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control. Pre-print submitted to Automatica.

D.J. Riggs and R.R. Bitmead. Distributed optimization with coupling constraints:
algorithms and information exchange requirements. Pre-print submitted to IEEE
Transactions on Automatic Control.

D.J. Riggs and R.R. Bitmead. Rejection of aliased disturbance in a pulsed light
source. In Proceedings of the 48th IEEE Conference on Decision and Control,
2009 held jointly with the 2009 28th Chinese Control Conference, pages 8148–8153,
Shanghai, P.R. China, December 2009.

D.J. Riggs and R.R. Bitmead. Negotiation of coupled constraints in coordinated
vehicles. In Proceedings of the 49th IEEE Conference on Decision and Control,
pages 479–484, Atlanta, GA, December 2010.

D.J. Riggs and R.R. Bitmead. MPC under the hood / sous les capot / unter
der haube. In Proceedings of the IFAC Conference on Nonlinear Model Predictive
Control 2012, pages 363–368, Noordwijkerhout, the Netherlands, August 2012.

xiii



ABSTRACT OF THE DISSERTATION

Performance-Driven Control Theory and Applications

by

Daniel J. Riggs

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2012

Robert R. Bitmead, Chair

In this dissertation, we study stochastic disturbance rejection, performance,

and optimal control. This study is composed of three distinct investigations: an

application, theory, and the development of an algorithm. The studies are linked

by optimal control and its associated performance.

In application, we study a disturbance rejection problem in a production

pulsed light source to yield quantifiable and guaranteed improved performance

over existing control techniques. We apply generalizations of continuous-discrete

Kalman filter ideas for actuator and disturbance state estimation and prediction;

following Harris, we analyze the variance light source output prediction errors in

order to ascertain the theoretical lower bound for closed-loop control performance.

xiv



We establish and solve a non-standard regularized minimum variance control prob-

lem, and use the derived control law in concert with the continuous-discrete estima-

tor to construct a certainty-equivalence state-feedback controller. We demonstrate

on a production light source that the estimator-controller yields closed-loop per-

formance near the derived theoretical lower bound for the hardware.

The theoretical framework is constructed around the application of Nonlin-

ear Model Predictive Control (NMPC) schemes to discrete-time, nonlinear systems

which are subject to persistent, stochastic disturbances. We pose a discounted-

cost infinite-horizon optimal control problem and use its optimal value function

as the performance benchmark to which all subsequent NMPC closed loops are

compared. Following Jadbabaie, Hauser, Grüne, and Rantzer, who address perfor-

mance and stability of NMPC in the undisturbed case, we employ monotonicity

of finite-horizon optimal control value functions to establish an upper bound to

NMPC loop performance. We highlight assumptions which are required to achieve

this upper bound and offer insight as to how one might satisfy these assumptions.

We tackle a third problem which is unrelated to performance of a closed-loop

system, but which finds application in real-time MPC calculations. We consider the

development of distributed algorithms which cooperating nodes can employ to solve

a global optimization problem. The global solution constitutes the performance

benchmark of interest and we seek distributed algorithms which nodes can employ

in order to achieve this solution. Each node has access to local information which

is suitable for solving a local optimization problem subject to local constraints;

the nodes are coupled through a coupling constraint and through the structure of

the global cost function. Our focus lies in understanding the required information

content exchange between nodes to solve the global optimization problem. We

show that the amount of information content is related to activity of both local

constraints and coupled constraints at the global solution.

xv



Chapter 1

Introduction

Hello, my friend! Stay awhile, and listen.

— Deckard Cain

This dissertation investigates stochastic disturbance rejection, performance,

and optimal control through the lenses of an application, theory, and development

of an algorithm. We are motivated by industrial systems, where manufacturing

performance is demanded in spite of persistent disturbances which act to adversely

impact manufacturing output. Optimal control provides a framework in which we

can accomplish control design which at once provides performance guarantees and

handles disturbances.

The application considers estimation and control design for a production

(laser) light source, which is used in the photolithography stage of semiconduc-

tor chipmaking. The theoretical developments address nonlinear model predictive

control (NMPC), as applied to discrete-time, stochastic, nonlinear systems. The

algorithm is developed to aid the analysis of information exchange required to solve

a distributed optimization problem.

While each study – application, theory, and algorithm development – is

distinct, it is the necessity of archival publication that dictates this to be so. The

overarching presence is optimal control and its associated performance.

The general topics under consideration in this dissertation follow.

Performance: The Oxford English Dictionary defines performance as, “the capa-

bilities, productivity, or success of a machine, product, or person when mea-

1
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sured against a standard.” In our context, we consider the performance of a

system as can be guaranteed by the insertion of a feedback control system.

Prescription of performance bounds is particularly important for industrial

systems, e.g., photolithography tools which are responsible for the manufac-

turing of chips. Performance of these manufacturing tools directly impacts

chip yield which in turn impacts chipmaker profitability, device manufactur-

ing, and, eventually, consumer confidence. Theoretical investigations yield

performance guarantees, subject to assumptions. A discrepancy between the-

oretical performance and achieved performance might indicate inappropriate

assumptions have been asserted.

Constrained Optimization: Optimization brings with it a value function for

performance. In constrained optimization, satisfaction of the constraints is a

higher-level objective than performance. Indeed, an optimization problem in

which there is only one solution that satisfies the prescribed the constraints

is, by default, the optimal solution. Optimization problems of present in-

terest are non-dynamic and performance-oriented. We focus on distributed

solutions to (not necessarily) static, constrained optimization problems where

several nodes cooperate to compute the solution to the optimization prob-

lem. We use properties of Lagrange multipliers to develop our distributed

algorithms and ascertain when the global solution is achieved.

Optimal control: The framework of optimal control is centered on the selection

of a control strategy which optimizes a performance function; this perfor-

mance function can be selected to reflect the behavior of parameters which

are pertinent to the successful operation of the system of interest. The con-

nection between the selected control strategy and the performance bounds

which can be guaranteed is of particular interest.

Optimal control encompasses the solution of an optimization problem in

which a control solution is sought which minimizes a specified performance

measure of importance, as evaluated over a specified period of time. The

time period can be infinite (infinite-horizon optimal control) or finite (finite-
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horizon optimal control). Receding-horizon control can also be considered,

where the optimization problem is solved considering a finite horizon yet the

control solution is applied (and performance is measured) for infinite time.

We address all three time-horizon cases here.

Stochastic Disturbance Rejection: Industrial systems are fraught with distur-

bances which impinge on process and performance variables of interest. It is

difficult, in the context of stochastic disturbances, to provide guarantees of

system performance; though, optimal control provides a suitable framework

and toolset in which this issue can be studied.

We assume the disturbances have a stochastic nature for several reasons.

First, the stochastic framework provides a manageable description of uncer-

tain behavior. Second, we can greatly benefit from the multitude of tools

available to analyze stochastic disturbances: correlation functions, state es-

timation and prediction, covariances, distribution functions, etc. This frame-

work and associated tools allow for comprehensive analysis and rigorous proof

of results relating to uncertainty.

1.1 Motivation

Closed-loop control performance, of both linear and nonlinear systems which

are subject to persistent disturbances, is our present interest. Our focus through-

out is twofold. First, we aim to minimize the performance function and, following

this, pursue understanding of theoretical lower bounds for system performance

under closed-loop control; this is the bound to which we compare all subsequently-

achieved performance values. Realization of a feedback controller which achieves

this theoretical performance level is possible, though unlikely. Rather, our second

aim is to derive and understand upper bounds on performance levels under a given

feedback controller and contrast these upper bounds with the theoretical lower

limit of performance.

In this vein, we tackle two problems. The first problem we consider is an

application to photolithography light sources in which novel extensions of existing
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control-theoretic ideas are employed to design a feedback control system for the

rejection of disturbances, some of which are sinusoids which appear aliased in mea-

surement data. We use ideas introduced by Harris [32] on establishing theoretical

performance limits using offline analysis of system operation data. In particular,

we construct a disturbance state estimator and create an offline prediction error

and evaluate its variance; this represents the best achievable variance level that can

be achieved in closed-loop operation. We demonstrate on a production light source

that the presented scheme yields a guaranteed level of performance which we show

is close to the optimal variance for the light source hardware under consideration.

Second, we develop new theoretical results for establishing upper bounds for

performance of Nonlinear Model Predictive Control (NMPC) schemes as applied

to discrete-time nonlinear systems which are subject to persistent, stochastic dis-

turbances. Following Grüne and Rantzer [30] and Jadbabaie and Hauser [39], who

have recently presented results for the undisturbed case, we employ monotonic-

ity of finite-horizon optimal control value functions to derive an upper bounds for

achieved performance of the NMPC controller on the infinite-horizon. We pay par-

ticular attention to the assumptions and conditions which are required to obtain

these bounds and comment on difficulties which might arise. Of special importance

in our setting is the inclusion of constraints on the system state and control input,

which are present alongside the persistent disturbances. We show that, using fea-

sibility analysis of this NMPC problem, bounded-input / bounded-state (BIBS)

stability can be established.

Our third subject steps back from feedback control as we consider algo-

rithms for the distributed solution of a global optimization problem; the distributed

algorithm is one which distributed nodes can employ to cooperatively solve a global

problem which is of interest to all nodes. Each node has access to a local cost func-

tion and local constraints, but share a common coupling constraint which limits

the independent behavior of the nodes. The global cost function is constructed

as a sum of nodes’ local cost functions, which further couples the behavior of the

nodes. We show the distributed algorithm produces iterates which converge to the

global solution and hence achieves global performance while minimizing informa-
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tion exchange between nodes. Information exchange between nodes is the focus

of this subject and we seek to understand exactly what information is required to

solve the global problem. While this algorithm is general, we are motivated by its

specific application to MPC dynamic optimization and its implementation in real

time and in physically distributed systems; such examples are provided.

1.1.1 Chapter 2: Production Light Source Application

Light sources for semiconductor photolithography are frequently subject

to new performance requirements. As critical dimensions decrease, the perfor-

mance required of all stages of photolithographic processes must improve. For

the light source, these new performance requirements manifest as tighter specifi-

cations on variance of energy, bandwidth, and wavelength of light source pulses.

Light sources have little margin against light output performance specifications,

hence new performance requirements result in light source control systems which

no longer operate within specification.

New performance requirements can be met by changing light source hard-

ware or control algorithms; in our application, we pursued changes to both hard-

ware and algorithms. The hardware modifications included a modification to ac-

tuator drive electronics and were relatively simple. The software (and firmware)

modifications were fairly complex and constituted the introduction of a completely

new estimator-based state-feedback control algorithm, along with new control sys-

tem timing and data synchronization design.

The combined algorithm, software, firmware, and hardware changes yielded

a production light source which operated within specification, relative to the new

performance requirements. We have shown the production light source operates

with a performance level that is provably close to hardware limits.

Very recent semiconductor critical dimension roadmap-induced performance

requirement changes have led to fundamental alterations to light source hardware

technology and their concomitant algorithm and software challenges. Research,

design, implementation, and test of high-performance control algorithms and hard-

ware is ongoing.
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1.1.2 Chapter 3: Stability and Performance of Nonlinear

Model Predictive Control

Model predictive control (MPC) originated as an industrial controller which

showed promise for the control of systems which are subject to operating con-

straints (i.e. on pressures, temperatures, actuator limits, etc) and persistent dis-

turbances. MPC allowed the mixture of optimization and constraints with feedback

control, and constitutes a model-based full-state-feedback controller. Practical im-

plementation led theory by a large margin. Though, there were no guarantees

of either stability or performance bounds for MPC as applied to these industrial

systems. This lack of understanding of MPC as a control law led academics and

industrial engineers alike to assess theoretical guarantees of the scheme.

Asymptotic stability of deterministic (or, disturbance-free) systems became

a hot topic for MPC researchers. Robust1 MPC was later introduced to assess sta-

bility in the context of worst-case disturbances, and input-to-state stability (ISS)

results have been established and existence of performance bounds has been shown.

Unfortunately, there has been a dearth of results concerning prescription of per-

formance bounds for MPC when disturbances are present. Grüne and Rantzer [30]

have recently addressed the performance question for deterministic, undisturbed

systems using infinite-horizon optimal control as the performance benchmark; their

approach and results inspire our present developments.

Our aim is to refocus and reignite interest in theoretical developments which

concern performance guarantees for systems which are subject to both persistent

stochastic disturbances and constraints, as this is the focus of model predictive con-

trol as an industrial control application. We have interest in the currently evolved

apparent complexity of the MPC recipe and its elimination; we turn recipe-driven

approaches into focus on the principle aims of industrial control. Commercially-

available MPC algorithms are presently in operation on industrial systems; the lack

of guarantee of performance bounds when stochastic disturbances are impinging

upon the system is disconcerting and needs to be rectified.

MPC still needs to evolve in the following areas.

1In as much as a full-state feedback could be robust.
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• Robustness to modeling errors.

• Optimal state estimation feedback.

• Tight signal bounds and their dependence on design elements.

1.1.3 Chapter 4: Algorithms and Information Exchange in

Distributed Optimization

In the area of distributed optimization – where several nodes cooperate

to solve a global optimization problem – very little attention has been paid to

the analysis of inter-node information exchange which is required to solve the

global problem. Of particular importance is the information architecture of these

distributed optimization problems, which has also received little attention in the

research community.

Our interest is in large-scale optimization problems where limited communi-

cation becomes important. As motivating control examples, we consider two ships

transferring cargo at sea which are connected by a cable, or, in three dimensions,

the mid-air refueling of aircraft. The optimization problems under consideration

are nominally static ones, as in, for example finite-horizon optimal control problems

or MPC problems.

Parallel processing is also an application of interest, where the focus is

on management of communication for the distributed solution of an optimization

problem among multiple processors. Parallel processing was of interest in the

1980s in the consideration of systolic arrays for multi-processor computation; it is

re-emerging with MPC applications which require fast, reliable implementation.

Real-time MPC – meaning, deterministic computation times – is of particular

interest in embedded applications. Thus our aim is to understand bounds on

required communication to solve optimization problems which might be used in

MPC designs.
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1.2 Contributions

The specific contributions of Chapter 2 follow.

• We analyze light source disturbances and determine the existence of periodic

disturbances which appear aliased in the variable-rate pulse data.

• We use continuous-discrete Kalman filtering ideas to design a multi-rate esti-

mator/predictor for the reconstruction of the aliased disturbances. Given the

multi-rate nature and time delays associated with the light source data, the

estimator we design is generalizable to asynchronous, multi-rate applications.

• We employ the continuous-discrete Kalman filter to perform prediction-error

analysis of light source data in an offline setting. We then use the prediction

error variance to establish the best-achievable control performance.

• We design and implement a regularized, minimum-variance, state-feedback

controller to reject the aliased, periodic disturbances.

• We make modifications to the light source hardware electronics design to

increase the bandwidth of the actuators. These design changes are imple-

mented in light source hardware and installed on a production light source.

• We test the new control algorithm and hardware, and show achieved perfor-

mance which matches the best-achievable for the hardware.

• The control algorithm and hardware modifications have been propagated

to several tens of production light sources around the world. Chipmakers

in Asia, Europe, and the US have realized the performance improvements

which the algorithm provides.

• A patent has been awarded (outside this dissertation work) which addresses

the algorithm, hardware, software, signal timing, and firmware design.

The specific contributions of Chapter 3 follow.
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• We establish connections between NMPC finite-horizon optimal control de-

sign elements (stage cost, terminal cost, horizon length, state constraints,

discount factor) and achieved performance.

• We identify and exploit the use of monotonicity of value functions in horizon

length in proving performance bound results.

• We analyze feasibility of constrained finite-horizon optimal controllers and

recursive feasibility of NMPC controllers from a purely topological viewpoint.

• We establish a link between topological feasibility analysis and bounded-

input, bounded-state (BIBS) stability. These state bounds apply without

having to require the state to converge to a set in which constraints are

inactive.

• We establish quantifiable performance bounds for stochastic, constrained,

nonlinear systems under MPC control: the bound relates the finite-horizon

value function to the infinite-horizon optimal control value function and the

achieved value when the system is under MPC control. The performance

bound results we derive are the first in the literature which apply to systems

with stochastic disturbances.

• We perform comparisons of our performance bound results for stochastic

systems with performance bound results for undisturbed systems. In partic-

ular, we compare the assumptions required to achieve our results with those

present in current literature.

The specific contributions of Chapter 4 follow.

• We consider the distributed solution of a convex optimization problem, which

is subject to constraints. We propose an information architecture which sees

local nodes having access to local constraint functions, local cost functions,

and elements of a global coupling constraint function.

• We establish that the minimizers which solve optimization problems defined

by local constraints and local cost functions solve the global problem if and
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only if the combined minimizers are feasible with respect to the global cou-

pling constraint: this is the minimal-information-exchange case.

• We propose a coordinate descent algorithm which sees the nodes exchanging

vector information which corresponds to the coupling constraint. The coor-

dinate descent algorithm maintains feasibility and guarantees performance-

improving iterates.

• We provide testable conditions under which the coordinate descent algorithm

yields the global solution.

• We prove that the coupling constraint is active at the terminating point of

the coordinate descent algorithm.

• We propose a constraint negotiation algorithm in which nodes exchange lo-

cal Lagrange multipliers in an effort to compute a feasible, performance-

improving iterate.

• We identify six cases which occur as a result of the constraint negotiation

algorithm, which must be evaluated before iterations can continue. Five

of these cases maintain bounded communications. Case 6 may require un-

bounded communication.



Chapter 2

Aliased Disturbances

No matter how many instances of white swans we may have observed, this
does not justify the conclusion that all swans are white.

— Karl Popper

Abstract

We study a disturbance rejection problem in a production pulsed light

source, used in semiconductor photolithography, to yield quantifiable and guar-

anteed improved performance over existing control techniques. The disturbances

of interest include an offset with reset properties and sinusoids which appear aliased

in the measured data which is available only at pulse events. The light source is

pulsed at varying rates yet actuators move in continuous-time, yielding a system

which blends aspects of continuous-time and variable-data-rate discrete-time. We

employ novel modifications to standard continuous-discrete Kalman filtering ideas

for disturbance state estimation and establish and solve a non-standard regularized

minimum variance control problem within a disturbance rejection framework. The

controller as discussed is now in production in semiconductor lithography man-

ufacturing lines. We analyze data from these production light sources and show

the controller has the capacity to remove aliased sinusoids from the measured out-

put and yields operational performance levels provably close to optimal for the

hardware.

11



12

2.1 Introduction

We study the feedback control of a pulsed light source as forms the backbone

of the photolithography stage of the semiconductor industry. Cymer Inc. – the

market leader in developing deep-ultraviolet (DUV) and extreme-ultraviolet (EUV)

light sources – continues to realize the commercial application of such feedback con-

trol research as they develop products for ever-growing lithography performance

and throughput demands. The light sources provide a sequence of very narrow-

band light pulses which illuminate a mask and expose the photo-resistive material

on silicon wafers [55]. Critical performance specifications of the light include stabil-

ity in energy, wavelength, bandwidth, and divergence which have strong influences

on chip Critical Dimension (CD) which is a key process performance metric for

lithography [54]. Typical deviations in the light source performance signals (here-

after referred to as outputs) are affected by a range of system disturbances which

manifest as offsets, drifts, and periodic signals. These output signals, however,

are measurable only when the light source is pulsed, as they are features of the

light pulse itself. The pulse-rate is determined by the downstream scanner pro-

cess, described in detail in the recent tutorial article [16], and is variable between

long periodic bursts of pulses, where one burst typically corresponds to one die on

the wafer. These bursts are separated by quiescent intervals – corresponding to

moving to an adjacent die, a new wafer, or a new set of wafers – where no pulses

are fired and, hence, no measurement of light properties is available. As a result

of the variable pulse-rate, the following effects are evident.

• The light source control subsystem must operate with measurements of the

outputs arriving at the variable pulse-rates, even though the control can be

applied at an underlying, faster, fixed rate which is based on the clock of the

control computer.

• At restart after a quiescent interval there is an increased uncertainty in the

light source state which can lead to errant pulses. These errors must be

rapidly accommodated as the exposure requirements dictate a maximal num-

ber of errant pulses which can be tolerated per die. Specifically, the controlled
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output deviation is averaged over a multi-step window (the window being re-

set for each burst) and this average deviation must remain below a prescribed

threshold.

• Because of the variable sample-rate, the apparent discrete frequency of pe-

riodic disturbance signals changes. At lower rates, the periodic components

of the disturbance can appear aliased in the measured data, although the

underlying fundamental frequency is known. Such periodic components in-

crease the variance of the output and hence increase the likelihood of crossing

the performance thresholds unless removed by control.

The feedback control approach seeks to use these available measurements of

the light source outputs to reject the disturbance effects to improve control perfor-

mance. One of the main aims and contributions of this chapter is the development

and demonstration of a methodology for the reconstruction and subsequent removal

of aliased periodic disturbances, though the feedback approach is asynchronous to

pulse events and not periodic. The algorithmic techniques we discuss are in use

on a large number of production light sources operating at various chip-maker lo-

cations around the world and yield significantly higher performance than legacy

control designs [90], [89]; the use of the algorithm is protected by pending patent

[88]. A further contribution is the analysis of light source performance limitations

and calibration of the closed-loop in achieving close to the highest performance

possible given available hardware.

The development is supported by the following figures, which will be brought

into play subsequently but which we find useful to present now.

• Figure 1 is a photograph of a Cymer deep-ultraviolet (DUV) photolithog-

raphy light source and is representative of the system which was used for

development and validation of the algorithm presented herein. The pho-

tograph reveals the various modules that comprise the light source; under

normal operation these modules are concealed with large doors. Note the

dimensions of this production system.
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• Figure 2 is a schematic of the physical elements comprising the photolithog-

raphy system.

• Figure 3 presents a block diagram of the laser control system with distur-

bances assumed additive.

• Figure 4 depicts light pulse timing and the corresponding output time se-

ries, which illustrates the reset features of the disturbance after a quiescent

interval.

Figure 2.1: Deep-ultraviolet laser system and view of system components

2.1.1 Description of Physical System

The light source of interest here is one subsystem of the photolithography

process. A beam delivery unit directs the light from the source to the scanner,
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which is responsible for handling and exposing wafers. The scanner manufactur-

ers are responsible for chip exposure performance and throughput. As industry

standards tighten and more transistors are required per square millimeter (smaller

critical dimension), exposure performance must also improve [38]. Improving the

control of the light output properties is a necessary precursor to improvements of

downstream scanner performance.

Figure 2.2: Photolithography system schematic

The light source provides the scanner with a sequence, or burst, of light

pulses at a scanner-specified pulse-rate and starting time, which can vary due to

exposure performance needs and throughput demands. The corresponding pulse

period can vary from 10 microseconds to 1 millisecond in our application. Light

output measurements are provided to the control subsystem after each pulse (with

pulse duration on the order of 10−9s) by various measurement devices; for instance,

energy is measured using a photodetector module, and wavelength is measured

using an etalon, diffraction grating, and a one-dimensional photodiode array. The

measurements are provided to the control system computer after a known but

device-specific variable delay; as an example, the majority of the delay in the

wavelength sensor can be attributed to the readout time of the photodiode array
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whereas the delay in the photodetector module for measuring energy is a result of

the pulse integration time. Each light property is measured once for each pulse.

The outputs of interest are modified by the actuation of mechanical de-

vices (e.g. solenoids, piezoelectric transducers, stepper motors, etc.) which are

affixed to various optical elements, the positions/angles of which directly affect

the measured light properties. The very short pulse length relative to the actuator

dynamics means that the velocity of the optical element is immaterial to control,

which therefore depends solely on the instantaneous position, or angle, of the el-

ement at pulse time. We use this feature to reject the aliased disturbances. The

electro-mechanical stages are themselves lightly damped resonant systems with

resonant frequencies ranging from 1Hz to 15kHz. The actuator drive-electronics

may introduce additional low-pass dynamics. Notable features of these actuators

include hysteresis, creep, slew-rate limit, and control saturation limits imposed by

the drive electronics.

Figure 2.3: Light source system diagram depicting disturbances w(t), sampling
delay δ1, fixed control update rate τc, and known but variable pulse-rate τL, which
is dictated by the downstream process.

The dynamics of the electro-mechanical elements and the drive electronics

are well modeled. We will employ these models as we construct model-based esti-
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mators. Throughout the chapter we will refer only to the light source outputs, since

the methodology is independently applicable to all performance properties of the

light; however, our descriptions and data analysis mainly apply to the wavelength

control subsystem.

2.1.2 Description of Control Approach

The existing or legacy method of controlling the light source output is

achieved via a proportional-plus-integral (PI) feedback control scheme [95]. The

legacy PI controller is event-driven, with no control action taken faster than the

varying pulse-rate nor during the quiescent interval. Furthermore, it is a fixed-gain

controller, with the gain selected to provide sufficient gain and phase margins at

all pulse rates.

A final item which deserves special attention is the presence of hardware

low-pass filters in the actuator drive electronics. These filters limit achievable

control performance by introducing phase lag. Although deemed necessary with

the legacy PI controller in the loop, we require that the bandwidth of these low-

pass filters be substantially increased so that the full speed of the actuator can

be used by the new controller. This requirement represents the single hardware

alteration of the legacy control system. This is now implemented in production

systems.

Here we present a control design which uses knowledge of the system de-

lays, disturbance dynamics (which we have yet to discuss in detail), and actuator

dynamics to achieve improved performance over the legacy controller. We use a

generalization of the continuous-discrete estimator [41] to overcome the variable

data-rate and, with appropriate modifications to accommodate system delays and

disturbance properties, reconstruct the underlying state. This state estimate is

then used in a non-standard, time-varying, certainty-equivalence, linear state vari-

able feedback controller that is synchronous to real-time rather than to light source

firing events. The period of our controller is equal to the fastest pulse period of the

light source under control. This controller approach enables rejection of aliased

periodic components as the controller has the capacity to position the actuator
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appropriately at the exact moment the light pulse comes into contact with the

optical element. The described approach is at first glance similar to the dual-rate

control of [93], though we deal with a varying pulse rate and variable measurement

delay.

The treatment of aliased disturbances in disturbance rejection control has

been considered in Iterative Learning Control and Repetitive Control contexts by

Ratcliffe et al. [80], [81]. In these works, aliasing is used as a means to filter

and hence remove resonant modes that appear outside of the learning algorithm’s

bandwidth and therefore prevent their deleterious influence on the convergence.

The filtering is achieved by down-sampling in such a way that the resonant mode

is placed at DC; hence knowledge of the aliasing process is beneficial to control

design. Here we perform an inverse operation, starting with the aliased signal, and

reconstructing the unaliased signals to generate a control-sample-rate disturbance

rejection feedback.
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Figure 2.4: (a) Illustration of pulse sequence timing (b) Measured output data
during pulse sequence

The contributions contained in this chapter are threefold. First, we demon-

strate that aliased signals can be reconstructed and then rejected with a time-

varying sampled-data control. We implement and test the algorithmic solutions

discussed in the chapter on a production light source and show improved perfor-

mance over legacy light source algorithms; the performance improvement is close

to a 45% reduction in closed-loop variance for the tested control loop. We de-

termine via prediction error analysis that the achieved performance is close to the

theoretical upper bound for the hardware and discuss calibration of the closed-loop

in achieving this performance level.

The rest of the chapter is organized as follows. In Section 2.2, we discuss

the disturbance process and modeling. In Section 2.3, we detail the control system

timing and bookkeeping, and estimator design. In Section 2.4, we present the
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control problem and discuss its solution. In Section 2.5, we evaluate estimator

performance and present performance data taken with an implemented version of

the proposed controller on a Cymer light source. The evaluation of and comparison

to optimal performance is also presented here. We end in Section 2.6 with closing

remarks and suggestions for further control improvement.

2.2 Process Modeling

2.2.1 Process Modeling

Actuator Stage. The dynamic model for the actuator stage is a continuous-

time, second-order resonant system with resonant frequency at approximately

1600Hz. The electronics that drive the actuator impose a slew-rate limit and

maximum and minimum limits on the control signal, which will be addressed in

the control design. Additional features of the actuator stage include hysteresis and

creep. The hysteresis proves too small to be of concern whereas the effect of the

creep is captured with the disturbance offset models that will be presented.

Light Source Stage. The light output is measured only at pulse times. The

measurement becomes available to the control computer after an asynchronous pro-

cessing delay from the measurement device, which we model as a known transport

delay and denote by δ1. The data transfer time of the control signal we also model

as a known transport delay, δ2 < τc with τc being the period of the controller. The

downstream controlled variation in scanner-determined pulse-rate is modeled as a

known variable rate sampling.

2.2.2 Disturbance Modeling

The disturbance process is modeled as additive to the light output and

dependent on the variable pulse-rate of the light source, as depicted in Figure 2.3.

It can be determined from the open-loop signal in Figure 2.4b that the disturbance

can be modeled by three principal components.

Offset. When the light source commences pulse generation after the quies-
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cent interval, an offset is observed in the measured output relative to the desired

target. The size of this offset is unknown but within known bounds. We approach

the modeling of this component phenomenologically with an offset model.

Drift. There is a slowly drifting, or lowpass, component to the disturbance.

We capture this by adding driving process noise to our offset model.

Periodic Signals. There are multiple periodic components in the open-

loop data at known frequencies, some of which appear aliased in the measured

data. These components do not manifest themselves until several pulses have been

generated. We approximate these periodic components with sinusoidal models at

multiple known frequencies.

We incorporate these unstable disturbance models into our control design

as we aim to capture these observed signal behaviors and subsequently remove

them by feedback control.

2.2.3 State Equations

We now present the state equations for the models discussed above. A

comprehensive list of symbols and descriptions is included at the end of the chapter.

Let; xp(t) be the continuous-time state of the combined actuator stage and

plant, xo(t) be the disturbance offset state, and xs,i(t), i = 1, . . . , ns be the state of

the ith sinusoid, where ns is the total number of sinusoids in the disturbance model.

Let xD(t) =
[
xTo , xTs,1, . . . , xTs,ns

]T
, be the augmented disturbance state. Let

continuous-time u(t) = uk, kτc ≤ t < (k + 1)τc be the zero-order hold of the

discrete input uk which is updated at the control period τc. Also let y(t) be the

system output deviation from nominal and yj be the jth sample of y occurring at

the jth light pulse. We assume bandlimited broadband process noise disturbances

wp(t) and wD(t) =
[
wo(t)

T , wTs,1, . . . , wTs,ns

]T
in our model, which will allow

us to generate our continuous-discrete estimator in the next section.

With these definitions we have the following augmented state, output, and

measurement models,
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[
ẋp(t)

ẋD(t)

]
=

[
Ap 0

0 AD

][
xp(t)

xD(t)

]
+

[
Bp

0

]
u(t)+

[
wp(t)

wD(t)

]
, (2.1)

y(t) =
[
Cp CD

] [ xp(t)

xD(t)

]
, (2.2)

yj = y(jτL − δ1 − δ2) + vj. (2.3)

Here we have, for a damped second-order oscillator as our actuator stage,

Ap =

[
−ζωn ωn

√
1− ζ2

−ωn
√

1− ζ2 −ζωn

]
, Bp =

 0
gωn√
1−ζ2

 ,
with ζ, ωn, g the damping coefficient, natural frequency, and DC gain of the model

(all known); and our disturbance model,

AD = blkdiag(1, As,1, . . . , As,ns),

with

As,i =

[
cos(ωi) sin(ωi)

− sin(ωi) cos(ωi)

]
,

and {wi} fixed and known.

The output matrices are Cp =
[

1 0
]

and CD =
[

1 Cs,1, . . . , Cs,ns

]
with Cs,i =

[
1 0

]
; the quantities δ1 and δ2 are variable, but known, compo-

nents of the total transport delay, and we have vj as a discrete measurement noise

sequence. We will write (2.1-2.2) as ẋ = Ax+Bu+ w and y = Cx, respectively.

Note that the laser, per se, is not explicitly identifiable as part of this model.

An integral part of the lasing process for DUV lithography is a diffraction grating

which acts to filter out undesirable wavelengths that might occur. The actuator

stage here controls the light incidence angle on the grating thus acting as a high-

resolution wavelength selector. Our aim is to control the actuator in continuous

or fast discrete time so that the appropriate incidence angle, hence appropriate

wavelength selection, is achieved at the slower discrete pulse time.
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2.3 Estimator Design

We use the underlying ideas of the continuous-discrete Kalman filter, as

developed by Jazwinski [41], as the basis for our estimator, as;

• the structure of the estimator handles directly a variable data rate,

• the estimator provides a continuous-time state prediction, or indeed a fast

control-rate prediction, with discrete measurement updates, making it very

useful in handling cases where the measurement is taken at a different time

from that when the control signal is applied and,

• the estimator can be configured to use measured data to reconstruct the

un-aliased, continuous-time version of each aliased periodic signal.

We modify the estimator to accommodate system delays using prediction ideas;

the approach is different from the ideas presented in [4], [103], and [51], where the

delay states are introduced to accommodate the measurement delay. Furthermore,

we perform a reset of the estimator covariance at the beginning of each burst to

accommodate the reset in the disturbance value. Filtered state estimates provided

by the estimator need further propagation to provide appropriate state feedback

at the next pulse time, which is asynchronous with the control update rate but is

known. This is accomplished via prediction.

2.3.1 Signal Timing

We refer to Figure 2.5 illustrating a representative sequence of signal avail-

abilities and timing requirements based around a current time jτL of a laser pulse;

recall pulse index j counts pulses into a burst and hence resets to zero at the

beginning of each burst. There are two distinct, known but variable, delays: δ1,

the delay between the pulse at time jτL and the arrival of the pulse measurement

data; δ2, the computation and communication delay required by the controller and

depicted by the cross-hatched region preceding the control signal application at

time kτc.
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Because of the non-commensurate timing of the data arrival and the asser-

tion of the control, there is a need for the state estimator to provide predictions at

a number of differing horizons. From the measurement availability at time jτL+δ1,

state estimates are needed for the next pulse at time (j+ 1)τL for the propagation

of the filter state, and at times (k + 1)τc and (k + 2)τc, i.e. all controls required

before the availability of the measurement due to the pulse at time (j + 1)τL.

Figure 2.5: Timeline depicting the arrival of a new measurement (indicated by
a small marker below the timeline at time jτL + δ1) due to a light pulse at the
current time jτL. Above the timeline, the control timing is indicated. The state
estimate pertaining at each time and its dependence on data times is displayed by
the arguments of x̂. The relative timing of the control signal and the measurements
is explained in the text.

Note that Figure 2.5 is purely illustrative and that control signals might

occur several times in sections surrounding the arrival of a measurement. Never-

theless we shall describe the processing for the timing as illustrated in Figure 2.5.

2.3.2 Continuous-Discrete Kalman Filter

Denote by x̂(t|jτL + δ1) an estimate of x(t) based on data available at time

jτL + δ1, i.e. data up to that associated with the pulse occurring at time jτL.

From the timing diagram, we observe the measurement at time jτL + δ1 contains
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information regarding the laser state at time jτL. Accordingly the state estimate

measurement update is,

x̂(jτL|jτL + δ1) = (I − LjC) x̂(jτL|(j − 1)τL + δ1) + Ljyj. (2.4)

Lj = Σj|j−1C
T
(
CΣj|j−1C

T +R
)−1

, (2.5)

Σj|j = (I − LjC) Σj|j−1, Σ0|−1 = Σ0, (2.6)

where the reset to Σ0 occurs at the start of each burst, and the predictive time

update state is

x̂((j + 1)τL|jτL + δ1) = eAτLx̂(jτL|jτL + δ1)

+

∫ (j+1)τL

jτL

eA((j+1)τL−σ)Bu(σ) dσ, (2.7)

Σj+1|j = eAτLΣj|j
(
eAτL

)T
+Q(τL). (2.8)

This is a non-standard time-varying discrete-time Kalman filter for the laser state,

as the pulse index j, and hence the covariance, reset each burst. Furthermore,

when j = 0, the sinusoid states are reset to 0 to reflect the understood behavior of

the disturbance.

The process noise variance is pulse-period-dependent and is computed as

[79],

Q(τL) =

∫ τL

0

eAσQc

(
eAσ
)T

dσ,

which can be pre-computed and implemented in a lookup table, or computed

online. The process and measurement noise variances for the filter, Qc and R,

are determined and validated empirically using the whiteness of the prediction

error [65] and will be tuned in the next section. We will discuss selection of the

initial state covariance Σ0|−1 later, since it is used to accommodate the uncertainty

occurring at the beginning of a burst.

For the control signal occurring at kτc a predictive state estimate, x̂(kτc|(j−
1)τL + δ1), is required, where (j − 1)τL + δ1 is the time of the most recently

available measurement data. The computation of this state prediction proceeds

via continuous-discrete Kalman filter ideas with prediction interval γ = kτc− (j−
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1)τL − δ1. Thus,

x̂(kτc|(j − 1)τL + δ1) = x̂(γ + (j − 1)τL + δ1|(j − 1)τL + δ1), (2.9)

= eAγx̂((j − 1)τL|(j − 1)τL + δ1)

+

∫ jτL+γ

jτL

eA(jτL+γ−σ)Bu(σ) dσ. (2.10)

Note the use of prediction ideas to accommodate measurement and control delays.

The corresponding prediction covariance is not used in the controller and so is not

computed.

2.3.3 Estimator Novelties and Digital Implementation

We employ a time-varying Kalman filter gain Lj to address the time varia-

tion of the measurement availability caused by the varying pulse-rate determined

by the scanner and the resets that are observed in both the disturbance offset and

sinusoid states at the start of a burst. When pulse generation commences after a

quiescent interval, we reset the offset and sinusoid state covariances and sinusoid

states which allows the estimator to acquire the new state values quickly [45].

The predictors in (2.7), (2.10) are given as the integral representation of

(2.1) as it is the form best suited for digital implementation. Specifically, we can

write the discrete-time prediction for the laser state as,

x̂((j + 1)τL|jτL + δ1) = eAτLx̂(jτL|jτL + δ1) +B(τL)uk,

with B(τL) =
∫ τL

0
eAσB dσ when u(t) = uk across the prediction interval τL. When

u(t) changes, say N times, across the horizon τL, the integral (hence B(τL) matrix)

is split into multiple pieces [0 γ1), [γ1 γ2), . . . ,[γN τL) where the control signal

changes at instances γ1, γ2, . . . , γN seconds into the horizon.

2.4 Control Strategy

The control update occurs synchronously to a real-time clock with fixed

period τc which is less than the variable light source pulse generation period, τL.
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The control objective is to minimize the deviation in the output, yj, which re-

quires proper positioning of the actuator stage precisely at the light source pulse

time. This approach uses an underlying fast (τc) timescale model for control with

the measurement data being presented only at the slow timescale (τL) of light

source pulses. The brief light pulse duration, ∼ 10−9s, samples the output of the

actuator-plant combination effectively instantaneously and without the introduc-

tion of further dynamics other than the measurement and processing delay.

We again refer the reader to Figure 2.5 for the following development. Sup-

pose the next control signal update is to occur at time kτc and the next pulse

generation event is at time kτc + γ. We solve a regularized minimum-variance

control problem [21], [43],

min
u(kτc)

1

2

(
ŷ2(kτc + γ|(j − 1)τL + δ1) + ρu2(kτc)

)
, (2.11)

to yield the regularized minimum-variance control,

u(kτc) =

(
ρ+

(∫ γ

0

eAσB dσ

)T
CTC

(∫ γ

0

eAσB dσ

))−1

×
(∫ γ

0

eAσB dσ

)T
CTCeAγx̂(kτc|(j − 1)τL + δ1). (2.12)

With a single control law we distinguish between control intervals in which

the light source will not generate a pulse, and hence no measurement is taken, and

those intervals during which a pulse is imminent. If an additional control update

is to occur before the next pulse generation event, e.g. kτc + γ > (k+ 1)τc, then γ

is set equal to τc when computing the control in (2.12); the resulting control value

is applied to the actuator drive electronics to appropriately position the optical

element at control time (k + 1)τc as if it were to reject the predicted disturbance

at that time.

When the light source is due to generate a pulse before the next control up-

date, e.g. γ < τc, then the control law (2.12) is applied without any alteration. In

this case, the applied control positions the optical element to reject the disturbance

at pulse time. Note the control law is time-varying, as the control update proceeds

more frequently than pulse generation; hence throughout a burst the value for γ

in (2.12) might vary from being slightly larger than 0 to as large as τc.
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The regularizing control penalty ρ is imposed to satisfy the slew-rate and

saturation constraints imposed by the actuator drive electronics and is determined

empirically. The purpose of the control signal, u(t), being updated during periods

in which the generation of a pulse occurs is to regulate the light output to a

suitable value for disturbance rejection; Figure 2.7(bottom) shows the efficacy of

the closed-loop control at removing aliased disturbances from the measured output.

During those periods where a pulse is not generated, the control signal is

still applied, but now to regulate the predicted state x̂((k + 1)τc|jτL + δ1) to a

suitably small value in order that the subsequent controls have sufficiently small

amplitude and hence the drive electronics constraints are not violated. Were these

intermediate values of the control signal not to be applied, the corresponding value

required for ρ would be much higher, resulting in a concomitant reduction of control

performance. Measured closed-loop output and commanded control input time

series are provided in Figure 2.9. Note that even though the control is rejecting

periodic disturbances from the output, the control law is time-varying but not

periodic in general.

2.5 Evaluating Estimator and Controller Perfor-

mance, Tuning the Estimator

The d-step-ahead prediction error variance provides a lower bound to the

achievable closed-loop output variance for a plant system with delay-d [78]. This

has been exploited by Harris [32] to provide an approach to the monitoring of the

control loop to ascertain the potential maximal benefits to be derived from redesign

of the feedback controller. In our context, we construct from open-loop (constant

input) data a sequence of d-step-ahead (i.e. d×τL-seconds-ahead) predictors based

on the disturbance models with differing values of delay d and plot the empirical

prediction error covariance as a function of d; details regarding the predictors

will be presented later. This prediction error analysis provides an insight into

the potentially best achievable closed-loop covariance of the light output as it

varies with delay. It also provides a comparative open-loop or uncontrolled output
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variance. This is plotted in Figure 2.6, which displays the monotonic increase of the

prediction error covariance with plant delay and its relationship to the uncontrolled

performance. For the real system, the worst-case (though quite standard) delay is

between 2 and 3 τL periods depending on the behavior of the measurement device;

that is, the sum of δ1 and δ2 is between 2 and 3 τL. This would indicate that up to

45% improvement in the output variance is potentially available through control –

we achieve close to this figure. We next present the experimental details conducted

on a standard calibration cycle of a production light source.

Figure 2.6: Graph of normalized prediction error performance versus assumed
delay as integer multiples of pulse period τL. These data were computed using
measured operating data and the continuous-discrete estimator with different delay
values. The figure also illustrates the closed-loop performance levels and shows that
the new controller achieves close to the best possible variance for a delay of three
periods τL.
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2.5.1 Estimator: Experiment and Results

Open-loop output data were collected from a light source for evaluation

of estimator performance. The control signal (e.g. actuator input voltage) was

held constant for a long period before and throughout the experiment. In the

experiment, 300,000 data were recorded and consisted of a single burst at a nominal

sampling rate immediately following a quiescent interval. The test sequence used

here is a standard diagnostic check for evaluating open-loop performance on newly-

manufactured and fielded light sources. Because the system is operated in open

loop, the variation in the output measurement is due solely to the disturbance

process with the resonant modes of the actuator stage unexcited. The continuous-

discrete filter presented earlier in (2.4-2.8) is used to generate the d-step-ahead

predictions as follows.

x̂((j + d)τL|jτL + δ1) = eAdτLx̂(jτL|jτL + δ1),

where the integral that appears in (2.7) is omitted as the control signal is constant

throughout the experiment.

The prediction error data were analyzed in three ways.

• The mean of the prediction error is calculated and shown to be within 0.1%

of the output signal indicating that the offset prediction and drift tracking

function well in steady-state. This achieved tracking is near the limiting

accuracy of the measurement device.

• The de-trended prediction-error data is used to compute an estimate of the

power spectral density using Welch’s averaged periodogram. This is depicted

in the top plot of Figure 2.7 and demonstrates the efficacy of the sinusoidal

tracker in the filter in steady-state.

• The transient performance of the filter is examined over the first 15-20 sam-

ples of a pulse series in order to tune the initial covariance reset for the rapid

acquisition of the offset. Since the operational performance requirement is

that the controlled output deviation averaged over a multi-step window fall

below a prescribed threshold, this was used to select the appropriate value



31

for the burst-starting covariance, Σ0|−1. The achieved estimator convergence

rate is visible in Figure 2.8 where the 3-step-ahead predicted output is plotted

alongside the open loop measured output data.

Figure 2.7: (Top) Power spectral density (PSD) estimate of the uncontrolled light
property (blue dots and line) versus the estimate for the corresponding prediction
error associated with the continuous-discrete filter (4-9). This illustrates the na-
ture of the disturbance signal and the performance of the filter. (Bottom) Power
spectral density estimate of the uncontrolled light property (blue dots and line)
versus the PSD estimate for the production closed-loop controller. The controller
is able to reject the aliased disturbance to near-baseline levels.
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Figure 2.8: Measured light output property versus estimator predictions at the
commencement of a burst following a quiescent period. The recapturing of the
offset disturbance is tied to the initialization of the estimator covariance following
a quiescent period.

2.5.2 Control: Experiment and Results

Analysis of the prediction error variance in the previous section indicates

that up to 45% improvement in output variance might be achieved with control

at a single pulse-rate, indicating that our estimator works well. However, the

light source is typically operated at multiple pulse-rates within a very short period

of time, and we would like to measure control performance in a setting close to

the light source’s use in the lithography application. There exist standard field

diagnostic test patterns that are used to ascertain control performance. Such

an experiment typically includes pulse generation at a multitude of pulse-rates

in the operational range of the source. We run this experiment using both the



33

legacy control algorithm and the algorithm proposed in this chapter. The realized

improvement over the legacy controller is approximately 35% averaged over the

operating space tested using the output variance as the measure of performance.

This is illustrated in Figure 2.6. This improvement is very close to the fundamental

upper bound of improvement provided via evaluation of the prediction error in the

previous section, indicating that the added nonlinearities of the actuator drive

electronics and the corresponding control criterion with ρ 6= 0 have only modest

effect on the achieved performance. Additional performance data from production

light sources can be found in [90], [89].

Figure 2.9: Closed loop: measured output and control input time series. Note
that the control signal is not periodic even though the dominant disturbance is.
This is due to the estimator-controller being asynchronous to pulse events.

2.6 Conclusions

In this chapter we present a methodology for designing an observer-based

controller that has the capacity to estimate and reject aliased periodic disturbances

in a measured output signal. Under this scheme we achieve output variance perfor-

mance near the theoretical lower bound as given by the variance of the estimator
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prediction error.

Key features of the design follow. In estimation we can operate with aliased

(or demodulated) data and knowledge of the aliasing (or carrier) to reconstruct

the un-aliased signal. After a modicum of thought, this is apparent. What is less

obvious is that a related approach to feedback control of aliased disturbances is also

possible and hence, because actuation is important only at pulse times, the aliased

signal may be removed at the (slow) timescale of the light source pulse events.

Under our scheme, control updates are provided even when the light source is not

due to generate a pulse and hence the controller regulates the actuator state at

control update instances. When a pulse is imminent, the controller pre-positions

the actuator in order to reject the predicted disturbance at pulse time. With

increased controller update frequency one could equally reject the now un-aliased

disturbance, though our analysis suggests a faster control would not yield much

performance improvement.

The estimator presented here is based on a generalization of continuous-

discrete Kalman filter ideas, with careful timing management. The structure of

the filter can be used to handle time variation of the measurement availability

as caused by the varying, scanner-determined, pulse-rate. We employ covariance

and state resets which we find are key to handling the disturbance resets that are

observed at the beginning of a burst. The filtered state estimate is propagated to

yield a predicted value correctly timed for the control signal. This requires further

detailed timing management to yield a regularized minimum pulse variance control

operating at the control update rate, which is asynchronous from the pulse firing

rate.

The control has been fielded into a large number of production light sources

at semiconductor fabrication facilities around the world.

Symbol List and Descriptions

τc: Control signal update period, fixed and known (see Figure 3).

τL: Laser pulse generation period, variable and known (see Figure 3).
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ζ, ωn, g: Damping, natural frequency, and DC gain of second order actuator model

(fixed and known).

ns: Number of sinusoids in the disturbance model, including possible harmonic

frequencies.

ωi: Continuous-time frequency of the ith sinusoid, i = 1, . . . , ns (fixed and known).

δ1: Measurement delay, which is less than τL (variable and known).

δ2: Digital control signal transport delay from control computer to actuator, which

is less than τc. This delay includes control value computation time (variable

and known).

γ: Prediction horizon for the estimator-controller.

t: Time from the beginning of a burst.

k, j: Index for number of controller periods and number of pulse generation peri-

ods, respectively (reset at the start of a burst).

x(t): State at time t.

x̂(t2|t1): Estimate of state at time t2, conditioned on data up to and including

time t1.

xp(t): Plant state.

xo(t): Disturbance offset state.

xs,i(t) State of the ith disturbance sinusoid, i = 1, . . . , ns.

xD(t): Augmented disturbance state which includes offset and sinusoid states.

u(t), uk: Continuous-time control input at time t and discrete control input com-

puted at controller update time τck, respectively.

y(t), yj: Continuous-time laser output at time t and discrete measurement of laser

pulse number j, respectively.
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wp(t): Broadband, bandlimited, continuous-time (BDBLCT) process noise acting

on the model plant state.

wo(t): BDBLCT process noise acting on the model offset state.

ws,i(t): BDBLCT process noise acting on the model ith sinusoid state.

wD(t): Augmented disturbance state which includes offset and sinusoid distur-

bances.

vj: Discrete measurement noise acting on measurement j.

This chapter, in part, includes reprints of the material as it appears in the

following, both of which are copyright IEEE.

D.J. Riggs and R.R. Bitmead. Rejection of aliased disturbances in a produc-

tion pulsed light source. IEEE Transactions on Control Systems Technology,

to appear.

D.J. Riggs and R.R. Bitmead. Rejection of aliased disturbance in a pulsed

light source. In Proceedings of the 48th IEEE Conference on Decision and

Control, 2009 held jointly with the 2009 28th Chinese Control Conference,

pages 8148–8153, Shanghai, P.R. China, December 2009.

The dissertation author was the primary investigator and author of these papers;

Professor Bitmead supervised the research.



Chapter 3

Destruktion and Déconstruction

of Model Predictive Control

Illegitimi non carborundum.

— Attributed to Second World War British Army Intelligence

Abstract

The chapter develops achieved performance bounds for Model Predictive

Control (MPC) control applied over the infinite horizon to constrained systems

with persistent, stochastic disturbances. The analysis is approached from a mini-

malist perspective of introducing as few as possible assumptions and alterations to

the original target infinite-horizon constrained disturbance rejection optimal con-

trol problem other than the introduction of finite-horizon MPC. We separate the

feasibility analysis, which is shown to be purely topological, from the performance

analysis, which is based on discounted value functions and builds on the work of

Jadbabaie, Hauser, Grüne and Rantzer. A specific focus is on the requirements

for stability, where MPC stability in the sense of bounded-input/bounded-state

(BIBS) is addressed. We employ feasibility analysis to derive conditions under

which BIBS stability for the MPC controlled system law holds, without resort to

a cost function. We further quantify this bound and generalize current results on

undisturbed systems to the stochastic disturbance case.

37
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3.1 Introduction

Borrowing from Jacques Derrida’s analyses of philosophy and language that

seek to examine their internal workings and contradictions [23], our aim is to de-

construct Model Predictive Control (MPC) by examining the relationships and

tensions between its inner elements within the broader milieu of control systems

design. Our approach is postmodernist, skeptical and questioning of the concept

of MPC being formulated to recipe, with the presence of all the requisite compo-

nents — objective function, horizon, constraints, terminal cost, stage cost, terminal

constraint, etc. Rather, proceeding from the explication of the computer-bound

finite-horizon MPC designed system and of the real-world receding-horizon closed-

loop controlled achieved or target system, we take a destruktionist approach [33]

and investigate what each of the MPC recipe ingredients brings into play, indi-

vidually or in concert, for the achieved system’s properties. The objective is the

reexamination and contextualizing of MPC with a focus on the original target con-

trol system behavior and our approach will be to explore, as much as we are able,

what we entitle the most powerful bequeathing tools. That is, we seek to identify

results with the weakest possible assumptions connecting properties of the MPC

designed system to inherited or implied features of the achieved system.

MPC is a powerful and widely applicable feedback control approach based

on constrained receding-horizon optimal control. A raft of worthy books is avail-

able chronicling the formulation, history, computational solution, and practical

applications of the method [3, 17, 18, 29, 62, 82, 84, 31, 92, 100, 50]. Behind and

in front of these monographs and texts is an even larger body of research literature,

including the regular appearance of survey papers and reviews [25, 53, 63, 67, 74].

The core attraction of MPC is its capacity to handle constraints on system inputs,

states, and/or outputs. Its principle domain of applications success has been as a

disturbance rejection controller in the process industries [85, 22].

The central feature of MPC is its receding-horizon nature, which is responsi-

ble for its capacity to handle constraints via the solution of either an open-loop or a

closed-loop feedback-policy constrained optimization. The key principle is to state

the MPC problem as an explicit finite-dimensional constrained search through the
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specification of an objective function, horizon, and a set of constraints. A general

form of MPC amenable to such analysis is provided in Section 3.3.

The underlying control application is continuous operation on the infinite

horizon. This motivates the raison d’être of MPC: as an approximate solution of

an infinite-horizon optimal control problem with constraints. This formulation has

been driven by the process industry, where control systems must accommodate

systems operating on the long term with incessant disturbances and ceaselessly

active constraints. The infinite-horizon cost function employed, then, has value to

the process engineer as it conveys performance of the control system in terms of

measures of interest and importance. We shall therefore concentrate on MPC for

long-term disturbance rejection with constraints, since this is where performance

can be assessed.

To reflect application of MPC best in the process industry where constraint

activity is inevitable, performance functions have meaning, and disturbances are

persistent, we impose that the MPC design problem inherits performance functions

and constraints from the infinite-horizon optimal control problem. We then investi-

gate the infinite-horizon impact of modifications which the designer might perform

to the MPC design problem: terminal cost, terminal constraint, and other con-

straints; even replacement of the performance function with some other function

that might not be related to infinite-horizon performance. We are most inter-

ested in the properties bequeathed from the MPC design choices to the achieved

infinite-horizon performance and constraint satisfaction.

We focus in particular on feasibility analysis and quantification of perfor-

mance bounds on the achieved system under MPC control. Feasibility analysis

is accomplished via set-theoretic methods of [10, 11]. In particular, we decou-

ple feasibility analysis from analysis of the cost function. Via constraint analysis

only, we are able to show existence of a bound on the achieved system state via a

bounded-input bounded-state (BIBS) result. The existence of this bound precedes

consideration of a cost function and hence can be contrasted with ISS methods

for proving existence of bounds, which require a cost function but might possibly

yield improved bounds if eventually carefully quantified.
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Once we have established simple conditions for the existence of a state

bound via the BIBS result, we turn to quantification of a bound on the infinite-

horizon performance of the MPC-controlled system. The development here is aided

mainly by the results of [40], [39], and [30], who consider stability and perfor-

mance bounds for undisturbed systems. We generalize performance bound results

to stochastic systems with discounted cost functions [48], which are a necessary

adjunct for this class of problems in order that value functions remain finite.

The rest of the chapter is organized as follows. In Section 3.2, we pose a

stochastic, constrained, infinite-horizon optimal control problem. In Section 3.3,

we pose the MPC control problem as an approximation to the infinite-horizon con-

trol problem, and define the achieved system and performance under MPC con-

trol. In Section 3.4, we present the well-known Stochastic Dynamic Programming

Equation (SDPE) and establish its relationship to the MPC control problem. In

Section 3.5 we define and analyze feasibility and recursive feasibility of the MPC

control problem. Section 3.6 contains analysis of systems subject to stochastic

disturbances and establishes quantifiable bounds on achieved performance under

MPC control. We conclude in Section 3.7. To streamline the development and

discussions, we provide proofs of selected results in the Appendix.

The central contribution of this chapter lies in the refocus of the MPC

control problem onto the question of achieved infinite-horizon behavior as a dis-

turbance rejection controller operating with tireless disturbances and active con-

straints. The deconstructive nature is to examine how the ingredients of MPC

contribute to or detract from this underlying objective. This becomes most ev-

ident in using the infinite-horizon discounted performance function and optimal

value to quantify the MPC achieved infinite-horizon discounted performance. The

combination of these discounted performance bounds and a new BIBS stability

condition yields sustained properties of the MPC controlled disturbance rejection

system on the infinite horizon.
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3.2 Problem Setup: System, Constraints,

Disturbances, Admissible Controls, and

Infinite-Horizon Optimal Control

In this section, the problem will be set up mathematically and appropriate

definitions will be made and indicated in the text by boldface type. The problem

of interest which we aim to solve with MPC is the infinite-horizon optimal control

of an input- and state-constrained stochastic nonlinear system.

3.2.1 System Dynamics, Available Information, and State

/ Input Constraint Specification

We commence with the disturbed nonlinear system to be controlled.

xt+1 = f(xt, ut) + wt, x0, (3.1)

where xt ∈ Rn is the state and ut ∈ Rm is the control. The disturbance wt is of a

stochastic nature which we will describe shortly.

Assumption 1 (Available Information). The state xt is available at every time

t; in particular, x0 is known exactly at time 0. Further, we presume the dynamic

model f is known exactly.

The state and control are constrained to xt ∈ X ⊆ Rn and ut ∈ U ⊆ Rm,

t ≥ 0.

3.2.2 Stochastic wt

Assumption 2. The stochastic process {wt, t ≥ 0} defined on probability space

(Ω,B, Pw) is independent and identically distributed (i.i.d.) and takes values in the

compact set W ⊂ Rn.

Remark 1. The assumed compactness of the disturbance space W allows for anal-

ysis of systems which operate with persistently active, hard constraints; that is,
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systems where constraint violation is prohibited but constraint activity has non-zero

probability in the future σ-algebra from any state. Further, almost sure constraint

satisfaction would not be possible if X or U were taken to be compact with wt

with infinite support. Though the specification of stochastic disturbances with infi-

nite support and probabilistic constraint violation can be considered [102, 20, 19],

we adopt the formulation of stochastic disturbances with finite support as is dis-

cussed in [47]. We also note that the assumption of bounded i.i.d. fundamental

stochastic variables {wt} does not preclude the system being subject to unbounded

disturbances, only that their independent increments are required to be bounded.

3.2.3 Admissible Control Policies

Our aim is to find feedback policies for controlling the system dynamics

(3.1) as a persistent disturbance rejection problem over an infinite horizon and

subject to hard state and input constraints.

Definition 1. An admissible, non-anticipative, feedback control policy is

a function π : X → U such that at time t, ut = π(x0, . . . , xt). We let

Π = {π : ut = π(x0, . . . , xt) ∈ U}, (3.2)

denote the set of all admissible, non-anticipative, feedback control policies.

We end this section by presenting the standing assumption that all subse-

quent optimal control problems considered have an optimal policy.

Assumption 3. There exists an optimal policy which achieves the minimum in

each optimal control problem which follows.

3.2.4 Infinite-Horizon Optimal Control

Optimal Control Problem of Interest, P∞.

The infinite-horizon value function is

V∞(x) = min
π∈Π

Ew

[
∞∑
i=0

αil(xi, ui)

∣∣∣∣∣x0 = x

]
, (3.3)

subject to: (3.1), xt ∈ X almost surely, ut ∈ U ,



43

where: discount factor α ∈ [0, 1], the conditional expectation Ew[·|·]
is taken with respect to the measure Pw on the σ-algebra generated by

{w0, w1, . . . }, and l(·, ·) is the stage cost. Due to time-invariance of the sys-

tem f and stationarity of the disturbance wt, t ≥ 0, the infinite-horizon

optimal control law, π∗∞, which minimizes (3.3) is stationary, i.e. at time

t, u∗t := π∗∞(xt) =: µ∞(xt), t ≥ 0. The optimal system

xot+1 = f(xot , µ∞(xot )) + wt, x0, (3.4)

is the result of applying the optimal control to system (3.1) and achieves

the optimal infinite-horizon discounted value (3.3).

We make the following standing assumptions.

Assumption 4. The set of initial conditions x0 such that P∞ has a feasible solu-

tion is non-empty.

Assumption 5 (Realizability of Performance). The

infinite-horizon value function is finite, i.e. V∞(x) < ∞, for all feasible initial

conditions x0 = x.

Assumption 6. The stage cost l(x, u) ≥ W (x) for each u ∈ U , where W (x) is a

positive definite function.

The infinite-horizon value function V∞(x) is a random variable measurable

on the σ-algebra generated by x0. That is, when x0 is specified, V∞(x) takes a

specific real value.

Persistent disturbances impinging upon the state will prevent the state

from converging to an equilibrium point, nominally at the origin. Assumption 6,

in turn, will prevent the stage cost from tending to zero in these circumstances.

The discount factor, α, must then be chosen in the interval [0, 1) in order that

Assumption 5 can hold. The inclusion of the discounting factor in the definition of

the optimal value function is a central departure from recent results in Nonlinear

MPC [29]. Rather than introducing a discount factor, one might consider the

infinite-horizon average cost per unit time formulation [91, 101, 7]. See also [1, 34].

This is challenging. We shall return to the consideration of the discounted cost

later when achieved performance on the infinite horizon is examined.
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3.3 Model Predictive Control and Achieved

Performance: Problem Formulation

In the Model Predictive Control problem, PMPC , a finite-horizon optimal

control problem is posed and solved at time t starting from state xt. The stage cost

l(x, u) and control constraint U are inherited from P∞. The preservation of the

stage cost allows for evaluation of the sub-optimality of the MPC controller applied

over the infinite horizon by comparison to the optimal value and, hence, gauging

the performance of the MPC control law with respect to the performance measure

of importance. This is an important point, since the stage cost measures the con-

trol performance in terms identified as meaningful for the original infinite-horizon

problem. Amending this cost to accommodate or induce good behavior of the

associated MPC problems introduces a variance from the metric of performance.

MPC Problem, PMPC.

The designed value function is

VN(x) =

min
πNi ∈Π

Ew

[
N−1∑
i=0

αil(xt+i, π
N
i (xt+i)) + F (xN)

∣∣∣∣∣xt = x

]
, (3.5)

subject to:

(3.1), xt+i+1 ∈ Xi+1 almost surely, ut+i = πN,∗i (xt+i) ∈ U , (3.6)

where: the terminal cost F (x) is a design choice which will be dis-

cussed in detail later, the conditional expectation Ew[·|·] is taken with

respect to the measure Pw on the σ-algebra generated by random vari-

ables {wt, . . . , wt+N−1}, and the designed state constraints are Xi ⊆ Rn,

i = 1, . . . , N . The designed optimal control law which minimizes (3.5)

is non-stationary and is given by the sequence {πN,∗0 , . . . , πN,∗N−1}. The de-

signed system is

xdt+i+1,t = f
(
xdt+i,t, π

N,∗
i (xdt+i,t)

)
+ wt+i,t, xt, (3.7)
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for: i = 0, . . . , N−1, initial state xdt,t = xt, and {wt,t, wt+1,t, . . . , wt,t+N−1} a

sequence of i.i.d. random variables with probability distribution Pw(·) and

independent from xt and {w0, . . . , wt−1}∪{wt+N , . . . }. The MPC control

law is µN := πN,∗0 . The MPC algorithm applies ut = µN(xt) to the

system (3.1) at time t and repeats the solution of problem PMPC at time

t+ 1 starting from state xt+1.

Note the finite-horizon state constraints Xi, i = 1, . . . , N , might differ from

X and are left to the designer to select; feasibility analysis and the role of these

MPC design constraints will be discussed in a subsequent section.

The present formulation is that of closed-loop MPC, as (3.5) is solved over

policies πNi ∈ Π, i = 0, . . . , N − 1. Closed-loop controllers are studied and ex-

plained in [94] as being functionally block lower triangular in the dependence be-

tween πNi and xt+i. Note that closed-loop policies include open-loop policies.

We define the achieved system and achieved expected value, which together

convey the performance of the MPC law on the infinite-horizon.

Achieved System and Value Under MPC Control.

The achieved system under MPC control µN is

xat+1 = f(xat , µN(xat )) + wt, x0. (3.8)

Corresponding to the achieved state xat and MPC control uat := µN(xat ), t ≥
0, the achieved value function is

V µN
∞ (x) = Ew

[
∞∑
i=0

αil(xai , u
a
i )

∣∣∣∣∣xa0 = x

]
, (3.9)

where the conditional expectation Ew[·|·] is taken with respect to the mea-

sure Pw on the σ-algebra generated by {w0, w1, . . . }.

The achieved value function (3.9) is a random variable and is defined over

the same σ-algebra as the original infinite-horizon problem P∞, though PMPC for

a single time t is defined over a sub-σ-algebra corresponding to the time interval
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t, . . . , t + N − 1. The random variable xat+1 is measurable with respect to the σ-

algebra generated by xat and wt, the i.i.d. stochastic process entering the actual

system, (3.1). Note: the specific value of discount factor, α, is the same in P∞,

PMPC , and in (3.9), the achieved value calculation.

Following [30], we bound V µN
∞ (x) by known quantities.

Remark 2. We take the viewpoint that the MPC solution is an approximation of

the solution of P∞, where the approximation is accomplished through the consider-

ation of a finite time, yielding a tractable solution. The MPC approach allows for

accommodating constraints which can be readily handled over finite horizons. Oth-

ers (e.g. [64]) consider the infinite horizon at once but approximate the solution

to (3.3) by dividing up the state space.

Remark 3. The viewpoint of the MPC solution as an approximation of P∞ fur-

ther emphasizes the importance of using the original stage cost l(·, ·) in the MPC

problem, as it is the performance measure of interest over the infinite horizon.

We conclude this section with the following result, which provides a link

between the achieved system and the design system.

Theorem 1 (Central Observation). At time t, the achieved system state and the

design system state coincide,

xdt,t = xat , (3.10)

and at the next time, t+ 1, the achieved state satisfies

xat+1 = f
(
xdt,t, µN(xdt,t)

)
+ wt, (3.11)

for bounded random variable wt independent from xt and {w0, . . . , wt−1}. In the

disturbance-free case where wt ≡ 0, (3.10 - 3.11) correspond to xdt,t = xat and

xat+1 = xdt+1,t.

This concordance between the states of the achieved and designed systems

at times t and t+1 has been commented upon by [62]. It leads to some very simple

but powerful implications between the designed and achieved systems. We remark

that the designed state values beyond the first, xdt+1,t, i.e. xdt+j+1,t for j > 0, need

not be mimicked in the behavior of the achieved state.
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Property 1. If PMPC possesses a solution at time t, then the achieved system

satisfies xat+1 ∈ X1 almost surely.

3.4 Stochastic Dynamic Programming

Following [30] and [29], we employ dynamic programming for the analysis of

the MPC control law. We specify the stochastic dynamic programming equation

(SDPE) and state its relationship to the finite-horizon optimal control problem

PMPC . We later use the SDPE to derive a relationship between the achieved value

function V µN
∞ (x) and the designed value function VN(x).

3.4.1 Stochastic Dynamic Programming Equation

As pointed out in [63] for the undisturbed case wt ≡ 0, the first control

value of the optimal sequence obtained from solving an open-loop model predictive

control problem and the first control policy obtained via dynamic programming

coincide.

Analogously, closed-loop MPC of (3.1) and the optimal policy supplied

by dynamic programming also coincide; hence we base our analysis on the vast

literature available on stochastic dynamic programming. The following result from

[48] on the SDPE for discounted stochastic optimal control has been adapted to

the current setting with state constraint sets.

Theorem 2 (SDPE, [48]). Let

{w0, . . . , wN−1} be a sequence of i.i.d. random variables with probability measure

Pw(·). Define the real-valued functions, {Vk(xN−k), k = 0, . . . , N}, by the recur-
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sion,

Vk(xN−k) := min
πNN−k∈Π

{l(xN−k, πNN−k(xN−k))

+ αEw

[
Vk−1(f(xN−k, π

N
N−k(xN−k)) + wk)

]
}, (3.12)

subject to:

f(xN−k, π
N
N−k(xN−k)) + wk ∈ XN−k+1,

uk = πN−k(xN−k) ∈ U ,

with initial condition V0(xN) := F (xN), for xN ∈ XN . Then the designed value

function from problem PMPC at time t with horizon N and corresponding to the

designed system state xdt+N−k,t satisfies

Vk(x
d
t+N−k,t) =

min
πki ∈Π

Ew

[
N−1∑
i=N−k

αil(xdt+i,t, π
k
i (xdt+i,t))

∣∣∣∣∣xdt+N−k,t
]
, (3.13)

subject to: (3.1), xdt+i,t ∈ Xi almost surely, ut+i ∈ U ,

which, when k = N , is the solution to (3.5).

Equation (3.12) is known as the stochastic dynamic programming

equation (SDPE). The functions Vk(xN−k) are deterministic and not random.

However, the quantity Vk(x
d
t+N−k,t) is a random variable because of this property

of its argument.

3.5 Feasibility

We proceed with identifying conditions under which problem PMPC has a

feasible solution; first for a single time t and later for the MPC algorithm which

considers successive solution of PMPC . Our results are set-theoretic as we leverage

the work of [10], [11], and [76].

The concordance between the designed system state xdt+1,t and the achieved

system state xat+1 as offered by the Central Observation (Theorem 1) allows us to

ascertain constraint satisfaction on the infinite-horizon via analysis of the designed
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state constraints {Xk, k = 1, . . . , N} from problem PMPC . In particular, we pro-

vide a condition on the first constraint set, X1, which yields constraint satisfaction

for the achieved system state and control signal for all time.

We conclude the section by establishing conditions under which the achieved

system state is bounded under MPC control. This is accomplished via considera-

tion of the designed constraint sets and dynamics f ; that is, we prove existence of a

bound on the achieved system state without specification of stage or terminal cost

functions. This is new; existence of a state bound is generally accomplished via

input-to-state stability analysis, which requires specification of stage and terminal

cost functions (c.f. [75]).

3.5.1 Recursive Feasibility

Definition 2 (N -feasible set). Given the sequence of N subsets of Rn, {Xk : k =

1, . . . , N}, from (3.5) in PMPC, the N-feasible set of states, XNφ, is the subset of

Rn such that there exists a finite sequence of admissible control policies {πN,φk−1 : k =

1, . . . , N} ∈ Π such that xt ∈ XNφ and xdt+k,t = f(xdt+k−1,1, π
N,φ
k−1(xdt+k−1,t))+wt+k−1,t

imply xdt+k,t ∈ Xk almost surely and udt+k−1 = πN,φk−1(xdt+k−1,t) ∈ U for k = 1, . . . , N .

Definition 3 (Recursive N -feasibility). Problem PMPC is recursively

N-feasible if, given that xt ∈ XNφ and that πN,φ0 from Definition 2 is applied, we

have xdt+1,t = f(xt, π
N,φ
0 (xt)) + wt,t ∈ XNφ almost surely and

udt+k,t = πN,φt+k−1(xdt+k−1,t) ∈ U .

Theorem 3. Problem PMPC is recursively N-feasible if

X1 ⊆ XNφ and X1 6= ∅. (3.14)

The importance of Theorem 3 is that it demonstrates that recursive N -

feasibility is a topological property of the constraint sets and is a property divorced

from the presence of an optimization problem associated with the MPC control.

This is particularly evident in the MPC control design from the paper [99], for

example, where the optimization objective function is loosely tied to the control

and state signals and the MPC design converts to a sequence of feasibility problems.

Such an interpretation is not immediately evident from the paper [99].
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The condition (3.14) is only sufficient; recursive N -feasibility as given in

Definition 3 implies xdt+1,t ∈ X1 ∩ XNφ almost surely for arbitrary X1 ⊆ Rn.

We note that Theorem 3 deals with PMPC and the possibly different state

constraint sets {X1,X2, . . . ,XN} in Rn and control constraint set U in Rm.

Denote by X∞φ the feasible initial state set corresponding to fixed state

constraint sets X and U from (3.3) in problem P∞. By Assumption 4, X∞φ is

non-empty. When the MPC constraints are taken as subsets of X , the feasibility

of the MPC problem may be simply related to that of the infinite-horizon problem.

We have the following direct observations.

Lemma 1. If Xi = X , for i = 1, 2, . . . , N , then

X1φ ⊇ X2φ ⊇ · · · ⊇ XNφ ⊇ X∞φ.

Lemma 2. For state constraint sets {X1,X2, . . . ,XN}, if

(i) X1 ⊆ XNφ and X1 6= ∅, so PMPC is recursively N-feasible,

(ii)X1 ⊆ X ,

then X1 ⊆ X∞φ.

The proof of Lemma 2 follows from recursive feasibility and the evident

MPC-control invariance of the set X1. The upshot of Lemmata 1 and 2 is that

both the feasible sets and the recursive feasibility of the horizon-N PMPC and

of the infinite-horizon P∞ are linked, even though their constraints sets might

differ. This becomes apparent in the feature that XNφ need not be a superset of

X∞φ. Accordingly, we identify the set X∞φ ∩XNφ as important as the set of initial

conditions feasible for P∞ and recursively feasible for PMPC .

Assumption 7. The designed constraint set X1 satisfies X1 ⊆ X∞φ ∩ XNφ and

X1 6= ∅.

The following corollary is immediate and extends the results of Theorem 3

to constraint satisfaction of the achieved system (3.8) on the infinite horizon.

Corollary 1. Suppose Assumption 7 holds and x0 ∈ X∞φ∩XNφ. Then the achieved

system state xat lies in X almost surely for all t ≥ 0.
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3.5.2 Recursive Feasibility and BIBS Stability

Our aim in this part of the study has been to divorce the optimization ob-

jective function from the constraint analysis to determine the role and importance

of each in the MPC formulation; noting that such a deconstructionist approach

might disrespect the attraction of MPC for practice, where the joint presence of

constraints and a performance objective function is key, albeit with a strict prece-

dence of constraints over objective function.

Since the landmark paper of [44] where a terminal state constraint XN = {0}
was introduced to achieve asymptotic stability of the undisturbed receding-horizon

controlled system, the cost-to-go function has been used as a Lyapunov function for

the closed-loop. This suggests a close tie between the objective function and closed-

loop stability. In the situation with disturbances, this analysis can be generalized

by including a compact finite-horizon terminal constraint set XN within which a

feasible control is known which renders this set positively invariant. Asymptotic

stability is then replaced by demonstrated convergence to this set. However, the

Lyapunov analysis using the objective function remains as the core tool for such

convergence. These methods then provide, eventually, a Bounded-Input-Bounded-

State (BIBS) stability result, since XN is assumed compact.

However, one may establish BIBS stability under MPC control without

resort to full specification of the objective function in PMPC . This requires an

assumption about the system (3.1), that f be a proper map [12].

Definition 4 (Proper Map). A function g is a proper map if pre-images in g of

compact sets are compact.

Effectively, this rules out systems with zero gain over unbounded intervals.

In the linear system case, it is a requirement met through having the A-matrix full

rank.

The following theorem expresses the main result of this section. Via speci-

fication of a bounded state constraint Xj and supposing f is a proper map, bound-

edness of the achieved system state xat under MPC control can be guaranteed.
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Theorem 4. Suppose that: problem PMPC is recursively N-feasible for the se-

quence of constraint sets {Xk : k = 1, . . . , N}, U is compact, and the set Xk
is compact for at least one value of k ∈ {1, . . . , N}. Further, suppose that the

function f(·, u) : X → X is a proper map for each u ∈ U . Then, provided the

initial state is N-feasible, x0 ∈ XNφ, the MPC control law remains feasible and the

achieved system state xat is almost surely bounded for all time t ≥ 0.

The novelty of this result is that it invokes no property of the optimization

objective function, only of the system function f , of the MPC control constraint

set U and of the recursive feasibility. The stability established is BIBS stability

from the disturbance to the state, which is stability in the sense of Lagrange rather

than in the sense of Lyapunov [83], even though we have so far not introduced any

assumption about an equilibrium. In incorporating the notion of a compact set and

hence of boundedness, we have also moved the analysis to a metric space context

from simply topological considerations. Although compactness of sets and thus

properness of maps can be defined solely in a topological space.

Remark 4. The upshot of this subsection concerning BIBS stability is that, pro-

vided a feasible solution can be found, the stability follows directly from the problem

statement in the constraint specification; thus existence of a bound is shown with-

out resort to an objective function. Approaches treating system state convergence

to compact sets in which the constraints remain inactive, such as the dual-mode

controllers of [66] or [99], cannot accommodate persistently active constraints.

Remark 5. Competing stability statements using Lyapunov arguments deal with

asymptotic properties of the unforced or disturbance-free system [29, 73], or deal

directly with disturbances using a min-max objective function [56, 75, 52]. These

approaches aim to show input-to-state stability (ISS) of (3.1), only guaranteeing

existence of a bound. Quantification of the ISS bound, i.e. via methods as presented

in [37], has yet to be applied to the MPC ISS results.

The BIBS result of Theorem 4 establishes a signal bound. ISS approaches

also supply existence of a bound, though with more effort, e.g., the prescription of

a cost function. The issue therefore must lie in the quantification of the magnitude
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of the bound. We now move towards this goal through performance quantification.

But we note that the simple achievement of BIBS is an important adjunct to the

description of infinite-horizon performance via discounted value functions to be

developed next.

3.6 Value Functions:

Achieved Performance Bounds

Monotonicity of the designed value function VN(x) (3.5) is a property that

allows for proving asymptotic properties of the MPC control in the disturbance-

free case [63, 40, 39, 27] and in min-max formulations with disturbances [75]. It

has also recently been used to derive quantifiable state and performance bounds

on disturbance-free systems [30, 29].

In this section, we extend the use of monotonicity of VN(x) to prescribing

infinite-horizon performance bounds for the stochastic nonlinear system (3.1) with

discounted cost. This is accomplished by bounding the achieved value function

V µN
∞ (x) (3.9). The performance-bounding inequalities presented here are general-

izations of existing inequalities to the stochastic system (3.1) and discounted cost

formulation considered in this chapter. Furthermore, we generalize the quoted

results to include consideration of designed state constraints Xk.
Before proceeding with performance analysis, consider the following as-

sumption.

Assumption 8. The MPC design problem PMPC is recursively feasible with Xj ⊆
X , j = 1, ..., N .

In the subsequent results, we suppose Assumption 8 holds with Xj ⊆ X , j =

1, . . . , N to yield PMPC recursivelyN -feasible and xat ∈ X , t ≥ 0 if x0 ∈ X∞φ∩XNφ.
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3.6.1 Value Functions Monotonically Non-Decreasing with

Horizon

In this section we consider MPC formulations yielding value functions which

are monotonically non-decreasing with horizon. We first present results from [39]

for the undisturbed case wt ≡ 0 which state that, with selection of zero terminal

cost and for sufficiently long horizon, the MPC control yields asymptotic stability

of the undisturbed system; this is an important result as it does not employ the use

of terminal constraints sets [63] to guarantee stability. [30] extend the result of [39]

by considering practical stability and deriving performance bounds for a modified

stage cost which takes zero value inside a set that is attractive for the MPC control

law. We generalize this result to the current stochastic system setting and offer

comparison to the new discounted-cost formulation result that is presented at the

end of the section.

We begin with an elementary observation concerning the designed value

function from PMPC , which pertains regardless of discounting in the cost func-

tion or the presence of disturbances, assuming the infinite-horizon value function

is finite. This is a generalization of observations made in [39] and [30], the gen-

eralization being in the consideration of the designed constraint sets involved in

problem PMPC .

Theorem 5. Consider any x ∈ X∞φ. Assume V∞(x) <∞. Let the terminal cost

from (3.5) F (y) = 0, ∀y ∈ X and let Xj = X , j = 1, 2, . . . . Then VN(x) from

(3.5) has a feasible solution ∀N ≥ 0 and

Vi(x) ≤ Vi+1(x) ≤ V∞(x) <∞.

i = 0, 1, . . . .

The above result employs Lemma 1 and holds for the solution of PMPC at

a single time t with infinite-horizon-feasible initial condition x ∈ X∞φ, as recursive

feasibility is not considered in the theorem statement. As noted by [35], [39], and

[30], once the value functions cease to change with horizon, we have infinite-horizon

optimality.
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Undisturbed, undiscounted, zero terminal cost case: wt = 0, α = 1,

F (x) = 0.

Consider V∞(x) in (3.3) from problem P∞ with wt = 0 and α = 1. Also

consider VN(x) in (3.5) from PMPC with wt = 0, F (x) = 0, α = 1.

Evidently, Vj(x) ≤ V∞(x) < ∞, and hence the value function VN(x) →
V∞(x) as N → ∞ due to the Monotone Convergence Theorem. Further, the

problem admits discussion of asymptotic stability, since the state can feasibly tend

to an equilibrium. We note that [39, 30] and others develop their results without

constraints, in order to demonstrate that asymptotic stability is achievable without

resort to constraints to make it so. The following result is a minor extension of the

result given in [39] to the case with state constraints to show that this property is

not lost when constraints are maintained.

Theorem 6 ([39]). For the undisturbed, undiscounted, zero terminal cost problem

PMPC satisfying Assumption 8 with Xj ⊆ X , j = 1, . . . , N, and X , U from P∞
compact and convex, there exists N∗ < ∞ that yields asymptotic stability of the

achieved system (3.8) for all N ≥ N∗ under MPC control law µN(x). Further,

∀x ∈ X∞φ ∩ XNφ, as N →∞, V µN
∞ (x)→ V∞(x).

That is, stability of the MPC achieved system can be obtained without

using a terminal cost or a terminal state constraint at the expense of possibly

large horizon N in the design problem PMPC . The result is proved using Dini’s

theorem on the uniform convergence of functions, which can be applied given the

monotonic increase of VN and compactness of the constraint sets.

Recall that VN(x) is related to the infinite-horizon value function (3.3) since

it uses the same stage cost, l(·, ·). Theorem 6 states that MPC with a sufficiently

long horizon approaches the optimal infinite-horizon control performance.

[30] extend the results of [39] and establish a relationship between the

infinite-horizon achieved value and the finite-horizon designed value functions.

Theorem 7 ([30]). For the undisturbed, undiscounted, zero terminal cost, horizon-

N problem PMPC satisfying Assumption 8 with Xj ⊆ X , j = 1, . . . , N, and with

corresponding control solution µN(x), suppose there exists a scalar function γN ∈



56

[0, 1] such that,

VN(f(x, µN(x)))− VN−1(f(x, µN(x))) ≤ γN l(x, µN(x)), (3.15)

∀x ∈ X∞φ ∩ XNφ. Then

(1− γN)V∞(x) ≤ (1− γN)V µN
∞ (x) ≤ VN(x). (3.16)

The rate bound on the monotonicity, (3.15), is used to provide a rate of

convergence on the achieved value function; this establishes the stated bound on

the achieved value with respect to the designed value. We later generalize the

inequalities (3.15) and (3.16) to the stochastic system, discounted cost formulation;

the above result, then, is included here for ease of comparison.

Disturbed, undiscounted, zero terminal cost case: wt 6= 0, α = 1, F (x) = 0.

Here we consider V∞(x) in (3.3) from problem P∞ and VN(x) in (3.5) from

PMPC with: stochastic process {wt}, F (x) = 0, and α = 1.

[30] further extend the results of [39] and establish a relationship between

the infinite-horizon achieved value and the finite-horizon optimal designed value

functions for the non-zero disturbance case. Their analysis is couched as “Practical

Optimality” and involves an altered stage cost function l̄(·, ·), which takes the value

zero in a certain set, L. Here we present a generalization of their result, originally

intended to capture the convergence of systems to a neighborhood of the origin,

by quoting it with reference to the stochastic system (3.1) outside a limit set and

given constraint set X from P∞.

Theorem 8 ([30]). Consider the disturbed, undiscounted (α = 1), zero terminal

cost, horizon-N MPC problem satisfying Assumption 8 with Xj ⊆ X , j = 1, . . . , N,

and with resultant control law µN(x). Define:

– set L ⊂ X to be the minimal (almost surely) invariant set under µN ,

– alternate stage cost

l̄(x, u) =

{
max{l(x, u)− ε, 0}, x /∈ L,
0, x ∈ L,
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and corresponding optimal and achieved infinite-horizon alternate value func-

tions V ∞(x) and V
µN
∞ (x) evaluated using l̄,

– constant σ = inf{Ew[VN(f(x, µN(x)) + w)] : x ∈ X\L}

Assume that, for some ε > 0 and for all x ∈ (X∞φ ∩XNφ)\L, there exists a scalar

function γN ∈ [0, 1], such that

VN(x)− Ew[VN(f(x, µN(x)) + w)]

≥ max [(1− γN)l(x, µN(x))− ε), 0] , (3.17)

Then, for all x ∈ X∞φ ∩ XNφ,

(1− γN)V ∞(x) ≤ (1− γN)V
µN
∞ (x) ≤ VN(x)− σ. (3.18)

The implication of condition (3.17) is that L is attractive for the MPC

control law, though no terminal constraint is explicitly imposed. When the state

is inside L, the modified stage cost is 0. The cost V
µN
∞ then only captures the

cost of convergence to L. We will see that such a modification to the cost is not

required when a discount factor α ∈ [0, 1) is introduced, and hence the analysis

will not be limited to evaluation of transient performance.

The condition (3.17) can be established using the monotonic increase of the

designed value function with horizon and imposing a controllability assumption

on the pair [f(x, u), l(x, u)]. That is, the existence of a control sequence yielding

l(xi, ui) ≤ βi for some fixed β > 0 and i = 0, . . . , N, is assumed. [27], [30], and [28]

discuss such a controllability assumption and encourage modification of the infinite-

horizon stage cost (and, hence, modification to the stage cost used in PMPC) to

achieve the desired controllability properties which in turn yield convergence to L;

then the achieved value function performance bound (3.18) is based on a restricted

version of an already-modified stage cost.

Given our aim to evaluate performance against the original infinite-horizon

problem of interest P∞ (and associated infinite-horizon value function), we now

move toward presenting results which do not require such stage cost modification.
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Disturbed, discounted, zero terminal cost case: wt 6= 0, α ∈ [0, 1), F (x) =

0.

We next consider V∞(x) and VN(x) from P∞ and PMPC with: stochastic

process {wt}, F (x) = 0, α ∈ [0, 1).

The following result is an extension of the undisturbed, undiscounted per-

formance result, presented in Theorem 7, to the case with stochastic disturbances

and discounted stage cost. The result can be contrasted with Theorem 8 as it does

not require introduction of a modified stage cost l, nor does it require convergence

to a set, provided the conditions of the theorem can be satisfied.

Theorem 9. For the disturbed, discounted, zero terminal cost, horizon-N problem

PMPC satisfying Assumption 8 with Xj ⊆ X , j = 1, . . . , N, and with resultant

control law µN(x), suppose there exists a γN ∈ [0, 1] such that,

Ew[VN(f(x, µN(x)) + w)]− Ew[VN−1(f(x, µN(x)) + w)]

≤ γN l(x, µN(x)) + w, (3.19)

for all x ∈ X∞φ ∩ XNφ. Then,

(1− αγN)V∞(x) ≤ (1− αγN)V µN
∞ (x) ≤ VN(x) +

α

1− α
w. (3.20)

The inequalities (3.19) and (3.20) are generalizations of the inequalities

(3.15) and (3.16), respectively, from Theorem 7 to the stochastic, discounted cost

case. However, we note the discount factor α does not appear in the first of these

inequalities.

The scalar w is introduced in the inequality (3.19) to ameliorate difficulties

which might arise in achieving an upper bound on the monotonic increase rate due

to the nature of the stochastic disturbance w. The penalty paid for prescription

of large w is evident in the performance bound inequality (3.20). When larger

horizons N are specified, the size required of w decreases, as the designed value

function approaches the infinite-horizon optimal value function. Then, we have

a tradeoff between horizon length and the performance bound we would like to

guarantee. The corroboration between horizon and achieved performance bounds
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for zero terminal cost in this case is similar to the undisturbed counterpart (3.15),

which is also generally easier to satisfy for large horizons N .

The discount factor can be selected as α = 1 with the incurred penalty

of a meaningless performance bound; however, selection of α = 1 and w = 0 for

the undisturbed case recovers the results in Theorem 7. Specification of a small

discount factor might yield tight bounds. Indeed, selection of α = 0 can yield

infinite-horizon optimal performance as both P∞ and PMPC reduce to the one-

step-ahead problem. But useful state bounds on the infinite horizon might be

compromised and the state bound could be relegated to that established by the

constraint-based BIBS result in Theorem 4.

We have not only established existence of a bound on the achieved per-

formance under MPC control while considering stochastic disturbances, but have

quantified this bound. Standard approaches in the literature addressing MPC with

disturbances use ISS ideas to establish existence of a bound for the MPC control by

either designing a control for the undisturbed system and establishing conditions

under which the infinite-horizon system is ISS [73] or considering disturbances di-

rectly in a min–max formulation [75]. Others [99, 19] consider stochastic MPC

but focus on convergence of the state to unconstrained sets and are not concerned

with performance. With the present formulation, existence and quantification of

this performance bound occur at once.

Furthermore, Theorem 9 does not require modification of the stage cost.

This allows for comparison of the achieved value function under MPC control

directly with the original infinite-horizon problem of interest.

The approach using value functions which are monotonically non-decreasing

with horizon, N , yields a sequence of results “for sufficiently large N .” The mono-

tonicity of the value functions follows in Theorem 5 directly from the zero terminal

cost, F (·) = 0, regardless of discounting or disturbances and assuming that V∞(x)

is finite. To study the properties of value functions monotonically non-increasing

with horizon, then, is limited to the consideration of the terminal cost, which

cannot be taken as zero.
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3.6.2 Value Functions Monotonically Non-Increasing with

Horizon

In this section we consider design of positive definite terminal cost F (x) to

yield designed value functions which are monotonically non-increasing with hori-

zon. The main idea employed here is based on assuming F (x) is a special type of

Control Lyapunov Function (CLF) [2]; then, asymptotic stability and performance

bounds can be established. In the undisturbed case, the attractiveness of select-

ing the terminal cost as a CLF is that asymptotic stability and bounded achieved

performance can be established for any horizon.

The papers [40], [57], [30], and [29] discuss selection of the terminal cost

as a CLF for the undisturbed, undiscounted case. We cite the corresponding

undisturbed performance result here as given in [30] for comparative purposes

before generalizing the result to the stochastic system and discounted cost of the

present formulation.

Undisturbed, undiscounted case: wt = 0, α = 1.

Here, consider P∞ and PMPC with: wt = 0, F (x) positive definite, and

α = 1.

The following result presents an inequality condition on the terminal cost

F (x) which is sufficient to yield performance bounds for the undisturbed, undis-

counted, achieved value function. This inequality is reminiscent of specifying F (x)

as a CLF.

Theorem 10 ([30]). For the undisturbed, undiscounted (α = 1), horizon-N MPC

problem PMPC satisfying Assumption 8 with Xj ⊆ X , j = 1, . . . , N , suppose

F (f(x, u))− F (x) ≤ −l(x, u), (3.21)

∀x ∈ X and all admissible controls. Then,

V∞(x) ≤ V µN
∞ (x) ≤ VN(x),

∀x ∈ X∞φ ∩ XNφ.
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Achieving (3.21) can be difficult over the entire space X and over all admis-

sible controls. Furthermore, one could use F (x) as a CLF for the infinite-horizon

system if this condition were satisfied over the whole space X . The condition might

be easier to satisfy for some Xf ⊂ X .
There are several approaches used in the literature to overcome the need to

find F (x) satisfying (3.21) ∀x ∈ X .

1. Jadbabaie et al. [40] determine a sufficiently large N∗ such that for all

N ≥ N∗ the optimal designed state trajectory xdt,t enters the set Xf in N

steps.

2. Grüne and Rantzer [30] assume knowledge of the set of initial conditions X0

such that the designed state enters Xf in N steps and impose that the initial

condition for problem PMPC , xt, start in X0.

3. Mayne et al. [63] and references cited therein suggest specifying an explicit

terminal constraint xdt+N,t ∈ Xf in problem PMPC .

The specification of a terminal cost function satisfying (3.21) yields a designed

value function which is monotonically non-increasing with horizon. This mono-

tonicity then admits the stated performance bound.

Remark 6. Considering that in problem PMPC only the first control, µN(x) :=

πN,∗0 (x), is applied and, given the Central Observation, the main effect of specifying

a cost at the end of the horizon N is to encourage desirable state behavior at

the beginning of the horizon. That is, the aim of (3.21) is to select µN(x) so

that the first state, xdt+1,t, enters some particular subset of X1 that has desirable

properties. This suggests the existence of a terminal cost F (x) satisfying (3.21) for

a single-stage, N = 1, problem. Indeed, the infinite-horizon value function V∞(x),

if selected as the terminal cost F (x), satisfies (3.21) and, as a stationary point

of the dynamic programming equation [7], yields a one-step-ahead MPC design

problem that achieves the optimal infinite-horizon control µ∞ and optimal infinite-

horizon performance. This concordance between the terminal cost and the infinite-

horizon value function has been commented on by [35, 30].
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Disturbed, discounted case: wt 6= 0, α ∈ [0, 1).

In this section we establish conditions on the terminal cost under which

the designed value function, (3.5), satisfies an inequality reminiscent of monotonic

decrease with horizon when disturbances and a discount factor α ∈ [0, 1) are

present. Then, bounds on the achieved performance can be established in a fashion

that is similar to the undisturbed, undiscounted case.

In the following lemma, an inequality condition on the terminal cost is es-

tablished that mirrors the inequality (3.21) from Theorem 10; recall the inequality

(3.21) yields monotonically non-increasing designed value functions in the undis-

turbed, undiscounted case. This new terminal cost inequality suffices to guarantee

bounds on the achieved value function for the stochastic system with discounted

cost, for all N ≥ 1.

The new terminal cost inequality introduced here possesses an explicit de-

pendence between the discount factor α and the terminal cost F (x). The result,

like the monotonic non-decreasing result from Theorem 5, holds for solution of

PMPC at a single time t given horizon N and terminal cost F (x).

Lemma 3. Consider the disturbed, discounted, non-zero terminal cost, horizon-N

MPC problem PMPC satisfying Assumption 8 with Xj = X , j = 1, . . . , N . Suppose

that for all x ∈ X and all admissible controls, the terminal cost F (·) satisfies,

αEw[F (f(x, u) + w)]− F (x) ≤ −l(x, u) + w, (3.22)

for some w ∈ [0,∞). Then the designed value function satisfies

Vk(x) ≤ Vk−1(x) + αk−1w, (3.23)

for all k ≥ 1 and for x ∈ X∞φ.

The inequality condition on the terminal cost (3.22) yields the inequality

on the designed value function (3.23), which in turn yields bounds on the achieved

value function under MPC control, which we will show shortly.

Paralleling the inequality (3.19) in Theorem 9, the positive scalar w in (3.22)

relaxes the inequality. In fact, it can be shown that, even for scalar linear systems
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with stochastic disturbances and quadratic stage cost, the inequality cannot be

satisfied with positive definite F (x) and w = 0.

We would of course prefer small w in order to guarantee the designed value

function is monotonically non-increasing with horizon to reflect the monotonicity

achieved in the undisturbed case of Theorem 10; the guaranteed bound on the

achieved value function would also be tighter, as we will show shortly. But this

might not be possible.

Here, specification of a small discount factor α might also ease difficulties in

establishing inequality (3.22). Though, as discussed in the previous section, small

α might also relegate bounds on the achieved system state, xat , to those established

by the BIBS stability result in Theorem 4.

As in the undisturbed, undiscounted case of Theorem 10, the terminal cost

function requirement (3.22) must hold on the entire space X . This might appear

unfortunate, but the relaxation of the inequality provided by w allows for flexibility

in selection of F (x). The penalty paid for poor terminal cost selection given large

w is a conservative performance bound, which we now show.

The inequality (3.23) implies a bound on the achieved value function and

convergence rate of the designed value function. This bound on the achieved value

function is contained in the following result, which imitates the performance bound

given in Theorem 10.

Theorem 11. For the disturbed, discounted, non-zero terminal cost, horizon-N

MPC problem PMPC satisfying Assumption 8 with Xj ⊆ X , j = 1, . . . , N , suppose

VN(x)− VN−1(x) ≤ w, (3.24)

for all x ∈ X∞φ ∩ XNφ and some w ≥ 0. Then,

V∞(x) ≤ V µN
∞ (x) ≤ VN(x) +

α

1− α
w. (3.25)

Here we have made it apparent that performance bound (3.25) follows if

the designed value function satisfies the inequality (3.24), which in turn can be

made possible via judicious selection of the terminal cost.

The achieved performance bound (3.25), like its counterpart with zero ter-

minal cost in Theorem 9, depends on discount factor α and positive scalar w. The
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comments made following Theorem 9 also apply in this case. That is, selection of

small discount factor α might improve the discrepancy between the infinite-horizon

value function and the designed value function, but the achieved state bound on

the infinite horizon might be compromised. However, contrary to the performance

result from Theorem 9, in which long horizons are required to achieve a sensible

bound, the bound here can be satisfied for all N ≥ 1, as long as the selected

terminal cost satisfies (3.22).

The following corollary extends Theorem 11 to yield a result on the rate of

convergence of the designed value function. With this result in place it becomes

apparent why selection of small α in Theorems 9 and 11 might not be appropriate.

Corollary 2. Suppose that the terminal cost F (x) satisfies (3.22) from Lemma 3,

∀x ∈ X and consider the problem statement and assumptions given in Theorem 11.

Then,

Ew[VN(f(x, µN(x)) + w)] ≤

1

α

(
1− l(x, µN(x))

F (x) + 1
1−αw

)
VN(x) + w.

For boundedness of the value function and hence boundedness of the state,

the term 1
α

(
1− l(x,µN (x))

F (x)+ 1
1−αw

)
must be strictly bounded by unity. This encourages

selection of larger discount factor α.

3.6.3 Discussion

Our approach has been to extend the analysis of achieved performance to

include disturbance rejection and the infinite-horizon control performance with

persistently active constraints achieved by horizon-N MPC. In order to do this,

we have introduced a value function based on discounted cost value functions.

Techniques from the undisturbed analysis due to [40], [39], and [30] have been

adapted to accommodate the stochastic system (3.1) and discounted cost functions.

The centerpiece of the analysis has been to explore the application of monotonicity

properties of the value function with horizon and both its dependence on the

terminal cost function and its consequences for achieved performance bounds. The
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flavor of the results for value functions monotonically increasing with horizon is

that there exists a horizon N0 large enough so that for any N ≥ N0 the MPC

achieved performance is able to be characterized as arbitrarily close to optimal.

For the monotonically decreasing value functions, the tenor is towards ensuring

performance with small horizons N and this, in turn, is related to the selection

of a sufficiently large terminal cost F (x) in the MPC problem. These results

generalize the unconstrained linear results from [9].

3.7 Conclusions

The chapter has considered the recursive feasibility and achieved perfor-

mance of a disturbed MPC problem. In doing so, we have built on the undisturbed

value function approaches due to Jadbabaie, Hauser, Grüne, and Rantzer; among

others. But we have included modifications to handle the persistent presence of

disturbances to yield performance bounds of more direct application to the usage

of MPC as a disturbance rejection feedback controller. We have extended the fo-

cus on monotonicity of the value functions with horizon length to gain a handle

on modifications to the MPC design problem, chiefly through the terminal cost

function.

The benefit of a discounted cost function is that the infinite-horizon opti-

mal value function is finite. A consequence is that normal questions of closed-loop

stability become moot. Indeed, because of the presence of the disturbances, asymp-

totic stability is not achievable and a different measure of satisfactory behavior is

needed. We note that BIBS stability arises as a side-effect of the MPC problem

formulation via the (almost) topological analysis of recursive feasibility. It is our

view that BIBS is the most appropriate form of stability for MPC in application.

Our aim in future works is to tie together the rough state bounds accorded by the

BIBS result to a better quantification via the value function bounds.

To return to the chapter’s opening and title, the thrust of the work here

has been to harken back to the genesis and dominant application of MPC as

a disturbance rejection controller applied typically in the processing industries
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to minimize the deleterious effects of persistent disturbances over an unbounded

time interval while observing operational constraints which are disturbance in-

duced and therefore also persistent. The destruktiv and déconstructif analysis has

attempted to appreciate the set of design properties which are key to achieving

quantitative bounds on achieved performance as a function of designed and optimal

performance. Necessarily, this has sidestepped important questions of: solubility

and solution calculation, robustness beyond bounded disturbances, evaluation and

achievement of feasible problem statements. But we have endeavored to redirect

focus onto the performance questions and away from efforts to simplify the MPC

problem divorced from the intention to use it in applications.

Appendix

Proof of Theorem 4. Since problem PMPC is recursively N -feasible, the

N -feasibility of x0 suffices, via Theorem 3, for feasibility for all time and all

disturbances provided a feasibility preserving control law πN,φ0 is applied. The

boundedness of the achieved state satisfying the closed-loop dynamics xat+1 =

f(xat , π
N,φ
0 (xt)) + wt, follows because the finite-horizon designed state sequence

{xdt+j+1,t} from (3.7) contains one element, xdt+k,t, which is bounded. Since xat is in

the pre-image set of this point in f , it too must be bounded because f is a proper

map. �

Proof of Theorem 9. Consider the disturbed, discounted, zero terminal cost

problem PMPC with horizon N , with state constraints from the theorem statement,

and with xt = x ∈ X∞φ ∩ XNφ at time t. Corresponding to the designed value
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function (3.5), the stochastic dynamic programming equation (3.12) satisfies,

VN(x) = l(x, µN(x)) + αEw[VN−1(f(x, µN(x)) + w)],

= l(x, µN(x)) + αEw[VN−1(f(x, µN(x)) + w)]

− αEw[VN(f(x, µN(x)) + w)]

+ αEw[VN(f(x, µN(x)) + w)],

≥ l(x, µN(x)) + αEw[VN(f(x, µN(x)) + w)]

− αγN l(x, µN(x))− αw.

We rewrite this as

βN l(x, µN(x)) ≤ VN(x)− αEw[VN(f(x, µN(x)) + w)] + αw

with βN := (1−αγN). Next, for some horizon M , write the achieved value for µN

starting at time t = 0 with x0 = x.

βNV
µN
M (x) =

βNEw

[
M−1∑
i=0

αil(xi, µN(xi))

∣∣∣∣∣x0 = x

]
≤ Ew{VN(x0)− αEw[VN(x1)] + αw

+ αVN(x1)− α2Ew[VN(x2)] + α2w

· · · − αMEw[VN(xM)] + αMw | x0 = x}

= VN(x)− αMEw[VN(xM)]

+ (α + α2 + · · ·+ αM)w.

Taking the limit as M → ∞ yields the right-hand inequality, while the left-hand

inequality follows from optimality. �

Proof of Lemma 3. Consider the disturbed, discounted, non-zero terminal

cost problem PMPC at time t with horizon N , with state constraints from the

lemma statement, and with initial state xt = x. We use induction to show (3.23).
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Using the SDPE (3.12) we have, for x ∈ X∞φ ⊆ XNφ,

V1(x) = V0(x) = l(x, πN,∗N−1(x))

+ αEw[F (f(x, πN,∗N−1(x)) + w)]− F (x),

≤ l(x, u) + αEw[F (f(x, u) + w)]− F (x),

≤ w.

where the last inequality is due to (3.22). So we have monotonicity for k = 0.

Now, assume the inductive hypothesis Vk(x) ≤ Vk−1(x) +αk−1w and consider i.i.d.

random variables w1, w2 with probability distribution Pw(·). Then,

Vk+1(x) = l(x, πN,∗n (x)) + αEw2 [Vk(f(x, πN,∗n (x)) + w2)],

≤ l(x, πN,∗n+1(x)) + αEw2 [Vk(f(x, πN,∗n+1(x)) + w2)],

≤ l(x, πN,∗n+1(x)) + αEw2 [Vk−1(f(x, πN,∗n+1(x)) + w2)]

+ αkw,

= l(x, πN,∗n+1(x)) + αEw1 [Vk−1(f(x, πN,∗n+1(x)) + w1)]

+ αkw,

= Vk(x) + αkw,

where the first inequality is due to optimality, the second inequality is the inductive

hypothesis, and the second-to-last equality follows from the i.i.d. property of

w1, w2. �

Proof of Theorem 11. We start by showing (3.24) implies a bound on the

stage cost. Consider the disturbed, discounted, non-zero terminal cost problem

PMPC at time t with horizon N , with state constraints as given in the theorem

statement, and with initial state xt = x. We have, for x ∈ X∞φ ∩ XNφ,

VN(x) = l(x, µN(x)) + αEw[VN−1(f(x, µN(x)) + w)],

= l(x, µN(x)) + αEw[VN−1(f(x, µN(x)) + w)]

−αEw[VN(f(x, µN(x)) + w)]

+αEw[VN(f(x, µN(x)) + w)],

≥ l(x, µN(x)) + αEw[VN(f(x, µN(x)) + w)]− αw.
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Rearranging terms yields,

l(x, µN(x)) ≤ VN(x)− αEw[VN(f(x, µN(x)) + w)] + αw. (3.26)

One can use the bound (3.26) in a similar manner to that which was presented in

the proof of Theorem 9 to verify the stated result. �

Proof of Corollary 2. Using (3.23) from Lemma 3 and (3.26) from the proof

of Theorem 11, we have

VN(x)− αEw[VN(f(x, µN(x)) + w)] ≥ l(x, µN(x))− αw,

≥ l(x, µN(x))
VN(x)

F (x) + 1
1−αw

− αw.

Rearranging terms yields the stated result. �
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Chapter 4

Distributed Optimization with

Coupling Constraints: Algorithms

and Information Exchange

Requirements

We cannot solve our problems with the same thinking we used when we
created them.

— Albert Einstein

Abstract

We derive and establish properties for algorithms for the distributed opti-

mization of a global constrained optimization problem through the limited commu-

nication of data between cooperating nodes; each node solves a constrained local

optimization problem. The structure of the optimization problem is such that it is

performed by the distinct nodes, which have their own objective functions and local

constraints, but share a common coupling constraint which limits the behavior of

the independent nodes. Our interest is in performing a distributed computation of

the global solution without the participating nodes needing explicit knowledge of

other members’ cost functions or constraints. Feasibility of local and coupling con-

70
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straints is the main technical challenge; we propose a set of distributed algorithms

which are motivated by maintaining feasibility and solve the global problem given

limited communication and identify cases in which the nodes must communicate

more than a minimal set of information.

4.1 Introduction

We consider the distributed solution of a global optimization problem which

involves the cooperation of n local nodes, S1, . . . , Sn. Each node i is equipped with

a local cost function and local constraints, both of which are functions of local

decision variables ui ∈ Rpi , i = 1, . . . , n. The global cost function is composed

of a sum of nodes’ local cost functions and there is a joint constraint which is

dependent on all decision variables and thereby coupling the behavior of the nodes.

Each node has access to its own objective function and local constraints, and

elements of the coupling constraint. Each node does not know the cost functions

or constraints of other nodes. This structure prevents the computation of a global

constrained solution, and we seek an approach which is capable of yielding solutions

convergent to the global optimum via distributed local optimization and limited

communications. By limited communications, we mean to impose limitations on

the information content of any data exchanged between nodes.

4.1.1 Global Optimization Problem: Setup and Structure

Consider the following inequality constrained, global optimization problem,

Pg, over n vector decision variables u1 ∈ Rp1 , . . . , un ∈ Rpn .

min
u1,...,un

Jg(u1, . . . , un), (4.1)

subject to local vector constraints

gi(ui) ≤ ci, i = 1, . . . , n, (4.2)

and a global coupling vector constraint
n∑
i=1

fi(ui) ≤ b. (4.3)
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The separability of the coupling constraint (4.3) into a sum of local terms is central

to our formulation, as will become clear later. Also, the scalar global cost function

is constructed as a sum of local cost functions,

Jg(u1, . . . , un) =
n∑
i=1

Ji(ui), (4.4)

with Ji, i = 1, . . . , n, and, hence Jg, strictly convex, nonnegative, and continuously

differentiable. The constraint vector b is an element of Rmf while the constraint

vectors ci are elements of Rmgi , i = 1, . . . , n. The constraint functions fi(ui) and

gi(ui) satisfy

fi(ui) = [f 1
i (ui), f

2
i (ui), . . . f

mf
i (ui)]

T , i = 1, . . . , n,

and

gi(ui) = [g1
i (ui), g

2
i (ui), . . . g

mgi
i (ui))]

T , i = 1, . . . , n,

with f ji (ui) : Rnui → R, j = 1, . . . ,mf , and gki (ui) : Rnui → R, k = 1, . . . ,mgi ,

each strictly convex functions. With this structure, the inequalities (4.2) and (4.3)

are to be interpreted component-wise. We suppose that the {Ji}, {fi}, {gi} are

not necessarily identical over i.

Our investigation here is to consider formulations of local subproblems to

be solved by each Si, together with inter-node communication, which yield a dis-

tributed solution of the global constrained problem Pg. Of central importance to

our study is the content of exchanged information and limited communications.

We are interested in iterative algorithms which guarantee iterates provide a non-

increasing global cost function and maintain feasibility at every step.

Note the use of “distributed” here differs from that in [8] through the nodes

not having access to the global cost function nor to the complete constraint set and

needing to use communication to achieve global optimality. The problem addressed

in [8] deals with distributed computation with full information, while in this study

distributed information is the focus.

The coupling constraint of our present formulation is similar to constraints

associated with a shared resource amongst the nodes. This interpretation is em-

ployed in mechanism theory as applied in microeconomics and networks [97]. How-
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ever, unlike mechanism-theoretic approaches where nodes need to be incentivized

to cooperate, the nodes here cooperate willingly to meet the shared objective.

4.1.2 Information Localization and Information Exchange

Suppose that local node Si has access to ui, Ji, fi, gi, b, and ci, i = 1, . . . , n.

Local nodes S1, . . . , Sn will be equipped with limited communication and jointly

will seek to find u1, . . . , un which solve the global optimization Pg through local

computation and negotiation.

We refer to the constraint (4.3) as the coupling constraint as each node has

access to some part of this constraint set and, as such, nodes must cooperate in

order to ensure the constraint is satisfied. The constraint (4.2) is termed the local

constraint as each node Si has full access to all information required to satisfy

gi(ui) ≤ ci.

The optimization problem will split into cycles in which the entire set of

nodes computes and exchanges information and our focus is on limiting the quan-

tity of information needing exchange within a cycle. For this exchange, the nodes

need a network topology, which we assume for simplicity is a ring in which se-

quential processing occurs. That is, node Sj receives information from node Sj−1

and sends information to node Sj+1; nodes Sn and S1 exchange information to

close the ring. We are interested in analyzing the minimal set of communicated

of information required to solve the global problem Pg, and the conditions which

necessitate the communication or sharing of additional information. We show that

in some cases, which are fully characterized, sharing of local constraint functions

gi is unavoidable if the global solution is to be achieved.

The nodes share information when exchanged information content is to in-

clude functional forms of cost functions or constraints. Alternatively, we say the

nodes share information, when a possibly unlimited number of function evalua-

tions is required for communication between nodes. The nodes communicate when

sending particular values of cost functions or constraints, i.e., for decision variable

value ūi, node i might communicate the vector Ji(ūi).

Our aim is to find and understand the minimal set of information exchanges
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between nodes Si required to solve the global problem Pg; we find that the required

information exchange depends on constraint activity at the global solution. This

minimal-information approach is relevant in cases where: (1) communication or

sharing of local cost functions, local constraints, and coupling constraint compo-

nents, which are local to node Si, might be highly undesirable from, say, a security

or stealth perspective or (2) communications required to exchange information are

expensive and need to be kept to a minimum or (3) where the capability to achieve

performance speedup via, say, parallelization is limited by interprocess communi-

cation.

4.1.3 Motivating Examples: Distributed Control and

Network Optimization

We consider here three examples to set ideas and motivate the problem

formulation under consideration. The first example is distributed control in the

context of multi-vehicle control and collision-avoidance constraints; the second is

network optimization, where n nodes cooperate to maximize network utility subject

to local buffer size constraints and shared resource constraints.

Distributed Control

Consider two ships which are transporting cargo at sea. Each ship is a

dynamic system with local state, local controls, local dynamic models, and local

state and actuator constraints. Each ship is subject to local ocean wave distur-

bances. Each ship seeks a model-predictive-control solution to a local constrained

infinite-horizon optimal control problem formulated to minimize fuel consumption

while maintaining a reference course. Each ship’s dynamics are unknown to the

other, though it is assumed that the local cost functions and coupling constraints

are designed in comparable units.

Consider the case in which the ships become connected by cables with

length restrictions, i.e. for mid-sea refueling or other cargo exchange. These ca-

bles introduce a coupling constraint as the ships must not drift too far apart lest
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the cables break, or come too close together lest they collide. The local control

problems then become coupled due to this new constraint as both ships’ control

decisions affect the separation distance. The two ships must then cooperate to

maintain this constraint through limited communication of local information and

negotiation of control decisions; local performance and actuator constraints must

also be maintained. It would be prudent to require a more nimble ship to carry

out maneuvers to maintain the prescribed separation distance in response to ocean

wave disturbances, hence a global cost function is constructed as a sum of local

cost functions and the global objective becomes the minimization of total fuel con-

sumption while maintaining course. The functional form of others’ local models,

cost functions, and constraints are not locally used and communication bandwidth

is limited.

Network Optimization

In network resource assignment, we consider a network of n nodes, each

node having access to a local utility function. Each node has a local packet buffer

size (i.e. queue length in a router) which should not be exceeded – this is the

local constraint. The network has a total resource capacity which is shared by all

nodes – this is the coupling constraint. The goal of the n nodes is to maximize

total network utility while minimizing data traffic due to network node manage-

ment packets, while maintaining the local and coupling constraints – this is the

global optimization problem. The exchange of local information between nodes is

limited due to the network management communication bandwidth limit. Hence

information exchange is to be kept to a minimum as the nodes cooperate to solve

the global optimization problem.

Multiprocessor Computation

Multiple processors can be used to speed up certain parallelizable computa-

tions. The interprocess communication and the topology of connection introduce

limits to the achievable performance benefit over centralized, single-processor ap-

proaches [49, 14]. Deterministic a priori bounds on the communication complexity
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are required for the success of these designs. While the early works on systolic

arrays concentrated on computer clusters, more recent interest in parallelization

is driven by embedded systems, notably in Model Predictive Control [59], where

constrained optimization is the core operation.

4.1.4 Review of the Literature

Distributed optimization – in the context of both distributed control and

distributed network optimization – has recently received the attention of several

researchers. In the context of distributed networks, Nedić and others address the

design and analysis of algorithms for the solution of distributed optimization prob-

lems which are subject to convex constraints and convex cost functions that have

the structure (4.4) [96], [69], [77], [104], and [68]. Gossip algorithms [58], [77],

broadcast algorithms [68], and consensus algorithms [71], [69], [42], [36], and [5]

are among the algorithmic approaches taken to solve these distributed problems,

though the main thrust of these approaches is distributed computation, à la the

text [8]. The connection between the above algorithms and distributed compu-

tation is particularly evident in the paper [61], in which a gossip algorithm is

employed to find the optimal solution to an unconstrained, global optimization

problem; though the algorithm requires exchange of local cost functions to find

the optimal solution. Synchronicity of the information exchange between nodes

and delayed arrival of the information (or intermittent communication) [26], [77],

[68], [72] are also addressed by these algorithms, but these issues are not of present

concern.

In the vein of distributed computation, the above papers which consider

coupling constraints like (4.3), assume availability of these constraints to all par-

ticipants involved in solving the optimization problem. A distributed optimization

formulation which is less concerned with distributed computation and instead con-

siders limited information exchange and coupled constraints can be found in [46].

This recent paper addresses solution of a more general distributed optimization

problem than considered here; the coupling constraint is not separable, unlike

(4.3). Though, the algorithms discussed do not guarantee feasibility during itera-



77

tions and, in some cases, feasibility is not achieved at convergence. Our primary

goal is to ensure feasibility is maintained throughout iterations, hence our approach

has the added benefit to allow for early termination of iterations if necessary. Low

and Lapsley [60] also address distributed solution of a global optimization problem

with a coupling constraint but the formulation does not contain local constraints.

Consideration of local and coupling constraints at once is difficult; we later show

activity of local constraints at the global solution might necessitate excessive com-

munication in order for the nodes to cooperatively achieve the global solution.

Our focus, as previously stated, is the analysis of distributed solutions to

global constrained optimization problems in which we limit information exchange

between nodes. The recent paper [24] provides a step towards limited communi-

cations, as we define here, in the context of distributed control. The subsystems

considered (which are dynamically coupled and have coupled constraints like (4.3))

are restricted to communicate only reference trajectories and communication of

models, states, and cost functions is prohibited. The approach in [24] keeps infor-

mation content exchange to a minimum but requires tightening of local constraints

and a presumption that the subsystems have access to an auxiliary constraint set,

the satisfaction of which ensures the coupled constraint is met amongst all subsys-

tems. These restrictions result in reduction of the size of the feasible region and

hence the solution to the global optimization problem might not be achieved.

4.1.5 Commentary and Contributions

The information exchange which occurs between cooperating nodes is of

central importance to the distributed solution of global optimization problems. In

the non-distributed case, a number of numerically-focused algorithms are available

for computing the solution to the optimization problem (4.1)-(4.3) given complete

access to Jg, fi, gi, b, and ci [70]. The present chapter, like the paper [98], applies

numerical distributed optimization techniques; though we consider here coupling

constraints, which are absent from [98].

One possible solution to this problem involves nodes S2, . . . , Sn sharing

cost functions, local constraints, and coupling constraint functions with a single
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node, S1, and letting S1 solve the full-information problem; however, as we are

more interested in a limited-information-exchange setup, we refrain from sharing

local constraints and local cost functions, unless exchange of such information is

absolutely necessary to solve the global problem. We suggest that in some cases

the algorithms developed herein may require less data transfer to compute the

global solution than the full-information-exchange approach.

We present iterative algorithms which converge to the global solution; en-

suring feasibility of local and coupling constraints is the main challenge and hence

feasibility is the focus of all presented algorithms. We first evaluate global feasibil-

ity of solutions to locally-defined optimization problems which are based entirely

on information local to each node. Global feasibility of the resulting local solutions

implies a single-step computation of the global solution using only local informa-

tion; otherwise, the nodes proceed by executing a series of iterative algorithms,

the first of which comprises a distributed coordinate descent; the second algorithm

(which we term constraint negotiation for reasons which will become clear later)

executes steps similar to those of Binding Direction Method algorithms [70] and

contains a number of distributed line search subroutines for determining suitable

step size. We are motivated by the application of current state-of-the-art in numer-

ical optimization routines to our distributed information problem and the majority

of our results are extensions of these accepted approaches.

We pay particular attention to the information exchange required in each

of the algorithms. We would like avoid sharing of cost functions and local con-

straints, while limiting communication of cost function and constraint values. The

algorithms are developed in such a way as to limit communications and restrict

sharing unless absolutely required to solve the global problem. In some cases, local

constraint functions need to be shared in order to obtain the global solution; we

detail the conditions under which such information exchange is required.

The rest of the chapter is organized as follows. In Section 4.2, we provide

the full-information solution to the global solution and discuss properties of this

solution; these properties will be used to ascertain convergence of the distributed

algorithms. In Section 4.3 we present a series of algorithms which employ inter-
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node communication and local computation to enable local nodes to compute the

solution to the global problem, and present various results related to algorithm

properties. We conclude in Section 4.4.

4.2 Global Problem Solution Structure and

Properties

In this section we present the solution to the global constrained optimization

problem Pg. Our aim is to construct distributed algorithms which nodes S1, . . . , Sn

can employ to cooperatively achieve the global solution. We use properties of the

global solution to ascertain convergence of distributed algorithms to the global

solution.

As is standard in convex optimization, we assume the Slater condition holds

[6], [13].

Assumption 9 (Slater Condition). There exists a point (ū1, . . . , ūn) such that

n∑
i=1

fi(ūi) < b, (4.5)

gi(ūi) < ci, i = 1, . . . , n. (4.6)

That is, there exists a point which lies in the interior of the constraint set.

With strict convexity of Jg, fi, and gi, and given Assumption 9, there is a

unique (u∗1, . . . , u
∗
n) which solves the global problem Pg if and only if it is a Karush-

Kuhn-Tucker (KKT) point [6], [13], [70], [15]. That is, the following conditions

hold.

1. Feasibility. The point (u∗1, . . . , u
∗
n) satisfies

n∑
i=1

fi(u
∗
i ) ≤ b,

gi(u
∗
i ) ≤ ci, i = 1, . . . , n.
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2. Stationarity. There exist Lagrange multipliers λ0 ∈ Rmf , λi ∈ Rmgi , i =

1, . . . , n, satisfying

∇Ji(ui)|u∗i = −(∇fi(ui)|u∗i )
Tλ0

− (∇gi(ui)|u∗i )
Tλi, i = 1, . . . , n. (4.7)

3. Non-negativity. The multipliers λ0 ≥ 0, . . . , λn ≥ 0.

Furthermore, for a KKT point (u∗1, . . . , u
∗
n), the Slater condition of Assumption 9

implies strict complementarity of the multipliers [6] ,[13], [70], i.e., λTi (gi(u
∗
i )−ci) =

0 with λi = 0 when gi(u
∗
i ) < ci and λi ≥ 0 when gi(u

∗
i ) = ci.

We use these properties of the global solution to construct distributed al-

gorithms for establishing global optimality.

4.3 Distributed Optimization

In this section we pose and solve a series of local constrained optimization

subproblems in which S1, . . . , Sn use local information and limited communication

to compute the global solution; the intent is to compute the solution to the global

problem Pg (4.1) cooperatively.

The algorithms herein detail the local optimization problems and commu-

nication between local subsystems Si, i = 1, . . . , n. We establish connections

between the type of communicated information needed to solve the global problem

and properties of the global constraint sets.

4.3.1 When Local Optima Solve the Global Problem

Let u†i , i = 1, . . . , n be the optimum for isolated subproblem P iiso, repeated

from Section I-C, that is local to Si and recall this subproblem excludes the coupling

constraint set (4.3).

min
ui

Ji(ui),

subject to gi(ui) ≤ ci.
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Suppose S1 communicates vector f1(u†1) to S2. Let S2 compute vector f1(u†1) +

f2(u†2) and communicate this sum to S3. S3 appropriately incorporates local

vector f3(u†3) and communicates the resulting vector to S4. This compute-and-

communicate scheme continues until Sn has access to vector
∑n

i=1 fi(u
†
i ).

The following result establishes a simple test that allows Sn to evaluate

global optimality of the point (u†1, . . . , u
†
n).

Theorem 12. Let Assumption 9 hold. The point (u†1, . . . , u
†
n) is the unique solution

to the global problem Pg if and only if it is feasible with respect to the coupling

constraint set. That is,
n∑
i=1

fi(u
†
i ) ≤ b.

Furthermore, at this point there exist unique non-negative Lagrange multipliers

λg1 , . . . , λgn, satisfying

∇Ji(ui)|u†i = −(∇gi(ui)|u†i )
Tλgi , i = 1, . . . , n.

This result captures the case under which the global solution is obtained

by combining the n local solutions. Note the Lagrange multipliers from (4.7) for

the global problem Pg satisfy λ0 = 0 and λi = λgi , i = 1, . . . , n. That is, the

components of the coupling constraint set are either inactive or active with equal-

ity at the locally-constrained minimum of Jg, which is evident from the coupling

constraint set Lagrange multiplier λ0 = 0.

4.3.2 When Local Optima Are Infeasible: Coordinate De-

scent and Constraint Negotiation

Consider the case where
∑n

i=1 fi(u
†
i ) � b and hence the point (u†1, . . . , u

†
n)

does not solve the global problem, and make the following assumption.

Assumption 10 (Globally Feasible Point Availability). An initial globally feasible

solution (uf1 , . . . , u
f
n) is available.

The approach to determining such a solution is left for later study. Let S1

have access to uf1 , S2 have access to uf2 , and so forth for nodes S3 through Sn.
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With these decision variable values, we have

n∑
i=1

fi(u
f
i ) ≤ b,

gi(u
f
i ) ≤ ci, i = 1, . . . , n,

by feasibility and we identify the active rows of the vector coupling constraint set.

fa1 (uf1) + fa2 (uf2) + · · ·+ fan(ufn) = ba,

for some (possibly empty) vectors fai (ufi ) and vector ba. Make the following as-

sumption.

Assumption 11. For all sets of feasibly active coupling constraints, the gradients

∇fai (ui) are linearly independent.

Remark 7. This is a structural property of the constraint set, which eliminates

the possibility of linearly dependent constraints involving u1, . . . , un.

Suppose S1 communicates vector f1(uf1) to S2 and S2 computes f1(uf1) +

f2(uf2) and communicates this vector to S3. Continue this computation and com-

munication until Sn receives vectors
∑n−1

i=1 fi(u
f
i ) and computes vector

∑n
i=1 fi(u

f
i )

and communicates this vector to S1.

Consider one iteration of the following distributed coordinate descent algo-

rithm which starts from the feasible point (uf1 , . . . , u
f
n).

Algorithm 1. Distributed Coordinate Descent.

1. S1 computes ucd1 which satisfies1

minu1 J1(u1),

s.t. f1(u1) ≤ −
n∑
i=2

fi(u
f
i ) + b,

gn(u1) ≤ c1,

and communicates vector
∑n

i=2 fi(u
f
i ) + f1(ucd1 ) to S2.

1The notation ucd is chosen to reflect the value u which is computed using the coordinate
descent (CD) algorithm
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2. FOR i = 2 TO n-1

Si computes ucdi which satisfies

min
ui

Ji(ui),

s.t.

fi(ui) ≤ −
n∑

j=i+1

fj(u
f
j )−

i−1∑
j=1

fj(u
cd
j ) + b,

gi(ui) ≤ ci,

and communicates vector
∑n

j=i+1 fj(u
f
j ) +

∑i
j=1 fj(u

cd
j ) to Si+1.

3. Sn computes ucdn which satisfies

min
un

Jn(un),

s.t. fn(un) ≤ −
n−1∑
j=1

fj(u
cd
j ) + b,

gn(un) ≤ cn,

and communicates vector
∑n

j=1 fj(u
cd
j ) to S1.

At the end of a single iteration of Algorithm 1, node S1 has access to vectors∑n
j=1 fj(u

cd
j ) and

∑n
j=1 bj. We have the following result.

Lemma 4. The point (ucd1 , . . . , u
cd
n ) is globally feasible, satisfying (4.2) and (4.3).

Furthermore, Jg(u
cd
1 , . . . , u

cd
n ) ≤ Jg(u

f
1 , . . . , u

f
n) with equality holding if and only if

ucd1 = uf1 , . . . , u
cd
n = ufn.

Algorithm 1 describes a single iteration of a distributed coordinate descent

that starts at a globally feasible point and either produces another globally feasible

point that reduces the global cost or returns the starting point and the global cost

remains unchanged, at which point iterations can terminate. Nodes S1, . . . , Sn can

notify each other if their respective local costs are reduced in order to determine

whether to terminate or continue. The next result establishes convergence and

hence termination of Algorithm 1.
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Theorem 13. Subject to Assumptions 9 and 11, multiple iterations of Algorithm 1

yield a sequence of globally feasible points which converge.

Each iteration of Algorithm 1 requires each node Si to communicate a

single vector and solve an optimization problem. The algorithm does not require

explicit communication of the cost functions Ji, constraint functions fi, gi, or local

constraint vectors ci, i = 1, . . . , n.

Coordinate descent can be terminated after any number of iterations; con-

vergence is not required for our next results. Denote the terminating point of

coordinate descent by (ucd,∗1 , . . . , ucd,∗n ). The following result establishes properties

of this point.

Theorem 14. At (ucd,∗1 , . . . , ucd,∗n ) there exist nonempty, linearly independent ac-

tive constraint gradients ∇fai (ui), i = 1, . . . , n and vectors
∑n

i=1 f
a
i (ucd,∗i ) and ba

satisfying
n∑
i=1

fai (ucd,∗i ) = ba,

and Lagrange multipliers λui ≥ 0, i = 1, . . . , n, and λgui , i = 1, . . . , n, satisfying

∇Ji(ui)|ucd,∗i
= −(∇fi(ui)|ucd,∗i

)Tλui

− (∇gi(ui)|ucd,∗i
)Tλgui , i = 1, . . . , n.

Furthermore, (ucd,∗1 , . . . , ucd,∗n ) solves the global problem Pg if and only if λu1 =

λu2 = · · · = λun.

Proof. Unique non-negative Lagrange multipliers exist as ucd,∗1 , . . . , ucd,∗n are each

solutions to strictly convex inequality constrained optimization problems with cost

and constraint functions Ji, fi, gi, i = 1, . . . , n.

Now suppose the coupling constraint set
∑n

i=1 fi(u
cd,∗
i ) < b. Then by strict

complementarity as implied by Assumption 9, the Lagrange multipliers λu1 = · · · =
λun = 0. Thus we can write,

∇Ji(ui)|ucd,∗i
= −(∇gi(u)|ucd,∗i

)Tλgui , i = 1, . . . , n.
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But this implies ucd,∗1 = u†1, . . . , u
cd,∗
n = u†n which we already know are infeasible.

Thus the active set is nonempty.

We have yet to prove how to test optimality of the point (ucd,∗1 , . . . , ucd,∗n ).

Certainly if λu1 = · · · = λun = λ∗ ≥ 0 then

∇Jg(u1, . . . , un)|(ucd,∗1 ,...,ucd,∗n ) =


∇J1(u1)|ucd,∗1

...

∇Jn(un)|ucd,∗n

 ,

=


−(∇f1(u1)|ucd,∗1

)Tλ∗ − (∇g1(u1)|ucd,∗1
)Tλgu1

...

−(∇fn(un)|ucd,∗n
)Tλ∗ − (∇gn(un)|ucd,∗n

)Tλgun


so that (ucd,∗1 , . . . , ucd,∗n ) is a first-order KKT point of the global problem and hence

its unique solution. This gives us necessity.

Now let (ucd,∗1 , . . . , ucd,∗n ) solve the global problem and suppose λu 6= λv.

Write

∇Ji(ui)|ucd,∗i
= −(∇fi(ui)|ucd,∗i

)Tλui

− (∇gi(ui)|ucd,∗i
)Tλgui , i = 1, . . . , n.

But the global solution satisfies

∇Ji(ui)|ucd,∗i
= −(∇fi(ui)|ucd,∗i

)Tλ0

− (∇gi(ui)|ucd,∗i
)Tλi, i = 1, . . . , n.

with unique λj, j = 0, . . . , n which requires λ0 = λu1 = · · · = λun and λi = λgui ,

i = 1, . . . , n. This completes the proof.

The distributed coordinate descent algorithm terminates with a subset of

the coupling constraint set being active. Let Gi(x) = ∇Ji(ui)|x and Hi(x) =

∇2Ji(ui)|x, i = 1, . . . , n, and consider subproblems PSi , P ′Si , and P ′′Si . These
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subproblems will be employed by subsystems Si in Algorithm 2 which follows.

PSi : min
pi

[(
1

n− 1

∑
j 6=i

λTuj

)
∇fi(ui)|ucd,∗i

+Gi(u
cd,∗
i )T

]
pi +

1

2
pTi Hi(u

cd,∗
i )pi,

s.t. gi(u
cd,∗
i + pi) ≤ ci,

where λui , i = 1, . . . , n are vectors of Lagrange multipliers for Si corresponding to

the active coupling constraint set.

P ′Si : min
p1,...,pn

[(
1

n− 1

∑
j 6=i

λTuj

)
∇fi(ui)|ucd,∗i

+Gi(u
cd,∗
i )T

]
pi +

1

2
pTi Hi(u

cd,∗
i )pi,

s.t. gj(u
cd,∗
j + pj) ≤ cj, j = 1, . . . , n.

P ′′Si : min
pji

Ji(u
cd,∗
i + pji ),

s.t. gi(u
cd,∗
i + pji ) ≤ ci,

fi(u
cd,∗
i + pji ) = xj,

where xj will be appropriately defined in the algorithm.

In Algorithm 2 below, the Si negotiate a step within the active coupling con-

straint set described by fai and ba. We view the algorithm as a distributed version of

well-known Binding Direction Methods [70] which compute points along the active

constraint subspace that improve upon the starting point. The algorithm contains

six case statements which correspond to various outcomes of the initial steps. In

all but the first and fifth case, S1, . . . , Sn execute some form of a distributed line

search to find a step size α which yields a feasible and global-cost-reducing point.

Excluding the sixth case, the Si need not explicitly communicate constraint matri-

ces or cost functions. This makes the algorithm attractive for finding a distributed
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solution to a global optimization problem with a coupling constraint set. Before

we present the algorithm, define as functions of α, ucni (α) = u∗cd + αpi
2.

Algorithm 2. Constraint Negotiation.

1. (Lagrange Multiplier Exchange). S1 communicates vector λu1, corresponding

to the active constraints in the coupling constraint set, to S2 and S2 computes

λu1 + λu2 and passes the sum to S3. This sum-and-communicate scheme

continues until Sn computes
∑n−1

i=1 λui+λun. The resulting sum is then passed

around all the Si.

2. (Sj Move Proposal). Pick some j ∈ {1, . . . , n}. Subsystem Sj computes pj,

the solution to PSj . Sj then computes ∆J jj = Jj(u
cd,∗
j + αj0pj)− Jj(u

cd,∗
j ) for

some 0 < αj0 ≤ 1 and communicates vector faj (ucd,∗j + αj0pj) and scalars αj0

and ∆J jj to Sj+1 (or S1 if j = n). Call this subsystem Si.

3. (pj Proposal Evaluation). Si solves P ′′Si with xj := −faj (ucd,∗j + αj0pj) for

pji , computes ∆J ji = Ji(u
cd,∗
i + pji ) − Ji(u

cd,∗
i ) (set ∆J ji = ∞ if infeasible),

and communicates vector faj (ucd,∗j + αj0pj) + fai (ucd,∗i + pji ) and scalar ∆J ji

to subsystem Si+1. Subsystem Si+1 then solves P ′′Si+1
with xj := faj (ucd,∗j +

αj0pj) + fai (ucd,∗i + pji ) and communicates appropriate vectors to Si+2. This

procedure repeats until subsystem Sj receives information from Sj−1.

4. Steps 2 to 3 repeat until each subsystem Sj, computes pj from Step 2 and all

other subsystems have responded by accomplishing Step 3 for each pj.

5. (pj Direction Selection). Pick j∗ such that
∑n

i=1 ∆J ji is smallest. Then pj∗

is chosen as the direction to move, and all other subsystems move pj
∗

i as

computed from Step 3.

Case 1.

Conditions:

2The notation ucn is chosen to reflect the value u which is computed using the constraint
negotiation (CN) algorithm
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• Local feasibility: vectors pj
∗

i , i = 1, . . . , n, satisfying the problem in

Step 3 are found.

• Global feasibility:
∑

i 6=j∗ fi(u
cd,∗
i + pj

∗

i ) + fj∗(u
cd,∗
j∗ + αj

∗

0 pj∗) ≤ b.

• Decreasing:
∑n

i=1 ∆J j
∗

i < 0.

Run coordinate descent Algorithm 1 to ensure positivity of Lagrange multi-

pliers and then proceed to subsequent iteration of Algorithm 2.

Case 2.

Conditions:

• Local feasibility.

• Global feasibility.

• Non-decreasing:
∑n

i=1 ∆J j
∗

i ≥ 0 with pj∗ 6= 0.

α∗-Step: Distributed line search to compute 0 < α∗ < αj
∗

0 such that

1. (ucn1 , . . . , u
cn
n ) is feasible,

2.
∑n

i=1 ∆J j
∗

i < 0, and

3. the Lagrange multipliers for the coupling constraint at this new point

λui ≥ 0, i = 1, . . . , n. Then proceed with subsequent iteration.

Case 3.

Conditions:

• Local feasibility.

• Global infeasibility:
∑

i 6=j∗ fi(u
cd,∗
i + pj

∗

i ) + fj∗(u
cd,∗
j∗ + αj

∗

0 pj∗) � b.

• Decreasing.

αmax-Step: Distributed computation of 0 < αj
∗
max < αj

∗

0 such that

1.
∑

i 6=j∗ fi(u
cd,∗
i + pj

∗

i ) + fj∗(u
cd,∗
j∗ + αj

∗
maxpj∗) ≤ b,

2. the active set vectors fai and ba increase by a single row, and

3. the Lagrange multipliers at this new point λui ≥ 0, i = 1, . . . , n.
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Case 4.

Conditions:

• Local feasibility.

• Global infeasibility.

• Non-decreasing.

α̂-Step: Execute α∗-Step and αmax-Step. Compute α̂j
∗

= min{αj∗max, α∗}
that is globally feasible and decreasing. If α̂ = αmax then the active constraint

set increases by a single constraint.

Case 5.

Conditions:

• Stationarity: The solution pj = 0 to PSj , ∀j = 1, . . . , n, yielding∑n
i=1 ∆J ji = 0.

Iterations terminate; global solution achieved.

Case 6.

Conditions:

• Local infeasibility: The subproblem in Step 3 is infeasible for all pi

from Step 2, for given αi0.

Case-6 Steps: Distributed line search to compute 0 ≤ α+ < α0 such that

the subproblem in Step 3 is feasible. If α+ 6= 0 then proceed to one of Cases

1-5 with αj
∗

0 = α+. If α+ = 0 then execute the following steps.

1. Si, i = 2, . . . , n share local constraint functions gi and communicate

vectors ucd,∗i and ci to S1

2. S1 computes the solution p1 to P ′S1

3. S1 computes ∆J1 = J1(ucd,∗1 + α1
0p1)− Ji(ucd,∗1 ) for some 0 < α1

0 ≤ 1.
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This solution p1 guarantees feasibility of the Step 3 subproblem, at which point

all other Si can solve the Step 3 subproblem for given p1 and, subsequently,

Cases 1-5 can be evaluated.

Denote the resulting feasible, decreasing point of Algorithm 3 by

(ucn,∗1 , . . . , ucn,∗n ). Start a subsequent iteration of Algorithm 2 with this point as

the initial condition. We are now ready to state our main result.

Theorem 15. Subject to Assumptions 9 and 11, successive iterations of Algo-

rithm 2 result in a sequence of globally feasible points which converge to the global

solution. ∇∇∇

In solving subproblem PSi in Step 2 of Algorithm 2, node Si aims to find a

direction pi that improves its local cost while noting the effect of pi on the other

nodes. That is, we interpret the quantity 1
n−1

∑
j 6=i λuj as the average, first-order

effect of a move pi affecting the other subsystems through the coupled constraint.

This allows Si to select a global-cost-reducing move pi, to first order. Furthermore,

when the solution to PSi , pi = 0, ∀i, we have 1
n−1

∑
j 6=i λuj yields the same value

for all i.

4.3.3 Sharing and Communication

Algorithms 1-2 require inter-node communication to compute a solution to

the global problem Pg. Algorithm 1 and Cases 1-5 of Algorithm 2 do not require

explicit sharing of local cost functions or local constraint matrices. These cases

correspond to situations in which nodes’ local constraints are inactive at the global

solution. In particular, these cases capture problems in which the nodes do not

have local constraints. Information exchange for these cases may amount to less

information than would be exchanged were explicit sharing of constraint and cost

functions done up front. Thus we have identified distributed algorithms which may

reduce the necessary quantity of information exchange.

The issue identified with Case 6 of Algorithm 2 is that there is no prescribed

upper limit on the communication required to reach a feasible update within one
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iterative cycle of the complete set of nodes. This could be manifested as a require-

ment for the sharing of local constraint functions or through repeated calls for

local function evaluation and communication, without a guarantee of completion

in bounded time. This occurs when local constraints and the coupling constraint

both are active at the global optimum. In light of one of the motivating distributed

control problem, Case 6 captures situations in which local actuators saturate or

maximum slew-rate limits are engaged at the optimum; these local constraints then

become bound to the coupling constraints thus necessitating additional informa-

tion exchange. We would of course prefer to achieve the global solution without

such sharing of constraint functions. But this may not be possible. Case 6 can

occur due solely to the coupling constraint and without the local constraints being

active at the global optimum if Assumption 11 is relaxed, i.e. when a coupling

constraint set arises where any of fai , i = 1, . . . , n, is not linearly independent.

4.4 Conclusions and Future Work

In this chapter we present distributed algorithms which enable n nodes to

solve a constrained global optimization problem cooperatively. The n nodes have

independent cost functions and independent local constraints but are coupled in

the global optimization via a coupling constraint set. We impose that each node

only has access to its own cost function, local constraints, a portion of the coupling

constraint, and structure of the global cost function; limited communications are

allowed.

The case of most interest occurs when solutions to local optimization prob-

lems, based only on local cost functions and constraints, do not satisfy the coupling

constraint set. This corresponds to situations in which the coupling constraint set

is active at the global solution. These situations are important to understand,

as distributed control problems which admit disturbances might see persistently

active coupling constraints and hence necessitate cooperation and negotiation. We

present two algorithms; the first algorithm is a distributed version of familiar co-

ordinate descent algorithms. The point at which the coordinate descent algorithm
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terminates initializes the second algorithm which resembles a distributed Binding

Direction Method and employs distributed line search methods throughout. We

have identified conditions under which the nodes do need to communicate local

constraint functions but explicit communication of cost functions is not neces-

sary for the considered class of problems. Rather, communication is limited to

components of the coupling constraint, as well as Lagrange multipliers which are

employed for coordinating moves along coupling constraint set subspaces.

The algorithms have been derived with limited communication in mind.

Our interest is in performing a distributed computation of the global solution

without the participating subsystems needing explicit knowledge of other mem-

bers’ models, constraints, cost functions, and state. Referring back to our moti-

vating example of two ships, we would like to handle cases where the ships are of

different type and hence have different dynamics and different local constraints,

and communication of such local information becomes a burden.

Throughout our developments and results, we have supposed availability of

an initial globally feasible point. Future work may address distributed computation

of such a point, under the imposition of limited communication considered here.

We also intend to extend these results to problems in which the communication

channel is noisy.

This chapter, in part, has been submitted for publication of the material as

it may appear in the following.

D.J. Riggs and R.R. Bitmead. Distributed optimization with coupling con-

straints: algorithms and information exchange requirements. Pre-print sub-

mitted to IEEE Transactions on Automatic Control.

This chapter, in part, is a reprint of the material as it appears in the following,

which is copyright IEEE.

D.J. Riggs and R.R. Bitmead. Negotiation of coupled constraints in coordi-

nated vehicles. In Proceedings of the 49th IEEE Conference on Decision and

Control, pages 479–484, Atlanta, GA, December 2010.

The dissertation author was the primary investigator and author of these papers;

Professor Bitmead supervised the research.



Chapter 5

Conclusions and Future Works

Hasta la vista, baby.

— The Terminator

In this dissertation, we consider a control application to a production pulsed

light source, a theoretical study of performance bounds for nonlinear model pre-

dictive control (NMPC), and the development of an algorithm which several nodes

can employ to compute cooperatively the distributed solution of a global optimiza-

tion problem. The studies are distinct, and the developments in each chapter are

mutually independent, though the framework of optimal control is common to the

three problems we address.

The optimal control framework provides a plethora of tools, which we have

employed to establish new results: aliased periodic disturbance rejection in the

light source application using estimation and minimum-variance control concepts,

monotonicity of optimal value functions in horizon length for establishing quantifi-

able performance bounds in NMPC, and Lagrange multipliers for the negotiation

and determination of the optimal solution to a global optimization problem, as

computed in a distributed manner.
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5.1 Chapter Summaries and Future Works

5.1.1 Chapter 2: Light Source Application

In Chapter 2, we develop and implement an estimator/controller for a pro-

duction pulsed light source in order to reject aliased periodic disturbances. The new

control design is necessitated by light source non-compliance to new performance

requirements. The new requirements are mandated by semiconductor chipmakers,

in order that light source pulse properties are provided which match decrease in

critical dimensions size, which is driven by the semiconductor technology roadmap.

The designed estimator/controller generalizes continuous-discrete Kalman filtering

ideas to a multi-rate setting to match the variable data rate of the light source.

A regularized-minimum-variance, full-state feedback controller is designed which

rejects the aliased disturbances. Design changes are also made to light source hard-

ware electronics in order to speed up actuator response. The resultant controller

provides performance levels which meet chipmaker requirements, and we show the

achieved performance is close to optimal for the hardware.

As the semiconductor technology roadmap dictates further decrease in crit-

ical dimension, light source hardware will need to undergo significant technology

advancements. New light source hardware is currently under development which

generates soft x-rays, with a wavelength of approximately 13.5nm. This new light

source technology is expected to be used in chipmaking for the next several crit-

ical dimension nodes. Concurrent with hardware development, new software and

algorithm development needs to occur. Application of high performance control

algorithms as addressed in this dissertation will need to be researched, developed,

and implemented on the next generation of production light sources.

5.1.2 Chapter 3: Nonlinear Model Predictive Control

In Chapter 3, we investigate the relationship between NMPC design el-

ements which appear in a stochastic, constrained, finite-horizon optimal control

problem (horizon, state constraints, stage cost, terminal cost, discount factor) and

feasibility, stability, and performance bounds. Theoreticians rarely consider the
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performance question for nonlinear systems. This motivates our developments.

To our knowledge, we are the first to consider the performance question for sys-

tems with stochastic disturbances and persistently-active constraints. We employ

topological analysis of feasibility and recursive feasibility of NMPC to establish ex-

istence of bounds on the state of the stochastic system. Generally, existence of state

bounds is accomplished via the prescription of a stage cost and the employment

of input-to-state stability (ISS) analysis; our results for existence of state bounds

do not require specification of a cost function. We further the state bound re-

sults by providing a quantification for performance bounds. We use monotonicity

of the finite-horizon optimal value function in horizon to establish these perfor-

mance bounds. We investigate both monotonically-increasing and monotonically-

decreasing value functions in horizon and analyze the role of the discount factor,

horizon length, and disturbance size on the achieved performance bounds.

Our study offers preliminary insight into the difficulties which might arise in

establishing performance bounds for NMPC controllers. Further work is required

in understanding the assumptions which are required to yield our present results.

We postulate that we have provided a framework which is sufficient for the analy-

sis and relaxing of key assumptions. In particular, further work is needed in three

areas. The first is robustness of the NMPC controller to modeling errors, which is

important to consider in concert with the analysis and development system identi-

fication tools and modeling error bounds. The second area which requires attention

is the incorporation of optimal state estimates for NMPC full-state feedback, and

the corresponding analysis of performance bounds when state estimation errors are

present. Lastly, the performance bounds we present are not proven to be tight.

Tight performance bounds and the corresponding analysis and insight into con-

nections between these bounds and the NMPC design elements would prove useful

to industrial control engineers who implement and operate NMPC controllers in

practice.
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5.1.3 Chapter 4: Distributed Optimization

In Chapter 4, we develop an algorithm for computing a solution to a global

optimization problem in a distributed manner. We assert an information archi-

tecture which sees local nodes having access to local cost functions and local con-

straints. This allows each node to solve its own local optimization problem for

its own local minimizers. The nodes become coupled through the prescription of

a global cost function which is composed as a sum of local cost functions and a

coupling constraint which is a function of all nodes’ minimizers. The nodes must

cooperate and communicate to solve the resulting global optimization problem.

We are motivated by limited communications, which are important in large-scale

optimization problems, i.e. those which occur in parallel processing or coordinated

vehicles. We identify several algorithms and their corresponding information ex-

change requirements and establish cases in which unbounded communication might

be required.

The next generation of MPC challenges arise in implementing MPC con-

trollers in embedded systems. Fast and real-time, i.e. deterministic, computa-

tional performance is required in the embedded applications of interest. In or-

der to achieve the required computation speed, parallel processing will likely be

employed. This requires algorithms which can solve NMPC optimization prob-

lems in a distributed manner with deterministic computation times. This requires

a known (and preferably small) bound on the inter-processor communication re-

quired to solve the optimization problem of interest. Our results are preliminary in

the sense that we establish information content required to solve these distributed

problems; we do not provide explicit bounds for communications. Further work

needs to occur to establish these bounds.
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[77] S. Ram, A. Nedić, and V. Veeravalli. Asynchronous gossip algorithms for
stochastic optimization. In Proceedings of the 48th Conference on Decision
and Control, 2009 held jointly with the 2009 28th Chinese Control Confer-
ence, pages 3581–3586, December 2009.
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