dataset. Because Rice’s whale is missing from Upham et al. [36],
we added it as a sister species, Eden’s whale (B. edeni), based on
its current phylogenetic positioning [32].

(b) Analysis
To test our hypothesis that nares-to-head-width ratio would be
greatest for predominately zooplanktivorous species, we fitted
Bayesian phylogenetic mixed models (BPMM) using the
MCMCglmm package [37] in R version 4.2.2 [38]. To account
for allometric effects associated with body size we used the
ratio of maximum nares width to maximum head width

https://imagej.nih.gov/ij/index.html


0.35

0.30

0.25

0.20

na
re

s 
to

 b
od

y 
w

id
th

 r
at

io

0.15

0.10

0.05

0

2.5 3.0 3.5
trophic level

open
closed

4.0 4.5

Figure 1. Ratio of nares width to body width against trophic level for 14
species of baleen whale. Observation and fitted line associated with open
nares are indicated in light blue (n = 85) and observations and fitted line
associated with closed nares in dark blue (n = 58). The fitted lines demonstrate
a negative relationship with a slope (β =−0.8, lower 95% CI =−0.13, upper
95% CI =−0.03). Species from left to right, (TL = trophic level; silhouetted
species in bold), North Atlantic right whale (Eubalaena glacialis) TL =
3; Southern right whale (Eubalaena australis); pygmy right whale (Caperea
marginata) TL = 3; North Pacific right whale (Eubalaena japonica) TL = 3.2;
Omura’s whale (Balaenoptera omurai) TL = 3.285; gray whale (Eschrichtius
robustus) TL = 3.29; bowhead whale (Balaena mysticetus) TL = 3.34; blue
whale (Balaenoptera musculus) TL = 3.47; sei whale (Balaenoptera borea-
lis) TL = 3.86; Antarctic minke whale (Balaenoptera bonaerensis) TL = 3.89;
Bryde’s whale (Balaenoptera brydei) TL = 4.1; humpback whale (Megaptera
novaeangliae) TL = 4.27; fin whale (Balaenoptera physalus) TL = 4.34; Rice’s
whale (Balaenoptera ricei) TL = 4.37.
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at the nares, where the head width was measured with the
mouth closed and in the relaxed position (electronic supplemen-
tary material, figure S1). This approach allowed for the body
sizes (not absolute size) associated with each individual to be
accounted for in the analysis. Because body length and the
width of the head change as a whale grows [39], it was necessary
to test if the maximum-nares-width-to-head-width ratio is a valid
metric to use with regards to ontogeny. Therefore, a linear
regression was carried out comparing the nares-width-to-head-
width ratio to the body length for each individual with species
as a factor, for a subset of five taxonomically disparate species
(electronic supplementary material, figure S2, table S2). Further-
more, nares dimensions and trophic level may vary between
different sexes, ontogenetic stages and individuals living in differ-
ent habitats. Because neither data nor a thorough understanding
of the possible effects of sex or age were available, a caveat in
our approach is the assumption that they are insignificant.

The structure of the main model was nares-to-head-
width ratio∼trophic level + nares state (closed versus open), with
closed nares used as the baseline. To account for potential pseu-
doreplication due to the evolutionary relationship between
species, we used the animal term in MCMCglmm [37]. This
term uses a distance matrix of the phylogenetic distance between
species to control for the expected similarity in trait values due to
common descent. We calculated the term h2 as the relative
variance attributable to the animal [40]. This term can be inter-
preted in a similar fashion to the phylogenetic lambda value,
with a h2 value close to 1 indicating a Brownian model of trait
evolution, and a value close to 0 indicating independence
between trait values [40].

All models were fit using parameter expanded priors [37].
Choice of burn-in, thinning and number of iterations was deter-
mined for each model separately to ensure effective sample
sizes exceeded 1000 for all parameter estimates. We tested for
convergence using the Gelman–Rubin statistic over three separ-
ate chains [41]. We also included a random term to account for
within species variation. Due to the lack of UAS images for
pygmy right and Omura’s whales, we also ran a sensitivity
analysis where we re-fitted the model without these two
species. Significance was determined if the 95% credibility
interval did not cross zero, which is the Bayesian analogue to
a p-value of 0.05 [37].
3. Results
Across the 14 species in our dataset, the nares-to-head-
width ratio varied from the lowest value of 0.03 measured
in a humpback whale (Megaptera novaeangliae) to highest
value of 0.31 measured in a North Atlantic right whale indi-
vidual (E. glacialis) followed by southern right whale (E.
australis), pygmy right whale (C. marginata) and Omura’s
whale (B. omurai). Trophic levels reported or estimated from
Palomares & Pauly [34] ranged from 3.0 in both the North
Atlantic right whale and pygmy right whale to 4.37 in
Rice’s whale.

In our model, we found a significant negative relationship
of 0.08 between nares-to-head-width ratio and trophic level
(β =−0.08, lower 95% CI =−0.13, upper 95% CI =−0.03,
table 1, figure 1). This corresponds to a 39% decrease in the
nares-to-head-width ratio across the range of trophic levels
in our dataset (figure 1). As expected, we found that open
nares had a wider ratio compared to closed nares, however
the overall effect of nares state (open or closed) was small
(β = 0.2, lower 95% CI = 0.01, upper 95% CI = 0.04, table 1,
figure 1). We found comparable results in the sensitivity
analysis with species without aerial and underwater images
removed, with both a significant negative relationship of
−0.06 with trophic level and a positive one associated with
open nares (electronic supplementary material, table S3). A
h2 of 0.37 indicated moderate phylogenetic effects (table 1,
electronic supplementary material, table S3). Linear regres-
sion indicated that the maximum nares-to-head-width ratio
is not dependent on total body length, therefore its use is
assumed to be appropriate for all species regardless of
body size (electronic supplementary material, figure S2).
4. Discussion
Our findings provide a link between nares morphology and
trophic ecology, with clues about how baleen whales might
locate patches of prey in a vast habitat. As hypothesized,
trophic status predicts baleen whale nares spacing, when
body size among individuals and phylogenetic relationship
among 14 extant species is accounted for (figure 1; table 1).
This provides further evidence in support of functional olfac-
tory ability in baleen whales [5,9,42,43] and the first evidence
that nasal morphology and trophic niche may be codepen-
dent over evolutionary timescales in baleen whales.
Whether this effect is mediated by DMS or other olfactory
stimuli has yet to be verified. Determining this is a conserva-
tion priority because biofouling on floating plastic debris
emits DMS, which may predispose seabirds to plastic inges-
tion [44]. If some baleen whales are similarly attracted to
DMS, it could lead to plastic ingestion or disruption
to foraging attempts [45].



Table 1. Summary of main model results, with mode (β) and 95% credibility intervals (CI) of the posterior distributions for the fixed terms of trophic level
and nares state (open, closed) and for the random terms associated with phylogenetic variance, within species variation and residual variation (units). A plot of
the associated posterior distributions is also included on the right of the table, with a broken reference line for zero (no slope). (N = 143 observations across
14 species.)
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Behavioural studies investigating olfaction have focused
on humpback whales which respond to odorants [9] and
orientate into wind more often than by chance, in the pres-
ence of odorants [42]. In addition, the opening and closing
of nares are bilaterally coordinated in those baleen whale
species investigated to date: humpback and North Atlantic
right whale [33]. This supports our interpretation of the
link between nares morphology and trophic status because
bilateral coordination is required for effective stereo-olfaction
[21]. While serial olfaction can be sufficient to locate odorant
sources, employing olfaction bilaterally (in stereo) increases
efficiency [20,21]. However, humpback whales are a higher
trophic species with a small body-to-nares-width ratio
(figure 1). Our findings suggest that future field trials of
DMS localization in whales should instead focus on lower
trophic species such as blue and right whales.

Baleen whale sensory processes are likely to be compli-
mentary and highly scale-dependent [3]. Olfaction is
therefore unlikely to be a dominant sense for baleen whales.
For piscivorous (e.g. Rice’s whale) or mainly benthic feeding
species (e.g. grey whale), DMS is unlikely to be a reliable indi-
cator of prey occurrence given the absence of phytoplankton
grazing by such prey. The recent finding that tactile hairs
may have a role in the sensory ecology of North Atlantic
right whales serves to highlight that our fundamental under-
standing of these sensory processes in whales is still
evolving [46]. In addition to orthonasal olfaction, it has been
theorized that baleen whales may employ retronasal olfaction,
whereby odorants from ingested food or water could be
passed from the oral cavity to the nasal chambers [45].

In this study, species were assigned a single trophic level
index, based on a global synthesis of dietary information,
with the caveat that age and sex were assumed to be inconse-
quential [34]. In practice, some species like blue and right
whales occupy a narrow trophic niche, whereas e.g. fin,
humpback and minke whales can be plastic or geographically
diverse with regard to trophic width [47–49]. The evolution of
a single nares accompanied with the loss of olfaction in odon-
tocetes [4,6] is consistent with our argument that nares width
may be a useful proxy for predicting trophic level in extinct
or newly discovered species of baleen whales. Finally, our
findings have implications for anthropogenic disturbance of
baleen whales from intentional or incidental introduction of
odorants in the marine environment.
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