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Introduction

Clinical imaging modalities, such as computed tomography (CT), 

positron emission tomography, or magnetic resonance (MR) imag-

ing, are critical cornerstones in diagnosis and management of 

modern oncology.1-3 The maturity of these modalities and proto-

cols of implementation have reached such a degree of sophistica-

tion, that properly obtained studies can supplant the need for a 

tissue biopsy in some diseases, such as the Liver Imaging 

Reporting And Data System for hepatocellular carcinoma (HCC).4,5 

Even though the diagnostic protocol for liver cancer is increasingly 

refined, the prognosis of liver cancers remains unsatisfactory, 

which is the second most common cause of death from cancer 

worldwide.6 Moreover, it is highlighted that variable biologic be-

havior of liver cancers affects patients’ survival, and the tumoral 

heterogeneity can be also an important clue in determining the 

likelihood of a clinical response to treatment.7,8 Thus, the trend of 

diagnosis and treatment for liver cancers is changing to be deter-

mined by significant biological and genomic characteristics of the 

tumors, and imaging can be also a method to find these 

characteristics.9-12 

In contrast to serologic markers, the majority of imaging find-

ings reported from radiologic studies involves qualitative or de-

scriptive features. Moreover, the interobserver variability when ra-

diologists define the imaging findings remains an unresolved 

issue.13 Recently, new research methods to explore imaging bio-
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markers through objective and quantitative analyses of medical 

images including radiologic studies, have been developed into an 

academic discipline that studies the association of the imaging 

parameters with patient information, and several studies have 

been published in a variety of carcinomas.14,15   

However, this state-of-the-art method is still in its infancy, es-

pecially in the liver cancer research; various attempts have been 

made and presented in the annual meeting of Radiological Soci-

ety of North America (RSNA) in 2017. This review article focuses 

on the preliminary clinical application of radiomics, and 

radiogenomics (or imaging genomics) for primary liver cancers, 

such as HCC and intrahepatic cholangiocarcinoma (ICC). 

What are radiomics, radiogenomics, 
and imaging genomics?

Radiomics is a method of research that extracts quantitative ra-

diologic data from medical images (radiomic data) and explores 

the correlation with clinical outcomes.14 Radiogenomics (or imag-

ing genomics) also aims to identify relationships between seman-

tic as well as quantitative image data with genome and molecular 

measurements in order to construct association maps that can in 

turn be correlated with outcome or other clinical measures.15-17 A 

requisite for both radiomics and radiogenomics is the identifica-

tion of an objective manner to transform the imaging features into 

digital data, which is also important for insuring reproducibility. 

The general radiomics workflow involves, 1) acquisition of images, 

2) identification of region of interest (by human or machine learn-

ing), 3) segmentation of region of interest (by automatic, semi-

automatic, or manual drawing), 4) extraction of imaging features, 

and 5) mining the data to develop model to predict clinical out-

comes (Fig. 1).

For radiomics and radiogenomics, it is possible to analyze the 

medical images archived in the imaging server of the hospital ret-

rospectively, and the more imaging database has sufficient data, 

the more accurate predictive radiomic model can be made. How-

ever, the variability of imaging quality and technical parameters 

for image acquisition may influence the image features and results 

of predictive models. 

Figure 1. The process of radiomics and radiogenomics. In comparison to the current conventional imaging study interpretation, radiomic and radi-
ogenomic approaches require multiple processing steps (automated as well as semi-automated steps including registration, segmentation, region of 
interest selection, measurement, etc.). As the fields develop and methodologies become more standardized these steps may also become “implicit” in 
the image processing component, similar to the processing of raw computed tomography (CT) or magnetic resonance (MR) data before transmission 
to clinical PACS. Selected icons adapted and reprinted from Lubner et al.19, with permission from Radiological Society of North America (RSNA). PACS, 
picture archiving and communication system.
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Radiological imaging traits: quanti-
tative versus qualitative methods

The gold standard of radiologic image interpretation continues 

to be expert (radiologist) based reads, in spite of digital acquisi-

tion (or conversion) of clinical imaging data. In order to convert 

these images into parametric data objectively, it should be helped 

by specific analytic method, feature analysis (FA). FA is a 

quantitative method of objectively assessing tumor heterogeneity 

or parenchymal change in specific disease by exploring the distri-

bution and connection of pixel or voxel gray levels in the CT im-

age.18 There are several parts, such as the gray-level frequency 

distribution from the pixel intensity histogram in a given region of 

interest,  a co-occurrence matrix which considers the location of 

pixels and spatial relationship between pixels, and  neighborhood 

gray-tone difference matrices which examine location and rela-

tionship between three or more pixels. In addition, model-based 

and transform-based methods are used for FA (Fig. 2).19

Performance of quantitative analyses has multiple prerequisites. 

First of all, reasonable segmentation of the tumor should precede 

the FA. Segmentation is the most critical component because the 

subsequent feature data are generated from the segmented vol-

umes, but it is still challenging due to indistinct border of the tu-

mors.16 At this step, it is vulnerable to be disturbed by reviewer’s 

subjectivity; therefore, automatic or semi-automatic segmentation 

methods are preferred to manual methods,20 especially for liver 

cancers of which tumor-parenchyma differentiation may be not 

clear compared with lung and breast cancers. Second, denoising 

and gray-level standardization can affect the analytic result, espe-

cially second- and high-order statistics, thus these should be per-

formed properly in the pre-processing steps to aid in reproducibil-

ity of the analysis.

One advantage of descriptive or qualitative features is that they 

frequently describe physiological or biological processes. For 

example, there is a largely accepted explanation for arterial phase 

enhancement of HCC masses in contrast-enhanced CT and MR im-

ages. The development of HCC frequently involves neovascularization 

of unpaired arteries that do not have associated portal tracts,21,22 

thus increasing arterial flow through the unpaired artery as 

compensation for decrease of portal flow in the tumor. Conse-

Figure 2. An example of acquiring texture parameters through feature analysis. Following selection of an appropriate the region of interest (white 
arrow) of an image, (A) a histogram of gray-level intensity and distribution can be drawn. From the histogram, several statistical measures including 
mean, mean of the positive pixel, standard deviation can be calculated (A). The distributions of the measurements can further be characterized in 
terms of their (B) skewness, and (C) kurtosis. Modified and reprinted from Lubner et al.19, with permission from Radiological Society of North America 
(RSNA).

A

B
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quently, contrast media goes into the tumor early on the arterial 

phase and goes out of the tumor through veins on following 

phases, called as wash-out.23 Nowadays, these findings have 

been considered as hallmarks for imaging diagnosis of HCC.4,5 

While it is often reassuring when such features have a demon-

strated (patho-)physiological description, a challenges is the diffi-

culty with inter-observer , and even intra-observer, variability.5

Biologic and genomic characteristics 
of liver cancers

HCC is the most common primary cancer in the liver. It is known 

to be a quiet killer with minimal symptoms at the early stages of 

disease, frequently occurring in the context of hepatitis infections 

and cirrhosis leading to end-stage liver disease, in addition to 

largely unknown tumor genetic factors. Current staging systems, 

such as Barcelona Clinic Liver Cancer staging system, do not take 

into account the histologic and molecular characteristics of the 

tumor.9

According to recent studies, HCCs exhibit intra-individual and 

inter-individual genetic heterogeneity. Predicting biologic behavior 

of HCC is essential for an appropriate treatment, and investigators 

have found that patient prognosis is not only related to size of tu-

mor and multiplicity, but also the pathologic features such as his-

tologic grade of tumor, microvessel density, microscopic vascular 

invasion (MVI), and epithelial-mesenchymal transition (EMT).24-26 

Histologic grade of HCC accounts for a combination of structur-

al and cellular features and is a significant predictor. According to 

a meta-analysis of 114 related articles, poor tumor differentiation 

correlated with worse prognosis.27 However, there was a limita-

tion of divergences and inaccuracies led by a non-standardized 

grade distribution. Microvessel density, which allows semi-quanti-

tative assessment of tumor neovascularization (CD31, CD34, and 

von Willebrand Factor), is known as a significant prognostic fac-

tor. Vascular endothelial growth factors (VEGFs) and hypoxia-in-

ducible factors (HIFs) are also negative prognostic markers related 

to reduce overall survival and recurrence-free survival after tumor 

resection.28 

MVI is another well-known factor suggesting poor prognosis. In 

the large-scale retrospective study which observed transplanted 

patients’ survival, the authors revealed a doubling in the hazard 

of death was associated with the presence of MVI.29 EMT is an-

other pathologic feature to predict prognosis and it increases in-

vasiveness of tumor and metastatic potential.30,31 

In terms of genomic markers, in order to accurately predict ther-

apeutic response of targeted therapy based on tumor molecular 

profiles, there have been efforts to identify critical molecular sub-

classes with different prognostic consequence, and associated ge-

netic or epigenetic drivers of specific subclasses. 

Some investigators have proposed molecular classifications of 

HCC using mRNA-based gene expression based on biological pro-

cesses (e.g. proliferation) and protein markers (e.g. EpCAM and 

cytokeratin 19 [CK19]).32 Villanueva et al. focused on both the tu-

mor and nontumoral-adjacent cirrhotic tissue in order to identify a 

genomic signature predictive of patients’ outcome, and they sug-

gested a model for prediction of recurrent HCC combining clinical, 

pathology, and genomic data.33

ICC is another aggressive primary liver cancer and new studies 

are identifying pathologic biomarkers that reflect the biological 

behavior of the tumor. Overexpression of epidermal growth factor 

receptor (EGFR) was an independent prognostic parameter along 

with tumor stage.34 EGFR, VEGF, and human epidermal growth 

factor receptor 2 were also significantly related to macroscopic 

type, nodal metastasis, lymphatic vessel invasion, perineural inva-

sion and tumor stage.35 

KRAS mutation was found in up to 40% of cholangiocarcinoma, 

but predominantly in perihilar and distal tumors.36 Because direct 

therapeutic inhibition of KRAS is difficult, targeted therapy aims 

at modulation of downstream signaling along the KRAS pathway. 

Recently, Graham et al. identified FGFR2 translocation in ICC, and 

it could be benefited from FGFR-targeted therapy.37  

Like HCC, microvessel density and EMT may play a role as bio-

markers to indicate prognosis of ICC. Microvessel density and 

lymphatic microvessel density were frequently displayed in ad-

vanced ICC, and the patients of which microvessel density was 

high had an inferior curative resection rate and frequently devel-

oped recurrence.38 In addition, the high expression of N-cadherin 

and S100A4, the pathologic evidences of EMT, were indepen-

dently significant prognostic factors in ICC.39 

Where do we stand on the radiomics 
and radiogenomics for primary liver 
cancer?

There are limited quantitative analyses of imaging studies in the 

hepatic tumors to date although some researchers have focused 

on texture analysis. Most of the studies have focused on the rela-

tionship between imaging traits and clinical characteristics includ-
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ing survival, recurrence, and treatment response after chemother-

apy. In contrast, some studies dealt with the relationship between 

the genomic signatures and imaging findings (without texture 

analysis); therefore, radiogenomic analysis for liver cancer is very 

rare so far (Table 1).40,41 

The majority of the studies have centered on HCC, and been 

based on CT texture with only some studies which investigated 

the role of MRI.16 At the 2017 RSNA Conference, there were sever-

al presentations about radiomics of HCC using MRI, especially ga-

doxetic acid-enhanced MRI.

HCC

The first radiogenomic study of HCC was performed in 200710 

and involved measurement of quantitative as well as semantic im-

aging features. They found that combination of 28 imaging traits 

could reconstruct the variation of all 116 gene models, about 

80% of global gene expression profiles, revealing cell prolifera-

tion, liver synthetic function, and patient prognosis. Among the 

imaging traits, the presence of internal arteries and the absence 

of a hypodense halo were associated with MVI genomic signa-

tures that were comprised of genes involved in cell proliferation 

(CDK, CDC20, MCM5) and matrix invasion (ADAMTS1, MMP14, 

SPARCL1). On a subsequent study, the CT-based imaging traits 

were evaluated to predict the presence of MVI on pathologic 

specimen, and additional imaging trait, the absence of tumor-liver 

difference, was considered the third imaging trait for “radioge-

nomic venous invasion” imaging signature as well as the estab-

lished two imaging traits. This signature was not only accurate to 

diagnose MVI but associated with lower overall survival.11 

Villanueva et al.33 investigated the genomic features of HCC and 

peritumoral tissue that were associated with patients’ outcome, 

who tried to explore the relationship between imaging trait and 

genomic signatures.42 Patients who underwent pre-operative CT 

or MR imaging before surgery as well as transcriptome profiling 

were assessed 11 qualitative and four quantitative (size, enhance-

ment ratios, wash-out ratio, tumor-to-liver contrast ratio) imaging 

traits. Several imaging traits including infiltrative pattern and 

macrovascular invasion were associated with gene signatures of 

aggressive HCC phenotype such as proliferative signatures and 

CK19 signature. 

More recently a radiomics signature derived from texture analy-

sis was proposed to be a surrogate for MVI in HCC, prediction of 

patients’ survival, and early recurrence.43-45 This study involved 28 

HCC patients who underwent resection and evaluated some im- Ta
bl
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aging textures and “delta features” defined as the absolute dif-

ference or the ratio calculated from all pairs of imaging phases 

(e.g. precontrast minus arterial phase Hounsfield units).43 Among 

464 features, single and delta features between arterial and por-

tal-venous phases were robust to detect MVI. Another research 

group published that contrast-enhanced MR-based texture analy-

sis could differentiate pathologic grade.46 Forty-six patients who 

performed contrast-enhanced MRI before tumor resection were 

enrolled and arterial phase images were used for analysis. Histo-

logical low-grade HCCs had increased mean intensity and de-

creased gray-level run-length non-uniformity in four directions. 

This suggest that internal heterogeneity could be an imaging fea-

ture reflecting high-grade HCC, which has poor clinical prognosis. 

Recently, a study group tried to explore the CT-based radiomics 

data which related to key genomic information such as doxorubi-

cin-resistant genes (TP53, TOP2A, CTNNB1, CDKN2A and AKT1), 

and they identified radiomics signatures to successfully discrimi-

nate these chemo-resistant genes.41 

The majority of studies to date have focused on CT imaging fea-

tures, however, now several MR imaging based studies are 

emerging and features associated with MVI have been found, 

such as decreased apparent diffusion coefficient (ADC) on diffu-

sion weighted imaging,47 peritumoral enhancement, non-smooth 

tumor margin,48 and peritumoral hypointensity on hepatobiliary 

phase imaging following gadoxetic acid injection.49 There are 

some MR imaging sequences, such as diffusion, that can provide 

information that is not measurable by CT,50 thus radiomic MR fea-

tures are of great interest. However, MR imaging is more vulnera-

ble to imaging artifacts such as motion and magnetic susceptibili-

ty, thus reproducibility between different scanners and even the 

same scanner is a non-trivial challenge. Additionally the signal in-

tensity of MR imaging is not easy to be digitalized compared to 

CT imaging (Hounsfield units), which is easy to be modulated and 

standardized for radiomic analyses. 

Last year at the RSNA Conference (2017), three results on MR-

based radiomics analysis for HCC were presented. Hui et al. 

sought to predict early recurrence after resection using MR imag-

ing.51 The study involved 57 patients that were separated into co-

horts with early recurrence or not, using texture analysis of con-

trast and entropy in the arterial phase with 79% accuracy. Chen 

et al. showed texture analysis on the perfusion MR imaging could 

be associated with Edmudson-Steiner grades, and skewness of 

area under curve map was revealed as a potential marker to pre-

dict histologic grades.52 Hectors et al. analyzed MR imaging tex-

ture on multiparametric MRI including blood oxygenation level 

dependent imaging and dynamic contrast enhanced-MRI, and in-

vestigated the correlation with HIF-1α and gene expression of 

Wnt target GLUL, pharmacological target FGFR4, stemness mark-

ers EpCAM and KRT19 and immune checkpoint PDCD1.53 

Intrahepatic cholangiocarcinoma

To date there has only been one radiogenomics ICC study. 25 

enrolled patients with histologically proven ICC were evaluated 

according to CT-based textures and immunochemistry findings 

suggesting tissue hypoxia, such as EGFR, VEGF, CD24, TP53, 

MDM2, MRP-1, HIF-1α, CA-IX, and GLUT1.12 Following multiple 

variable regression, three imaging phenotypes, entropy, correla-

tion, and homogeneity, were significantly associated with EGFR 

expression and correlation phenotype was associated with VEGF 

expression level although visual (qualitative) features were not as-

sociated with all of hypoxia markers. Another retrospective study 

tried to reveal which CT imaging phenotypes were associated 

with patient’s survival and tumor genetics. CT imaging features 

were semantic and not quantitative; for example, central fibrosis, 

well-defined border, homogeneity of enhancement, central necro-

sis, liver surface retraction, vascular encasement, tumor thrombus, 

satellite lesions, intrahepatic metastasis and lymphadenopathy.54 

They found that necrosis, satellite nodule, and vascular encase-

ment might be associated with a higher risk of death. However, 

they could not find the relationship between imaging features and 

genetic mutation such as IDH1 and KRAS gene. 

Several published studies investigated imaging findings as relat-

ed to patient outcome after resection. Asayama et al. evaluated 

delayed phase CT exams in a cohort of 32 patients and observed 

that the degree of enhancement correlated with the amount of fi-

brous stroma and the frequency of perineural invasion.55 The sur-

vival of patients was also associated with the degree of enhance-

ment.55 Lee et al. explored that diffusion-weighted image could 

predict patients’ survival after resection.56 Multivariate regression 

test revealed that degree of diffusion restriction was associated 

with patients’ survival, as well as histologic differentiation and in-

trahepatic metastasis on pathology. 

A quantitative MR imaging study by Pandey et al.57, explored 

imaging feature changes in 72 patients with unresectable ICC and 

underwent two MRI examinations before and after chemotherapy. 

Paradoxically, ADC values on the baseline study were lower and 

percent of viable tumor volume was higher in the group with lon-

ger survival (>10 months); it was hypothesized that radiologically 

viable tumor was more responsive to the chemotherapy. 
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Future perspectives of radiomics: 
strengths and weaknesses

The preceding studies suggest that radiomic and radiogenomic 

approaches can be useful in gaining deeper insights into tumor 

genetics, biology, and clinical outcome. MR in particular likely has 

many new applications with the development of functional pulse 

sequences in addition the anatomical information, although stan-

dardization of protocols and image scans will continue to be a 

challenge for quantitative imaging analysis. It is conceivable that 

in the future, we will be able to use radiomics-based decision 

making tool to diagnose incidental hepatic lesion or to decide 

which treatment is best to the disease. Artificial intelligence and 

deep learning will also likely have roles to play in the future of ra-

diomics and radiogenomics, particularly with regards to registra-

tion and segmentation of imaging studies.

Quantitative imaging approaches, including imaging texture 

analysis, reflect a departure from the historical, largely subjective 

approach for medical image interpretatin. The merit of this new 

method is that it is able to get digital information (data) from 

medical imaging and when performed under appropriate proto-

cols, is more robust and reproducible than strictly human based 

interpretations, i.e., radiologist. A potential advantage is that in-

formation that may be “hidden” can be discerned with quantita-

tive approaches. On the same token, there is a knowledge base 

that the radiologist has that radiomic based approaches have not 

yet achieved. Although there are too many variables to reliably 

predictive the future, it is likely that at a minimum these automat-

ed (or semi-automated) approaches will support the diagnostic 

and decision-making processes in medical imaging.

Nevertheless, there are remaining issues for clinical use. First, 

reproducibility is a very important issue.14 This is related to many 

factors, such as imaging acquisition protocol, method of segmen-

tation, method for extracting imaging features, and acquisition of 

clinical and genomic data. With respect to tumor markers, the 

standard reporting recommendations (REporting recommenda-

tions for tumour MARKer prognostic studies, REMARK) has been 

established for over 10 years.58 In a similar vein, standardization 

of analysis methodologies in radiomics and radiogenomics will be 

necessary if these methods are to gain broad adoption in the im-

aging community. Second, estimating appropriate sample size is 

another important issue. While larger data sets and “big data” 

provide great promise to identify new predictors of survival and 

outcome, associations do not imply causality.17 Third, although 

many radiomic studies have been implemented retrospectively, 

ideally a prospective study design is preferable. Additionally multi-

site hospitals may help increase the study size number and statis-

tical power but at the cost of increased variability in standardiza-

tion of protocols and data processing.17

Conclusion

While oncologic radiomics and radiogenomics are in early stag-

es of development there is much to be gained from continued in-

vestigations in order to maximize the utility of non-invasive diag-

nostic tests and potential molecular and genomic correlates of 

imaging features. Towards this end they may also advance the 

objectives of precision medicine as well as more cost effective 

healthcare.
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