
UC Irvine
UC Irvine Previously Published Works

Title
Databases to Efficiently Manage Medium Sized, Low Velocity, Multidimensional Data in
Tissue Engineering.

Permalink
https://escholarship.org/uc/item/2ct347b9

Journal
Journal of Visualized Experiments, 2019(153)

ISSN
1940-087X

Authors
Ochs, Alexander R
Mehrabi, Mehrsa
Becker, Danielle
et al.

Publication Date
2019

DOI
10.3791/60038

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2ct347b9
https://escholarship.org/uc/item/2ct347b9#author
https://escholarship.org
http://www.cdlib.org/

Databases to Efficiently Manage Medium Sized, Low Velocity,
Multidimensional Data in Tissue Engineering

Alexander R. Ochs1,2, Mehrsa Mehrabi1,2, Danielle Becker1,2, Mira N. Asad1,2, Jing Zhao1,2,
Michael V. Zaragoza3,4, Anna Grosberg1,2,5,6,7

1Department of Biomedical Engineering, University of California, Irvine

2The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of
California, Irvine

3Pediatrics-Genetics & Genomics Division-School of Medicine, University of California, Irvine

4Biological Chemistry-School of Medicine, University of California, Irvine

5Department of Chemical and Biomolecular Engineering, University of California, Irvine

6Center for Complex Biological Systems, University of California, Irvine

7The NSF-Simons Center for Multiscale Cell Fate Research (CMCF), University of California,
Irvine

Abstract

Science relies on increasingly complex data sets for progress, but common data management

methods such as spreadsheet programs are inadequate for the growing scale and complexity of this

information. While database management systems have the potential to rectify these issues, they

are not commonly utilized outside of business and informatics fields. Yet, many research labs

already generate “medium sized”, low velocity, multi-dimensional data that could greatly benefit

from implementing similar systems. In this article, we provide a conceptual overview explaining

how databases function and the advantages they provide in tissue engineering applications.

Structural fibroblast data from individuals with a lamin A/C mutation was used to illustrate

examples within a specific experimental context. Examples include visualizing multidimensional

data, linking tables in a relational database structure, mapping a semi-automated data pipeline to

convert raw data into structured formats, and explaining the underlying syntax of a query.

Outcomes from analyzing the data were used to create plots of various arrangements and

significance was demonstrated in cell organization in aligned environments between the positive

control of Hutchinson-Gilford progeria, a well-known laminopathy, and all other experimental

groups. In comparison to spreadsheets, database methods were enormously time efficient, simple

to use once set up, allowed for immediate access of original file locations, and increased data rigor.

In response to the National Institutes of Health (NIH) emphasis on experimental rigor, it is likely

Correspondence to: Anna Grosberg at grosberg@uci.edu.

Video Link
The video component of this article can be found at https://www.jove.com/video/60038/

Disclosures
The authors have nothing to disclose.

HHS Public Access
Author manuscript
J Vis Exp. Author manuscript; available in PMC 2020 November 22.A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript

https://www.jove.com/video/60038/

that many scientific fields will eventually adopt databases as common practice due to their strong

capability to effectively organize complex data.

Keywords

medium sized data; databases; LMNA; data organization; multidimensional data; tissue
engineering

Introduction

In an era where scientific progress is heavily driven by technology, handling large amounts

of data has become an integral facet of research across all disciplines. The emergence of new

fields such as computational biology and genomics underscores how critical the proactive

utilization of technology has become. These trends are certain to continue due to Moore’s

law and steady progress gained from technological advances1,2. One consequence, however,

is the rising quantities of generated data that exceed the capabilities of previously viable

organization methods. Although most academic laboratories have sufficient computational

resources for handling complex data sets, many groups lack the technical expertise necessary

to construct custom systems suited for developing needs3. Having the skills to manage and

update such data sets remains critical for efficient workflow and output. Bridging the gap

between data and expertise is important for efficiently handling, re-updating, and analyzing

a broad spectrum of multifaceted data.

Scalability is an essential consideration when handling large data sets. Big data, for instance,

is a flourishing area of research that involves revealing new insights from processing data

characterized by huge volumes, large heterogeneity, and high rates of generation, such as

audio and video4,5. Using automated methods of organization and analysis is mandatory for

this field to appropriately handle torrents of data. Many technical terms used in big data are

not clearly defined, however, and can be confusing; for instance, “high velocity” data is

often associated with millions of new entries per day whereas “low velocity” data might

only be hundreds of entries per day, such as in an academic lab setting. Although there are

many exciting findings yet to be discovered using big data, most academic labs do not

require the scope, power, and complexity of such methods for addressing their own scientific

questions5. While it is undoubtable that scientific data grows increasingly complex with

time6, many scientists continue to use methods of organization that no longer meet their

expanding data needs. For example, convenient spreadsheet programs are frequently used to

organize scientific data, but at the cost of being unscalable, error prone, and time inefficient

in the long run7,8. Conversely, databases are an effective solution to the problem as they are

scalable, relatively cheap, and easy to use in handling varied data sets of ongoing projects.

Immediate concerns that arise when considering schemas of data organization are cost,

accessibility, and time investment for training and usage. Frequently used in business

settings, database programs are more economical, being either relatively inexpensive or free,

than the funding required to support use of big data systems. In fact, a variety of both

commercially available and open source software exists for creating and maintaining

databases, such as Oracle Database, MySQL, and Microsoft (MS) Access9. Many

Ochs et al. Page 2

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

researchers would also be encouraged to learn that several MS Office academic packages

come with MS Access included, further minimizing cost considerations. Furthermore, nearly

all developers provide extensive documentation online and there is a plethora of free online

resources such as Codecademy, W3Schools, and SQLBolt to help researchers understand

and utilize structured query language (SQL)10,11,12. Like any programming language,

learning how to use databases and code using SQL takes time to master, but with the ample

resources available the process is straightforward and well worth the effort invested.

Databases can be powerful tools for increasing data accessibility and ease of aggregation,

but it is important to discern which data would most benefit from a greater control of

organization. Multi-dimensionality refers to the number of conditions that a measurement

can be grouped against, and databases are most powerful when managing many different

conditions13. Conversely, information with low dimensionality is simplest to handle using a

spreadsheet program; for example, a data set containing years and a value for each year has

only one possible grouping (measurements against years). High dimensional data such as

from clinical settings would require a large degree of manual organization in order to

effectively maintain, a tedious and error-prone process beyond the scope of spreadsheet

programs13. Non-relational (NoSQL) databases also fulfill a variety of roles, primarily in

applications where data does not organize well into rows and columns14. In addition to being

frequently open source, these organizational schemas include graphical associations, time

series data, or document-based data. NoSQL excels at scalability better than SQL, but

cannot create complex queries, so relational databases are better in situations that require

consistency, standardization, and infrequent large-scale data changes15. Databases are best at

effectively grouping and re-updating data into the large array of conformations often needed

in scientific settings13,16.

The main intent of this work, therefore, is to inform the scientific community about the

potential of databases as scalable data management systems for “medium sized”, low

velocity data as well as to provide a general template using specific examples of patient

sourced cell-line experiments. Other similar applications include geospatial data of river

beds, questionnaires from longitudinal clinical studies, and microbial growth conditions in

growth media17,18,19. This work highlights common considerations for and utility of

constructing a database coupled with a data-pipeline necessary to convert raw data into

structured formats. The basics of database interfaces and coding for databases in SQL are

provided and illustrated with examples to allow others to gain the knowledge applicable to

building basic frameworks. Finally, a sample experimental data set demonstrates how easily

and effectively databases can be designed to aggregate multifaceted data in a variety of

ways. This information provides context, commentary, and templates for assisting fellow

scientists on the path towards implementing databases for their own experimental needs.

For the purposes of creating a scalable database in a research laboratory setting, data from

experiments using human fibroblast cells was collected over the past three years. The

primary focus of this protocol is to report on the organization of computer software to enable

the user to aggregate, update, and manage data in the most cost- and time-efficient manner

possible, but the relevant experimental methods are provided as well for context.

Ochs et al. Page 3

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Experimental setup

The experimental protocol for preparing samples has been described previously20,21, and is

presented briefly here. Constructs were prepared by spin-coating rectangular glass coverslips

with a 10:1 mixture of polydimethylsiloxane (PDMS) and curing agent, then applying 0.05

mg/mL fibronectin, in either unorganized (isotropic) or 20 μm lines with 5 μm gap

micropatterned arrangements (lines). Fibroblast cells were seeded at passage 7 (or passage

16 for positive controls) onto the coverslips at optimal densities and left to grow for 48 h

with media being changed after 24 h. The cells were then fixed using 4% paraformaldehyde

(PFA) solution and 0.0005% nonionic surfactant, followed by the coverslips being

immunostained for cell nuclei (4’,6’-diaminodino-2-phenylinodole [DAPI]), actin (Alexa

Fluor 488 phalloidin), and fibronectin (polycloncal rabbit anti-human fibronectin). A

secondary stain for fibronectin using goat anti-rabbit IgG antibodies (Alexa Fluor 750 goat

anti-rabbit) was applied and preservation agent was mounted onto all coverslips to prevent

fluorescent fading. Nail polish was used to seal coverslips onto microscope slides then left to

dry for 24 h.

Fluorescence images were obtained as described previously20 using a 40x oil immersion

objective coupled with a digital charge coupled device (CCD) camera mounted on an

inverted motorized microscope. Ten randomly selected fields of view were imaged for each

coverslip at 40x magnification, corresponding to a 6.22 pixels/μm resolution. Custom-

written codes were used to quantify different variables from the images describing the

nuclei, actin filaments, and fibronectin; corresponding values, as well as organization and

geometry parameters, were automatically saved in data files.

Cell lines

More extensive documentation on all sample data cell lines can be found in prior

publications20. To describe briefly, the data collection was approved and informed consent

was performed in accordance with UC Irvine Institutional Review Board (IRB # 2014–

1253). Human fibroblast cells were collected from three families of different variations of

the lamin A/C (LMNA) gene mutation: heterozygous LMNA splice-site mutation (c.357–

2A>G)22 (family A); LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 423 (family

B); and LMNA missense mutation (c.1003C>T, pR335W) in exon 624 (family C). Fibroblast

cells were also collected from other individuals in each family as related mutation-negative

controls, referred to as “Controls”, and others were purchased as unrelated mutation-

negative controls, referred to as “Donors”. As a positive control, fibroblast cells from an

individual with Hutchinson-Gliford progeria (HGPS) were purchased and grown from a skin

biopsy taken from an 8-year-old female patient with HGPS possessing a LMNA G608G

point mutation25. In total, fibroblasts from 22 individuals were tested and used as data in this

work.

Data types

Fibroblast data fell into one of two categories: cellular nuclei variables (i.e., percentage of

dysmorphic nuclei, area of nuclei, nuclei eccentricity)20 or structural variables stemming

from the orientational order parameter (OOP)21,26,27 (i.e., actin OOP, fibronectin OOP,

nuclei OOP). This parameter is equal to the maximum eigenvalue of the mean order tensor

Ochs et al. Page 4

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of all the orientation vectors, and it is defined in detail in previous publications26,28. These

values are aggregated into a variety of possible conformations, such as values against age,

gender, disease status, presence of certain symptoms, etc. Examples of how these variables

are used can be found in the results section.

Example codes and files

The example codes and other files based on the data above can be downloaded with this

paper, and their names and types are summarized in Table 1.

Protocol

NOTE: See Table of Materials for the software versions used in this protocol.

1. Evaluate if the data would benefit from a database organization scheme

1. Download the example codes and databases (see Supplemental Coding Files,

which are summarized in Table 1).

2. Use Figure 1 to evaluate if the data set of interest is “multi-dimensional”.

NOTE: Figure 1 is a graphical representation of a multi-dimensional database

provided for the example data set.

3. If the data can be visualized in a “multi-dimensional” form like the example and

if the ability to relate a specific experimental outcome to any of the dimensions

(i.e., conditions) would allow for greater scientific insight into the available data,

proceed to construct a relational database.

2. Organize the database structure

NOTE: Relational databases store information in the form of tables. Tables are organized in

schema of rows and columns, similar to spreadsheets, and can be used to link identifying

information within the database.

1. Organize the data files, so they have well thought out unique names. Good

practice with file naming conventions and folder-subfolder structures, when done

well, allow for broad database scalability without compromising the readability

of accessing files manually. Add date files in a consistent format, such as

“20XX-YY-ZZ”, and name subfolders according to metadata is one such

example.

2. As the data-base structure is designed, draw relationships between the fields in

different tables. Thus, multi-dimensionality is handled by relating different fields

(i.e., columns in the tables) in individual tables to each other.

3. Create readme documentation that describes the database and relationships that

were created in step 2.2. Once an entry between different tables is linked, all

associated information is related to that entry and can be used to call complex

queries to filter down to the desired information.

Ochs et al. Page 5

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

NOTE: Readme documents are a common solution for providing supplemental

information and database structural information about a project without adding

non-uniform data to the structure.

4. Following steps 2.1–2.3, make the end result similar to this example where the

differing characteristics of individuals (Figure 2A) are related to associated

experimental data of those individuals (Figure 2B). The same was done through

relating columns of pattern types (Figure 2C) and data types (Figure 2D) to

matching entries in the main data values table to explain various shorthand

notations (Figure 2B).

5. Determine all the essential and merely helpful data points that need to be

recorded for long range data collection.

NOTE: A key advantage of using databases over spreadsheet programs, as

mentioned earlier, is scalability: additional data points can be trivially added at

any point and calculations, such as averages, are instantly updated to reflect

newly added data points.

1. Identify the necessary information for creating distinct data points prior

to beginning. Leave raw data untouched, instead of modifying or saving

over it, so that reanalysis is possible and accessible.

NOTE: For the given example (Figure 2), the “Designator”

corresponding to an individual, “Pattern type”, “Coverslip #”, and

“Variable type” were all vital fields for distinctness of the associated

value.

2. If desired, add other helpful, non-vital information such as the “Total #

of Coverslips” to indicate the number of repetitions conducted and help

determine if data points are missing in this example.

3. Set up and organize the pipeline

1. Identify all the various experiments and data analysis methods that might lead to

data collection along with the normal data storage practices for each data type.

Work with open source version control software such as GitHub to ensure

necessary consistency and version control while minimizing user burden.

2. If possible, create procedure for consistent naming and storing of data to allow

for an automated pipeline.

NOTE: In the example, outputs were all consistently named, thus creating a data-

pipeline that looked for specific attributes was straightforward once the files were

selected. If consistent naming is not possible, the tables in the database will need

to be populated manually, which is not recommended.

3. Use any convenient programming language to generate new data entries for the

database.

1. Create small “helper” tables (files #8–#10 in Table 1) in separate files

that can guide automated selection of data. These files serve as a

Ochs et al. Page 6

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

template of possibilities for the pipeline to operate under and are easy to

edit.

2. To generate new data entries for the data-pipeline (Figure 3D), program

the code (LocationPointer.m, file #1 in Table 1) to use the helper tables

as inputs to be selected by the user (files #8–#10 in Table 1).

3. From here, assemble a new spreadsheet of file locations by combining

the new entries with the previous entries (Figure 3E). Create a code to

automate this step as shown in LocationPointerCompile.m (file #2 in

Table 1).

4. Afterwards, check this merged spreadsheet for duplicates, which should

be automatically removed. Create a code to automate this step as shown

in LocationPointer_Remove_Duplicates.m (file #3 in Table 1).

5. Additionally, check the spreadsheet for errors, and notify the user of

their reason and location (Figure 3F). Create a code to automate this

step as shown in BadPointerCheck.m (file #4 in Table 1). Alternatively,

write a code that will check the compiled database and identify

duplicates in one step as shown in LocationPointer_Check.m (file #5 in

Table 1).

6. Create a code to let the user manually remove bad points without losing

the integrity of the database as shown in Manual_Pointer_Removal.m

(file #6 in Table 1).

7. Then use the file locations to generate a data value spreadsheet (Figure

3G, file #12 in Table 1) as well as to create a most updated list of

entries that can be accessed to identify file locations or merged with

future entries (Figure 3H). Create a code to automate this step as shown

in Database_Generate.m (file #7 in Table 1).

4. Double check that the pipeline adds to the experimental rigor by checking for

inclusion of rigorous naming conventions, automated file assembly codes, and

automated error checks as previously described.

4. Create the database and queries

NOTE: If tables store information in databases, then queries are requests to the database for

information given specific criteria. There are two methods to create the database: starting

from a blank document or starting from the existing files. Figure 4 shows a sample query

using SQL syntax that is designed to run using the database relationships shown in Figure 2.

1. Method 1: Starting from scratch in creating the database and queries

1. Create a blank database document.

2. Load the helper tables (files #8–#10 in Table 1) by selecting External
Data | Text File Import | Choose File (files #8–#10) | Delimited |

First Row Contains Headers, Comma | leave default | Choose My

Ochs et al. Page 7

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Own Primary Key (Designator for Cell Lines File #8, Variable Name

for Data Types File #9, Pat Name for Pattern Type File #10) | leave
default | Finish.

3. Load the Data value table (file #12 in Table 1) by selecting External
Data | Text File Import | Choose File (file #12) | Delimited | First
Row Contains Headers, Comma | leave default | Let Access Add
primary key | Import to Table: DataValues | Finish.

4. Create the relationships by selecting Database Tools | Relationships |

Drag all Tables to the board | Edit Relationships | Create New |

Match the DataValue fields with Helper Tables Designators | Joint
Type 3.

5. Select Create | Query Design.

6. Select or drag all relevant tables into the top window. In this example

‘Cell Lines’, ‘Data Values’, ‘Data Types’, and ‘Pattern Type’. The

relationships should automatically set up based on the previous

Relationship design.

7. Fill out the query columns for desired results, for example:

1. Click on Show | Totals.

2. Fill out the first column (Table: DataValues, Field: DataVar,

Total: GroupBy, Criteria: “Act_OOP”), the second column

(Table: DataValues, Field: PatVar, Total: GroupBy, Criteria:

“Lines”), and the third column (Table: Cell_Lines, Field:

Designator, Total: GroupBy, Sort: Ascending).

3. Fill out the fourth column (Table: DataValues, Field:

Parameter, Total: Ave), the fifth column (Table: DataValues,

Field: Parameter, Total: StDev), and the sixth column (Table:

DataValues, Field: Parameter, Total: Count).

8. Run the query.

2. Alternatively, use the provided example database as a basis for examples. Open

the database file Database_Queries.accdb (file #13 in Table 1) that was

downloaded earlier. Use it as a template by replacing existing tables with the data

of interest.

5. Move the output tables to a statistical software for significance analysis

1. For this sample experimental data, use the one-way analysis of variance

(ANOVA) using Tukey’s test for mean comparisons between various conditions.

NOTE: Values of p < 0.05 were considered statistically significant.

Ochs et al. Page 8

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Representative Results

Multi-dimensionality of the data

In the context of the example data-set presented here, the subjects, described in the Methods

section, were divided into groups of individuals from the three families with the heart

disease-causing LMNA mutation (“Patients”), related non-mutation negative controls

(“Controls”), unrelated non-mutation negative controls (“Donors”), and an individual with

Hutchinson-Gilford progeria syndrome (HGPS) as a positive control20. Results from

Controls and Donors could be further grouped together as an overall Negative Control

(N.C.) group, given their collective lack of LMNA mutations. Every subject’s cell line had a

“Mutation Status” associated with it, based on their condition group (Figure 1 – dark blue

axis). For each experiment, fibroblast cells from the subjects were cultured on arrangements

of either unorganized (Isotropic) or micropatterned (Lines) fibronectin, creating the

condition of “Pattern type” (Figure 1 – orange axis). After the cells were fixed,

immunostained, and imaged, the “Coverslip #” was transcribed, since multiple experiments

(i.e., technical replicates) would occur using the same individual’s cells (Figure 1 – light

green axis). Custom MATLAB codes20,21 were then used to quantify different aspects of cell

nuclei or tissue organization variables as “Variable type” (Figure 1 – teal green axis). The

three factors were associated with the cells’ human source and consequently linked to the

“Family” (Figure 1 – dark pink axis) and “Age at time of biopsy” (Figure 1 – dark green

axis) in addition to “Mutation Status.” Other dimensions not included in Figure 1 were the

“Age of presentation,” “Symptoms,” “Designator,” and “Gender” of the individual in

question. The example provided here results in at least ten possible dimensions for data

aggregation. Thus this example data is a prime candidate for organization by relational

databases.

Organizing the pipeline

Up to an estimated 95% of all digital data is unstructured4, but structured formats are

required for databases. Still, creating a good automated method for the data-pipeline is

highly context dependent.

For this example, the images collected from each experiment were stored in folders named

by date and initial of the lab member responsible, with sub-folders listing the subject and

coverslip number. Pipeline files are provided in the Supplemental Materials section, as well

as summarized in a flow chart illustration (Figure 3). Different metrics from various

experimental conditions across a variety of subjects were quantified from these fluorescent

images (Figure 3A) using custom codes (Figure 3B)20,21. For example, actin orientational

order parameter21 was extracted from tissues stained with phalloidin (Figure 3A) and used to

compare the organization of fibroblasts from different individuals. The code outputs were

saved in the same folder as the source images (Figure 3C).

Identifying a novel relationship in LMNA mutation data set

When given multitude of possible conformations, it can be difficult to identify where novel

relationships exist using manual data aggregation methods. In this specific context, we were

Ochs et al. Page 9

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

interested in comparing the organization of subcellular actin filaments across multiple

conditions, measured using the OOP27.

OOP is a mathematical construct quantifying the degree of order in anisotropic

environments, normalized to zero corresponding to completely isotropic tissue and one

corresponding to completely aligned tissue. The data set was first split up by pattern type as

lines (Figure 5A) and isotropic (Figure 5B) conditions, which were expected to have vastly

different OOPs since fibronectin micropatterning heavily influences tissue organization.

There were no significant differences between conditions when comparing isotropic tissues

(Figure 5B). Conversely, the patterned tissues were statistically less organized in the positive

control cell line (HGPS) (Figure 5A), and this relationship held even when the data was

aggregated into different groups (Figure 5C). Actin OOP was additionally plotted against

individuals’ age at time of biopsy (Figure 5D), separated by mutation status and family, to

illustrate aggregation against a clinical variable. Unlike with nuclear defects20, there is no

correlation between actin organization and an individual’s age (Figure 5D). Ultimately, the

plots shown in Figure 5 illustrate how the same data can be analyzed in different

combinations and how easily the normally difficult task of aggregating data that falls under

multiple classes can be accomplished using databases.

For this article, data from patient sourced fibroblasts were compared between conditions to

determine mutation consequences. Although both HGPS and the three families in this study

have LMNA-linked diseases that potentially disrupt the nuclear envelope, the patients

exhibit symptoms primarily associated with heart dysfunction whereas HGPS individuals

have multiple organ systems affected22,23,24. Indeed, despite the micropatterned environment

cells originating from an HGPS patient had a statistically lower actin OOP value than any of

the other cell lines considered (Figure 5A,C). This dovetails with HGPS patients being the

only ones in the study with any skin abnormalities caused by the mutation. Viewing the

same data in different conformations is also helpful for providing additional insight and

avenues into scientific inquiry in a varied data set (Figure 5).

Discussion

Technical discussion of the protocol

The first step when considering the use of databases is to evaluate if the data would benefit

from such an organization.

The next essential step is to create an automated code that will ask the minimum input from

the user and generate the table data structure. In the example, the user entered the category

of data type (cell nuclei or structural measurements), cell lines’ subject designator, and

number of files being selected. The relevant files were then selected by the user (Table 2,

column 1), with the row entries being automatically created and populated with all variables

contained within the file (Table 2, column 2). Furthermore, it is important the code is

flexible so that if another experimental entry needs to be added, the user can select to

continue the loop; if not, the files are saved and the loop ends. The basic functions of adding

new entries, checking for errors, and assembling the spreadsheet from file locations

described in this step are all critical for an efficient data-pipeline setup.

Ochs et al. Page 10

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

It is imperative to note that using file locations when creating the data-pipeline increases

experimental rigor. Specifically, having a corresponding spreadsheet listing all file locations

for the data values allows a user to backtrack any data point back to the lab notebook of the

researcher who collected the raw data. When dealing with hundreds to tens of thousands of

data points, greater transparency and accessibility is invaluable over the lifetime of a project.

It is highly recommended that users consider saving file locations first and later compiling

values for data instead of only storing the data values.

Once the database is created, the simplest way to get started is by programming the queries

through the design view. The user will find it useful to download the provided template (file

#13 in Table 1) as a starting point. Alternatively, these can be programed directly through

SQL language (Figure 4).

Scientific discussion

The purpose of this article was to disseminate methods involving a data-pipeline and

database that elucidated data set scalability and transparency. These methods are not widely

used outside of informatics and business, but have enormous potential for those working in

biological contexts. As science continues to rely on computers more heavily, the importance

of effective management systems also rises6,29. Databases are frequently used for high

volume and/or high velocity applications and are well cited in the literature, especially

regarding their usage for clinical patient populations8,30,31. Several have already been

constructed for specific fields such as the Rat Genome Database curation tools or REDCap

for clinical and translational research32,33. Thus, the use of databases has been adopted in

the clinical domain8 or large genomic databases32, but has not become common in other

scientific disciplines such as tissue engineering.

The issues of handling increasingly complex data using spreadsheet programs have long

been acknowledged within the scientific community34. One study reported that around 20%

of genomic journal papers with supplemental files had gene names that were erroneously

converted to dates35. These mistakes increased at an average of 15% per year from 2010 to

2015, far outpacing the annual increase of genomics papers at 4% per year. It is often nearly

impossible to identify individual errors within a large volume of data, as by nature

spreadsheet programs are unsuited for easy validation of results or formula calculations.

Published articles even exist for educating scientists on better spreadsheet practices in an

attempt to reduce the frequency of errors7. One of the strongest benefits of databases is the

reduction of error through automated methods and ability to validate potentially

questionable data (Figure 3).

A significant outcome of this methodology is the increased rigor of data analysis. The

importance of increasing the reproducibility of data has been highlighted by the NIH as well

as by other scientists and institutions36,37. By having a spreadsheet of file locations

corresponding to every database, it is easy to trace a data point back to the lab notebook of

the experiment in question (Figure 3). Individual data points can also be quickly identified

and found electronically using the corresponding file locations, which is invaluable at times,

even when coupled with automatic error screening during the data-pipeline process. Even as

the data set is amended over time, best practice involves keeping all past files in case issues

Ochs et al. Page 11

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

occur or older versions need to be checked. Working non-destructively and keeping old

versions within the data-pipeline creates security through redundancy and allows for better

troubleshooting.

There are myriad relational database management systems in combination of coding

languages that can be used for the same data-pipeline needs. The most appropriate choices

are highly dependent on the data and context being used; some applications excel best at

scalability, flexibility, reliability, and other priorities9. Although databases are still

technically finite in scale, reaching memory limits remains beyond the scope of most

scientific labs. For instance, an MS Access database has a memory size limit of 2 GB, which

would be a data set on the order of hundreds of thousands to millions of entries depending

on the data and number of fields. Most labs will never have experimental needs of this

magnitude, but if they did then spreadsheet software would be far beyond their effective

limits anyway. In comparison, business-level relational database management systems can

handle data sets of larger magnitudes while processing millions of transactions

simultaneously29. Part of the reason databases are not commonly used in scientific

laboratories is that past experiments rarely crest needs of such data magnitudes, so easy-to-

use spreadsheet software became widespread instead. A significant investment required to

make these methods function, however, is the time needed to plan the data-pipeline and learn

SQL for using databases (Figure 3 and Figure 4). Although coding experience greatly

hastens the process, most will need to learn SQL from scratch. A wealth of documentation is

available online through extensive documentation by developers, as well as free SQL

tutorials such as at Codecademy, W3Schools, and SQLBolt10,11,12. Some alternatives that

require subscriptions do exist, however, such as the program teaching website Lynda38;

further reading about database basics can be found online. In an academic setting, good lab

buy-in and robust systems can outlast their creators and help facilitate many years of

projects across multiple students. This can be accomplished through the creation of

guidelines and implementation steps during setup. Indeed, there is high value for all

researchers in having a well-functioning joint data-pipeline and database system.

Other benefits of this methodology include the ability to employ automated methods for

converting raw data into structured formats, ease of use once stored inside the database, and

constant re-updating and re-aggregation of datasets (Figure 3). It is also possible to pull

multiple variables’ worth of information from a single data file and automate the data-

pipeline to do so when prompted. In the context shown, commonly available and economical

software was used to achieve results demonstrating that expensive and niche software

packages are not mandatory in achieving a functional database. Given the limited reach of

most laboratories’ research funds, the ability to increase the efficiency of database

management is a priceless commodity.

In conclusion, as scientific data sets become more complex, databases become increasingly

more important for the scientific community and have great potential to be as commonplace

as and even more effective than current widespread spreadsheet usage for data storage.

Issues with data transparency and replicability in science will only continue to expand in the

future as data sets continue to grow in size and complexity, highlighting the importance of

Ochs et al. Page 12

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

more widespread adoption of databases and automated data-pipeline methods for general

scientific needs now and into the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work is supported by the National Heart, Lung, and Blood Institute at the National Institutes of Health, grant
number R01 HL129008. The authors especially thank the LMNA gene mutation family members for their
participation in the study. We also would like to thank Linda McCarthy for her assistance with cell culture and
maintaining the lab spaces, Nasam Chokr for her participation in cell imaging and the nuclei data analysis, and
Michael A. Grosberg for his pertinent advice with setting up our initial Microsoft Access database as well as
answering other technical questions.

References

1. Cavin RK, Lugli P, Zhirnov VV Science and engineering beyond Moore’s law. Proceedings of the
IEEE. 100 (Special Centennial Issue), 1720–1749 (2012).

2. Mast FD, Ratushny AV, Aitchison JD Systems cell biology. The Journal of Cell Biology. 206 (6),
695–706 (2014). [PubMed: 25225336]

3. Barone L, Williams J, Micklos D Unmet needs for analyzing biological big data: A survey of 704
NSF principal investigators. PLoS Computational Biology. 13 (10), e1005755 (2017). [PubMed:
29049281]

4. Gandomi A, Haider M Beyond the hype: Big data concepts, methods, and analytics. International
Journal of Information Management. 35 (2), 137–144 (2015).

5. Siddiqa A et al. A survey of big data management: Taxonomy and state-of-the-art. Journal of
Network and Computer Applications. 71, 151–166 (2016).

6. Anderson C The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired
Magazine. (2008).

7. Broman KW, Woo KH Data Organization in Spreadsheets. The American Statistician. 72 (1), 2–10
(2018).

8. Lee H et al. How I do it: a practical database management system to assist clinical research teams
with data collection, organization, and reporting. Academic Radiology. 22 (4), 527–533 (2015).
[PubMed: 25641319]

9. Bassil Y A comparative study on the performance of the Top DBMS systems. Journal of Computer
Science, Research. 1 (1), 20–31 (2012).

10. Learn SQL - Codecademy. https://www.codecademy.com/learn/learn-sql (2018).

11. SQL Tutorial - w3schools.com https://www.w3schools.com/sql/ (2018).

12. Introduction to SQL - SQLBolt. https://sqlbolt.com/ (2018).

13. Pedersen TB, Jensen CS Multidimensional database technology. Computer. 34 (12), 40–46 (2001).

14. Győrödi C, Gyorodi R, Sotoc R A Comparative Study of Relational and Non-Relational Database
Models in a Web- Based Application. International Journal of Advanced Computer Science and
Applications. 6 (11), 78–83 (2015).

15. Nayak A, Poriya A, Poojary D Type of NOSQL databases and its comparison with relational
databases. International Journal of Applied Information Systems. 5 (4), 16–19 (2013).

16. Lei C, Feng D, Wei C, Ai-xin Z, Zhen-hu C The application of multidimensional data analysis in
the EIA database of electric industry. Procedia Environmental Sciences. 10, 1210–1215 (2011).

17. Soranno PA et al. Building a multi-scaled geospatial temporal ecology database from disparate data
sources: fostering open science and data reuse. GigaScience. 4, 28 (2015). [PubMed: 26140212]

18. Edwards P Questionnaires in clinical trials: guidelines for optimal design and administration.
Trials. 11, 2 (2010). [PubMed: 20064225]

Ochs et al. Page 13

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.codecademy.com/learn/learn-sql
https://www.w3schools.com/sql/
https://sqlbolt.com/

19. Richards MA et al. MediaDB: A Database of Microbial Growth Conditions in Defined Media.
PLoS ONE. 9 (8), e103548 (2014). [PubMed: 25098325]

20. Core JQ et al. Age of heart disease presentation and dysmorphic nuclei in patients with LMNA
mutations. PLoS ONE. 12 (11), e0188256 (2017). [PubMed: 29149195]

21. Drew NK, Johnsen NE, Core JQ, Grosberg A Multiscale Characterization of Engineered Cardiac
Tissue Architecture. Journal of Biomechanical Engineering. 138 (11), 111003 (2016).

22. Zaragoza MV et al. Exome Sequencing Identifies a Novel LMNA Splice-Site Mutation and
Multigenic Heterozygosity of Potential Modifiers in a Family with Sick Sinus Syndrome, Dilated
Cardiomyopathy, and Sudden Cardiac Death. PLoS ONE. 11 (5), e0155421 (2016). [PubMed:
27182706]

23. Zaragoza M, Nguyen C, Widyastuti H, McCarthy L, Grosberg A Dupuytren’s and Ledderhose
Diseases in a Family with LMNA-Related Cardiomyopathy and a Novel Variant in the ASTE1
Gene. Cells. 6 (4), 40 (2017).

24. Zaragoza MV, Hakim SA, Hoang V, Elliott AM Heart-hand syndrome IV: a second family with
LMNA-related cardiomyopathy and brachydactyly. Clinical Genetics. 91 (3), 499–500 (2017).
[PubMed: 27723096]

25. Eriksson M et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria
syndrome. Nature. 423 (6937), 293–298 (2003). [PubMed: 12714972]

26. Drew NK, Eagleson MA, Baldo DB Jr, Parker KK, Grosberg A Metrics for Assessing Cytoskeletal
Orientational Correlations and Consistency. PLoS Computational Biology. 11 (4), e1004190
(2015). [PubMed: 25849553]

27. Hamley IW Introduction to Soft Matter: Synthetic and Biological Self-Assembling Materials. John
Wiley, Sons Hoboken, NJ (2013).

28. Grosberg A, Alford PW, McCain ML, Parker KK Ensembles of engineered cardiac tissues for
physiological and pharmacological study: Heart on a chip. Lab Chip. 11 (24), 4165–4173 (2011).
[PubMed: 22072288]

29. Hey T, Trefethen A The Data Deluge: An e-Science Perspective In Grid Computing: Making the
Global Infrastructure a Reality. Edited by Berman F, Fox G, Hey AJG, Ch. 36, John Wiley, Sons
Hoboken, NJ (2003).

30. Wardle M, Sadler M How to set up a clinical database. Practical Neurology. 16 (1), 70–74 (2016).
[PubMed: 26537840]

31. Kerr WT, Lau EP, Owens GE, Trefler A The future of medical diagnostics: large digitized
databases. The Yale Journal of Biology and Medicine. 85 (3), 363 (2012). [PubMed: 23012584]

32. Laulederkind SJ et al. The Rat Genome Database curation tool suite: a set of optimized software
tools enabling efficient acquisition, organization, and presentation of biological data. Database.
2011, bar002 (2011). [PubMed: 21321022]

33. Harris PA et al. Research electronic data capture (REDCap)--a metadata-driven methodology and
workflow process for providing translational research informatics support. Journal of Biomedical
Informatics. 42 (2), 377–381 (2009). [PubMed: 18929686]

34. Panko RR What we know about spreadsheet errors. Journal of Organizational and End User
Computing (JOEUC). 10 (2), 15–21 (1998).

35. Ziemann M, Eren Y, El-Osta A Gene name errors are widespread in the scientific literature.
Genome Biology. 17 (1), 177 (2016). [PubMed: 27552985]

36. NIH. Enhancing Reproducibility through Rigor and Transparency. https://grants.nih.gov/
reproducibility/index.htm (2018).

37. Hofseth LJ Getting rigorous with scientific rigor. Carcinogenesis. 39 (1), 21–25 (2017).

38. SQL Training and Tutorials - Lynda.com https://www.lynda.com/SQL-training-tutorials/
446-0.html (2018).

Ochs et al. Page 14

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://grants.nih.gov/reproducibility/index.htm
https://grants.nih.gov/reproducibility/index.htm
https://www.lynda.com/SQL-training-tutorials/446-0.html
https://www.lynda.com/SQL-training-tutorials/446-0.html

Figure 1: A visualization of multi-dimensional data from the LMNA mutation data set.
A single cube is defined by the three dimensions of “Variable type,” “Pattern type,” and

“Coverslip #.” Further dimensions are shown as the axes of “Mutation Status,” “Age of

biopsy” (yrs), and “Family.” Colored labels correspond to the different axes shown, such as

the age of biopsy (green numbers) for each individual’s cube. Here, six of the ten possible

dimensions are used to illustrate the multi-dimensionality of experimental data points.

Ochs et al. Page 15

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2: Table and design view relationships within the LMNA mutation data set.
Relational databases have the advantage of linking fields in one table with information in

another table, which allows for immediate interchangeability of aggregation. The example

here visually demonstrates how differing information can be linked.

Ochs et al. Page 16

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3: An example of common data-pipeline needs in a generalized context.
New entries were created using user inputs and automated codes, formatting important

information into a spreadsheet format. These entries were combined with the most recent set

of file location entries, checked for errors, then stored as both a spreadsheet of file locations

and a spreadsheet of data values. Scale bar = 20 μm.

Ochs et al. Page 17

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4: An example query using SQL syntax.
SELECT and FROM statements are requirements to generate a query, but additional

commands and criteria are often included. GROUP BY provides clarification on how

aggregate the data, HAVING or WHERE statements limit the output to data that meets

specific criteria, and ORDER BY indicates the order by which the outputs should be

arranged by.

Ochs et al. Page 18

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5: Comparisons between conditions for the actin OOP variable.
(A,B) groupings correspond to the four primary conditions: non-related negative control

Donors, related negative control Controls, LMNA mutation Patients from three families, and

positive control HGPS. (C) all negative controls (N.C.) were combined and patients were

separated by family (PA, PB, PC) instead. (D) A potential graph of isotropic actin OOP

against age at time of biopsy collected for this study, separated by condition and family.

Panels A, C, and D are plotted for the tissues micropatterned with a Lines pattern, while

panel B is plotted for isotropic tissues. Statistical significance of p < 0.05 (*) was found in

panels A, C, and D. No significance between any pairs was found in panel B. All error bars

represent standard deviations calculated within the database.

Ochs et al. Page 19

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ochs et al. Page 20

Table 1:

List of all the example files that can be uploaded to run the protocol.

Reference Number File Name Type

1 LocationPointer.m Pipe-line Code

2 LocationPointerCompile.m Pipe-line Code

3 LocationPointer_Remove_Duplicates.m Pipe-line Code

4 BadPointerCheck.m Pipe-line Code

5 LocationPointer_Check.m Pipe-line Code

6 Manual_Pointer_Removal.m Pipe-line Code

7 Database_Generate.m Pipe-line Code

8 Cell_Lines.csv Helper Table

9 Data_Types.csv Helper Table

10 Pattern_Types.csv Helper Table

11 DataLocation_Comp_2018_6_26_10_01.csv Example Data Location File

12 DataValues_2018_6_26_10_02.csv Example Data Values File

13 Database_Queries.accdb Example Database

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ochs et al. Page 21

Table 2:

Listed select files that correspond to different variables of either cell nuclei measurements or fibroblast

structural (OOP) data.

File Selected Variable

Summary.mat Proportion of Defective Nuclei

All Nuclei Area Average (μm2)

Defective Nuclei Area Average (μm2)

Normal Nuclei Area Average (μm2)

All Nuclei Eccentricity Average

Defective Nuclei Eccentricity Average

Normal Nuclei Eccentricity Average

All Nuclei MNC Average

Defective Nuclei MNC Average

Normal Nuclei MNC Average

Act_OOP.mat Actin OOP

Actin OOP Director Angle

Fibro_OOP.mat Fibronectin OOP

Fibronectin OOP Director Angle

Nuc_OOP.mat Nuclei OOP

Nuclei OOP Director Angle

J Vis Exp. Author manuscript; available in PMC 2020 November 22.

	Abstract
	Introduction
	Experimental setup
	Cell lines
	Data types
	Example codes and files

	Protocol
	Evaluate if the data would benefit from a database organization scheme
	Organize the database structure
	Set up and organize the pipeline
	Create the database and queries
	Move the output tables to a statistical software for significance analysis

	Representative Results
	Multi-dimensionality of the data
	Organizing the pipeline
	Identifying a novel relationship in LMNA mutation data set

	Discussion
	Technical discussion of the protocol
	Scientific discussion

	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Table 1:
	Table 2:

