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CLUSTER EXPANSION OF fcc Pd-V INTERMETALLICS 

D. de FONTAINE1,2, C. WOLVERTON1,3, G. CEDER1,2* and H. DREYSSE4 

lLawrence Berkeley Laboratory, Berkeley, CA 94720, USA 
2Department of Materials Science and Mineral Engineering, University of California, Berkeley, 

CA 94720, USA 
3 Department of Physics, University of California, Berkeley, CA 94720, USA 
4Laboratoire de Physique du Solide, Universite de Nancy, Vandoeuvre-les-Nancy, France 

ABSlRACT. A cluster expansion is used to compute fcc ground states from fIrst principles for the Pd-V 
system. Intermetallic structures are not assumed but derived rigorously by minimizing the confIgurational 
energy subject to linear constraints. A large number of concentration-independent interactions are calculated 
by the method of direct configurational averaging. Agreement with the fcc-based portion of the 
experimentally-determined Pd-V phase diagram is quite satisfactory. 

1 . Introduction 

In recent years, first-principles total electronic energy calculations have been remarkably successful 
in predicting heats of formation, lattice parameters, and elastic moduli of simple intermetallic 
compounds at their stoichiometric compositions and at zero Kelvin. Performing similar calculations 
for off-stoichiometric compositions, in disordered or partially ordered states, has obviously not 
progressed as rapidly, as it is required to solve combined quantum and statistical problems at a high 
level of accuracy. 

One aim of such calculations is to derive, virtually from first principles, reasonable temperature­
composition phase diagrams for binary metallic systems, say. Thermodynamic quantities, such as 
free energies, entropies, enthalpies, states of order may then be deduced as by-products of the 
calculations. . 

Over the last ten years or so, it has become apparent that the preferred way of investigating 
alloys computationally (ordered or disordered) is through the medium of expansions in cluster 
functions. The theoretical framework is rigorous, flexible and completely general, and is essential 
for formulating both the energy (E) and the configurational entropy (S), hence the free energy 
(F = E -TS). 

The cluster expansion method can also be used to tackle the difficult problem of ground state 
determination. Predicting, without guesswork, which superstructures of a given lattice have 
minimum energy, is essential and is a topic which has perhaps not received as much attention lately 
as it deserves. In this article, we shall address precisely this problem, and, after having outlined the 
basic theory, we shall apply the cluster methods to the ground state determination of fcc 
superstructures in the Pd-V system. 

*Present address: Department of Materials Science and Engineering, Massachusetts Institute of 
Technology, Cambridge, MA 02139, USA. 

This work was supported by the Director, Office of Energy Research, Office of Basic Energy 
Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE­
AC03-76SF00098. 
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2 . Cluster Expansions 

It was back in 1951 that Kikuchi [1] introduced the idea of clusters in the statistical thermodynamics 
of the Ising model as a way of improving systematically on the currently known approximations of 
the configurational entropy. Since the free energy was obtained, in Kikuchi's method, by 
minimizing a functional with respect to cluster variables, he called his hierarchy of approximations 
the cluster variation method (CVM). Its application to the calculation of phase diagrams was 
suggested by Van Baal [2] in 1973, and the use of the method has expanded considerably ever 
since. 

The cluster method is now viewed as far more general than the early practitioners of the CVM 
probably envisaged. Today, clusters (on a lattice) are considered as the essential building blocks 
for any description of alloy properties which depend on configuration. This approach was first 
described in 1982, in a remarkable paper by Sanchez, Ducastelle and Gratias [3]. Although these 
authors treated the general multi component case, we shall here summarize results for binary 
systems only. An alternative and very elegant method of treating multi component systems was 
suggested by Finel [4] and was very recently described in a very clear and comprehensive revi~w 
article by Inden and Pitsch [5]. 

In a binary alloy (AB) let the pseudo-spin variable a p = + 1 (-1) stand for an A (B) atom at lattice 
site p. Consider now a set of lattice points {p,p',p" ... la which we shall denote as "the cluster a." 
It was shown [6,7] that cluster functions CPa(a) can be constructed so as to form an orthonormal set 
in the space of 2N configurations, N being the total number of lattice points. A convenient choice 
[3] is the direct product of a variables on the cluster points: 

(1) 

The set {CPal is orthonormal in the sense that the scalar product < CPa(a) , cp~(a», defined as the 
normalized sum of the product <PaCP~ over all configurations, is unity if the two clusters a and ~ 
coincide, zero otherwise. It follows that any function of configuration, f(a), say, can be expanded 
in the set of cluster functions 

(2) 

a 

with generalized Fourier coefficients given by 

fa = <<Pa( cr), f( 0» (3) 

Of particular interest is the expectation value of the function f( 0), obtained by taking an ensemble 
average ofEq. (2) at given T and chemical field !l (difference of chemical potentials!lB - !lA): 

<f> = ~f ): £..J a ~a 
a 

(4) 

where the;ao denoted multisite correlation junctions, are ensemble averages of the corresponding 
cluster functions. Eq. (4) is important in that, in principle, it shows how to express any 
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macroscopic alloy property as an expansion in cluster correlation functions with coefficients 
calculated by Eq. (3). This cluster expansion technique, applied to the case of the energy E, has led 
to various methods for calculating macroscopic alloy parameters directly from quantum mechanical 
computations. One such method will now be described. 

3. Effective Cluster Interactions 

Let us apply the formalism of Eq. (4) to the expectation value of the internal energy E. It is 
necessary to calculate the expansion coefficients Ea, generally called effective cluster interactions 
(Eel). These parameters are obtained from Eq. (3), with cluster functions given by Eq. (1). It 
would appear that the formalism requires the computation of energies as a function of alloy 
configuration, E(cr), for all possible configurations. Actually, the sum of (4) converges fairly 
rapidly [7], so that only a few ECI's need to be calculated. As an example, let a. represent a pair of 
lattice sites, p and q, say. In that case, when the summation implied by the scalar product (3) is 
written out explicitly, the following single expression for effective pair (a. == pq) interactions is 
obtained [6-9]: 

1 
Epq = ;;<W M + W BB - W AB - W BN 

(5) 

In Eq. (5), WIJ represents the average energy of all configurations of the system with atom of 
Type I at p and J at q. The formalism can be extended to any reasonable size cluster: triplets 
(p,q,r), quadruplets, etc. The physical meaning of the ECl's is thus quite clear: Ea represents a 
linear combination of average energies of systems containing cluster a. in all of its possible 
configurations. 

This def.inition of Eel's is perfectly rigorous, and, in this approach, leads to the following 
important properties: 

(a) Since the embedding medium is averaged over all possible configurations, and since all 
configurations of the embedded cluster are considered, the Eel's are concentration 
independent. 

(b) Since the Eel's, as per Eq. (5), consist of sums of very similar energies (W), with equal 
number of positive and negative contributions, the Ea are much smaller in magnitude than 
the "potentials" W. 

(c) As already anticipated in the pioneering work of Gautier and Ducastelle [10], the magnitude 
of the Ea decreases rapidly with distance, in the case of pairs, and with the number of 
points in cluster [7]. This convergence property is responsible for making the whole 
notion of cluster expansion into a practical reality. It is important to note that no such 
convergence holds for the "potentials" W themselves. However, in taking sums and 
differences, as in Eq. (5), the long-range portions of the energies tend to cancel out. 

This is not the only way to proceed: it has been shown recently [6,7] that orthonormal sets of 
functions on configuration space could be constructed by means of summations over configurations 
which conserve average concentration. The ECI's produced in this manner are thus necessarily 
concentration-dependent, but it was proved that, somewhat surprisingly, both concentration­
dependent and -independent expansion schemes are in fact completely equivalent [6,7]. Of course, 
the coefficients of the expansions will have different numerical values, and the convergence rate of 
the two series may well differ. 
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The concentration-independent scheme presents definite advantages, not the least of which is the 
simplification of the search for ground states. This subject will be treated in Section 5, but first let 
us describe a method for actually computing concentration-independent effective cluster 
interactions. 

4. Direct Configurational Averaging 

The most obvious way of computing Eel's (En) is by taking sums and differences of W's, as in 
Eq. (5). The energies W themselves can be calculated by selecting an arbitrary configuration cr in a 
finite potion of the crystal (containing N atoms), computing the energy by suitable electronic 
structure techniques, then repeating the procedure over and over, with different configurations 
selected at random, keeping that on the chosen a-cluster fixed. It has been shown that convergence 
to a true "random medium" is rather rapid [11]; usually about 20 to 50 configurations suffice [7]. 

We have used the tight-binding method with parameters obtained from LMTO calculations for 
the pure elements of the binary alloy considered. On-site energies were determined by disallowing 
charge transfer, a reasonable assumption for transition metals, and the Shiba prescription was used 
for evaluating off-diagonal two-center hopping integrals [7,11]. Because the recursion method is 
used to calculate the density of states, it then turns out that the W potentials need not be calculated 
individually: the technique of "orbital peeling" [12] produces En directly, so that taking a (small) 
difference of large numbers is not required. Generally, 10 recursion levels are used with a 
quadratic terminator. 

The average medium, in the present case, was practically an fcc solution of 50% Pd and 50% V 
[13]. The tight-binding parameters were derived from pure fcc Pd and fcc V at a molar volume 
midway between that of eqUilibrium fcc Pd and fcc V at zero Kelvin. Effective cluster interactions 
were calculated for all pair and triplet and eight quadruplet clusters which belong to the set of 
subclusters of the 14-point fcc cube. Fig. 1 is a plot of the logarithm of the magnitude of the ratio 
of Eel En to the first neighbor pair interaction for pairs (circles), triangles (crosses) and 
quadruplets (squares), as a function of the order of the largest pair in the cluster. Several distinct 
triplets and some quadruplets have the same largest pair, hence their representative points appear on 
the same vertical in Fig. 1. It is apparent that ECI's converge fairly rapidly with pair separation 
and with number of points in the cluster, although not monotonically. This set of 26 effective 
interactions represents, to date, the largest set of Eel's yet calculated for any alloy system. It is 
becoming increasingly clear, however, that large numbers of ECI's are required to describe 
adequately the properties of most alloy systems. 

5 . Ground State Analysis 

Predicting, for a given binary system, which intermetallic structures will have lowest energy, for all 
concentrations, at zero Kelvin, is an impossible task. Fortunately, most intermetallics of interest 
are superstructures of either fcc, bcc or hcp. Then, the problem of determining the lowest-energy 
superstructures of a given lattice is a simpler one which, in favorable cases, can be solved exactly. 
Each lattice must of course be handled separately: the ECI's calculated on different lattices will 
have different values. As for other intermetallic compounds, those which are not superstructures, 
they must be treated differently. For these "interloper" phases, their total energies must be 
calculated directly by appropriate electronic structure codes and compared to other, possibly 

.. 
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competitive structures. Here, we shall investigate only the mlnImUm-energy fcc-based 
superstructures of the Pd-V system, for the calculated set of Eel's, over the whole Pd-V 
concentration interval. This set of structures constitute the set offee ground states of order for the 
system in question. 
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Largest Pair Present in Cluster 

Figure 1. Logarithm of ECl's (normalized to nn pair interaction E1), as a function of largest pair distance 
in cluster, for three types of clusters: pairs (circle symbols), triplets (triangles), quadruplets (squares). 
Lines connect highest-energy ECl's for the three classes of clusters. Geometrically distinct triplets and 
quadruplets which have same largest pair are located on the same vertical. 

Eq. (2), written for the energy E( 0), is the one to minimize, but it must first be rewritten in a 
more convenient form. Many of the clusters (n) appearing in the summation are equivalent through 
the space group symmetry operations of the underlying lattice. The set of such clusters equivalent 
to a given one by symmetry is known as the orbit of the given cluster. Each distinct orbit (or its 
generating cluster) will be denoted by the index j. The total number of clusters in orbit j is then the 
total number of lattice translational symmetry operations times the number of equivalent clusters per 
lattice point, or multiplicity mj' Lerus also denote the "empty cluster" by the index j = O. Then, the 
energy of a given stoichiometric superstructure, per lattice point, is, by Eq. (4), given by the linear 
form 
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J 

e = eo + L mj Ej ~j 
j=l 

(6) 

where the brackets have been removed from < e > since, at absolute zero of temperature, the 
expectation value is just the energy of the perfect structure. The variables ~j here are not strictly 
ensemble averages, but "orbit averages" of cluster functions; such averaging process must be taken 
into account since the symmetry of the ordered superstructure is generally lower than that of the 
parent lattice. The summation in Eq. (6) extends from the "point" cluster to some maximal 
cluster(s), denoted by the index J. 

Simply minimizing the linear function (6) with given ECl's Ej will not do, since the parameters 
~j must describe a real structure, or mixture of structures, on the lattice. Hence, a number of 
constraints (Le., linear inequalities) on the domain of ~j must be imposed. The required constraints 
are usually derived from considerations of clusters (see Refs. [14] and [15] and references cited 
therein), but the most straightforward method is probably that suggested by Sanchez and one of the 
present authors [16] and described fully, for the case of pair interactions, by Finel [15] and in a 
recent review [5]. The handling of combinatorics oflarge clusters was treated even more recently 
in the Ph.D. dissertation of one of the present authors [17] and a more detailed application to the 
Pd-V system will be published elsewhere [13]. 

Briefly, the idea is the following: denote the probability of finding a given cluster, say a nearest­
neighbor triangle of lattice points (equilateral triangle in fcc) populated by atoms in a certain 
configuration (0 == AAA, AAB, ... ) by the symbol Xj(o). This probability, or "dressed" cluster 
concentration, being a function of configuration, can be expanded in a set of cluster functions, as in 
Eq. (2) [17]. For simplicity, let distinct configurations on a given cluster be labeled by the index k. 
For the maximal cluster), the concentrations of various configurations k are then given by [18]: 

pj (1 + ± Ckj ~j ) (7) 

j=l 

where p ~ is a normalization factor given by the reciprocal of the number of configurations on the 
cluster, Le., 2-J• The summation is overall subclusters j of the maximal cluster J and the 
coefficients Ckj , calculated by means of Eq. (3), are elements of a rectangular matrix, the so-called 
configuration matrix (or C-matrix). Often, more than one "maximal cluster" is used, J, 1', J", ... , 
neither one being a subcluster of any other. 

Since the x J are probabilities, their values must be constrained to lie between 0 and 1. Then, 
only the lower constraint needs to be considered, since the upper one is guaranteed by the fact that 
cluster averages lie between -1 and +1. Hence, from Eq. (7), we must have, for all maximal 
clusters, and for all cluster configurations k, 

(8) 

These linear inequalities define a convex region in multidimensional ~-space, the so-called 
configurational polyhedron, which contains all realizable configurations on the lattice. The 
determination of ground states then consists of minimizing the energy (objective) function (6), 
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under the constraint of inequalities (8). This is a standard problem in linear programming and can 
be solved, when the ECl's are given, by the simplex algorithm. It follows that the vertices of the 
configuration polyhedron are the solutions sought, i.e, the ordered ground state superstructures, 
different vertices corresponding to different stoichiometries. 

The C-matrix, which has more rows (configurations k) than columns (subcluster types j) 
contains all the geometric properties of the problem, and is used to transfer that information (lattice 
type, largest cluster(s), subclusters, symmetry equivalence) to both ground state and CVM codes. 
Unfortunately, the number of (sub)clusters and the number of configurations tend to increase 
exponentially with the number of points in the largest cluster retained in the energy (or entropy) 
approximation chosen. For example, in the 13-, 14-point fcc approximation (central lattice point 
and its twelve nearest neighbors, fcc cube itself), there are 742 distinct clusters, 554 configurations 
on the 14-point cluster and 288 on the 13-point cluster. Hence the C-matrix has 842 x 742 
elements! Clearly, the enumeration of all variables and constraints must be obtained by a suitable 
computer algorithm based on group theoretic considerations. One such algorithm has recently been 
developed by one of the present authors [17]. 

Despite the computer automation provided by the C-matrix code and the simplex algorithm, the 
13-, 14-point fcc approximation lies pretty much at the limit of what can be done practically at 
present. We have used this approach to determine the fcc ground states of fcc Pd-V with, as input, 
the 26 effective cluster interactions calculated by the DCA method, as described above. The 
resulting ground state map is shown in Fig. 2, in which the/ormation energies (in eV/atom) are 
plotted as a function of concentration. Formation energies are defined as the actual ordered ground 
state energy compared to the linear combination of pure fcc Pd and fcc V at the same concentration. 
The ordered states of minimum energy are indicated by filled squares joined together by a dotted 
line representing the "convex hull" for this problem. Open squares represent ordered 
superstructUres which narrowly miss being ground states. Their energies were calculated 
separately, through the use of Eq. (6), using known values of the ;j structural variables. The full 
curve in Fig. 2 is the calculated energy of the completely disordered Pd-V fcc solid solution, 
theoretically resulting from the infmite-temperature fcc solution quenched infinitely rapidly to zero 
Kelvin. . 

All other structures indicated have been derived rigorously and are guaranteed to be the true and 
only fcc ground states for the given set of interactions. The nomenclature used to describe the 
superstructures is a hybrid one, consisting of standard Strukturbericht (such as D022) and 
prototype designations (such as MoPt2). The structures are determined as follows: the simplex 
algorithm automatically zeroes in on a vertex of the configuration polyhedron and returns all vertex 
coordinates (;j) appropriate to that structure. The investigator's task then consists in constructing 
an actual superstructure on the fcc lattice which has these ;j as structural variables. If a structure 
can be constructed from the vertex coordinates then it is guaranteed to be an absolute minimum 
energy structure, hence a true ground state. 

In the past, ground state searches have often produced "non-constructible structures," which 
necessarily indicated that the set of constraints was too "loose," in some sense, i.e., incomplete. In 
the present search, fortunately (i.e., with the 13-, 14-point approximation and the 26 interactions 
chosen), all vertices turned out to correspond to "constructible" structures, including the very large­
unit-cell HfGa2 structure, which could certainly not have been guessed at. For points on the 
convex hull (dotted line), a mixture of two phases, with structures given by the square symbols on 
either side, is the stable state. 
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Figure 2. Fonnation energies for Pd-V fcc ground states as a function of Pd concentration. 

6. Discussion 

It must be emphasized that what has just been presented is a true first-principles determination of 
lowest-energy structures; not a single adjustable or experimentally-derived parameter has been 
introduced. Of course, this does not mean that the calculations were exact: local density and atomic 
sphere approximations were used to calculate tight-binding parameters of pure fcc Pd and V, the 
tight-binding Hamiltonian was used for the calculation of the ECl's, the Shiba prescription was 
used to determine off-diagonal hopping parameters, a limited number of recursion levels was used 
in the density of states calculation, a limited number of configurations was considered in the DCA 
method, elastic interactions and vibrational entropy were ignored, a limited number (though large, 
by current standards) of ECl's was calculated. However, the ground state structures were derived 
from these first-principles calculations without any preconceived notion of what the unit cells might 
be, only that they must be fcc superstructures. The same sort of calculation will also be performed 
with bcc superstructures at a later date. Then the two sets of ground states will be compared with 
one another. 

Let us now investigate how well the present calculation compares to a previous one and to 
experimental evidence. Other ECI calculations on the fcc-based Pd-V system are those of Turchi et 
al. [19), who used the KKR-CPA-GPM scheme (Korringa-Kohn-Rostoker, Coherent Potential 
Approximation, Generalized Perturbation Method). The first four pair interactions calculated at 

L( 
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concentration 0.5 by the latter method [19] and by the present one (DCA) agree closely. Both 
studies show the importance of describing this system by interactions extending beyond the second­
neighbor pair: truncating the inter-action set after the second-neighbor pair would stabilize the L 12 
structure for Pd3 V, instead of the correct D022. 

Ordered superstructures can be classified according to the dominant special-point ordering wave 
[14,20]. In fcc, there are three ordering wave families <100>, <1¥l> and <~H>. The L12 and L1 0 
structures belong to the <100> family, the MoPt2' D022 and D1a belong to the <140> family [20]. 
A glance at the ground state diagram of Fig. 2 clearly shows that the V -side is dominated by the 
<100> wave, the Pd-side by the <1~>. Competition is close, however: the L12 and D022 V3Pd 
structures have almost the same formation energies. Also, there is experimental evidence [21] that 
the short-range order above the Pd3 V transition temperature is of <100> type, whereas the long­
range order (D022) is of <140> type. For a given binary system to belong to more than one 
special-point family, either concentration-dependent interactions must be used, or, as in the present 
case, multi site interactions must be taken into account. The latter approach allows for a rigorous 
ground state determination to be made through the linear programming algorithm, as explained 
above. 

Obviously, the ground state diagram of Fig. 2 cannot do full justice to the actual Pd-V phase 
diagram [22]. In reality, vanadium is bcc and that side of the phase diagram must be dominated by 
that lattice and its superstructures or other non-superstructure phases. The Pd side is dominated by 
the fcc lattice, as expected, and it is found that the DO 22 and MoPt2-type structures are predicted 
correctly, respectively for Pd3 V and Pd2 V. The L10 structure is not observed in the 
experimentally-determined phase diagram, but a B 19 structure has been reported, and described as 
a "distorted L10 phase" [23]. In Fig. 2, the D1a (pd4 V) and Pd g V structure points are located 
practically on the tie-line between D022 and pure Pd so that it is difficult to predict whether those 
superstructures or phase mixtures will be the true observed ground states. Somewhat surprisingly, 
the D1a is not observed experimentally at temperatures for which atomic mobility ishigh enough to 
produce eqUilibrium states, but Pdg V has been observed by Cheng and Ardell [24] in high-energy 
proton-irradiated samples. The D1 a structure is the eqUilibrium one for Ni 4Mo, however. In 
Fig. 2, the vertical distance between a structure's formation energy and the full curve of the 
disordered-state energy represents the ordering energy (at zero Kelvin) and therefore gives a rough 
idea of the corresponding order-disorder transition temperature. It is therefore anticipated, from 
consideration of Fig. 2, that the ordering temperatures of the Pd4 V and, especially, Pdg V, will be 
quite low, perhaps therefore unobservable, except under accelerated kinetic conditions such as 
those produced by irradiation. These two structures depend, for their stabilization, on interactions 
beyond the second neighbor pair. 

7 • Conclusion 

We have presented a rigorous, first-principles ordered ground state determination of fcc-based Pd­
V intermetallic structures. The structures were not selected a priori, then compared energetically 
with one another, as is usually done, but actually derived by an algorithm which guarantees 
minimum energy in the given context. The cluster expansion method was used here both for 
calculating the configurational energy and for obtaining the inequalities required by the linear 
programming technique. 

The cluster method is an offshoot of the original cluster variation method but is now considered 
to be the fundamental technique for describing alloy thermodynamics in general: in principle, any 
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function of configuration can be expressed as an expansion in orthononnal cluster functions. This 
basic property establishes the link between quantum mechanics and statistical mechanics, hence 
with classical thennodynamics itself. Here, only ground state applications were discussed in detail, 
but phase diagrams can be calculated by the CVM, and all derived quantities such as long- and 
short-range order parameters, diffuse intensity [24], elastic moduli as a function of atomic 
configuration, etc. 

Many practical problems remain to the solved, however. The Pd-V case shows clearly that 
reliable results can only be obtained if a fairly large number of effective cluster interactions is 
-calculated. The number of cluster functions then tends to increase exponentially, rapidly making 
the problem completely intractable. Computer algorithms for deriving the configuration matrix are 
now available [17], without which the present computations could not have been perfonned. Still, 
the complexity of the problem can be overwhelming. 

It is-interesting to note that, originally, the cluster approach was proposed as a method to 
improve the reliability of the configurational entropy [1]. Today, the emphasis has shifted to the 
configurational energy: it is primarily the latter contribution to the free energy that dictates which 
cluster approximation is required, hence whether or not the problem is tractable by present 
theoretical means. Undoubtedly, better algorithms will be developed in future, thereby ushering in 
a true first-principles thennodynamics of materials. 
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