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Check for
updatesMultiregional Sequencing Analysis Reveals

Extensive Genetic Heterogeneity in Gastric
Tumors from Latinos
Ted W. Toal1, Ana P. Estrada-Florez1,2, Guadalupe M. Polanco-Echeverry1,
Ruta M. Sahasrabudhe1, Paul C. Lott1, John J. Suarez-Olaya2, Alix A. Guevara-Tique2,
Sienna Rocha1, Alexa Morales-Arana1, Fabian Castro-Valencia2, Shiro Urayama3,4,
Amanda Kirane3, Dongguang Wei5, Nora Rios-Sarabia6, Rafael Medrano7,
Alejandra Mantilla8, Magdalena Echeverry de Polanco2, Javier Torres6,
Mabel E. Bohorquez-Lozano2, and Luis G. Carvajal-Carmona1,3,9

ABSTRACT

Gastric cancer is a leading cause of cancer mortality and health disparities
in Latinos. We evaluated gastric intratumoral heterogeneity using mul-
tiregional sequencing of >700 cancer genes in 115 tumor biopsies from
32 patients, 29 who were Latinos. Analyses focused on comparisons with
The Cancer Genome Atlas (TCGA) and on mutation clonality, druggabil-
ity, and signatures. We found that only approximately 30% of all mutations
were clonal and that only 61% of the known TCGA gastric cancer drivers
harbored clonal mutations. Multiple clonal mutations were found in new
candidate gastric cancer drivers such as EYS, FAT, PCDHA, RAD,
EXO, RECQL, and FSIP. The genomically stable (GS) molecular sub-
type, which has the worse prognosis, was identified in 48% of our Latino
patients, a fraction that was >2.3-fold higher than in TCGA Asian and
White patients. Only a third of all tumors harbored clonal pathogenic
mutations in druggable genes, with most (93%) GS tumors lacking

actionable clonal mutations. Mutation signature analyses revealed that,
in microsatellite-stable (MSS) tumors, DNA repair mutations were com-
mon for both tumor initiation and progression, while tobacco, POLE, and
inflammation signatures likely initiate carcinogenesis. MSS tumor progres-
sionwas likely driven by aging- and aflatoxin-associatedmutations, as these
latter changes were usually nonclonal. In microsatellite-unstable tumors,
nonclonal tobacco-associated mutations were common. Our study, there-
fore, contributed to advancing gastric cancer molecular diagnostics and
suggests clonal status is important to understanding gastric tumorigenesis.
Our findings of a higher frequency of a poor prognosis associated molecu-
lar subtype in Latinos and a possible new aflatoxin gastric cancer etiology
also advance cancer disparities research.

Significance:Our study contributes to advancing our knowledge of gastric
carcinogenesis, diagnostics, and cancer health disparities.

Introduction
Gastric cancer is the third cause of cancer mortality worldwide (1, 2). The
disparity between gastric cancer incidence (∼1 M annual new cases) and mor-
tality (∼760 K annual deaths) remains stubbornly minimal and little progress
has been achieved toward treating advanced disease. This minimal disparity
is partly explained by difficulties in early detection and the paucity of novel
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molecularly guided gastric cancer therapies. The Cancer Genome Atlas
(TCGA) study showed that most gastric cancers harbor potentially “druggable”
mutations (3). Interestingly, several studies have shown that extensive intra-
tumoral heterogeneity (ITH) is present in most malignancies, which evolve
by acquiring clonal and/or initiating mutations and subclonal and private
progression mutations (4, 5). Understanding the clonal status of key tumor
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mutations is important to increase our knowledge of tumor evolution and
for identifying the most promising and druggable targets. Most ITH studies
have relied on bulk sequence analysis of multiple and spatially separated tu-
mor biopsies (4, 5). This multiregional sequencing approach has advantages
over single-biopsy-per-sample profiling. Studies have repeatedly shown that
one-site/one-time biopsy sampling often misses a significant fraction of mu-
tations (6). Single-biopsy TCGA studies showed that gastric cancers have a
high mutation frequency and are likely to show extensive ITH (7). A study of
heterogeneity in gastroesophageal adenocarcinoma found extensivemutational
differences between primary tumors and metastatic lesions and significant dis-
crepancies, potentially clinically relevant, at different sites within the primary
tumor (8). ITH represents a significant challenge for target selection in preci-
sionmedicine, as it likely explains the failure ofmostmolecularly guided gastric
cancer trials. Clonal mutations that drive tumorigenesis are widely considered
the optimal drug targets, although nonclonal mutations can be useful targets,
especially in combination therapies, if they play a functional role in subclones
influencing tumor progression. The primary purpose of our study is to exam-
ine gastric cancer ITH patterns and evaluate its implication for tumor evolution
and likely response to therapy, with the hypothesis that ITH would be present
and help explain the difficulty of finding effective molecularly guided treat-
ments. The study was enriched with patients of Latino ancestry, and we also
explored ITH and gastric cancer genetic diversity implications for cancer health
disparities in this population.

Materials and Methods
Patient Cohort
Our study cohort included 29 patients with gastric cancer of Latino ancestry
(19 patients were recruited by Universidad del Tolima in Colombia, 9 by Insti-
tuto Mexicano del Seguro Social, in Mexico, and 1 by University of California,
Davis in the United States) and 3 non-LatinoWhites (recruited by University of
California, Davis in the United States). Patient clinical information is shown in
Table 1. Research protocols that were used to recruit human research subjects,
who provided written informed consent, adhered to the Common Rule, and
were approved by Institutional ReviewBoards fromparticipating institutions in
Colombia,Mexico, and theUnited States. Tumor biopsies were separated by>3
cm, and normal tissues were obtained from anatomically normal tissue identi-
fied during endoscopy or in surgical specimens. Biopsies were snap-frozen, and
all patients had their tumors verified by a local surgical pathologist.

Somatic Pan-cancer Panel Design
We selected 726 genes based upon known cancer risk (9), recurrence in pre-
vious gastric cancer samples, COSMIC Cancer Gene Census, TCGA Gastric
cancer studies, and based upon expression list of cancer risk genes were col-
lected from the literature (10–54), Color Genomics test suite (55), and DNA
repair pathway genes (Supplementary Table S1) plus TERT promoter, mi-
crosatellite instable (MSI) regions, Epstein-Barr virus (EBV) and Helicobacter
pylori sequences. Panel probes were designed using Agilent SureSelect XT2
Custom Capture technology (56) with a target capture region of 3.75 Mbp.
There were 287 targeted genes that were covered less than 100%, and 24 of these
were covered less than 90% (Supplementary Table S2).

DNA Sequencing and Bioinformatics Pipelines
DNA samples were isolated with QIAGEN kits from 168 biopsies of gastric tu-
mors and 37 normal gastric tissue samples adjacent to the tumors of 37 patients.

TABLE 1 Patient clinical and assigned molecular subtype information

Indiv Type Hpy Ctry Eth Sex Age Hist Anat Stage

I_9709 EBV N Col Lat M 78 NA B IV
I_26163 EBV N Mex Lat M 72 I B IA
Subtotal 2 0

I_10845 MSI Y Col Lat F 56 I A IV
I_8012 MSI N Col Lat M 62 I C IV
I_13137 MSI N USA Wht M 68 D NA IB
I_20447 MSI N USA Wht M 82 NA C NA
Subtotal 4 1

I_13148 CIN N Col Lat F 37 D A IV
I_3755 CIN N Col Lat F 42 I A IIIB
I_7245 CIN N Col Lat F 64 I A IIIB
I_12808 CIN N Col Lat M NA NA NA IV
I_9278 CIN N Col Lat M 60 I A IV
I_9297 CIN N Col Lat M 60 M C IIIB
I_8164 CIN N Col Lat M 61 D A IIIB
I_9296 CIN N Col Lat M 67 M A IIB
I_26175 CIN N Mex Lat F 79 D A/P IIIC
I_26166 CIN N Mex Lat M 55 I A/P IIIB
I_26181 CIN N Mex Lat M 57 D B/C IIIC
I_13139 CIN N USA Wht F 74 D A/P NA
Subtotal 12 0

I_9715 GS Y Col Lat F 31 I L/A IIIB
I_19344 GS Y Col Lat F 32 NA NA IV
I_11981 GS Y Col Lat F 49 D L IB
I_19343 GS Y Col Lat F 50 NA NA IV
I_6579 GS N Col Lat F 56 I A IV
I_9299 GS N Col Lat M 47 I B/A IIB
I_9710 GS N Col Lat M 53 I A II
I_14885 GS N Col Lat M 78 I A IIB
I_26169 GS N Mex Lat F 57 D A/P IIIC
I_26167 GS N Mex Lat F 65 M B IV
I_26180 GS N Mex Lat M 59 D A/P IIIA
I_26171 GS N Mex Lat M 71 D B/A IV
I_26172 GS N Mex Lat M 76 D A/P IIIA
I_13141 GS Y USA Lat M 55 NA B NA
Subtotal 14 5
Total 32 6

Abbreviations: A, antrum; Anat, Anatomic location; B, body; C, Cardia; CIN,
Chromosomal instability; Col, Colombia; Ctry, Country; D, diffuse; EBV,
Epstein-Barr virus; Eth, Ethnicity; F, Female; GS, Genomically stable; Hist,
Histology; Hpy, H. pylori infection; I, intestinal; Indiv = Individual; L, lesser
curvature; Lat, Latino; M, Male; M, mixed; Mex, Mexico; MSI, Microsatellite
instability; NA, Not available; N, No; P, pylorus; Type, Molecular subtype;
Wht, White; Y, Yes.

Sequencing was performed on Illumina HiSeq 4000 (57) using paired-end
150 bp sequencing. Scythe (58) version 0.991 and Sickle (59) version 1.33 was
utilized for trimming. Based upon DNA-seq quality control (QC), 15 biopsies
and 3 patients were removed, gender mismatch QC led to six biopsies and 1 pa-
tient removed, and 115 tumor and 32 normal biopsies from 32 patients remained
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for the final analysis. Reads were aligned to GRCh38 using BWA (60) version
0.7.17. BROAD Institute Best Practices for Variant Calling with the GATKwere
followed (61). Germline single-nucleotide variants (SNV) were called using
the joint variant caller multiSNV (62) version v2.3-15. Somatic variants were
called using Mutect2 (63). Variants were annotated using Annovar suite (64).
Additional germline and somatic variant filtering was applied as detailed in
Supplementary Materials and Methods. A panel of normals was created with
variants called in > = 2 samples. MSIsensor (65) was used to predict tumor
sample MSI.

A clonality was assigned to each SNV: PRIVATE (only one tumor is a so-
matic variant), SUBCLONAL (greater than 1 but not all biopsies carry the
variant), CLONAL (all tumors have variant), or NONE (applied to aberrant
cases). PureCN (66), version 1.16.0 was used to perform copy-number variation
(CNV), purity, and ploidy analysis, and biopsy mutation rate estimation (see
SupplementaryMaterials andMethods formore details). Mappability files were
created using GEM library (67) version 1.778 beta. Each tumor biopsy’s muta-
tion rate was estimated with PureCN. To address possible pseudoheterogeneity
due to factors such as allele-specific imbalance or heterogeneous amplification,
an in-house heuristic forced variant calling algorithm was used to look for mu-
tant allele reads at levels too low to be called mutant when the same locus
was called mutant in a sister biopsy. OncoKB gene list (68, 69) and FDA gas-
tric cancer–targeted therapy genes (70) were combined, leaving 58 druggable
genes overlapping our gene targets. Mutation signatures were estimated with
deconstructSigs (71). A subset of the V3.2 signatures were used, retaining those
deemed relevant to gastric cancer.

Statistical Analysis
The statistical tests used in this study are Student t test for comparing sample
means and Fisher exact test for comparing proportions in multiple categories.
This study analyzes data from 32 patients and many more biopsies, so the data
from patients and biopsies is not independent. The patient count is too low to
provide substantial statistical power, so P values are used only when testing in-
dividuals independently of biopsies and the study is otherwisemore descriptive
in nature.

A detailed description of themethods for data processing and the software used
for analysis is available in the Supplementary Materials and Methods file.

Data Availability Statement
The data generated in this study were deposited in the European Genome-
phenome Archive (Study ID: EGAS00001006650, Dataset ID: EGAD0000
1009622).

Results
Patient Characteristics
Table 1 shows the main characteristics of the patients analyzed in the study.
None of these patients carried germlinemutations in Lynch syndromeor hered-
itary diffuse gastric cancer genes (not shown). Mexican patients had a larger
fraction of tumors with diffuse histology (Table 1). Colombian patients, on the
other hand, were significantly younger than those fromMexico orUnited States
(55 vs. 66 years, P= 0.020; Student t test). Colombian andMexican patients had
a similar distribution of molecular subtypes. Compared with available TCGA
clinical data, our patient population has a similar sex distribution (Table 1; Sup-
plementary Table S3), with 59% of our study patients being male versus 62%

in TCGA. Our patients were however younger than those from TCGA (60 vs.
66 years, P = 0.0183; Table 1; ref. 3) and had a higher rate of advanced tumors
(76% vs. 45%; Table 1; ref. 3).

Gastric Tumor Genomic Landscape
We evaluated 115 tumor biopsies from 32 patients (Table 1) using our cancer
panel (Supplementary Data S1). On average, each tumor biopsy was sequenced
at 336X depth and each normal biopsy at 225X (Supplementary Data S2). After
filtering out likely false positives, we identified a total of 1,319 different somatic
mutations (mean 41/patient), or 1,326 counting recurrences in different pa-
tients, or 2,594 counting occurrences in each individual tumor biopsy (mean
23/biopsy), in 473 genes. These included 771 nonsilent coding mutations (635
SNVs and 136 indels; mean 24/patient), or 775 total across patients including
recurrences, or 1,543 counting occurrences in each individual tumor biopsy
(mean 13/biopsy) occurring in 355 panel-targeted genes (Fig. 1; Supplementary
Figs. S1–S8; Supplementary Data S3). For TCGA molecular subtypes, of the 32
patients, 2 were classified as EBV (6.2%), 4 as MSI (12.5%), 12 as chromosomal
instability (CIN) (37.5%), and 14 as GS (43.8%). When analyses were restricted
to Latinos (n= 29 patients), subtype frequencies were 38% for CIN, 7% for EBV,
48% for GS, and 7% for MSI (Supplementary Table S3), and when our Mexi-
can and Colombian Latino subtypes were compared, there were twice as many
Colombian CIN and GS patients (n = 16) as Mexican (n = 8) but the overall
difference in subtype proportions was not significant by Fisher exact test (P =
0.8). The subtype frequencies in our Latino patients were significantly different
from those in all TCGA patients (P = 0.033; Fisher exact test). Within TCGA’s
White and Asian patients (n= 238White, n= 74 Asian), the rate was similar to
ours for EBV (8% for Whites, 11% for Asians), higher for MSI (18% for Whites,
20% for Asians) and CIN (61% forWhites, 51% for Asians), and much lower for
GS (13% for Whites, 18% for Asians).

Somatic Mutation and Phylogenetic Analyses Showed
Varying ITH
We next analyzed the distribution of SNVs, indels, and CNVs in the different
biopsies of each patient and classified each mutation as clonal (occurring in all
individual tumor biopsies from the same patient), subclonal (occurring inmore
than one but not all individual tumor biopsies), or private (occurring in one
individual tumor biopsy only). Supplementary Data S3 shows counts of all so-
matic SNVs/indels and their clonal status.Of the 1,326 suchmutations, 428were
clonal (32%, mean 13/patient), 213 were subclonal (16%, mean 7/patient), and
685 were private (52%, mean 21/patient). The clonal SNV fraction in patients of
differentmolecular subtypes was about the same inGS andCIN (27%; GSmean
5.9/patient; CINmean 6.9/patient), higher in EBV (34%,mean 8.5/patient), and
MSI (36%, mean 61.5/patient). There was at least one clonally mutated gene
in 27 of the 32 patients (all 5 patients without clonal changes had the GS sub-
type). In contrast, nonclonally mutated genes were found in all but 1 patient
(Fig. 1; Supplementary Fig. S1). Phylogenetic trees of clonal and nonclonal
changes were generated to visualize the evolution of each tumor (Supplemen-
tary Fig. S2). These trees graphically illustrate the branched evolution pattern
followed by gastric cancers.

Clonally Mutated Genes in Microsatellite-Stable
and MSI Patients
In our 28 microsatellite-stable (MSS) patients, we found 15 genes with clonal
nonsilent SNVs/indels inmultiple patients. Of these, one gene was clonallymu-
tated in 6 patients (TP), one in 5 patients (CDH), two in 4 patients (MUC,
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FIGURE 1 Genes clonally mutated in 3 or more gastric cancer MSS/MSI patients. Gene names shown on both left and right sides are those where at
least 3 patients have clonal somatic nonsilent single-nucleotide or short indel (SNV), or copy-number gain/loss (CNV) mutations. Patients (I_####
IDs) are separated by a dark vertical line and patient biopsies within them are separated by a lighter line. SNV and CNV mutations are shown for each
gene/biopsy combination. Gains and losses are distinguished by box color, while SNVs are shown as a filled circle or triangle using color to distinguish
the mutation type (key at top right; nonsense mutations include stop gain/loss and frameshift). A triangle rather than a circle means a gene has more
than one mutation in a patient, and the type shown is the one generally most detrimental. A bar through all biopsies means the mutation is clonal. The
left-side bar plot shows the total number of clonal mutations of each type in each gene, with short vertical lines separating individual patients.
Numbers in boxes at the bottom give the total number of clonal mutations of each type in each patient in all genes (not just the ones shown). Patient
molecular subtypes are indicated by color-coded bars just above the main figure area, and above those are additional color-coded bars indicating
patient microsatellite instability status (MSS/MSI), sex, age of onset of gastric cancer (where late onset was defined as occurring at age >50), ancestry
(Latino or White), and tumor histology. The top bar plot shows the SNV mutation rate in each biopsy, in the region targeted by the panel, with
nonsilent and silent rates distinguished by color. MSS patients have a lower mutation rate and use the y-axis scale on the left, while MSI patients with a
higher rate use the right-side scale. The right-side bar plot shows the SNV mutation count in each gene summed over all 115 biopsies, normalized by
dividing by the gene CDS length in Kbp, with nonsilent and silent mutations distinguished by color. Gene names are in bold when they were found to
be gastric cancer drivers by TCGA gastric cancer study, with open circles denoting driver genes in non-hypermutated (MSS) TCGA samples and filled
circles denoting those in hypermutated (MSI) samples.

SYNE), and two in 3 patients (APC, TG; Fig. 1; Supplementary Figs. S1 and
S3). In addition, even though our targeted approach had limitations to accu-
rately call CNVs, our analyses identified 12 genes that were clonally amplified
or deleted in multiple MSS patients, including two with a mixture of ampli-
fications and deletions (DLC, WRN; Supplementary Fig. S4), one that was
clonally amplified in 3 patients (ERBB), and nine that were clonally ampli-
fied in 2 patients each (FGFR, KLF, the 8q24 MYC and RECQL genes, and
the 20q12-13 genes PLCG,MMP,GNAS, LAMA, and RTEL, Supplementary
Figs. S4–S6). Counting both nonsilent SNVs/indels and CNVs, a total of 39
genes were clonally altered in multiple MSS patients. Of those, nine are known
TCGA gastric cancer drivers (APC, CDH, CTNNB, ERRB, KRAS, RNF,
ARIDA, and TP in MSS tumors, and ZBTB in MSI tumors), eight have
been identified as gastric cancer drivers in non-TCGA studies (MUC, DLC,
MMP, FASN, LAMA, EGFR, BRCA, and FGFR), 14 have been identified as
drivers for other cancer types by TCGA (ATAD, ATR, CSDE, CSMD, ELF,

ERBB, KLF, TRPA, TSHZ, and PLCG) and non-TCGA studies (GNAS,
MYC, SYNE, and TG), and eight have not been previously identified as gas-
tric cancer drivers (EYS, FAT, FSIP, PCDHA, RAD, RECQL, RTEL, and
WRN). These latter clonally mutated genes should be considered candidate
gastric cancer driver genes for future studies.

In our 4 MSI patients, we found 17 genes with clonal nonsilent SNV/indels in
multiple patients, including 2 in 3 patients (ARIDA, SYNE) and 15 in 2 patients
(ALPK, ATM, CDC, CDK, ESR, EXO, FSIP, KMTE, LRRK, MACF,
MUC, NEB, PIKCA, RNF, and RTEL; Fig. 1; Supplementary Fig. S1 and
S5). Five of these genes are known TCGA drivers (ARIDA, ALPK, PIKCA,
and RNF in MSI tumors and MACF in MSS tumors), one has been identi-
fied as a gastric cancer driver in non-TCGA studies (MUC), eight are known
drivers for other cancer types in TCGA (ATM, CDC, CDK, ESR, KMTE,
and LRRK) and non-TCGA studies (SYNE andNEB), and three have not been
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FIGURE 2 Comparison of TCGA gastric cancer driver mutation frequency with this study. A, Genes significantly mutated in non-hypermutated TCGA
samples, compared to MSS patients in our study. B, Similarly, for hypermutated TCGA samples compared with our MSI patients.

previously identified as drivers (EXO, RTEL, and FSIP). These three should
also be considered candidate driver genes for future studies.

It is always possible for clonal mutations to be passengers rather than drivers,
more so the larger the gene. Using the definition of long gene length as above
the 75% of all genes in our panel, we examined the long clonally mutated
genes mentioned above for evidence of likely pathogenic changes [defined as
a loss-of-function mutation, a known cancer hotspot mutation, annotated as
pathogenic in ClinVar (72), amplification of a known oncogene, or complete
deletion of the entire gene or its wild-type allele]. Because of the absence of
clonal mutations classified as likely pathogenic, nine genes (TG, WRN, PLCG,
LAMA, RTEL, FASN, CDK, LRRK, andMACF), were considered unlikely
to be candidate gastric cancer drivers. Conversely, in five of these genes, all
clonally mutated patients had mutations that were likely pathogenic (CTNNB,
ELF, ATM, KMTE, and PIKCA), lending stronger support to their candidate
gastric cancer driver status.

Nonclonally mutated genes are summarized in Supplementary Fig. S7. Genes
with a relatively high nonclonal mutation frequency include STK, GPS,
NDUFB, and AXIN. The tumorigenesis role, particularly in cancer progres-

sion, of these nonclonally mutated genes should be evaluated in future cancer
biology studies.

The Known TCGA Gastric Cancer Drivers are Clonally
Heterogeneous
Our panel contained 54 well-covered genes that were identified as gastric can-
cer drivers by TCGA.We found that 11 of these genes harbored nonsilent clonal
SNV/indel mutations in multiple patients (TP, CDH, ARIDA, APC, KRAS,
CTNNB, ZBTB, PIKCA, RNF, ALPK, and MACF; Fig. 1; Supplemen-
tary Fig. S1). In addition, 20 known gastric cancer TCGA drivers had clonal
SNVmutations in 1 patient each in our study (Supplementary Fig. S1). Figure 2
contrasts the number of patients having clonal and nonclonal mutations in
these known drivers in our study with the number of patients withmutations in
TCGA.Most knowndrivers had both clonal and nonclonalmutations, with half
of them clonallymutated in at least 1 patient while the other half was either non-
mutated or only nonclonally mutated. Of note, ZBTB, a driver identified by
TCGA in MSI tumors, was clonally mutated only, in multiple patients. In con-
trast, CIC, NF, KIFA, PTPN, and CHRD (all MSI drivers) were mutated
in multiple patients, but always nonclonally. Indeed, after TP and ARIDA
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(clonally mutated in 6 patients each), CDH and APC (clonally mutated in
5 patients each), and ERBB (clonally mutated/amplified in 4 patients),
ZBTB, KRAS, and BRCA were the fourth most common clonally mutated
known driver genes in our study. When these analyses were stratified by the
patient’s country of origin or age of gastric cancer diagnosis (≤50 y vs. >50 y),
we found no significant difference in our study. Overall, our clonal analyses
of known TCGA drivers support the notion that the driver status of some of
these genes is worthy of reexamination in larger ITH studies. Alternatively, as
our sample was enriched with tumors from Latino patients, these differences
may reflect population differences, as TCGA included mostly Whites in their
analyses.

ITH in Druggable Genes
Our panel included 58 druggable genes. One-third (n= 11, 34%) of our patients
had at least one clonal likely pathogenic change (defined above) in a drug-
gable gene. Clonal likely pathogenic changes in druggable genes were found
in all four MSI patients (100%), 5 of the 12 patients with CIN (42%), 1 of the
4 EBV patients (25%), and only 1 of our 14 GS patients (7%). The pathways
with the highest number of clonal likely pathogenic changes included tyro-
sine kinase receptors (ERBB, EGFR, FGFR, and FLT, mutated in 4 patients),
homologous recombination repair (BRCA, ATM, and ATR, mutated in 4 pa-
tients), PI3K/AKT/MTOR (PIKCA and AKT, mutated in 3 patients), and
RAS/RAF/MAPK (KRAS, mutated in 3 patients). Finally, we found six genes
with nonclonal pathogenic mutations in 2 or more patients (EGFR, ERBB,
KRAS, NF, PIKCA, and STK; Supplementary Figs. S7 and S8).

Mutation Signatures in MSS Tumors
We were also interested in examining whether different processes could medi-
ate clonal and nonclonal mutations (Supplementary Table S4; Supplementary
Figs. S5, S8, and S9). As most of our patients had MSS tumors (28/32), we
focused on initial analyses in this group. MSS clonal mutations mainly re-
sulted from signatures SBS1 (deamination), SBS3 (homologous recombination
deficiency, HRd), SBS4 (tobacco), SBS5 (age), and SBS10b (POLE mutations,
POLEm). Nonclonal mutations, on the other hand, had signatures associated
with HRd, tobacco, age, mismatch repair deficiency (MMRd, SBS6, and SBS15),
reactive oxygen species damage (ROSd, SBS18), and aflatoxin exposure (SBS24,
aflatoxins). As our study was enriched with Latino patients, we compared their
signatures with those in TCGA MSS patients (Supplementary Table S4; Sup-
plementary Fig. S9). Deamination and age signatures were found in Latinos
and TCGA; however, HRd-, SBS6/MMRd-, ROSd-, and aflatoxins-associated
signatures were present only in Latinos.

We also analyzed signatures in CIN and GS tumors separately (Supplementary
Table S4; Supplementary Fig. S9). The HRd signature was found in both CIN
andGS clonalmutations but not in nonclonalmutations. The POLEmsignature
was found in clonal mutations of GS but not CIN patients. The SBS15/MMRd
was found in both CIN andGS but only in nonclonal mutations. These findings
suggest that CIN andGS tumorsmay result fromdifferentmutational processes
involved in tumor initiation and progression.

Finally, asGSwas ourmost common subtype, we explored associations between
GS tumor signatures and histology in our study and TCGA (Supplementary
Table S4). Our study’s GS diffuse and intestinal tumor mutations had the age,
SBS15/MMRd, and aflatoxins signatures. Age, but not the SBS15/MMRd or afla-
toxin signatures, was also detected in TCGA GS diffuse and intestinal tumors.
In our study and TCGA, GS diffuse mutations resulted from deamination and

POLEm signatures. In GS intestinal tumors, we found SBS6/MMRd in our
Latinos and TCGA, while HRd and ROSd were exclusively found in our study.
These findings suggest that different mutational processes may affect histologic
types in GS tumors.

Mutation Signatures in MSI Tumors
Our study only included 4 MSI patients, so we mainly evaluated mutation
signature differences by clonal status. Clonal mutations in MSI tumors were
primarily the result of MMRd (SBS15 and SBS26) and deamination. Nonclonal
mutations, on the other hand, had signatures associated with deamination, to-
bacco, and MMRd (SBS6, SBS15, SBS21, and SBS26). These findings suggest, as
expected, that MMRd is required for MSI tumor initiation, while tobacco may
be important for MSI tumor progression.

Discussion
This study represents a comprehensive investigation of ITH in gastric cancer, a
worldwide leading cause of cancer incidence and death (2). Our study showed
that gastric cancers are characterized by a complex genetic architecture and
suggested the existence of novel driver genes. Our druggable target analysis
identified key pathways and genes that often harbor clonal mutations, and that
should be prioritized for therapeutic development. Mutational signature analy-
ses suggested that carcinogens likely play a different role in clonal and nonclonal
mutations, across molecular and histologic subtypes and that population-
specific exposures, such as aflatoxins,may also influence gastric cancer etiology.
Therefore, our study reports findings important to understanding gastric can-
cer etiology, disparities, tumor evolution, and future therapeutic development.

TGCA studies have demonstrated that gastric cancers are among the most ge-
netically diverse tumors (7), with each gastric cancer harboring approximately
500 coding mutations (3). The mutation rate, however, varies greatly between
molecular subtypes, with MSI tumors having the highest number of alterations
and GS tumors the lowest (3). Consistent with previous work (3), our MSI tu-
mors harbored the highest number of both clonal and nonclonal mutations,
followed by CIN, EBV, and GS tumors. These differences in mutation rate are
important not only for understanding tumor evolution but also for making the
best-informed choice of targeted therapies or immunotherapies. Interestingly,
mutation patterns in our study highlighted several important findings about
gastric cancer drivers. First, it became evident that the list of gastric cancer
driver genes is likely larger than that reported by TGCA. Our results suggested
that the clonal mutation status in both known and potentially new candidates
is important and should be considered to help validate their “driver” status. In
our analyses of known TCGA gastric cancer drivers, for instance, we showed
that only approximately 60% had clonal mutations, raising questions about the
initiation versus progression “driver” status of genes such as CIC, NF, KIFA,
PTPN, and CHRD, which were mutated in multiple patients but always non-
clonally. Even though clonalmutationsmay be the obvious targets for therapies,
it is possible that some nonclonal mutations play an important role in cancer
progression. Our findings are therefore intriguing and suggest that larger ITH
studies should evaluate whether these nonclonally mutated genes are indeed
drivers and whether they are involved in tumor progression or only harbor
passenger and/or neutral mutations.

An interesting aspect of our analyses is that we identified several recurrent
clonally mutated genes. Many of them, such as ATAD, ATR, BRCA, CSDE,
CSMD, DLC, EGFR, ELF, ERBB, FGFR, KLF, TRPA, TSHZ, GNAS,
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MYC, andMMP forMSS tumors and ATM, CDC, ESR, KMTE, and NEB
for MSI tumors, have been previously identified as drivers by TCGA/non-
TCGA studies for other cancer types but not for gastric cancer. We also found
six genes in MSS tumors (EYS, FAT, FSIP, PCDHA, RAD, and RECQL)
and two in MSI tumors (EXO and FSIP) that were clonally mutated in multi-
ple patients and have not been previously identified as drivers of gastric cancer
or other cancers. Interestingly, many of these new genes are involved in key pro-
cesses disrupted in gastric tumorigenesis, such as extracellularmatrix (EYS) and
cell adhesion (FAT and PCDHA, which are protocadherins) or homologous
recombination repair (RAD and RECQL). These potentially new gastric
cancer driver genes, as well as genes with high nonclonal mutation frequency,
such as STK, GPS, NDUFB, and AXIN, represent good candidates for
inclusion in future studies of gastric tumorigenesis.

We and others have shown that genes involved in homologous recombination
repair are important in both gastric cancer risk and tumorigenesis (73–75),
which is consistent with our observation of multiple patients with clonal non-
silent mutations in ATR, ATM, and BRCA and with the mostly clonal nature
of the HRd-associated mutation. Our study also found many patients with
clonal pathogenic mutations in the RAS/RAF pathway gene KRAS and the
PI3K/MTOR/AKT pathway gene PIKCA, providing further evidence of their
importance in gastric cancer biology.While ERBB and ERBB are bothmolec-
ular targets of FDA-approved gastric cancer therapies and are known TCGA
gastric cancer drivers (3, 76), the high number of patients with mutations in
other related tyrosine kinase genes (FGFR, EGFR/ERBB, and ERBB) suggest
that these should also be considered important genes in gastric cancer biol-
ogy. These results suggest clonal status can further identify novel genes that are
important in gastric tumor biology.

Gastric cancer targeted therapies have been notorious for their failure in late-
stage trials, with only two (targeting ERBB and VEGFR) currently approved
by the FDA (76–78).While gastric cancers are characterized by one of the high-
est mutation rates among all solid malignancies, and TCGA suggested that
approximately 70% of them harbor potentially actionable or druggable muta-
tions (3), our ITH analyses indicated that even though a significant fraction of
gastric cancers do indeed carry druggable mutations, only about 60% of these
tumors have clonal mutations in druggable genes. However, we also found that
clonal druggable mutations are closely associated with the molecular subtype,
with the good-prognosis MSI subtype having the highest number of druggable
targets and the poor-prognosis GS subtype having the lowest (79). Indeed, all 4
MSI patients in our study harbored multiple clonal actionable mutations, while
>90% of GS tumors lacked such mutations. This suggests that MSI tumors will
be highly amenable to targetable therapy development, whichwill likely be ben-
eficial for future combinations with immunotherapies (80). GS tumors, on the
other hand, remain a significant challenge in drug development, and future
efforts should focus on identifying additional targets (such as methylation or
synthetically lethal combinations) for preclinical studies and clinical trials. As
GS tumors seem more prevalent in Latinos, such studies should involve race
and/or ethnic appropriate models and participants (81).

Our mutation signature analyses revealed interesting differences between MSS
and MSI tumors and between Latino and TCGA tumors. In MSI tumors,
MMRd and deamination likely drive tumor initiation while tumor progression
seems to be driven by tobacco-associated mutations. While an association be-
tween the MMRd mutation signature and MSI tumorigenesis makes sense, the
fact that tobaccomay accelerateMSI tumor progression is consistentwith previ-
ous studies showing a stronger association with gastrointestinal MSI tumors in

heavy smokers (82–84) andwith the fact that Lynch syndrome patients carrying
germline MMR mutations are particularly susceptible to tobacco carcinogens
(85). Our signature analyses in MSS tumors, on the other hand, revealed that
deamination- and POLEm-associated mutations likely drive tumor initiation;
HRd-, tobacco- and age-associated mutations influence both tumor initiation
and progression; and MMRd-, ROSd- and aflatoxin-associated mutations play
a role in tumor progression. Our separate analyses of CIN and GS tumors
revealed that POLEm/SBS10b seems to primarily play a role in GS tumor ini-
tiation. Our histologic comparison within GS tumors also revealed consistent
associations, in our study and in TCGA, of the importance of deamination in
diffuse histology and of MMRd in intestinal histology. Finally, our finding of
an aflatoxin mutational signature is also novel and intriguing and suggests that
larger and further studies should examine the role of this risk factor (which has
been found in Latinos with liver and gallbladder cancers) in gastric tumorige-
nesis (86–88). This finding, if replicated, also highlights the benefits of racial
and/or ethnic diversity in cancer genetics studies.

Gastric tumors are one of the leading causes of cancer health disparities (89, 90).
As our study was enriched with Latino patients, our results are important to ad-
vance precision health equity in this population. Future studies should evaluate
many of the novel findings found in our study and assess whether such pat-
terns are more common in Latinos or are also observed in other populations.
Some of our results are particularly puzzling, such as our significant difference
inmolecular subtypeswhen comparedwith TCGA,with our study having a sig-
nificantly higher prevalence of GS tumors, which are known to have the poorest
prognosis in gastric cancer (79) and which are more commonly associated with
diffuse histology (3). A high frequency of GS tumors in Latinos, also recently
reported in Texas (91), therefore may explain some of the observed disparities
in Latino gastric cancer outcomes, and the development of future therapies for
this subtype should be a priority in gastric cancer disparity research.

Our observational study however has some limitations. First, it was solely fo-
cused on DNA sequence changes in a panel of cancer genes. Genome-wide
or exome-wide analyses would likely have led to improved signature analy-
ses. While our study did not have the ability to evaluate methylation or gene
expression ITH, our findings showed a striking level of genetic complexity in
gastric cancers, which may explain why these tumors are so difficult to treat.
We also hope that future functional studies investigate the tumorigenesis role
of some of the putative new drivers highlighted in our study. Furthermore,
our study was enriched with advanced tumors, which could introduce biases
compared with TCGA. Despite these limitations, we believe that our study has
several strengths, focused on an understudied population, and reporting sev-
eral novel findings thatwill likely contribute to advancing gastric carcinogenesis
and disparities.

In sum, we carried out a comprehensive evaluation of gastric tumor genetic di-
versity. Our study found that Latinos are enriched with a poor prognosis and
chemotherapy-resistant subtype that likely account for some of the outcome
disparities experienced by Latinos. Our findings showed a striking level of ge-
netic complexity in gastric cancers, explaining why these tumors are so difficult
to treat. We hope our results help advance target selection for gastric cancer
therapies and aid in understanding gastric tumorigenesis and disparities.
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