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ABSTRACT OF THE DISSERTATION 

 

Advancing Label Free Detection Techniques Through Surface Based Sensing and 

Machine Learning 

by  

Daniel David Stuart 

Doctor of Philosophy, Graduate Program in Chemistry  

University of California, Riverside, 2023  

Dr. Quan Cheng, Chairperson 

 

High-performing sensors have played a pivotal role in expanding our understanding 

of biological systems, disease diagnosis, environmental monitoring, and national security. 

The technical capability they provide has enabled us to obtain in-depth information and 

insights towards improving human health. One area of sensing that exemplifies this 

progress is the development of label free sensors which allow direct analysis of molecular 

interactions. Among these methods surface plasmon resonance (SPR) has emerged as a 

powerful, real-time detection technique for studies of  biological interactions,  drug 

discovery, and other important aspects that lead to new disease diagnosis. Through the 

implementation of new materials and methods SPR and other label-free sensors have 

expanded the range of analytes tested. This Dissertation aims to establish improvements in 

materials and methodologies through technology advancement for solving current sensor 

limitations. The work focuses on enhancing sensing signal while limiting the impact of 
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nonspecific interactions on label-free methods, providing expanded molecular identity 

information, and overcoming challenges encountered when detecting small molecules.  

Chapters 2, 3, and 4 demonstrate advancements in unique biomimetic surfaces to 

enable the exploration of new biological systems as well as block nonspecific interactions. 

Chapter 2 focuses on a tethered membrane system to promote incorporation of relevant 

constituents into lipid bilayers without  compromising membrane mobility property  and 

drug delivery interactions. Chapter 3 employs a charged membrane to suppress nonspecific 

interactions and explores the working mechanism. Chapter 4 expands the capabilities of 

label-free sensing systems through development of curved membrane platforms that 

mitigate the decay limits through modeling of lipid distribution in vesicles. Chapter 5 

exploits the plasmonic properties of SPR chips to enhance signals in matrix assisted laser 

desorption ionization mass spectrometry (MALDI-MS) , which is further facilitated with 

development of machine learning models to identify bacterial species. In Chapter 6, the 

limitation of small molecule analysis with SPR is tackled by taking advantage of pressure 

effects to provide specific gas sensing.  

Each of these Chapters provides novel advancements in sensing capabilities by 

addressing performance-impairing limitations in label-free sensors. Research goals are 

achieved both from improvements to SPR systems and incorporation of other 

methodologies to augment SPR results. 
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Chapter 1: Introduction and Background 

1.1 Introduction 

The goal of this work is to develop and validate new powerful analytical techniques to 

improve human life by enhancing sensing capabilities. For our species’ entire existence, 

we have been struggling against diseases from within our own bodies (cancer and 

autoimmune disease) or from outside forces (bacterial and viral infections). It was only 

within the last century that we have been able to begin identifying and treating disease, but 

this is just the beginning. The recent COVID-19 pandemic has made it clear how quickly 

new threats can emerge and has shown how devastating they can be. The emergence and 

expansion of antibiotic resistant bacteria has also impacted our society by millions of 

deaths each year. Therefore, monitoring disease is of key importance to ensure they do not 

get out of hand. This requires new tools, a portion of which will be discussed in the coming 

chapters. 

The focus of this chapter is to illustrate and review the subject areas that form the 

backbone of the research demonstrated in the following chapters. The primary area of 

discussion will comprise the importance and technical aspects of surface-based sensing 

applications. With subcategories dedicated to expanding on surface-based techniques and 

their function as or in support of sensors. These subcategories will include surface plasmon 

resonance (SPR), matrix assisted laser desorption ionization (MALDI), fluorescence 

imaging, quartz crystal microbalance (QCM), and their application in the development of 

various sensors. Monte Carlo and machine learning methodologies will also be discussed 
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in regard to their usage in enabling data analysis of the complex data from these surface-

based sensors. 

1.2 Principle of Sensors 

Sensors are fundamental to the operation of our societal safety structures by providing 

information crucial for identifying emerging dangers in areas such as disease and human 

health1-3, environmental monitoring4, 5, infrastructure inspection6, 7, and many other aspects 

of our lives.8 In short, sensors enable observation and identification of a target compound 

or stimuli through a combination of three key components. This starts with selection of the 

sensor target(s), followed by a mechanism of transduction that indicates target recognition 

or change, and finally ends with communication of said recognition to the user. The 

recognition event is identified based on induced electromagnetic field disruptions which 

depend on the sensor target. These disruptions can be measured through electrical potential 

(voltage), flow (current), frequency, photon absorption, transmittance, emission, or a 

combination of these. For example, fluorescence is a combination of photon absorption 

Figure 1.1. Scheme demonstrating the translation of sensor signal to a display through a 

signal transducer and then application of data processing to employ that data for analyte 

classification. 



3 
 

and emission that is employed to detect presence of fluorochrome molecules that can be 

linked to the presence of targets of interest.   

Sensors can be used qualitatively for simply recognition, or quantitatively for 

identification of presence and magnitude of the target. Many of these sensors focus on 

improving human health through monitoring of biomarkers, biological molecules causing 

or resulting from a specific disease, these sensors are known as biosensors.1 While other 

sensors monitor nonbiological molecules that can impact our health to help ensure safety. 

These biological molecule targets can range from simple molecules like sugars9, lipids10, 

11, metabolites12, nucleic acids13 and amino acids14 to complex molecules proteins15, 16, 

antibodies17, and whole viruses18 or even cells.19 Examples of commonly used biological 

sensors are the glucose sensor which relies on a quantitative electrochemical signal 

produced by reaction between glucose oxidase and glucose20 or qualitative SARS-COV-2 

test kits based on a lateral flow assay generating colored bands through antibody mediated 

binding to SARS-COV-2 antigens.21 While nonbiological targets can extend from 

individual atoms or small molecules to large particle networks. With the most common 

example of nonbiological sensors being smoke detectors which alert us to small particle 

build up in the air via a reduction in current flow or reflection of light by these particles.22 

Sensors can be split into labeled and label-free methodologies. Labeled techniques 

incorporate non-native secondary components that enable signal generation. Enzyme 

linked immunosorbent assay (ELISA)23, 24 is a primary example of this sensor type as it 

includes a secondary antibody that binds to the initial recognition antibody. This secondary 

antibody has an enzyme linked to it, commonly horseradish peroxidase (HRP), that 
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oxidizes small molecule substrates added to the solution resulting in a color change or light 

production. As one HRP can catalyze many substrates, signal amplification is provided that 

enables highly sensitive detection to be achieved, however this significantly complicates 

the sensor and does not directly measure the recognition interaction. Other examples of 

labeled techniques include fluorescence imaging methods where fluorophore active labels 

are covalently linked or incorporated into target molecules to enable tracking of binding 

events via methods such as anisotropy25, 26 or resonance energy transfer.27, 28 

Label-free techniques ensure that the recognition interaction is being measured without 

secondary components. This is particularly important when working with small molecule 

targets as any included tags have a greater impact on the system based on their size in 

relation to the target molecule. Commonly utilized label-free techniques are field-effect 

transistors, quartz crystal microbalance (QCM), and optical techniques like whispering 

gallery mode and surface plasmon resonance (SPR) sensors. In label-free techniques only 

the analyte binding interaction is being measured which ensures that signal is consistent 

with the naturally occurring system as inclusion of tagged molecules can alter these binding 

interactions. Label-free analysis also enables signal to be obtained quickly in real-time as 

the interactions in question take place. However, label-free techniques still have challenges 

to be overcome, notably nonspecific interactions and surface fouling can have profound 

impacts on sensor performance and reproducibility. Therefore, methodologies to limit or 

account for these effects are of utmost importance and have been extensively investigated. 
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1.3 Surface Plasmon Resonance Sensor Theory 

One of the primary label free techniques utilized in biological sensor development is 

surface plasmon resonance, a surface-based sensing tool.29, 30 In short, the principle behind 

SPR is that, for plasmonic surfaces, any changes within the nanoscale region above the 

material have an impact on photon matching conditions thus changing the “SPR angle” 

which can be tracked to monitor these binding events. While signal is easily analyzed the 

physical properties behind SPR spectroscopy are significantly more complex due to their 

reliance on a network of optical relationships. As SPR is a fundamental technique utilized 

in the studies described in several of the following chapters these optical relationships will 

be discussed in depth. 

1.3.1 Evanescent Field Excitement  

When discussing surface plasmon resonance a major component is the excitation of an 

evanescent field upon plasmonic substrates.29 This photon absorption and subsequent 

evanescent field excitation at metal surfaces is predominantly investigated in its total 

internal reflection (TIR) mode but can also occur in transmission modes from light 

perpendicular to the surface.31 This plasmonic coupling also has various uses in enhancing 

surface sensitivity of other spectroscopic techniques notably; surface enhanced Raman 

scattering (SERS)32, metal enhanced fluorescence33, plasmon enhanced infrared 

spectroscopy34 and second harmonic generation35. Our methodologies rely on evanescent 

field excitation in the commonly utilized TIR mode where incident photons, above a 

critical angle θ𝑐, passing from one medium n1 to another of different reactive index n2 are 
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completely reflected instead of transmitted or refracted. Our current understanding of TIR 

stems from the human fascination with light and its phenomena that has driven scientists 

to strive to understand and utilize its refractive properties for thousands of years. With early 

explanations of refraction provided by Ptolemy, Ibn Sahl, and Ibn al-Haytham36 giving way 

to Willebrord Snellius/Christiaan Huygens37 and Rene Descartes38 independently deriving 

the mathematics describing the TIR effect that enables my work. The critical angle at which 

the phenomenon of total internal reflection, that has fascinated so many scientists before 

me, occurs is described by the law of refraction (Snell’s Law) as: 

 θ𝑐 = arcsin (
𝑛2

𝑛1

) (1.1) 

TIR is utilized for many purposes including binoculars, periscopes, telescopes, and fiber 

optic cables to transmit optical information. However, where my work begins to diverge 

from Descartes and Snell is when a thin noble metal film, commonly gold, is coated on the 

𝑛1 material. Where now at angles above θ𝑐 the TIR is no longer complete, as shown in 

Figure 1.2. Due to some of the incident photons being absorbed by the metal and inducing 

oscillation of electrons at the surface that generate an evanescent field directly adjacent to 

Figure 1.2. Refraction and reflection of light (a), total internal reflection at the critical 

angle (b), and evanescent field excitation above the critical angle (c). 
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the surface. This evanescent field extends into the second medium, 𝑛2, where it decays 

exponentially with distance from the metal, this field can be represented as a wave vector 

parallel to the 𝑛1/𝑛2 boundary: 

 𝑘𝑒𝑣 =
𝜔

𝑐
√𝜀𝑝𝑠𝑖𝑛θ  (1.2) 

Here components ω and c correspond to the angular frequency of incident light and speed 

of light in a vacuum respectively. The wave vector equation can be modified based on these 

components’ relationship with wavelength, 2πc = λω, to instead depend on the wavelength 

of incident light: 

 𝑘𝑒𝑣 =
2𝜋

𝜆
√𝜀𝑝𝑠𝑖𝑛θ  (1.3) 

This can be further simplified when in non-dispersive media as refractive index is 

equivalent to the square root of the permittivity dielectric constant, εp, resulting in a final 

equation dependent on refractive index: 

 𝑘𝑒𝑣 =
2𝜋

𝜆
𝑛𝑠𝑖𝑛θ  (1.4) 

As the critical angle is dependent on n2, any changes in refractive index within the range 

of the evanescent field will have an impact on the coupling conditions necessary for 

optimal photon absorption. When modeling a semi-infinite system this range or penetration 

depth extends based on the permittivity constant for each medium ε1 and ε2 respectively as skin 

depth, 𝑘𝑖
39: 

 
𝑘𝑖 =

𝜔

𝑐
√

−ε𝑖
2

ε1+ε2
   (1.5) 
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Thus, as shown by Abbas et al., for a commonly utilized gold substrate with 648 nm 

incident light the penetration depth is 191 nm in water and 351 nm in air40. This penetration 

is fundamental to enabling SPR sensing but its range limits this sensing to thin surface 

films. 

1.3.2 Surface Plasmon Polaritons 

As previously mentioned, when metal surfaces are incorporated into TIR setups a 

portion of incident photons are absorbed instead of reflected resulting in an evanescent 

field. This field is described as a surface plasmon polariton (SPP), which is an 

electromagnetic wave that travels along the interface between a metal and a dielectric as 

shown in Figure 1.3. Where the dielectric can be any other transparent solid material, liquid 

solution, or gaseous mixture. These polaritons are produced through energy from incident 

photons or electrons being transferred to the bulk plasma of the metal resulting in electron 

density oscillations. This relationship can be predicted through Maxwells equations with 

first description of the theory in 1957 by Ritchie41 and subsequent experimental 

verification, by Powell et al., two years later42. This work demonstrated how energy 

transfer from incident photons to the metal layer would result in a distinct decrease in 

reflected light intensity. When scanning through angles of incidence higher than the critical 

TIR angle a clear intensity dip can be observed. This plasmonic behavior can be modeled 

through application of multilayer Fresnel equations43, 44 with the inclusion of the real (n) 

and imaginary (k) components of refractive index, for the plasmonic metal used. For a two-
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layer system the reflectivity dip can be predicted through two of these Fresnel equations, 

for reflectance of s and p-polarized light respectively: 

 𝑟𝑠 =
𝑛1𝑐𝑜𝑠𝜃𝑖−𝑛2𝑐𝑜𝑠𝜃𝑡

𝑛1𝑐𝑜𝑠𝜃𝑖+𝑛2𝑐𝑜𝑠𝜃𝑡
  (1.6) 

 𝑟𝑝 =
𝑛2𝑐𝑜𝑠𝜃𝑖−𝑛1𝑐𝑜𝑠𝜃𝑡

𝑛2𝑐𝑜𝑠𝜃𝑖+𝑛1𝑐𝑜𝑠𝜃𝑡
  (1.7) 

However, for energy transfer to occur photons and SPPs must have equal frequency and 

momentum therefore a coupling medium is required to overcome dispersion differences. 

This is commonly achieved through a prism positioned flush to the metal surface in a 

formation known as the Kretschmann configuration (fig).45 This system can be expressed 

through a significantly more complex equation that combines a characteristic matrix from 

Maxwell’s equations of the layered system and the above Fresnel equations.46 As such, 

software packages, like WinSpall, are commonly utilized to model expected reflectivity 

Figure 1.3. Illustration of surface plasmon polariton propagation with axes z and x 

representing the penetration depth (equation 1.5) and propagation distance (on the order 

of micrometers) respectively. 
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spectra for these multilayer systems. Within these Fresnel equations n1 and n2 correspond 

to the complex refractive index, n = n + ik, of the two materials where n and k are typically 

derived from the Lorentz-Drude model of electrical conduction. Where, the reflectivity of 

a thin material ignorant of incident angle is described by: 

 𝑅 =
(𝑛−1)2+𝑘2

(𝑛+1)2+𝑘2
  (1.8) 

These n and k values rely on the relative permittivity εr and the relative permeability μr of 

the material in question. However, as most of the metals employed in plasmonics are non-

magnetic their permeability is μr ≈ 1, resulting in the complex refractive index depending 

solely on the materials permittivity: 

 

𝑛 =
√√ε𝑟

2+ɛ𝑖
2+ε𝑟

2
  

(1.9) 

 

𝑘 = √√ε𝑟
2+ɛ𝑖

2−ε𝑟

2
  

(1.10) 

When examining permittivity, it is derived from the metal’s plasma oscillation ωp and 

damping frequency Γ as well as the frequency of incident light ω and can be split into real 

ε𝑟 and imaginary ε𝑖 parts: 

 ε𝑟 = 1 −
ω𝑝

2

ω2+Γ2  (1.11) 

 
ε𝑖 = 1 −

ω𝑝
2Γ

ω(ω2 + Γ2)
 (1.12) 
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Where if electron motion is ignored the plasma oscillation can be described based on the 

number density of electrons 𝑛e, the charge 𝑒 and effective mass 𝑚∗ of an electron, and the 

vacuum permittivity ε0: 

 ω𝑝 = √
𝑛𝑒𝑒2

𝑚∗ε0
  (1.13) 

Within this the vacuum permittivity can be defined numerically based on the speed of light 

in a vacuum c and the approximate value for vacuum permeability μ0:  

 ε0 =
1

μ0𝑐2
≈ 8.85419 x 10−12

𝐹

𝑚
 (1.14) 

The number density of a selected metal can be numerically expressed via Avogadro’s 

constant NA, the density of the metal 𝑝𝑚, its molar mass M, and the number of free electrons 

𝑍. As gold, a commonly utilized plasmonic metal, is a monovalent metal its number of free 

electrons is 1, resulting in a number density of: 

 𝑛𝑒 =
𝑁𝐴𝑍𝑝𝑚

𝑀
= 5.901 x 1028 𝑒−

𝑚3  (1.15) 

Based on this information and further experimental work, Olmon et al. determine the 

plasma oscillation (ωp) of an evaporated gold substrate to be 8.5 ± 0.5 eV.47 

1.3.3 Surface Plasmon Resonance Spectroscopy 

As previously mentioned, when photons incident to a metal surface are appropriately 

coupled so that their frequency and momentum match that of the SPP, their energy is 

absorbed leading to a dip in intensity of reflected light. Mathematically this relationship is 
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represented through comparison of the wave vector of the incident photon with that of the 

SPP 𝑘𝑠𝑝𝑝 derived from maxwell’s equations: 

 𝑘𝑠𝑝𝑝 =
ω

𝑐
√

ε1ε2

ε1+ε2
  (1.16) 

Where ε1 and ε2, correspond to the permittivity of the metal and dielectric respectively. 

Therefore, when refractive index changes occur within the skin depth of our SPP they 

change its matching condition with our incident photons shifting the angle or wavelength 

at which optimal absorption occurs. This shift plotted versus time constitutes the basis of 

SPR spectroscopy, enabling minute refractive index changes to be tracked in real time. 

In practice this is predominantly achieved utilizing the Kretschmann configuration 

(Figure 1.4), which was first conceived in 1968. Here a thin plasmonic film is placed in 

Figure 1.4. Schematic of surface plasmon polariton excitation using a dove prism in the 

Kretschmann configuration. With polaritons penetrating into the dielectric and propagating 

along the metal surface. 
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contact with a prism, to enable photon coupling, and an analyte of choice. This system 

makes up the vast majority of commercialized SPR spectroscopy instrumentation and is 

commonly paired with a laser or LED source. This light source is then introduced through 

the prism and scanned either angularly using a 650-700 nm light source or across a 

wavelength range using white light. For angular based systems a range of angles are 

achieved either through physical rotation or via an array of photodiodes at fixed output 

angles from the system. SPR spectroscopy can also be achieved through the 

implementation of waveguide materials in fiber optic SPR48, 49. This provides advantages 

based on the ability to easily introduce the fiber optic cable into the sample of choice. 

However, consistency is difficult to maintain as any movements of the cable alter the light 

path and therefore the SPR response.  

Further, the SPR evanescent field can couple with other plasmonic materials within its 

penetration depth. This is particularly distinct with nanostructures where the whole 

material lies within the evanescent field, in these cases a surface plasmon localized to the 

nanoparticle is excited and oscillates between edges of the material. This process coined as 

localized surface plasmon resonance (LSPR)50 can also be utilized in various other 

configurations beyond TIR but is outside the scope of this work. 

1.4 Sensing with SPR Spectroscopy Systems: Challenges and Solutions 

For SPR spectroscopy instrumentation the resulting data of SPR shift versus time is 

known as a sensorgram and enables the visualization of surface binding events. While the 

fundamentals of how SPR spectroscopy systems work have been elucidated in the previous 
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sections when moving to actual analysis of surface binding events there are challenges that 

arise. These challenges and avenues to resolve them will be discussed in this section.  

1.4.1 SPR Challenges 

As anyone who has ever used an analytical technique or instrument will know, there are 

always limitations and challenges. Knowing what these issues are and accounting for them 

is an important aspect of pushing analytic capabilities forward. SPR is no stranger to 

challenges but through careful experiment design and work targeted towards understanding 

Figure 1.5. Illustration of a surface plasmon resonance sensorgram obtained via tracking 

the angle of minimum intensity over time which changes upon binding events. Shown here 

with signal shifts caused by antibody linkage to the sensor surface and then antibody 

facilitated protein capture. 
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how to limit their effect on experimental results SPR sensing applications can be improved 

and expanded. 

The first of these challenges for SPR comes from non-specific interactions and surface 

fouling when working in complex biological media.51 Here untargeted biological 

molecules non-specifically adhere to the sensor surface convoluting signal and blocking 

target molecules from binding. To combat this significant work has been done to formulate 

and test antifouling surfaces that can limit or block these nonspecific interactions from 

occurring thus improving SPR signal and consistency. To this end, various small 

molecules, polymers, DNA, and peptide structures have been developed to block the 

surface thus forming a barrier to inhibit non-specific interactions with substantial focus on 

zwitterionic chemical groups as antifouling substrates.52 Recently lipid membranes have 

also appeared as a biomimetic system to curb surface fouling events due to their similar 

role in natural systems. We have contributed substantially to this field and have found lipid 

systems to be highly effective.53 However, these lipid systems are not one size fits all and 

need to be investigated and understood to enable their use in other SPR sensing 

applications. 

Another challenge faced in SPR sensing is that while the molecular identity of target 

molecules can be inferred based on the inclusion of known binding partners within the 

sensing scheme it is not directly known. If surface compounds can be classified this 

solidifies the significance of obtained SPR results. This also links back to non-specific 

binding challenges where molecular information can help characterize and account for 

these fouling interactions. Various methodologies have been employed to clarify the 
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identity of molecules bound to the surface SPR. This has been achieved predominantly 

through orthogonal surface analysis techniques with mass spectrometry, or more 

specifically matrix assisted laser desorption ionization mass spectrometry (MALDI-MS), 

showing the most promise. These uses of mass spectrometry and other instrumentation 

techniques in conjunction with SPR analysis to expand the molecular information of the 

sensing surface are discussed by Stuart et al.54  

SPR is also limited by the exponential decay of surface plasmon polaritons as only 

refractive index changes within its penetration depth can be sensed. Therefore, sensitivity 

to binding events occurring beyond ~100 nm from the surface is reduced and is completely 

lost beyond ~300 nm. This is normally not a problem as proteins and other biological 

molecules commonly investigated using SPR are significantly smaller than 100 nm and 

therefore bind within the sensitive area. However, when working with cellular systems or 

larger biomimetic scaffolds this penetration depth limitation needs to be taken into account. 

Work with cellular systems has been accomplished using SPR through implementation of 

appropriate modeling of cellular morphological changes within the SPR sensitive region.55-

57 Other label-free analysis techniques have also been engaged to supplement or supplant 

SPR spectroscopy when studying these sorts of systems. Notably, quartz crystal 

microbalance (QCM) has found extensive use studying similar systems to those commonly 

investigated using SPR but is not limited by penetration depth. QCM will be discussed in 

more detail in section 1.8 based on this potential to complement SPR. 

Finally, as SPR angular shifts are based on refractive index changes signal for small 

compounds is limited making sensing of these molecules very difficult. Signal 
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amplification methodologies have been employed, as one avenue, to improve signal of 

small molecules through secondary binding interactions with other proteins, antibodies, or 

conjugated nanoparticles.58 Thus, enabling small biomolecules to still be sensitively 

detected using SPR. However, one area where these methodologies cannot be employed is 

in SPR sensing of gaseous molecules as secondary binding molecules or other 

amplification methodologies are not available for gaseous systems. This makes gas sensing 

applications with SPR spectroscopy particularly challenging, and these difficulties are 

further enhanced as refractive index differences between gases are much smaller than those 

in liquid systems. As such only recently has gas sensing utilized SPR59 and new approaches 

are necessary to enhance or deconvolute the signal obtained from gas. 

The following sections will provide background on systems, techniques, and concepts 

that are employed to solve these SPR challenges. 

1.4.2 SPR in the Gas Phase 

While sensing of gas molecules using SPR methodologies is essentially identical 

from a mathematical standpoint many differences come to light when looking through an 

experiment lens. Notably due to the large contrast in refractive index between gas and 

liquid systems the optimal angle for surface plasmon polariton excitation is significantly 

shifted. This requires the angle of incident light to be modified accordingly. Also, when 

compared to the protein systems commonly analyzed using SPR a clear selective binding 

interaction is not available to ensure that the analyte of interest is responsible for the 

identified signal. Furthermore, the low refractive index of gas systems limits refractive 
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index differences between analytes of interest resulting in very limited signal. Therefore, 

to achieve effective analysis of gaseous systems using SPR setups new surfaces or 

methodologies are needed that can improve sensitivity or capture target gaseous analytes. 

To this end various groups have developed sensors from metal oxides59, nanomaterials60, 

and metal organic frameworks61, 62 to improve signal and impart some form of selectivity.  

1.5 Biomimetic Lipid Membranes 

Biomimetic systems are of key importance because they enable biological interactions 

to be investigated without the complexity of in vivo studies that often complicate the ability 

to interrogate an individual protein due to the many nonspecific and off target effects 

present in a living organism.63 These biomimetic systems help bridge the gap between in 

vitro and in vivo studies by incorporating the most important components of the biological 

system present within the organism of interest. 

To this end, biomimetic lipid bilayers have been utilized extensively to model and study 

biological systems.64-66 Especially because the vast majority of drug targets, and many 

disease pathways, are membrane bound proteins or at minimum need to be able to pass a 

lipid membrane.67 Here singular protein or lipid binding systems can be examined and 

systematically altered to further our understanding of their role in the larger biological 

setting. Thus, helping scientists understand disease or identify potential drug candidates 

using in vitro methods before costly and complicated in vivo studies.68  

As such, biomimetic lipid membranes have appeared as ideal systems for use within 

SPR sensing methodologies due to their ability to interrogate these important interactions 
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and their compatibility with the thin substrates utilized in SPR systems. Where introduced 

lipid vesicles self-assemble into a bilayer system via a process of vesicle adsorption and 

subsequent rupture. This vesicle rupture process is based on strain caused by interactions 

between the vesicle and the underlying support or surrounding vesicles that induce vesicle 

deformation which can eventually result in liposome rupture69, 70. Due to this the 

underlying substrate is highly impactful on whether spontaneous rupturing occurs. Thus, 

hydrophilic surfaces are more conducive to vesicle deformation and rupture based on 

greater van der Waals and electrostatic interactions between hydrophilic substrates, like 

glass, quartz, or silicon, and lipid headgroups.70 As such, silica surfaces have been 

predominantly utilized due to the robust formation of lipid bilayer systems that occurs upon 

introduction of lipid vesicles. However, gold surfaces, commonly utilized in SPR sensing, 

do not have such a favorable interaction with lipid vesicles due to their native 

hydrophobicity leading to limited or incomplete bilayer formation. To alleviate this, and 

enable formation of biomimetic lipid membranes, various methodologies have been 

developed to induce vesicle fusion on the unaltered gold substrate71-75 or change the surface 

properties76 to enable vesicle self-assembly. Vesicle fusion on gold surfaces has been 

achieved through solvent assistance71, 72, peptide mediation73, or polymer introduction74. 

While other systems have employed thiol self-assembled monolayers as a scaffold that 

lipid membranes can form upon, either as single77 or double78, 79 lipid layers. Furthermore, 

addition of thin silica layers, atop the gold, has been demonstrated by our lab to enable 

lipid self-assembly without impacting SPR sensitivity.76 We and others have also 

investigated various chemical tethers to form a barrier between the gold surface and the 
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biomimetic lipid bilayer enabling lipid formation and reducing the effects of the substrate 

on lipid bilayer properties.80-83 Underlying protein substrates have likewise been utilized 

in conjunction with lipid bilayers as a tether and for the antifouling properties of the 

membrane.53 Lipid membranes can also be formed around nanostructures on these 

surfaces arranging into patterns matching those structures, this has been employed to 

fabricate curved lipid surface for study.84 

1.5.1 Lipid Bilayers as Antifouling Substrates 

As previously mentioned, these biomimetic lipid membranes have emerged as an 

ideal solution to the aforementioned surface fouling limitation of SPR analyses. This 

antifouling property has been notably identified for phosphatidylcholine (PC) lipids due to 

their mimicry of the antifouling properties found for eukaryotic cell surfaces.85 This 

property is believed to be due to the strong binding of water molecules by the PC head 

groups forming a hydration layer that limits the ability of proteins to nonspecifically 

adsorb.86 Furthermore, various PC lipids are zwitterionic which match with work on the 

development of antifouling surfaces finding zwitterionic materials to be particularly 

Figure 1.6. Demonstration of how lipid membranes can be formed on sensor surfaces in 

different ways. Directly formed on flat sensor surfaces, held above the sensor surface via 

polymer tethers, or formed around nanomaterials to produce membrane curvature. 
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effective at blocking nonspecific interactions.52, 87 As such, zwitterionic lipid headgroups 

have been extensively employed in polymer fabrication88 and successfully utilized to block 

nonspecific interactions on various sensor surfaces89-91 with other works employing the 

whole lipid structure to take advantage of the ease of lipid bilayer formation.92, 93 Thus 

demonstrating the potential of biomimetic lipid membranes as effective antifouling 

surfaces. However, these antifouling properties are not exclusive to zwitterionic lipids 

based on recent results from our group finding a lipid membrane of positively charged ethyl 

phosphocholine (EPC) to be a highly effective antifouling surface.53 

Therefore, the mechanisms behind these antifouling effects and information about which 

lipid groups are responsible for antifouling still lack understanding, opening the door to 

research focused on explaining and expanding the potential of lipid membranes as robust 

antifouling substrates. 

1.5.2 Drug Delivery and Molecular Diffusion Across Lipid Bilayers 

When exploring drug development and delivery the lipid membrane appears as one of 

the major considerations due to the huge number of drug targets limited by their location 

within the cell necessitating drugs to pass the cell membrane to be effective.94, 95 Therefore, 

lipid membranes are the final barrier to drug effectiveness as without membrane 

Figure 1.7. Scheme of how nonspecific interactions can impact sensor performance and 

the application of lipid membranes to block this nonspecific binding.  
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permeability an infinite amount of drug can be prescribed with no therapeutic effect. When 

investigating the ability of drug molecules to get to their target there are two main methods 

of cell entry, passive and active transport. First if the drug molecule is sufficiently small, 

soluble, and lipophilic then it can passively diffuse across the cell membrane on its own.96 

This passive transport relies on a concentration gradient driving drugs from higher 

concentration regions (𝐶ℎ) to low concentration regions (𝐶𝑙) which can be modeled by 

Fick’s law of diffusion97, 98: 

 
𝑑𝐶𝑙

𝑑𝑡
=

𝐷𝐾𝐴

ℎ
(𝐶ℎ − 𝐶𝑙)    (1.17) 

With the diffusion coefficient of the drug (D), the membrane to fluid partition coefficient 

of the drug in question (K), surface area of the membrane(A), and thickness of the 

membrane (h) playing important roles in the rate of drug absorption. These parameters 

become increasingly convoluted within the immense complexity and variability of 

biological systems making passive drug transport very difficult to accurately calculate or 

model.99, 100 Therefore, experimental approaches are essential to understanding drug 

permeability.101 For insoluble compounds102 and larger drug molecules, which make up the 

majority of new potential drugs, passive transport is not a feasible option. Consequently, 

methods to deliver the drug into the cell are necessary notably through cell penetrating 

chemical structures103, permeability enhancing molecules101, or utilization of cellular 

endocytosis pathways.104 One delivery complex that has garnered extensive attention are 

branching polymer dendrimers that form micelles or cavities within their tree-like 

structures to trap and transport drug molecules.105, 106 However, the drug delivery 
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mechanism of dendrimers and how they interact with the cell membrane is not understood 

and needs to be explored.107  

1.6 Fluorescence Imaging 

When considering the applications of fluorescence imaging one must first consider the 

fundamental process of fluorescence. In short fluorescence is the emission of light of a 

certain wavelength after exposure to photons of another wavelength. The subset of 

molecules where this phenomenon can occur are referred to as fluorophores. These 

molecules release light based on excitation to a higher energy state through transfer of 

energy from incident photons that appropriately match the fluorophore. This matching is 

dependent on the fluorophore chemical structure and surrounding environment.  When this 

molecule returns to the ground state light is emitted of a lower energy due to some energy 

being lost through internal conversion and vibrational relaxation. This difference between 

incident and emitted light is known as the Stokes shift108 which is fundamental to the 

sensitive detection of fluorescence. Due to this wavelength separation the incident light 

source can be filtered out allowing for detection of only light emitted by the fluorophore.   

This directly ties into the development of imaging systems based on fluorescence which 

consist of an excitation source, a filter, an optical collection unit, and a fluorophore of 

choice. Various configurations of microscope have been employed to image fluorescent 

molecules with epifluorescence microscopes making up the majority of imaging systems.

 While confocal and total internal reflection fluorescence microscopes have also 
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found use due to their unique configurations reducing background and improving 

resolution.  

As I have utilized a confocal microscope in my studies, I will limit my explanation to 

confocal systems. Confocal microscopy employs a pinhole in line with a dichromatic 

mirror which enables only fluorescently emitted light within the focal plane to make its 

way to the detector improving resolution particularly in regard to sample depth. This 

enables thin slices of a sample to be imaged and when combined with precision stages can 

create 3D images of a sample. However, as the focal area is smaller this means that smaller 

numbers of fluorophores are present limiting the amount of fluorescent emission 

detectable. This generally means that higher numbers of incident photons are required to 

achieve reliable fluorescent signal which can cause photobleaching which is the chemical 

alteration of a fluorophore due to excess excitation cycles leading to a permanent loss of 

ability to fluoresce. While this can seriously hamper fluorescent imaging there are many 

methodologies to lessen this such as limiting laser power and the number of images taken 

in a single location of the sample. However, if appropriately controlled this photobleaching 

effect can actually be quite useful. 
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1.6.1 Fluorescence Recovery After Photobleaching  

One of the ways that fluorescence imaging has been utilized to provide more 

information about the sample under study is fluorescence recovery after photobleaching 

(FRAP). Where the photobleaching of fluorophores is used to our advantage enabling the 

lateral movement of fluorophores in a sample to be monitored. This has been extensively 

used to measure the mobility of lipids or proteins within a cell or in mimetic systems.109 

Figure 1.8. Illustration of fluorescence recovery after photobleaching of fluorophore 

labeled lipids. With a high intensity bleach step followed by recovery over time that is 

tracked via imaging to track the recovery of fluorescent signal. 
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FRAP is achieved through first taking several images of the sample followed by a very 

high energy point irradiation step meant to bleach fluorophores within a small region of 

the visible area. Then images are taken at consistent time points to monitor the movement 

of unbleached fluorophore into the bleached region and bleached fluorophore out of the 

bleached region. All of these images can subsequently be compiled to provide a 

visualization of the bleached area over time. The intensity of the bleached area within these 

time resolved images can then be plotted to identify whether any movement of fluorophores 

occurred. If so a characteristic bleach and recovery curve will be visible. Prior to plotting 

the intensity values must be normalized against a reference unbleached area: 

Figure 1.9. Representation of classic FRAP bleach and recovery curve. With pre bleach 

intensity utilized as a control and then a distinct loss of fluorescence signal immediately 

after bleaching that quickly recovers and levels off. 
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 𝐹𝑐 =
𝐹𝑏𝑙𝑒𝑎𝑐ℎ

𝐹𝑟𝑒𝑓
   (1.18) 

 𝐹𝐹𝑅 =
𝐹𝑐−𝐹0

1−𝐹0
  (1.19) 

   

Here 𝐹𝑏𝑙𝑒𝑎𝑐ℎ and 𝐹𝑟𝑒𝑓 are the intensities of the bleached and reference areas respectively 

helping to account for any background bleaching that may occur during the multiple rounds 

of imaging used to visualize recovery. This corrected fluorescence (𝐹𝑐) for each time point 

is then compared against the fluorescence intensity at time zero (𝐹0) directly after bleaching 

providing a fluorescence fractional recovery (𝐹𝐹𝑅) for each time point. This information 

can be further utilized to calculate the diffusion coefficient of the system based on an 

equation introduced by Axelrod110: 

 𝐷 =
𝜔2

4𝑡1 2⁄
𝛾 (1.20) 

Where 𝜔 corresponds to the full width at half maximum of the laser determined to be 7.9 

µm for our system while 𝛾 is correction factor to account for differences in beam geometry 

and 𝑡1 2⁄  is the half-time recovery which is obtained from the equation: 

 𝑡1 2⁄ =
ln (2)

𝑏
 (1.21) 

Where 𝑏 is obtained from a first order exponential fit of the recovery curve: 

 𝑦 = 𝑎(1 − 𝑒−𝑏𝑥) (1.22) 

Here 𝑎 is the mobile fraction of the system providing information on whether there are 

substantial portions of the bleached fluorophore that were immobile. The diffusion 
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coefficient is calculated at least N≥3 times on different areas of the sample to ensure 

statistical significance.  

1.7 MALDI-TOF-MS 

Matrix assisted laser desorption-ionization (MALDI) is a surface-based mass 

spectrometry technique that relies on UV absorbent matrix molecules that when irradiated 

Figure 1.10. Cartoon illustration of sample ionization, ion separation, and detection in a 

MALDI-TOF-MS instrument. Showing sample coated in matrix being ionized by a 

pulsed UV laser and then separated over a time-of-flight tube and finally detected to 

produce a mass spectrum of the sample. 
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with a UV laser source impart that energy to adjacent sample molecules. This enables 

samples to be deposited coated with matrix and rapidly ionized to obtain mass spectra 

within seconds. The matrix effect was first introduced in 1985 by Karas et al. based on 

observations that UV absorbing amino acid tryptophan improved ionization of alanine.111 

This expanded capabilities of laser desorption-ionization that had been in use since the 

1960s.112 Through study and application of these matrix effects whole protein ionization 

became possible first demonstrated by Tanaka and others using ultra fine 300 Å cobalt 

powder to ionize chymotrypsinogen.113 In the years since this discovery MALDI has been 

utilized in various medical and bioanalytical applications114-116 and has found use as an 

orthogonal analysis technique for SPR due to their shared surface-based methodologies.54 

In practice MALDI matrices are commonly organic acids with a chromophore 

moiety that absorbs strongly at the incident laser wavelength. α-Cyano-4-hydroxycinnamic 

acid (CHCA) and 2,5-Dihydroxybenzoic acid (DHB) are two typically employed matrix 

molecules. A mixture of DHB and 2-hydroxy-5-methoxybenzoic acid, coined as super-

DHB, has also been shown to be highly effective for ionization of whole proteins.117 In 

use, this matrix is mixed into an aqueous mixture with acetonitrile and trifluoroacetic acid 

(TFA) then deposited onto sample spots patterned on a stainless steel MALDI plate. Once 

dried these matrix spots co-crystallize with analytes in the sample spots and co-

ionize/ablate analytes when irradiated with laser light, commonly from 337-nm pulsed 

nitrogen lasers.118 The resulting cloud of matrix and analyte is pulled into a mass analyzer 

most commonly time of flight (TOF) where ions are separated by mass/charge based on 

the time it takes them to traverse a drift region.119  
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1.7.1 Plasmonic Surface Enhanced MALDI 

In addition to the matrix enhancement of laser desorption-ionization various 

surfaces have also been demonstrated to improve analyte ionization. These substrates have 

been utilized to wholly circumvent the need for matrix, known as surface assisted laser 

desorption-ionization (SALDI) or to augment current MALDI applications. Recently we 

and others have demonstrated enhancement effects from plasmonic metal surfaces which 

is believed to be based on the plasmonic metal surface enhancing ionization through 

incident light exciting electrons within the metal producing hot electron bands.120 As well 

as plasmonic absorption also converting incident photon energy into thermal heating that 

aids in the desorption of matrix and analytes. This conversion of incident light to thermal 

radiation has been demonstrated for plasmonic nanoparticles.121 In application to MALDI-

MS systems this has been demonstrated with Au11, 120 and Al122 substrates finding higher 

enhancement from aluminum metal based on its improved absorption of the 337-nm laser 

utilized in MALDI instrumentation when compared to gold. 

1.7.2 Coupling MALDI-MS with SPR 

As SPR and MALDI are both surface based methodologies and the plasmonic materials 

utilized in SPR sensors provide ionization enhancement when applied to MALDI systems 

they are prime for orthogonal use. As such, this combination has been used extensively to 

enable molecular identification of the molecules and proteins captured on SPR sensor 

surfaces. With the first demonstration of the coupled technique in the 1990’s by Krone et. 

al123 who demonstrated that SPR chips could simply be transferred to MALDI-MS 
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instrumentation following an SPR capture experiment. This enables the SPR surface to be 

characterized using a molecular identification technique which confirms the presence of 

binding partners as well as other nonspecifically bound molecules. 

1.8 Quartz Crystal Microbalance 

Quartz crystal microbalance is another technique for measuring binding occurring at a 

surface that has seen extensive use as a biosensor platform124 but works through a much 

different mechanism than SPR. As such, it has proven to be useful in some areas where 

SPR is limited. QCM measures mass binding to the sensor surface through small variations 

in a resonating quartz crystal. When mass is added or removed from the surface through 

binding or growth/decay events then the resonant frequency of the crystal will change 

accordingly. The quartz chips utilized in QCM systems commonly have frequencies of 5 

or 10 MHz which can be measured precisely using commercially available frequency 

counters. Therefore, very small changes in mass can be detected within the range of 1010–

Figure 1.11. Illustration (left) and schematic (right) of a quartz crystal microbalance 

sensor chip which is oscillated via application of alternating voltage. 
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1012 Hz/kg.125 This relationship between frequency and mass was theoretically 

demonstrated by Sauerbrey in 1959126 by the equation: 

 
∆𝑓 = −

2 𝑓0
2∆𝑚

𝐴√ρ
𝑞

μ
𝑞

= −𝐶𝑓 ∙ ∆𝑚 
(1.23) 

Which relies on the frequency of the QCM chip (𝑓0), 10Mhz in our applications, the 

effective vibrations area of the chip (A), density of the quartz crystal (ρ
𝑞

= 2.648 𝑔/𝑐𝑚3), 

shear modulus of the crystal (μ
𝑞

= 2.947 𝑥 1011 𝑔/𝑐𝑚 ∙ 𝑠2). Leaving the change in mass 

(∆𝑚) and resulting frequency shift (∆𝑓) which is inversely related due to the negative 

within the equation. The other components are often simplified to the Sauerbrey mass 

sensitivity (𝐶𝑓). While this equation models QCM systems quite well and explains how 

QCM can be utilized in a sensing capacity it is a simplified model that ignores a couple 

key components. Notably the metal electrode, which is an essential aspect of current 

instrumentation, also it is only satisfied when the additional mass is small, rigid, and 

uniformly distributed. Regarding the metal electrode, it has been shown to have a 

substantial impact on sensor mass sensitivity with gold identified to have greater sensitivity 

compared to silver.127 Furthermore, when sensing in liquid systems this is not a completely 

accurate model due to the lack of rigidity, but it has been more accurately described by 

Kanazawa128: 

 ∆𝑓 = −𝑓0

3
2(

ρ
𝐿
η

𝐿

π𝜌
𝑞
𝜇

𝑞

)1/2 (1.24) 
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This equation includes the variables for the density (ρ
𝐿

) and viscosity (η
𝐿

) of the liquid. 

However, the lack of rigidity in a liquid system also propagates the QCM shear wave 

differently. Notably liquid causes the shear wave to rapidly decay due to dampening an 

effect that is markedly different from a rigid material adhered to the sensor surface. This 

dampening can be represented through a calculation of the shear wave’s decay length as 

described by Yang129: 

 𝛿 = √
η

𝐿

𝜋𝑓0ρ
𝐿

 (1.25) 

Thus, only liquid within the decay length of the shear wave will have an impact on a QCM 

chips frequency. This begs the question of whether QCM will have similar distance 

limitations as SPR sensors. However, the mechanism is different and for QCM a 

penetration depth is specific to liquid systems, rigid structures and molecules can still 

Figure 1.12. Illustration of QCM frequency decrease and dissipation increase upon lipid 

membrane formation on the sensor surface and then protein binding to the membrane. 
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impact the QCM frequency at greater depths. This has been confirmed by Martin et al. 

interestingly finding that surface structures larger than the decay length actually enhance 

frequency shift associated with a liquid.130 Therefore, QCM can be utilized to investigate 

binding events at much farther distances from the sensor surface than is possible with SPR 

sensors assuming these binding events are linked to a rigid structure protruding from the 

QCM sensor surface. 

1.9 Statistical Modeling and Machine Learning 

When developing and testing sensors it immediately becomes clear that many sensors 

produce an enormous amount of data that is currently ignored or not completely utilized 

due to the immense time requirement for analysis. Therefore, appropriate methods to 

contextualize or streamline analysis of this excess data are necessary to enable the next 

generation of sensors. To this end, various statistical and machine learning algorithms have 

shown great promise due to their ability to transfer some of the data analysis burden from 

scientists onto computing power.  

1.9.1 Monte Carlo Methods 

One subset of these computational algorithms that has proved useful in solving problems 

within our work has been Monte Carlo methods.131 This refers to a broad swath of 

algorithms focused on repeated random sampling which can be utilized to simulate systems 

through probability distributions. With Ulam first demonstrating the technique to 

statistically model neutron diffusion132 and naming it after a well-known casino in Monaco. 

At its core the method relies on random sampling linked to a specific system therefore any 
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equations are generally unique to the system being tested. In our uses this takes the form 

of feeding randomly generated numbers into equations that model vesicle arrangement to 

identify how vesicle components randomly distribute. The specifics of which will be 

explained in more detail in chapter 4. 

1.9.2 Machine Learning Algorithms 

In contrast to using random sampling to simulate our sensor systems, machine learning 

(ML) algorithms provide the ability to learn about the patterns within the data collected 

from those sensors. This capability has attracted substantial investigation within the sensor 

community but still remains in its early stages.133 To do this many different algorithms 

have been built to take a subset of collected data coined as training data which it uses to 

learn and make predictions that can be applied to future or test data.134 This learning is a 

subdivision of artificial intelligence based on these algorithms’ ability to solve problems 

without being directly coded to do so. As such, each algorithm is designed to find these 

patterns in different ways resulting in wildly different results depending on the algorithm 

in question and the data provided to it.  

Within machine learning there are three distinct approaches (reinforcement, 

unsupervised, and supervised learning) based on what information about the system is 

provided to the algorithm. Reinforcement learning gives the algorithm a set goal with 

feedback as it navigates towards a solution. While unsupervised and supervised learning 

differ from each other based on whether or not example desired outputs are provided as is 

the case for supervised learning. For supervised learning these outputs can be restricted to 
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a known set of values or classes (classification) or a range of possible values (regression). 

Each algorithm and approach has its own advantages and limitations with problems that 

the algorithm can be more effectively solve. When using machine learning to aid in 

identification from sensor data, supervised learning with a classification focus is commonly 

utilized due to there being a known set of possible results from the sensor. This is clear 

when thinking about a sensor looking to provide a positive or negative response where a 

supervised classification model can find a data pattern to look for that corresponds to 

disease positive. Essentially machine learning finds those data patterns that a human could 

pull out given enough analysis time. Therefore, when looking at something like a simple 

lateral flow assay where data is in the form of color intensity a human can easily make that 

distinction as can a machine learning model. But when data becomes more complex, and 

the number of possible results increases, the time needed for a human to solve the pattern 

increases exponentially. Here is where machine learning algorithms shine as computational 

power can be used to cut down pattern recognition time and enable complex data to be 

easily simplified. However, this can come at odds with scientific thought and goals as the 

meaning of data and these patterns can quickly be lost within the black box of ML 

algorithms.135 This creates a careful balancing act for scientists using machine learning to 

preserve knowledge of how the model is utilizing their data while maintaining accurate 

classification, as the combination is far more valuable than the individual parts. As such, 

the most important work moving forward is focused on building interpretable and 

explainable ML algorithms.136 
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To this end, we have employed numerous machine learning algorithms available 

through the caret package137 in R.138 This provides us with 238 possible models all of which 

were tested for their compatibility with our data and ability to accurately classify. Of these 

only 174 models were compatible with our system and data. This was further narrowed 

down through systematic testing to identify the algorithms that fit best with our data and 

goal. The majority of feasible algorithms stem from a small subset of general machine 

learning model concepts139, notably neural networks (NN), k-nearest neighbors (KNN), 

random forest (RF), discriminant analyses and support vector machines (SVM). Each 

algorithm provides different results and capabilities that when combined can help us 

understand our system a bit more.  

Artificial neural networks140 take inspiration from our own neural system by building 

a collection of linked neurons that can transmit information to any of the other neurons that 

they are connected to. In practice these form in three layers an input, hidden, and output 

layer. Where input data is linked to multiple neurons within the first hidden layer which 

further attach to any other hidden layers eventually linking to an output layer which 

provides a final classification result. Each one of the connections between these artificial 

neurons is given a weight that is modified based on error from repeated training events, 

thus producing a pathway from the input to output layer that matches target output results 

as closely as possible. Essentially the data pattern is encoded into an array of neurons that 

weigh and combine many data points to accurately classify the data based on classes 

provided prior to training. This pattern can then be applied to unknown data to classify it 

based on those predetermined classes. Neural networks have been utilized extensively for 
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image classification problems141, 142 but have more recently shown promise in solving 

chemical sensing questions.143  

K-nearest neighbors144 begins from the assumption that data from the same class will 

be close to each other, hence they will be near neighbors. In practice this takes new data 

and compares it against its “K” nearest neighbors to see what class they are and classifies 

this new data based on whichever class the greatest proportion of near neighbors are. This 

is commonly achieved through calculations of Euclidian distances to identify those nearest 

neighbors which for one dimensional space is represented by points p and q: 

 𝑑(𝑝, 𝑞) = √(𝑝 − 𝑞)2 (1.26) 

This can then be easily expanded to higher dimensions with points p and q with coordinates 

(𝑝1, 𝑝2, ⋯ 𝑝𝑛) and (𝑞1, 𝑞2, ⋯ 𝑞𝑛): 

 𝑑(𝑝, 𝑞) = √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 + ⋯ +(𝑝𝑛 − 𝑞𝑛)2 (1.27) 

In practice, an unknown example (𝑞) is dropped into space with a set of training samples 

(𝑥𝑖) and the distance between it and all the surrounding training samples are calculated for 

each of the factors (F) within the data with a weighting (𝑤𝑓) applied to each factor as 

shown145: 

 𝑑(𝑞, 𝑥) = ∑ 𝑤𝑓𝛿(𝑞𝑓 , 𝑥𝑖𝑓)

𝑓∈𝐹

 (1.28) 

This provides a set of nearest neighbors that can then be utilized for classification through 

simple majority voting. However, using this method problems can arise when looking at 

data sets where one class is more prevalent as prediction will more often fall to that class. 
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However, methodologies to alleviate this have been implemented through alternative 

voting rules that consider differences in number of objects within classes and apply 

weighting based on distance.146, 147 

Random forest148 makes use of multiple decision trees compiling results from each tree 

to classify based on the most commonly selected class. A decision tree follows the method 

that a human might use when attempting to find patterns within complex data by 

deconvoluting it through multiple simple yes or no decisions. Each decision being quite 

simple built on the presence, absence, or intensity of a portion of the data which feeds into 

further decisions based on other aspects of the data. However, computing power enables 

these trees to be built orders of magnitude faster than a human could and allows multiple 

trees to be assembled in parallel. These many decision trees help account for over fitting 

that might occur if only a singular tree was employed. However, as these trees are hidden 

within the algorithm the algorithm functions as a black box classification limiting the 

interpretability of resulting models. Luckily this can be remedied through the 

Figure 1.13. Demonstration of random forest classification based on multiple pooled 

decision trees. Three different trees are built, and the resulting classes are combined to 

provide a final determination of class from the model. 



40 
 

implementation of out-of-bag error calculations as Breiman demonstrated in his work 

expanding the capabilities of RF models.149 This works by leaving out portions of  the data 

during each iteration of model training and then comparing the accuracy of tree voting 

without that data to the accuracy of trees including that data. Thus, providing information 

on how the accuracy of the model is affected by loss of certain data features which can be 

modified into a description of which variables are most important for accurate 

classification. This is particularly useful when working with datasets containing many 

different variables as those variables with the most impact can be pulled out indicating 

what aspects of the input data might be worth exploring more closely. 

Discriminant analyses150, stemming from Fisher’s linear discriminant151, rely on the 

formation of discriminant functions that provide the best separation of preselected groups. 

The variance between provided data is compared to build a function(s) that split these 

Figure 1.14. Comparison between linear and quadratic methods of discriminant analysis 

showing differences in classification results.  
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groups as completely as possible. Where discriminant analyses begin to diverge is in the 

form of these discriminant functions. For example, linear discriminant analysis (LDA) 

builds linear classification boundaries while quadratic discriminant analysis can build these 

same sorts of boundaries but using quadratic equations which provides greater 

flexibility.152 This is based on differences in assumptions made for LDA and QDA. Both 

methods assume classes to have a normal gaussian distribution while LDA assume that the 

covariance matrices are equal while QDA does not. This enables QDA to have nonlinear 

decision boundaries. 

Support vector machines153 can be considered under the umbrella of linear classifiers 

but separate classes in a different way than the previously discussed LDA. This difference 

lies in a focus on finding the largest margin area between two classes. Essentially a 

hyperplane that provides the greatest distance between the two closest points of the two 

classes is found which is known as the maximum-margin hyperplane. This not only 

provides a good boundary for use in classification but also helps limit the probability of 

overtraining due to a larger margin reducing generalization error. Of course, this works 

when the training data can be separated via a large margin without errors, however in 

practice this is often not the case. To remedy this a “soft margin” can be implemented 

where a new hyperplane is calculated that provides a minimal number of errors enabling 

remaining non error data points to be optimally separated. This enables datasets with 

outliers or similar classes to still be separated at the expense of some error, thus providing 

SVM models with a bit more flexibility than their linear classification predecessors.  



42 
 

Machine learning algorithms are clearly valuable tools to aid in the classification of 

sensor results especially when dataset size and complexity are large. While many of the 

models can be highly opaque, appropriate usage and understanding of each algorithm’s 

limitations enables classification to be accompanied by a deeper understanding of the 

system through interpretable models. By implementing these concepts machine learning 

has expanded the aims and scope of multiple sensors that will be discussed in this 

dissertation. 

1.10 Aims and Scope of Dissertation 

The aim of this dissertation is to aid in the development of new surface-based sensor 

methodologies and platforms that circumvent current sensor limitations in efforts to 

improve human health through rapid, sensitive, and accurate sensing technologies. To 

achieve this, various analytical techniques have been combined to expand the capabilities 

of current sensing technology through new sensing platforms. These methods were then 

applied to study relevant interactions from the gas phase to biomimetic surfaces and species 

differentiation. All aided by robust statistical tools, ML algorithms, and novel modeling 

techniques to enable a deeper understanding of the system in question and improved sensor 

identification. The following chapters will demonstrate how these techniques can be 

utilized in concert to enable sensing, the procedures and methods developed to enable this 

work will be described in detail and sensor feasibility will be established through in-depth 

analysis of collected results.  
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Chapter 2 showcases the design and study of an SPR platform to investigate small 

molecule membrane transport and dendrimer assisted drug delivery. As well as examine 

the potential for SPR to detect the diffusion of small molecules across a lipid membrane. 

Here thiolated small molecules were introduced onto a tethered membrane coated SPR chip 

and allowed to equilibrate and link to the gold surface if they were able to pass the 

membrane. Therefore, the membrane can be removed using a surfactant injection leaving 

only those molecules that were able to pass the membrane adhered. This was further 

confirmed using on chip MALDI-MS to identify and confirm the presence of these small 

molecules. These studies were paired with investigations into a potential drug delivery 

platform in the form of dendrimer micelles that can capture drug molecules and deliver 

them to cell surfaces. In particular we studied the interaction of these dendrimer molecules 

with lipid membranes and investigated the effects loading of dendrimers into lipid 

membranes had on the fluidic properties of the membrane. 

Chapter 3 demonstrates and investigates a unique antifouling lipid platform for use in 

blocking serum nonspecific interactions on SPR sensing substrates. Positively charged 

lipid EPC was found to completely abrogate interactions from serum when formed over a 

protein A surface. This system and the membrane antifouling process was further 

investigated finding that the stable formation of a lipid membrane and maintenance of a 

hydrophilic layer that is capable of forming a hydration layer are necessary for success of 

an antifouling lipid layer. To this end, various lipid membranes were formulated on 

different sensor surfaces and their ability to block non-specific interactions from whole 

human serum were investigated. With two systems showing effective antifouling 
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properties notably zwitterionic POPC on a silica substrate and the positively charged EPC 

lipid formulated over a protein A scaffold. The lipid diffusivity of these membranes was 

also measured using FRAP, finding that part of the antifouling effectiveness of EPC came 

from a loss of lipid fluidity. Thus indicating, that charge effects can be overcome under the 

correct conditions mentioned above, despite some considering zwitterionic charge 

necessary for blocking of non-specific interactions. 

Chapter 4 describes the formulation of a platform for analysis of curvature sensing 

protein alpha-synuclein. Here quartz crystal microbalance was employed to enable 

formulation of a curved membrane surface over silica nanoparticles adhered to the sensor 

surface. Then binding interactions between alpha-syn differently curved surfaces were 

investigated finding a substantial preference for highly curved surfaces while binding to 

flat lipid substrates was muted. This demonstrates that alpha-syn’s interactions with lipid 

structures are predominantly dependent on curvature. This was paired with Monte Carlo 

based study of protein distribution across a lipid surface on both fully spherical and 

hemispherical surfaces to provide insight into the number and distance between proteins 

binding to a lipid substrate. Thousands of lipid surfaces were modeled and analyzed to 

provide normal distribution estimates of lipid and protein distributions across the vesicle 

or lipid membrane surface in question. 

Chapter 5 exhibits the design and implementation of new surfaces for enhanced 

MALDI-MS ionization of metabolites from Staphylococcus Aureus species which was 

utilized to accurately classify between methicillin resistant and susceptible strains. For this 

work two species of S. Aureus differing only in their resistance to antibiotics were cultured 
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and analyzed to identify their differences in susceptibility to three antibiotics demonstrating 

one strain to be highly resistant to antibiotics methicillin and oxacillin. Furthermore, these 

bacteria were studied as whole cells to determine lipid differences and quickly identify the 

strain in question. This relied on an array chip platform fabricated of aluminum plasmonic 

metal with a thin silica overlayer that enhances MALDI-MS. That is achieved through 

improved energy absorption and heating from the metal, confinement of the heat to the 

surface by the silica layer, and sample confinement within patterned wells on the chip 

surface. Differentiation of S. Aureus strains was achieved based on spectral differences 

notably several peaks in the 2400 m/z region which were exclusive to the MRSA strain. 

This data was further combined with previously collected MALDI-MS data from various 

bacterial strains to expand the bacterial species/strain within the dataset. This was 

implemented into a script for MALDI spectra extraction, processing, binning, and peak 

selection to enable identification of bacteria species. 

Chapter 6 focuses on the development of new methodologies and sensors to enable gas 

phase SPR sensing. Detection of hydrogen gas within a range of 1 to 100% hydrogen in 

nitrogen and methane was demonstrated. This sensor was further expanded to distinguish 

between different gases through implementation of an inline pressure sensor enabling 

differentiation between gases based on differences in gas polarizability. The SPR signal 

shift for a change in gas pressure could be combined with the amount of pressure change 

to fit a distinct linear relationship for each gas. Additionally, machine learning algorithms 

were employed to improve and streamline gas classification especially at lower pressure 

changes where visual distinction became increasingly difficult. The application of this 
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novel methodology for gas phase SPR sensing establishes its feasibility for application to 

gas pipeline monitoring and provides gas differentiability without the need for complex 

surface chemistry to select for individual gases.  
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Chapter 2: Formulation of Biomimetic Tethered Lipid Membrane on Gold Substrate 

Enabling Understanding of Drug Delivery Processes via Surface Plasmon Resonance 

2.1 Introduction 

Lipid membranes compose a crucial portion of biological systems acting as 

containment for cellular components and barriers to entry of exogenous materials.154 As 

such, deeper understanding of the interactions at these interfaces is key to the development 

and application of drug molecules which must navigate across the membrane to 

intracellular targets.155, 156 Methodologies to mimic this important cellular environment aid 

in expanding this understanding, allowing individual interactions to be isolated from the 

complexity of the cellular environment and analyzed.157 In this regard, biomimetic lipid 

bilayers have emerged as powerful tools with self-assembly of solid supported lipid 

bilayers employed in many sensing applications.158-160 Though one of the major limitations 

comes from the solid support which can limit lipid mobility, provides a one sided view of 

the bilayer system, and can result in protein denaturation.161 One avenue to expand the 

capabilities of these mimetic surfaces is the inclusion of tethers producing a fluid region 

between the solid support and the membrane.162-164 This can enable inclusion of larger 

membrane components such as proteins without pressing them against the support and 

facilitate analysis of binding interactions. Furthermore, studies of molecular interactions 

with the cell membrane can be expanded to examine their membrane diffusion properties. 

While biomimetic membranes have been demonstrated extensively on silica or mica 

substrates many sensing methodologies utilize metal surfaces limiting the applicability of 

these substrates.165 In particular, surface plasmon resonance (SPR) employs a plasmonic 
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metal surface, usually gold, which some have employed thiol linked lipids to enable 

membrane formation on the gold substrate.166, 167 While we have introduced a thin silica 

coating atop the gold to provide the chemical properties necessary for vesicle fusion168 and 

others have introduced methodologies to induce lipid vesicle fusion on a gold substrate.169 

However, a methodology to easily enable a tethered lipid membrane without sensor linkage 

could prove to be a useful tool in biomimetic studies. 

Here we investigate a tethered lipid bilayer formulation for application on gold sensor 

chips that applies polyethylene glycol (PEG) linked lipids to induce vesicle fusion without 

the need for covalent linkers. The PEG tether also forms a barrier between the solid support 

and the lipid bilayer to mimic the cell membrane more accurately. This limits the effect of 

the solid support on lipid interactions and fluidity enabling inclusion of greater amounts of 

material within the bilayer without losing fluidity. We demonstrate this effectiveness 

through incorporation of amphiphilic dendrimers which consist of long hydrophobic alkyl 

chain tails and branched polyamidoamine or arginine dendrons into the lipid preparation 

process.170 These dendrimers have been shown to form supramolecular structures with 

lipids but quickly decreased lipid fluidity171, which was alleviated by the incorporation of 

the lipid tether based on our fluorescence recovery after photobleaching (FRAP) fluidity 

measurements. We expanded this to study the binding of dendrimers to the lipid membrane 

with arginine and amine head groups to understand differences in potential for drug 

delivery. We further employed this substrate to explore molecular transport across the lipid 

membrane utilizing surface plasmon resonance (SPR) and matrix assisted laser desorption 

ionization mass spectrometry (MALDI-MS). Our results showed a marked difference in 
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dendrimer binding to lipid surfaces based on dendrimer headgroups and also demonstrated 

that small molecule thiols could pass the lipid membrane and link to the gold substrate 

which could be visualized by SPR angular shifts and confirmed via MALDI-MS. Thus, 

establishing a new platform for lipid membrane binding studies and monitoring of 

membrane transport that could potentially be utilized for drug delivery studies. 

2.2 Experimental Methods 

Materials and Reagents. 

A stainless-steel extruder, 100 nm polycarbonate track etched filters, 1-palmitoyl-2-oleoyl-

glycero-3-phosphocholine POPC, and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-

(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) NBD-PE, were purchased from 

Avanti Polar Lipids (Alabaster, Al). Plain BK-7 glass microscope slides and phosphate 

buffered saline (PBS) concentrate were acquired from Fisher Scientific (Hampton, NH). 

Polydimethylsiloxane (PDMS) two-part polymer kit was obtained from Ellsworth 

adhesives (Germantown, WI). Triton X-100, 2-2-[2-(2-

Mercaptoethoxy)ethoxy]ethoxyethanol and 11-Mercapto-1-undecanol were obtained from 

MilliporeSigma (Burlington, MA). Ultrapure water (>18 MΩ cm-1) was acquired from a 

Barnstead E-Pure water purification system. Branching dendrimer molecules with terminal 

amines170 or arginine’s172 were obtained from our collaborators in the Peng group and the 

dendrimer synthesis is discussed in depth in their work.173  
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Lipid Vesicle Preparation. 

Lipid vesicles were prepared via a thin film extrusion method174, 175 where aliquots of lipid 

solutions were first mixed to reach a desired mol ratio from stock lipid solutions in 1:9 

methanol chloroform. Then these aliquots were dried under nitrogen to form a thin lipid 

film on the bottom of a glass vial and further dried under vacuum for at least 4 hours. Dried 

films were then resuspended in 1× PBS (10 mM Na2HPO4, 1.8 mM KH2PO4, 137 mM 

NaCl, 2.7 mM KCL, pH 7.4) to a final lipid concentration of 1 mg/mL. Mixtures were 

vortexed to dissolve the lipid film and then sonicated to induce vesicle formation. Finally, 

vesicles were extruded to produce small unilamellar vesicles of desired size, stored at 4°C 

and used within 5 days.  

Fluorescent Imaging and Recovery after Photobleaching. 

Fluorescence and bleaching images were generated on an inverted Leica TCS SP5 II 

confocal microscope (Leica Microsystems, Buffalo Point, IL, USA) at the University of 

California, Riverside Microscopy and Imaging Core Facility. To enable fluorescent 

visualization of lipid membrane systems NBD-PE lipids (2% molar ratio) were 

incorporated into the vesicle preparation methods. To ensure that formed lipid bilayers 

remained intact in a hydrated state small wells were cut out of thin PDMS sheets where 

lipid vesicles could be incubated, rinsed, and then covered with a microscope coverslip for 

visualization. For fluorescent imaging a 488 nm argon laser was utilized to excite the lipid 

linked NBD fluorophore. Fluorescent emissions between 500 and 600 nm were then 

detected using a hybrid detector (HyD). For fluorescent recovery after photobleaching 
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(FRAP) laser power was set to 100% and used for a one second point bleach. The following 

fluorescence recovery was visualized via image collection every second for at least 80 

seconds using the LAS AF FRAP application wizard (Leica) with laser power lowered to 

10-20%. After collection images were processed using ImageJ with the Fiji package176 and 

analyzed to calculate mobile fraction, recovery, and lipid mobility. Curves were graphed 

in origin and fit using a one-phase association equation with no offset (BoxLucas1). From 

this fit equation mobile fractions (ß) and diffusion coefficients (D) were calculated using 

previously demonstrated methods.177 

Fabrication of SPR Chips. 

Surface plasmon resonance sensor chips were fabricated following previously published 

methodologies.178 In short, glass microscope slides were coated with a thin film of gold 

using an electron beam physical vapor deposition (EBPVD) system (Temescal, Berkeley, 

CA) in the University of California, Riverside Center for Nanoscale Science and 

Engineering Nanofabrication Facility. To achieve this, slides were first cleaned in boiling 

piranha acid 3:1, H2SO4:H2O2) for 1 hour. Followed by a rinse with water then ethanol and 

dried under a nitrogen stream. Then slides were taped to silicon wafers and slotted into the 

EBPVD where 2 nm of Cr, as an adhesion layer, and 48 nm of gold were deposited. The 

resulting chips were then utilized for SPR spectroscopy measurements. 

SPR Analysis 

Fabricated SPR chips were utilized on a NanoSPR5-321 (NanoSPR, Chicago, IL) 

instrument with a 670 nm GaAs semiconductor laser source for all SPR experiments. The 
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system includes a triangular prism (n= 1.61), with a silver-plated backing to reflect light 

back to the detector, and a dual channel 30 μL Teflon flow cell. For SPR experiments n = 

1.5167 matching fluid (Cargille, Cedar Grove, NJ) was applied to the glass bottom of a 

sensor chip and clamped to the prism surface then rinsed (5 mL/h) with 1x PBS as a running 

buffer prior to lipid formulation and interaction studies.  

MALDI-MS Spectra Collection 

To transfer SPR chips to MALDI-MS instrumentation the chips were first dried under air 

and then spotted in multiple locations with 1 μL of 10mg/mL super DHB matrix in a (2:1, 

v/v) mix of acetonitrile and 1% TFA/water solution. MALDI-MS experiments were then 

conducted on an AB-Sciex 5800 time-of-flight mass spectrometer equipped with a 337nm 

nitrogen UV laser. Spectra were acquired in positive mode with a laser power of 5000 a.u. 

with each spectrum made up of 200 laser shots fired over a selected area. 

2.3 Results and Discussion 

While tethered lipid membranes have been demonstrated the self-assembly of a wholly 

mobile tethered system on a gold substrate has been elusive as gold is not conducive to 

lipid self-assembling thus limiting biomimetic membrane use in various sensor 

configurations. Therefore, we took from literature reports of PEG inducing lipid vesicle 

Figure 2.1. Scheme of polyethylene glycol tethered lipid membrane formation on a gold 

surface. 
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fusion on gold substrates179 to design a PEG tethered lipid membrane that was not linked 

to the substrate ensuring that all components could be mobile (Figure 2.1). With this a 

tethered lipid bilayer could be employed in sensing applications utilizing gold surfaces. 

This was employed to study dendrimers for their ability to form supramolecular structures 

with the lipid assembly and investigate the binding interactions between these dendrimer 

micelles and a lipid substrate. Thus, providing insight into how they may act in drug 

delivery applications. The formation of a tethered membrane on gold was also employed 

to monitor the passage of small drug analogs across the membrane. For this small molecule 

thiols were introduced and would link to the gold surface if they passed the lipid membrane. 

After which the lipid membrane was removed allowing measurement of just those small 

molecules that passed the bilayer. 
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Tethered Membrane Formulation and Characterization  

To begin the proposed tethered membrane system was formulated based on the thin film 

extrusion method174, 175 detailed above with inclusion of 0.5% molar ratio 5K PEG linked 

PE lipids to ensure ample cushion between the lipid bilayer and solid support with minimal 

impact on the membrane composition. These lipid formulations were then tested for their 

ability to self-assemble on commonly utilized glass substrates and on an SPR gold sensor 

surface (Figure 2.2). Finding robust membrane formation in both systems though to ensure 

vesicle fusion and complete lipid coverage a secondary PEG injection step was included 

on the gold substrates. This PEG injection had little to no impact on the signal for the lipid 

membrane indicating that the membrane system was self-assembling and did not require 

vesicle fusion to be induced. Now that lipid membrane formation was confirmed and 

appeared to be comparable to a traditional solid supported POPC system we utilized FRAP 

Figure 2.2. SPR sensorgram of PEG-POPC tethered membrane formation on gold 

sensor surface with included PEG injection that induces vesicle fusion showing no 

change in membrane signal. 
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to measure and compare the lipid fluidity of these two systems. The PEG-POPC tethered 

membrane demonstrated similar lipid fluidity to that seen with a POPC bilayer as can be 

seen in Figure 2.3. This was promising as it indicated that despite the incorporation of long 

Figure 2.3. Fluorescent images of bleaching and recovery and resulting FRAP curves and 

diffusion calculations for POPC solid supported membrane (Top) and PEG-POPC 

tethered membrane (Bottom). 
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PEG tethers the lipid lateral mobility was minimally impacted. Therefore, lipid fluidity was 

maintained in the system while providing lift from the sensor surface allowing it to be 

utilized for analysis of the whole membrane structure not just those lipids facing away from 

the sensor. These results then made us consider how this tether affected or enabled the 

incorporation of other materials into the membrane system. 

Impact of Dendrimer Loading on Bilayer Fluidity 

 As the tethered system creates a barrier between the solid support and the lipid 

membrane, we expected the incorporation of other molecular constituents into this system 

to have a more muted effect on fluidity. Thus, enabling loading of greater amounts of 

materials while still maintain the important fluidity characteristics of a lipid bilayer. To 

investigate this, we formulated supramolecular structures composed of various lipids and 

dendrimer compositions following the lipid vesicle preparation procedures previously 

described and measured lipid fluidity via FRAP. For these experiments three different 

Figure 2.4. Structures of dendrimers utilized in these studies with two terminating in 

amine groups (right, C18-8A and C18-2A) while the other (left, C18-8A-L-Arg) 

terminates in an arginine group. 
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branched dendrimers were investigated, two with branches terminating in amine groups 

and one with a greater number of branches terminating in arginine’s. The structure of these 

dendrimers can be seen in Figure 2.4. After forming these combined lipid dendrimer 

Figure 2.5. Nanoparticle tracking analysis results of three average tracking runs for PEG-

POPC vesicles (A), dendrimer micelles (B) and the two combined into a singular 

structure (C). 
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structures, we employed nanoparticle tracking analysis to probe whether they were in fact 

combing into 

singular structures. 

These results can be 

seen in Figure 2.5 

and show a distinct 

peak for the PEG-

POPC vesicles and 

various peaks for the 

dendrimer micelles 

which disappear 

upon combination 

with the vesicles 

forming a singular 

peak indicating an 

average diameter of 

106 nm for the 

supramolecular 

structures. This gave 

us confidence that the lipid and dendrimers were intermingling and forming the expected 

structures. Then to explore the limits of dendrimer incorporation into the PEG tethered 

membrane system we first focused on the highly branched Arg-8A dendrimer and 

Figure 2.6. Impact of arginine terminated dendrimers on lipid 

bilayer fluidity. Lipid diffusivity was decreased substantially by 

introduction of greater amounts of dendrimer, but large 

proportions of dendrimer were able to be incorporated without 

completely stopping lipid diffusion as seen for the 10% Arg 8A. 
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integrated it into vesicle preparation procedures from (0.5 to 10%) as can be seen in Figure 

2.6. With results demonstrating a decrease in lipid fluidity with increasing Arg-8A loading 

though some mobility was still measurable even at 10% dendrimer loading demonstrating 

that the tether significantly reduced membrane interactions with the underlying support 

enabling membrane mobility to be maintained even with large amounts of dendrimer 

loading. As dendrimer lipid formulations with dendrimers 2A and 8A have been previously 

investigated with solid supported POPC171 we utilized them to confirm the fluidity 

improvements provided by the PEG tether. These results can be seen in Figure 2.7 showing 

a substantial decrease in lipid fluidity with increasing dendrimer size and percentage for a 

POPC solid supported membrane system with a much lower decrease for the PEG-POPC 

tethered system. With a POPC membrane lipid mobility is almost completely lost with 

Figure 2.7. Diffusion coefficient obtained from FRAP studies of combined dendrimer 

and lipid membrane systems. Showing significantly higher diffusion when PEG-POPC 

tethered lipids (grey) were combined with dendrimers than traditional POPC (black). 
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loading of 45 and 2.5% of 2A and 8A dendrimer respectively. While, with the PEG tethered 

membrane the lipid mobility is not even decreased by half with introduction of higher 

amounts of 50% 2A and 5% 8A dendrimer. This demonstrates the profound impact 

interactions with the solid support surface have on biomimetic membrane mobility and 

indicates that this tethered system can remedy these effects and more accurately represent 

a cellular surface.  

Dendrimer Binding to Tethered Lipid Membrane 

 As these dendrimers have been shown to create supramolecular structures with 

lipids171  and have been considered as potential avenues for drug delivery180 we endeavored 

to understand the interactions between these dendrimers and our lipid system. As these 

interactions play an important role in both supramolecular assembly and in drug delivery 

mechanisms. To achieve this, we utilized SPR spectroscopy techniques to monitor binding 

events between dendrimer micelles and the PEG tethered lipid bilayer. Previously amine 

terminated dendrimer micelles had been shown to have no binding to a solid supported 

POPC membrane171, but the arginine terminated dendrimers had not been explored. 

Therefore, we first investigated whether Arg-8A dendrimer micelles would bind to the 

tethered lipid membrane, finding substantial signal associated with dendrimer binding 

remained even after a rinse. Notably a twofold greater binding signal was obtained for the 

arginine terminated dendrimers compared to the amine terminated dendrimers. This 

matches with models demonstrated by Li et al.181 showing strong interactions between both 

lysine and arginine resulting in membrane deformation. Furthermore, they found that 

arginine pulled in more lipid headgroups than lysine which would match with our SPR 
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binding results. This likely plays a large part in the binding differences occurring between 

arginine terminated and amine terminated dendrimers and is linked to the membrane 

Figure 2.8. Surface plasmon resonance sensorgrams demonstrating differential binding of 

arginine and amine dendrimers to PEG tethered lipid bilayers. Over two-fold higher 

binding signal was observed for the arginine dendrimer on the PEG-POPC surface. 
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penetration properties of arginine containing peptides that have been demonstrated in 

literature.182, 183 We then expanded our work to explore whether the tethered membrane 

had any impact on binding in regards to the amine terminated dendrimers, finding 

significantly less binding than seen for the Arg-8A but more than was observed on a solid 

supported POPC substrate as can be seen in Figure 2.8. This demonstrates that at least for 

the 8A dendrimer the underlying solid support seems to play a role in limiting these binding 

interactions from occurring potentially due to the lack of membrane malleability in the 

vertical direction. 

SPR Analysis of Membrane Transport 

 Now that we had demonstrated a robust tethered bilayer system that mimicked the 

two-sided nature of a cellular membrane and could be formulated on gold sensor chips, we 

Figure 2.9. SPR sensorgram (black) demonstrating detection of small molecules passing 

a membrane system with signal remaining from molecules linked to the sensor chip after 

triton removal of the lipids. Control (grey) without the addition of small molecule thiol 

shows a return to baseline due to complete removal of lipids. 
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employed it to investigate the transport of small drug analogs across a membrane. To 

achieve this PEG tethered POPC membranes were formulated on SPR chips and monitored 

as small molecule drug analogs were introduced to the system to visualize their passage 

across the membrane and covalent linkage to the sensor surface as can be seen in Figure 

2.9. Following this a 1% Triton X-100 solution was injected to disrupt and remove the lipid 

membrane184 leaving only those small molecules that had been able to traverse the bilayer 

barrier. For the small molecule 2-[2-[2-(2-Mercaptoethoxy)ethoxy]ethoxy]ethanol 

(MEEE) these results showed an increase in signal remaining after membrane removal 

indicating that it was able to cross the lipid bilayer and adhere to the gold substrate. Similar 

results were obtained for another small molecule thiol 11-Mercapto-1-undecanol. 

However, with a large molecule or protein this signal was not observed indicating inability 

to pass the membrane mimic. Demonstrating the feasibility of utilizing this platform to 

investigate the membrane permeability of various drug molecules. However, further work 

was needed to concretely determine that the signal identified was from the small molecule 

of interest. 

MALDI-MS Confirmation of Small Molecule Bilayer Crossing  

To this end, we employed on chip MALDI-MS after our SPR spectroscopy experiments 

to confirm the presence of these small molecules and the lack of lipids. For this SPR chips 

were dried with air after experiment completion and the areas of the chip consistent with 

the flow cell were covered in sDHB matrix before transfer to a MALDI-MS instrument. 

Following this, various areas of the chip could be ionized and the molecular constituents 

within the selected area could be identified. As can be seen in Figure 2.10 MEEE is clearly 
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visible in the MALDI-MS spectra indicating that it was capable of passing the lipid 

membrane. Thus, demonstrating the potential of the SPR tethered membrane platform to 

investigate these important membrane diffusion properties especially with the addition of 

MALDI-MS for confirming the molecular identity of molecules remaining on the sensor 

chip after experimentation. 

2.4 Conclusion 

We have demonstrated a new wholly mobile tethered lipid membrane that enables self-

assembly on gold surfaces which up to now has been difficult. This is achieved through the 

inclusion of long PEG chains that form a cushion between the lipids and the solid support. 

This cushion has been shown to significantly improve the membranes resistance to 

mobility reductions from molecular loading when compared to traditionally utilized solid 

supported lipid membranes. We further investigated the binding of dendrimer micelles to 

this membrane surface and identified unique interactions that occur only with this surface. 

Figure 2.10. MALDI-MS spectra showing sodiated peaks of MEEE thiols from SPR 

sensor chips after passage across the membrane system. Two peaks associated with the 

molecule are seen at high abundance corresponding to a single thiol and disulfide form of 

the molecule present on the surface. 
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Finally, this substrate was employed as a platform for monitoring of small molecule drug 

analog passage across a membrane system with MALDI-MS used to confirm the molecular 

identity of the passing molecules. This constitutes a preliminary study demonstrating the 

feasibility of utilizing and unlinked tethered membrane and results indicating its highly 

promising properties for accurately mimicking the cell surface. 
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Chapter 3: Charged Biomimetic Lipid Membranes for Highly Effective Antifouling 

against Clinically Relevant Matrices in Biosensing 

3.1 Introduction 

Analysis of biomarkers in complex biological media is an important step for 

tracking human disease states, drug effectiveness, toxicant exposure, and overall patient 

health. A number of biosensors have been developed for this important application1, 2, but 

they mostly face a considerable technical issue, which is to effectively separate signals 

from biomarkers of interest and the signal caused by nonspecific interactions from the 

plethora of other biological molecules. Many biological molecules in clinically relevant 

fluids (blood, saliva, cerebrospinal fluid, and nasopharyngeal swabs) notoriously 

nonspecifically adhere to sensor surfaces and convolute sensor signals.3 To curtail this 

problem, extensive research efforts have been focused on the development of surfaces and 

methodologies to block, remove or correct for nonspecific interactions.4-8 These methods 

generally rely on surface blocking with thiol self-assembled monolayers (SAMs)9, 10, 

polymer surfaces11, DNA structures12,  or peptides13, 14. Lipids, another subset of biological 

molecules, have also recently been found to be a reliable method for blocking nonspecific 

adsorption as they are a major component of inherently antifouling cell membranes.4, 15, 16 

The ability of lipids to self-assemble into bilayers allow them to be easily presented on 

sensor surfaces17 and can be utilized to mimic cell surface environments in addition to the 

adsorption-blocking capabilities.18 However, these surfaces are considerably underutilized 

despite their inherent benefits. New designs towards more effective antifouling and a better 

understanding of the process behind antifouling effects are clearly needed.  
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A variety of lipids have been utilized for constructing the sensing interface that 

improved the performance of biomarker analysis in serum4 and blood19,20. Zwitterionic 

polymers have been broadly used due to lack of strong charge that is often considered an 

advantage in antifouling.21, 22 As such, zwitterionic lipids have been viewed as an ideal 

starting point for lipid membrane-based antifouling.19 However, the role charged lipids 

play in nonspecific interactions appears to be complex. On certain surfaces, zwitterionic 

lipid bilayer are found to be far less effective.4  On the other hand, charged lipids have not 

been fully explored for their potential in antifouling, despite many of which play important 

roles in cellular membranes.23-25 Until recently there were no reports using a charged lipid 

membrane interface for sensing application with biological matrices where reduced 

background was noticed. However, we recently demonstrated that positively charged ethyl 

phosphocholine (EPC) lipid membrane showed better antifouling property than 

zwitterionic lipids in protein detection on a Protein A substrate in undiluted serum.4 

Though the process behind the antifouling properties of EPC and the EPC lipid system was 

not fully understood. 

In this work, we further characterized the positively charged EPC lipid membrane 

and sought to identify key factors that determined the antifouling behavior in human serum 

(Figure 3.1). A number of techniques, including SPR, FRAP, and MALDI-TOF-MS, were 

utilized to provide molecular level understanding of the membrane properties, especially 

those on a Protein A substrate. Zwitterionic POPC lipid, a standard lipid molecule broadly 

used for antifouling purposes, will be employed for comparison. POPC appears to 

demonstrate effective antifouling capabilities on certain surfaces, such as glass and 
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calcinated Au substrates15, but functions less effectively on a protein-modified surface. 

Negatively charged lipids, on the other hand, proved difficult to even form into a membrane 

system on Protein A and silica surfaces, let alone the surface antifouling effect. The study 

into the mechanisms behind the antifouling properties of EPC lipids could provide 

knowledge and guidance for construction and utilizing of lipid membranes to suppress 

nonspecific signals in biosensor research. 

Figure 3.1. Antifouling differences of EPC lipid membranes on protein A scaffolds. With 

rigid EPC bilayers forming on high concentration protein A surfaces leading to a highly 

antifouling surface (top). While EPC bilayers formed on low concentration protein A 

surfaces were less compact, more mobile, and susceptible to non-specific serum 

interactions (bottom). 
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3.2 Experimental Methods 

Materials and Reagents.  

Super dihydrobenzoic acid (sDHB), acetonitrile (ACN), and trifluoroacetic acid (TFA) 

with purity (>99%) were purchased from Sigma Aldrich. Premium Plain BK-7 glass 

microscope slides and phosphate buffered saline (PBS) concentrate were purchased from 

Fisher Scientific. Thiolated recombinant protein A was purchased from ProteinMods. 

Ultrapure water (>18 MΩ cm-1) was acquired from a Barnstead E-Pure water purification 

system.   

Lipid Vesicle Preparation.  

Stocks of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC; 5 mg mL−1), 1,2-

dioleoyl-sn-glycero-3-ethylphosphocholine (EPC; 5 mg mL−1), 1-palmitoyl-2-oleoyl-sn-

glycero-3-phospho-(1'-rac-glycerol) (POPG; 5 mg mL-1), and 1,2-dipalmitoyl-sn-glycero-

3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (NBD-

PE; 5 mg mL−1) were obtained from Avanti Polar Lipids, then diluted in chloroform to the 

designated concentration and stored at −80 °C. For lipid vesicle formation, lipid stock 

solution was aliquoted into glass vials and dried under nitrogen forming thin lipid films 

which were further dried overnight in a vacuum desiccator. The dried lipids were 

resuspended in 1× PBS (10 mM Na2HPO4, 1.8 mM KH2PO4, 137 mM NaCl, 2.7 mM KCL, 

pH 7.4) to a final concentration of 1 mg mL−1 (above critical micelle concentration), 

followed by vigorous vortexing and bath sonication for 30 min to induce vesicle formation. 

The resulting lipid vesicles were then extruded through a polycarbonate filter (Whatman, 
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100 nm) to produce small unilamellar vesicles of uniform 100nm size. All lipid vesicle 

suspensions were stored at 4 °C and used within 1 week of preparation to ensure consistent 

vesicle structure and resulting membrane formation. 

Fabrication of Sensor Chips.  

Gold SPR chips were fabricated from BK-7 glass slides based on a previously published 

procedure with modification.26 In short, glass slides were cleaned with boiling piranha 

solution (3:1 H2SO4 and 30% H2O2; Caution!) for 2 h and then rinsed with equal amounts 

water and absolute ethanol before drying under nitrogen. A 2-nm layer of chromium (0.5 

Å s−1) followed by a 48 nm layer of gold (1.0 Å s−1) was deposited onto the glass slides 

using an electron-beam physical vapor deposition system (Temescal, Berkeley, CA) at or 

below 5 × 10−6 Torr. Silicated chips were fabricated through additional deposition of 

approximately 1-3 nm of SiO2 via plasma enhanced chemical vapor deposition using a 

Unaxis Plasmatherm 790 system (Santa Clara, CA), onto previously described gold chips. 

All sensor chips were fabricated in a Class 100/1000 cleanroom facility (UCR Center for 

Nanoscale Science & Engineering). Gold sensor chips were chemically functionalized 

following previously disclosed methods.4 In short, 10 μg mL−1 thiolated protein A and 

1mM 3-mercapto-1-propanol were incubated on gold sensor chips for 2h and 1 h, 

respectively. Chips were then rinsed with ultrapure water, dried under nitrogen, and stored 

at 4 °C prior to SPR analysis. 
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SPR Analysis of Membrane Formation and Antifouling Properties.  

SPR analysis was conducted on a NanoSPR6 instrument (NanoSPR, Addison, IL, USA) 

using 1× PBS as the running buffer with a flow rate of 5 mL h−1 (ca. 83 μL min−1). Lipid 

deposition was carried out by injection of 1 mg mL−1 of 100 nm lipid vesicles, which were 

allowed to self-assemble into bilayers over 30 minutes of stopped flow. Following a 30 

min rinse with 1× PBS, undiluted human serum was introduced and allowed to interact 

with the surface for 30 min with flow set to zero, followed by a final 30 min rinse with 

PBS. 

Fluorescence Recovery after Photobleaching.  

Fluorescence microscopy and bleaching images were generated on an inverted Leica TCS 

SP5 II confocal microscope (Leica Microsystems, Buffalo Point, IL, USA). NBD-PE lipids 

(2% in molar ratio) were incorporated into vesicle preparation methods to enable 

fluorescent visualization of lipid membranes. For fluorescent imaging an argon laser at the 

wavelength of 488nm was utilized to excite NBD lipid. Fluorescent emission between 500 

and 600 nm was detected using a hybrid detector (HyD). Images were obtained via 3 line 

averaging and further 3 image averaging. FRAP images were obtained without image 

averaging and with laser power increased to 100% for one second bleaching. 

Photobleaching and monitoring of fluorescence recovery within defined regions of interest 

were performed using the LAS AF software package (Leica). Images were processed using 

ImageJ with the Fiji package and analyzed using open-source software simFRAP (available 
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through http://imagej.nih.gov/ij/plugins/sim-frap/index.html).27 Mobile fractions (ß) and 

diffusion coefficients (D) were calculated using previously demonstrated methods.28, 29  

Matrix Assisted Laser Desorption Ionization. Mass profiles of membrane systems 

before and after serum interaction were obtained with a reflectron AB-Sciex 5800 MALDI-

TOF instrument operating in positive ion mode. An individual spectra is represented by 

m/z values versus intensity (au) obtained by an average of 200 shots collected from a small 

area of the chip. To enable spectra acquisition post SPR analysis air was slowly injected 

into the flow system to dry the chip surface leaving behind surface bound materials before 

removal of the chip from the SPR instrument and matrix deposition prior to MALDI 

analysis. 

3.3 Results and Discussion: 

Formation of Lipid Membranes on Functional Surfaces.  

Fused EPC lipid membrane on a Protein A substrate has been identified as a unique 

platform to enable antibody capture and detection in serum that suppresses nonspecific 

interactions, improves detection limits and deconvolutes data.4 The underlying principle of 

the antifouling function with a positively charged membrane, however, remains unclear. In 

this work we further characterized the EPC system under various conditions, aiming to 

elucidate how charged lipid membranes enable improvements, both in antifouling and 

specific sensing, on Protein A supports. We first tested the effect of varied surface charges 

on the formation of lipid membranes and compared membrane formation on different 

surfaces using SPR. The test chips were coated with protein A (10 μg mL–1), followed by 

http://imagej.nih.gov/ij/plugins/sim-frap/index.html
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passivation with MPO (1mM). Lipid vesicles of negatively charged POPG, positively 

charge EPC and zwitterionic POPC were introduced into the flow cell for membrane self-

assembly.4 Only positively charged EPC lipids appeared to self-assemble on the Protein A 

substrate, while POPG and POPC lipid vesicles did not register any binding or fusion 

(Figure 3.2.). The observed response patterns seemed unique, and a possible scenario of 

electrostatic repulsion or minimal vesicle adhesion without rupture could be proposed as 

Figure 3.2. (A) Molecular structures of lipids used in this study (EPC, POPC, and POPG). 

(B) SPR sensorgrams of lipid vesicle adhesion and fusion to form solid supported lipid 

bilayer systems on silica and protein A of EPC (blue and purple), POPC (grey and orange), 

and POPG (green and red) respectively. 
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the cause.30 It is known that Protein A is negatively charged in the buffer condition used 

here (pH 7.4) from a theoretical isoelectronic point of 5.4.31 However, the complete shutoff 

of POPC lipid vesicles is puzzling. The role of Protein A on membrane formation appears 

to be more complex than initially believed. We further tested vesicle fusion using silica 

substrates as they are known to promote self-assembly of lipid membranes.17 For this 

comparison work, we utilized calcinated gold chips with SPR that were previously 

developed in our lab.32 Figure 3.2B shows that POPC and EPC quickly formed robust 

membranes, which agrees well with literature reports.33 There were some differences in 

signal magnitude for different vesicles, with EPC lipid vesicles producing a greater angular 

shift (Δθ = 0.445°) as compared to POPC vesicles (Δθ = 0.350°) (Figure 3.2B). Negatively 

charged POPG vesicles, however, showed minimal interaction with the calcinated 

substrates (Δθ = 0.024°), likely due to the negative charge of the silica surface in PBS 

buffer.34 The observation of positively charged EPC showing favorable interaction with 

the silica surface provides some explanation about the difference in signal between EPC 

and POPC lipids.  Strong charge interactions constrain EPC lipid vesicles closer to the 

sensor surface, enabling a better packing of the EPC membrane. Zwitterionic POPC also 

demonstrates prolific membrane formation on a silica surface, as have been broadly 

reported.35-37 The signal was slightly smaller than EPC, indicative of a less tightly packed 

structure. It is interesting to note that EPC lipids formed on a protein A substrate had a 

higher angular shift than on the silica surface (Δθ = 0.576°), providing further evidence 

that EPC lipids interact more strongly with the charged Protein A substrates and the impact 
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of charge density and lipid packaging density play important roles in the interaction and 

resulting antifouling properties.  

Fluorescence microscopy was utilized to characterize the distribution and mobility 

of EPC and POPC lipid species on the two surfaces. Glass slides and Protein A coated gold 

chips were prepared in a similar fashion and fitted into a PMDS housing to provide a 

defined area for vesicle incubation. 2 mol % of NBD-PE was incorporated into the 

membrane systems to enable fluorescent visualization. To address the concern of 

fluorescent quenching on gold surfaces, which could limit fluorescent imaging on these 

chips38, we first tested if fluorescent signal was impacted on the 50 nm thick gold 

substrates. We didn’t observe any substantial quenching or signal complications, likely 

thanks to the increased distance of the fluorophores from the gold substrate, separated by 

the Protein A scaffold. Distance from the gold has been shown to be an important 

component of gold quenching mechanisms.38 EPC and POPC distribution on the silica 

substrate was uniform with no visible, uncovered areas. For comparison, EPC coverage on 

the Protein A surface was complete while POPC was only sparsely distributed. Mobility 

measurement by FRAP further separated these lipid surfaces where significant differences 

were observed. EPC lipids on the Protein A sensor presented a complete lack of lateral 

mobility while both EPC and POPC demonstrated decent mobility on the silica surface. 

POPC lipids showed a measured mobility with D = 2.87 ± 0.25 μm2/s, which is consistent 

with literature reports,39 whereas EPC had rather reduced mobility values (1.89 ± 0.19 

μm2/s). These differences fit well into a charge-based model in which increased 

electrostatic charge plays a larger role in positively charged EPC with negatively charged 
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silica as compared to zwitterionic POPC lipids thus limiting lipid lateral movement. As 

POPC vesicles did not fuse onto the Protein A surface, they therefore did not have 

measurable diffusivity.  

Antifouling Properties of Lipid Bilayers.  

We then used SPR to quantify the changes upon injection of serum to further 

characterize the antifouling properties of the lipid membranes. Lipid membranes of POPC, 

EPC, and POPG were formulated as previously described, and were allowed to interact 

with serum over a 30-minute period before a final rinse step was performed. Figure 3.3 C 

and D show the signals as a result of the bulk refractive index change at the interface 

brought about by the binding of biological molecules in serum. After PBS washing, the 

bulk signal changed and was replaced in the sensorgram by remaining molecules 

attributing to the non-specific binding, which was used for quantifying the extent of surface 

fouling. For membranes where the SPR signal returned to pre-serum levels, the outcome 

indicated that little to no interaction between the surface and molecules in serum occurred 

during the incubation and the surface would be thus deemed “effective antifouling”. This 

property was clearly observed for EPC on a protein A surface and POPC on a silica surface. 

Other surfaces were observed with substantial remaining signal, which were designated 

high levels of surface fouling, as seen on the bare chip surfaces and those where lipid 

membranes did not form.  

From SPR surface fouling tests, it is apparent that the Protein A sensor has much 

more nonspecific interactions than silica substrates. The angular shift remained high after 
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rinse (0.630 ± 0.042°) while the silica substrate only showed half of the shift (0.383 ± 

0.045°). This nearly two-fold higher nonspecific signal demonstrates that nonspecific 

interactions can severely impair biosensor performance if surface fouling is not effectively 

addressed. From the results, two substrates with lipid membrane coating stand out: EPC 

lipids on the Protein A surface and POPC lipids on the silica substrate, with observed 

angular shifts at -0.095 ± 0.048° and 0.014 ± 0.009°, respectively. The negative values on 



93 
 

the Protein A/EPC surface raised questions about whether the lipids were displaced by or 

exchanged with serum proteins. Therefore, we employed a series of methods including 

Figure 3.3.  Representation of EPC lipid membranes on (A) protein A and (B) silica 

substrates. (C) SPR sensorgram of serum antifouling effects of EPC on a protein A 

surface. (D) SPR sensorgram of serum fouling an EPC membrane on a silica substrate. 

(E) Resulting SPR angular shifts of serum nonspecific interactions on the surfaces of bare 

silica and a protein A formulation (left most columns). The three other columns represent 

serum nonspecific binding to lipid membranes (POPG, POPC, and EPC) formed on top 

of silica (front) or protein A (back).  
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fluorescent microscopy, FRAP and mass spectrometry to further investigate the surface 

properties after serum incubation. 

It should be mentioned that the POPC and POPG membranes tested in this work 

showed considerable nonspecific signal, suggesting that a variety of non-specific 

interactions had occurred between the sensor substrate and biomolecules in serum. Thus, 

these surfaces would perform poorly for sensor development. However, there is some 

variation in the extent of fouling among those ineffective surfaces, which may provide 

some clue on how these surfaces could be improved. POPC lipid vesicles on the Protein A 

surface, previously mentioned only sparsely adhered to the sensor surface, did provide a 

lower nonspecific adsorption, with remaining angular shift observed at 0.465 ± 0.130°, 

which is ~27% less than the noncoated, bare Protein A sensor. The relatively high values 

match the observed surface condition as only being limitedly covered, suggesting that 

should mechanisms to induce POPC vesicle fusion on this surface be developed it could 

prove to be effectively antifouling, as even the small amount of POPC lipids attached were 

able to reduce the signal from nonspecific interactions. Several approaches such as 

amphipathic peptide induced fusion40 and solvent/buffer assisted fusion41 have been shown 

to promote lipid coverage. Their effectiveness for POPC on protein A surface remains to 

be tested. Nevertheless, we showed lipid membranes can be formulated to match surface 

property of the sensor chips for optimal antifouling results. The highly effective Protein A 

EPC antifouling system presents the most promising surface in blocking fouling and thus 

was further investigated to understand what key factors are behind the antifouling 

properties. 
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Figure 3.4. Cartoon representation of fluorescently labeled lipid surface on protein A (A) 

without serum introduction and (B) with serum incubation. Neither showing a significant 

change in lipid structure. (C) Fluorescent images of EPC lipid surfaces on a protein A 

scaffold before serum fouling (left), after serum fouling (middle) and without fluorophore 

labeled lipids (right), as a control. With scale bars set to 40 μm. (D) Integrated density of 

displayed fluorescent images with error bars calculated based on triplicate results. 
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Probing Factors behind EPC Antifouling Properties on Protein A Surface.  

As previously mentioned, a reduction in signal following serum incubation on the 

EPC coated Protein A surface was observed. To confirm that EPC lipid membranes 

remained intact and were not damaged by serum we performed fluorescent microscopic 

studies to evaluate surface coverage and mobility before and after serum introduction. 

Protein A/EPC chips with 2% NBD-PE were prepared as with the SPR experiments and 

were characterized for lipid coverage and bleaching/recovery tracking. Chips without 

serum incubation were compared to identify differences in coverage and density. Figure 

3.4 shows that serum incubation resulted in a small decrease in fluorescent intensity, likely 

due to the extra washing steps associated with the removal steps. However, the difference 

was small and complete fluorescent coverage was observed across the whole lipid 

membrane surface, indicating the membrane remained intact following serum incubation. 

The result matches well with SPR study that exhibited a small signal reduction following 

Figure 3.5. FRAP results displaying EPC membranes on protein A surfaces before (top) 

and after (bottom) serum fouling interactions. Time points showing before the bleach 

(left column), immediately after bleach (middle column), and 70 seconds after bleaching 

(right column). Resulting fractional recovery rates are displayed on the far right. 
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serum wash off.  We speculate the minor signal loss is due to small amounts of lipid debris 

separating from the surface while the overall membrane structure remains intact. The high 

stability of the EPC membrane on Protein A in serum is one important factor in abrogating 

serum fouling. Control study with bare Protein A surface indicated that no fluorescent 

signal was observed from Protein A or serum, confirming that the lipid membranes were 

the only source of fluorescent signal. FRAP analysis was performed on both substrates and 

similar non-recovery behavior was observed (Figure 3.5.). The fractional recovery curve 

remained flat, suggesting very little lateral diffusion on these surfaces and no change in 

membrane properties following serum introduction.  

MALDI-MS characterization of the sensor chips following SPR analysis was 

performed to identify molecular constituents on the surface. Sensor chips were removed 

from the SPR instrument, dried, and spotted with MALDI matrix (sDHB). As can be seen 

Figure 3.6. (A) Average of 30 MALDI-MS spectra in positive ion mode for an EPC lipid 

membrane on a protein A surface (blue) and after serum incubation (green) with ions out 

to 30000 m/z collected. No peaks were identifiable beyond 1200 m/z and EPC lipids were 

identified at 789.01 m/z as a molecular ion as shown in inset (B). 
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in Figure 3.6, no peaks for the Protein A chip were detected above noise beyond 3000 m/z; 

with vast majority appearing below 1200 m/z. Protein A is a 49-kDa protein and a large 

scan beyond 50,000 m/z was performed to determine if whole Protein A would be ionized. 

However, no such peaks were observed, likely due to covalent linkage of Protein A to the 

sensor surface and MALDI’s soft ionization meaning fragmentation is rare.42 Below 1200 

m/z range, there was clear signals for EPC lipids, identified at 789.01 m/z appearing in 

both samples. This matches with MALDI spectra for an EPC standard. As such, it is clear 

that EPC lipids remained on the sensor surface in large quantity following serum 

incubation. The overlapped spectra also exhibit no peaks only seen in the serum treated 

sample, additionally demonstrating that no serum molecules remain nonspecifically 

interacted with the sensor surface. From the MALDI-MS results, EPC lipid membranes 

appeared to be very stable on the Protein A surface, exhibiting exceptionally effective 

function at blocking serum fouling on the surface. 

Understanding Potential Antifouling Processes of the EPC Protein A Surface.  

With the antifouling effectiveness of EPC lipid membranes on Protein A scaffolds 

successfully being demonstrated we turned towards understanding how and why this 

surface was effective. Previous results indicated that strong interaction between the sensor 

surface and EPC lipids occurs, generating robust SPR signal with diminishing lateral 

mobility. But how these interactions resulted in such an antifouling surface was elusive. 

We first tested the effect of Protein A density on lipid membrane formation and property. 

Sensor chips prepared with varied Protein A concentrations (1 μg mL−1, 100 ng mL−1, and 

1 ng mL−1) in the incubation step were fabricated, yielding surfaces with a more disperse 
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protein distribution. SPR sensorgrams demonstrated significant differences in membrane 

formation and antifouling properties. Lowering Protein A concentration led to a loss of 

blocking function towards nonspecific interactions from serum by the EPC lipids on top of 

it (Figure 3.7). On the other hand, POPC membranes started to steadily form on the sensor 

surface when concentration of protein A was decreased.  

FRAP analysis of EPC membranes formed on these protein A surfaces provided 

additional information about the mobility changes in the membrane. As Protein A 

concentration increased, a decrease in lipid fluidity was observed, with a complete loss of 

fluidity observed at 10 μg mL−1 (Figure 3.8). Diffusion coefficient measurement indicates 

the value decreased by 0.08 μm2/s with concentration increased from 1 to 100 ng mL−1, 

Figure 3.7. Formation and antifouling performance of EPC and POPC lipid membranes on 

a low concentration (1 ng/mL) protein A substrate. Showing loss of EPC antifouling 

properties and improved formation of POPC lipid membrane when compared to higher 

concentration protein A surfaces. 
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while a loss of 0.12 μm2/s was determined with the concentration increased from 100 ng 

mL−1 to 1 μg mL−1. Clearly the density of Protein A has a large impact on the formation 

and the mobility of EPC lipids. We speculate that the low mobility of the EPC membrane 

may be a necessary factor for the surface to remain stable in serum and act as an effective 

antifouling substrate.  

 While surface charge has been established to play a role in the formation of EPC 

membrane and the antifouling properties, another factor could be the hydration layer 

formed above the lipid surface. The highly charged gel phase of EPC lipid has a strong 

coupling with the interfacial hydration layer, increasing the energy required for proteins to 

undergo conformational changes that would lead to irreversible nonspecific binding.43 The 

scenario is similar to an aluminum oxide surface that proves to be highly antifouling44 due 

to the thicker hydration layer, 45 resulting from strong coupling between the positively 

Figure 3.8. Lipid diffusivity changes due to sensor protein A concentration. (A-D) 

Fractional recovery curves and exponential fits used to calculate lipid diffusivity for EPC 

lipids formulated on increasing concentrations of protein A sensor chips (1ng/ml, 100 

ng/ml, 1 μg/ml, and 10 μg/ml) respectively. (E) Resulting diffusion coefficients obtained 

from FRAP recovery curve fitting. 
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charged aluminum oxide and water layer.46 Furthermore, the EPC terminal phosphocholine 

group likely plays a large role due to its ability to form multiple hydrogen bonds to water 

molecules.47 Recently phosphate groups, despite lacking zwitterionic properties, have been 

demonstrated to impart antifouling properties due to their strong hydrophilicity.48 

Indicating that zwitterionic charge is not necessary for antifouling and that the 

hydrophilicity or hydrophobicity of a substrate likely plays a large role in antifouling 

effectiveness. This explains why EPC antifouling properties are completely lost upon 

decreasing protein A concentration and the EPC bilayer becomes more fluid and dispersed.  

3.4 Conclusion: 

We have reported the characterization of membrane formation of differently 

charged lipids, including POPC, EPC, and POPG on Protein A surface and their respective 

antifouling properties. POPC and EPC membranes were found to effectively form 

antifouling substrates against whole human serum. Various formation conditions have been 

explored and the importance of charge interactions with the underlying surface is found to 

play a pivotal role in whether antifouling properties are observed. Notably POPC on a silica 

surface and EPC on a Protein A surface demonstrate highly effective antifouling properties. 

EPC lipid surfaces were confirmed to remain intact and can block serum molecules from 

adhering to the surface through robust bilayer formation, electrical repulsion, and 

formation of a hydration layer. At higher Protein A concentrations EPC lipid membranes 

are robust therefore antifouling relies on a strong interaction between Protein A and EPC 

that severely limits lipid mobility. High concentrations of Protein A are required for 

presenting a high charge density on the surface, leading to a rigid layer with a stable 
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hydration layer that limits the ability of proteins to irreversibly bind. These results underpin 

the importance of lipid and surface charges in enabling effective antifouling function as 

they were only effective with a compatible sensor surface. As such, lipid surfaces show 

incredible promise in enabling sensing of biological targets in complex media but must be 

properly incorporated into the sensor development process to account for surface charge 

and binding effects that play a crucial role in the formation and effectiveness of antifouling 

lipid surfaces. 
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Chapter 4: Development of Platforms for Label Free Analysis of Curvature Sensing 

Proteins 

4.1 Introduction 

In recent decades various proteins have been identified that appear to preferentially 

bind to curved lipid surfaces. With major roles in various areas of membrane fission1 

including endocytosis2, cell-cell signaling3, and membrane reshaping4, 5 mechanisms. 

These curvature binding motifs clearly play an important role in our biological function 

but the specifics of how they selectively bind curved surfaces are still underexplored. One 

group of these curvature sensing proteins is found from a conserved structure known as the 

BAR domain that adopts a banana like structure that binds to curved membranes.6 These 

BAR domain proteins act not only to sense curved regions but also to generate and 

propagate curvature7 followed by acting as a scaffold for binding of partner proteins8. 

Though this is not the only case of curvature sensing that has been identified, intrinsically 

disordered proteins (IDPs) have also been observed to preferentially bind to curved 

surfaces. These IDPs have been shown to produce membrane buds and tubules through 

crowding effects when bound in high enough amounts5, 9. One of these IDPs known as 

alpha-synuclein10 has also been implicated to play a critical role in Parkinson’s disease11. 

So clearly, these curvature sensing proteins are not only necessary for cellular function but 

can contribute to disease states. Though, a deeper understanding of the binding between 

these curvature sensing proteins and lipid structures is needed to elucidate the specifics of 

these unique systems that clearly play a pivotal role in eukaryotic cells. 
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As such, ways to isolate and study this curvature dependent binding are necessary. 

However, this curvature has presented a challenge to biomimetic studies that have relied 

on solid supported lipid membranes for measurements of protein binding dynamics. 

Therefore, new methodologies to accurately mimic the curved environment that these 

proteins naturally bind to have been explored utilizing liposomes12-15 and nanostructures16-

18 to form well defined curved surfaces. However, the majority of these studies rely on 

fluorophore labeling to investigate this curvature specific binding limiting our ability to 

see just the binding interaction. As such, surface plasmon resonance (SPR)19 and quartz 

crystal microbalance (QCM)20 emerge as ideal instrumentation to investigate these 

interactions due to their ability to provide label free analysis of the interactions between 

proteins and lipid structures which can be expanded to these curved systems if an 

appropriate platform is developed.  

Herein, we demonstrate curved membrane platforms for use in SPR and QCM based 

analysis of curvature selective protein binding and implement modeling techniques to 

elucidate the effect of changing constituents on the SPR platform. For SPR based studies a 

platform consisting of ganglioside containing lipid vesicles linked to cholera toxin on the 

sensor surface is employed to investigate BIN1 binding to varied vesicle sizes. While 

another platform utilizes different size silica beads to induce formation of curved lipid 

membranes for QCM measurements of alpha-syn curvature specific binding. Each 

platform demonstrates the capability to identify curvature specific binding, finding 

increased binding to highly curved surfaces. Further, Monte Carlo methods were employed 

to model the vesicles utilized in the SPR platform and connect differences in binding for 
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various gangliosides to multivalent interactions with the CT based on expected distribution 

of gangliosides. These platforms can be easily modified and applied to investigate any 

curvature sensing protein of interest. 

4.2 Experimental Methods 

Materials and Reagents.  

A stainless-steel extruder, 100 nm polycarbonate track etched filters, 1-palmitoyl-2-oleoyl-

glycero-3-phosphocholine POPC, and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-

(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) NBD-PE, were purchased from 

Avanti Polar Lipids (Alabaster, Al). 10 mm filter supports were acquired from Cytiva 

(Marlborough, MA). Silica nanospheres of sizes 50, 100, and 500 nm were obtained from 

nanoComposix (San Diego, CA). 10 MHz quartz crystal chips were purchased from 

openQCM (Pompei, Italy). Plain BK-7 glass microscope slides, phosphate buffered saline 

(PBS) concentrate, and alpha-synuclein protein were acquired from Fisher Scientific 

(Hampton, NH). Polydimethylsiloxane (PDMS) two-part polymer kit was obtained from 

Ellsworth adhesives (Germantown, WI).  

Lipid Vesicle Preparation.  

Lipid vesicles were prepared following previously published procedures21. In short, a stock 

solution of 5 mg/mL POPC in 1:9 methanol chloroform solution kept at -80 °C was thawed, 

aliquoted into a glass vial, and dried under nitrogen to form a thin lipid film. This film was 

further dried in a vacuum desiccator overnight before resuspension in 1× PBS (10 mM 

Na2HPO4, 1.8 mM KH2PO4, 137 mM NaCl, 2.7 mM KCL, pH 7.4) to a final 
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concentration of 1 mg/mL. Following resuspension, lipid mixtures were thoroughly 

vortexed to ensure the lipid film was fully dissolved then were sonicated for 30 minutes at 

room temperature to induce vesicle formation. Vesicles were then extruded through 

membranes to produce small unilamellar vesicles of the desired 100 nm size and then 

stored at 4°C for use within 5 days. 

Fluorescent Imaging and Fluorescence Recovery after Photobleaching of Curved 

Lipid Surfaces.  

Fluorescence microscopy images were acquired on an inverted Leica TCS SP5 II. For 

fluorescent imaging of lipid bilayers NBD-PE fluorophore labeled lipids were incorporated 

into the lipid vesicle preparation at a 2% molar ratio. NBD excitation was achieved with a 

488 nm argon laser at 10-20% laser power and collected using a Leica hybrid detector 

(HyD), which combines photomultiplier tube and avalanche photodiodes, set to collect 

500-600 nm light. To visualize the formation of lipid membranes on curved surfaces, silica 

nanoparticles were drop cast into small wells cut into thin PDMS sheets on piranha cleaned 

glass microscope slides and then lipid vesicles were introduced and allowed to equilibrate 

before being thoroughly rinsed with water. The remaining lipids bound to the silica 

nanosphere surfaces were Z-stack imaged with a step size of 0.042 micron. Each image 

was collected using 3-fold line and image averaging. Following data collection images 

were processed using ImageJ with the Fiji22 package to combine intensity values from each 

Z-stack to visualize the fluorescence across the entire sphere volume. FRAP measurements 

were achieved using the same instrument using identical parameters with modification to 

100% laser power for bleaching and no line or image averaging when collecting bleach 
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recovery images to enable collection of an image every second. From these recovery 

images the fluorescence intensity of the bleach spot was collected at each time point and 

normalized against an unbleached control area of the same size to produce a graph of 

fractional recovery. 

Fabrication of SPR Chips.  

Gold coated surface plasmon resonance chips were formulated on glass microscope slides 

in accordance with previously published procedures23. For this glass slides were cleaned in 

boiling piranha acid (3:1, H2SO4:H2O2) for 1 hour to remove any organic material. Then 

chips were washed with water followed by ethanol and dried via a nitrogen stream. These 

chips were then transferred to the University of California, Riverside Center for Nanoscale 

Science and Engineering Nanofabrication Facility where they were coated in 2 nm 

chromium and 48 nm of gold using an electron beam physical vapor deposition (EBPVD) 

system (Temescal, Berkeley, CA). Finally, 1-3nm of silica was deposited on these gold 

coated chips using a Unaxis 790 (Pfäffikon, Schwyz, Switzerland) plasma enhanced 

chemical vapor deposition (PECVD) instrument.  

SPR Analysis.  

These silica coated gold sensor chips were utilized for SPR experiments on a NanoSPR5-

321 (NanoSPR, Chicago, IL) instrument that employs a 670 nm GaAs semiconductor laser. 

The system includes a silver backed triangular prism (n=1.61) that is matched to the glass 

slides using matching fluid (n = 1.5167) (Cargille, Cedar Grove, NJ). Biological 

components are injected into the dual channel system through a home-built injection 
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system consisting of two 6-way HPLC injection valves and a two-channel syringe pump 

with flow rate set to 5 mL/h.  

Fabrication of QCM-D Chips.  

To fabricate QCM chips capable of readily forming lipid bilayers a thin layer of silica was 

deposited onto the 10 MHz QCM chips from openQCM24 to enable robust lipid bilayer 

formation upon lipid vesicle introduction. This was achieved using plasms enhanced 

chemical vapor deposition following previously published procedures for SPR chips25 with 

modifications to accommodate the QCM chips. To produce curved surfaces for lipids to 

adhere to, 100 µL of silica nanospheres (10 mg/mL) were drop cast onto the chip and spin 

coated for 30 seconds at 4000 rpm. These silica sphere coated chips were then introduced 

to QCM instrumentation for lipid and protein binding studies. 

QCM Analysis.  

Sensing of alpha-syn binding to curved lipid surfaces was achieved using an openQCM24 

Q-1 instrument (openQCM, Pompei, Italy) that provides frequency and dissipation 

monitoring with overtone measurement and temperature control. The fabricated chips were 

inserted into the QCM, and the sensing chamber was slotted into place with an O-ring seal. 

Then lipids were injected and allowed to form a lipid bilayer which could be monitored in 

real time based on frequency and dissipation changes. Finally alpha-synuclein protein was 

injected into the flow system and allowed to equilibrate to measure differences in binding 

to differently curved lipid surfaces based on silica bead size. 
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Monte Carlo Modeling of Lipid Surfaces.  

Code for the Monte Carlo modeling of vesicles was scripted in R with library rgl26 utilized 

for 3D visualization of vesicles. To calculate the number of lipids in the vesicle of interest 

we utilized equation 4.1 which takes into account the vesicle radius (r), bilayer thickness 

(h), and lipid area (a). 

 4𝜋𝑟2+4𝜋(𝑟−ℎ)2

𝑎
   (4.1) 

This number was then modified to account for only the outer monolayer of lipids through 

removal of the 4𝜋(𝑟 − ℎ)2 term of the equation which corresponds to the inner layer of 

lipids. Then this number is multiplied by the lipid percentage to determine the number of 

an individual lipid or ganglioside type that was incorporated within a single vesicle. To 

calculate the distance between gangliosides in these models first the chord (c) between 

each ganglioside and its nearest neighbor was calculated based on the x, y, and z 

coordinates of the points through equation 4.2. These chord  

 

 √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2   (4.2) 

values were then utilized to calculate an arc distance, using equation 4.3, which more 

appropriately  

 𝑟 ∗ sin−1 2𝑐

2𝑟
   (4.3) 

matches the distance between points on the curved vesicle surface. Once thousands of arc 

distances had been calculated and combined, they were output as histograms to visualize 



115 
 

the distribution of distances between gangliosides. The code used for these calculations 

and plotting can be found in appendix A.1. 

4.3 Results and Discussion 

While SPR and QCM are both label free techniques the difference in how they measure 

binding events plays an important role in the potential curved membrane platforms that can 

be effectively implemented. For example, as SPR relies on an evanescent field that decays 

exponentially with distance from the surface the analysis of interactions at lipid surfaces 

beyond a certain distance (~300 nm) from the sensor becomes difficult if not impossible. 

QCM is similarly limited as when working in liquid the shear wave decays within (~250 

nm)27. However, this decay does not necessarily begin at the sensor surface. If rigid 

structures are present this decay begins at the end of the structure. As such, implementation 

of rigid spherical structures could enable QCM analysis of curvature sensing proteins at 

distances greater than 250 nm from the surface without substantial signal loss.  

Therefore, we developed two different curved membrane substrates to facilitate 

investigation of curvature binding proteins via label free techniques SPR and QCM. For 

the SPR sensor we employed a solid supported lipid membrane containing DGS-NTA 

lipids to secure and present CT on the sensor surface allowing for further capture of lipid 

vesicles containing various gangliosides which are known to bind with CT. Thus, 

presenting a malleable curved lipid surface with availability for binding close to the sensor 

surface limiting the loss of signal from evanescent field decay. The QCM sensor utilized 

silica beads to formulate a surface of rigid spherical nodes taking advantage of QCMs 
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difference in signal decay. Lipid membranes could then be formulated atop these spherical 

structures inducing a curved surface consistent with the size of the bead used.  

Formulation and Characterization of Tethered Vesicle Platform 

To begin a tethered vesicle system was designed and characterized for its 

functionality within an SPR sensing system, an illustration of this system can be seen in 

Figure 4.1. The formulation of each step within the sensor scaffold formulation was 

monitored via SPR finding robust signal associated with initial solid supported lipid bilayer 

formation, CT linkage, and then vesicle binding as seen in Figure 4.2. This demonstrated 

that each part of the system was forming on the silica coated SPR sensor surface but as the 

Figure 4.1. Scheme of a tethered vesicle platform for sensing of Bin1 binding to curved 

surfaces. Built from an underlying lipid bilayer (A) that links to cholera toxin (B). Then 

capture of lipid vesicles based on CT binding to gangliosides (C) and finally curvature 

specific binding of Bin1 to the vesicles (D). 



117 
 

curved nature of the adhered vesicles is essential to the functionality of the surface further 

characterization was necessary. We first employed fluorescence recovery after 

photobleaching to investigate the fluidity of each of the lipid layers as upon bleaching 

attached lipid vesicles would not be able to recover fluorescence as mobility is confined to 

the nanometer size of the vesicle itself while a complete bilayer would have lateral 

diffusivity within the micron sized bleach area and could therefore recover. As shown in 

Figure 4.3, it can be clearly seen that the solid supported DGS-NTA containing POPC 

membrane while limited did have fluorescent recovery while when fluorophore labeled 

lipids were incorporated into the attached vesicles no recovery was observed. Also, the 

fluorescence intensity of the vesicle step was noticeably lower which indicates that vesicles 

were separated from each other and not forming into another bilayer system. Following 

Figure 4.2. SPR sensorgram of tethered vesicle formation steps including solid supported 

DGS-NTA/POPC fusion, then histidine tagged CT capture, ganglioside containing 

vesicle binding, and finally curvature specific binding of BIN1. 
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this preliminary curvature binding studies were completed using Bin1 as a model curvature 

sensing protein. These results showed a clear preference in binding for highly curved 

vesicle platforms as seen in the final step of Figure 1. Substantially higher BIN1 binding 

was observed for the vesicle system when compared to a planar membrane system which 

demonstrates the curvature sensing of BIN1. Furthermore, higher binding was detected for 

the 30 nm vesicle platform than the 100 nm system which matches well with literature 

reports indicating Bin1’s preference for highly curved surfaces28.  

Mathematical Modeling of Tethered Vesicle System 

During the verification of the CT-ganglioside linked system a substantial increase in 

vesicle signal was observed for systems containing higher amounts of ganglioside which 

was more than could have been expected due to improvements in overall affinity. As such, 

we endeavored to model the distribution of these gangliosides within the tethered vesicles 

Figure 4.3. FRAP images demonstrating lipid mobility for underlying solid supported 

DGS-NTA/POPC membrane but no mobility for attached GM1 vesicles. 
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to identify what was changing with higher concentrations. To achieve this a script was 

written in R that calculated the expected number of lipids/gangliosides per vesicle based 

on vesicle diameter utilizing literature reports of lipid area29 and membrane thickness30,31. 

Then these values were then used to model the vesicles in question using Monte Carlo 

methods. For this a number of random locations for gangliosides were computed to align 

with the number expected in the outer region of the vesicle. These random locations were 

Figure 4.4. 3D models of 5% GM1 vesicles of varying sizes. Red spheres each represent 

a singular GM1 molecule proportionally sized against the size of the vesicle. 
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then mapped onto a large white sphere as small colored spheres corrected in size to 

accurately represent the size of a singular lipid within a vesicle membrane. This 

immediately enabled us to visualize the substantial differences in number and distribution 
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based on vesicle size and ganglioside percentage as can be seen in Figure 4.4. Showing 

that with the smallest vesicles at the lowest ganglioside percentage only a few gangliosides 

were present in each vesicle while thousands of gangliosides were present in the larger 

Figure 4.5. Distribution of arc length distance between nearest gangliosides obtained 

from iterative models of 100 nm vesicles with varying ganglioside percentages (0.05, 

0.1, 1, and 5% from left to right).  
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vesicles at 5% molar ratio of gangliosides. While this modeling of a singular vesicle 

provided valuable insight it was far from the whole picture. Therefore, we implemented 

calculation of the nearest neighbor distance for the gangliosides in these vesicle models 

and compiled calculations from thousands of simulated vesicles to provide a probability 

distribution of distance between gangliosides (Figure 4.5). When combined with the 

multiple ganglioside binding regions of CT this quickly fell into place as vesicles with 5% 

mol ratio of gangliosides were on average less than 3 nm apart which consequently matches 

with the distance between binding pockets within CT based on crystal structure 

measurements32. Indicating that at these higher ganglioside percentages multivalent 

binding was far more likely to occur thus enhancing the binding of gangliosides with lower 

affinity for CT.  

Formation and Characterization of Curved Lipid Surfaces on Silica Beads 

 Now focusing on the silica bead curved membrane system (Figure 4.6), we first 

needed to modify the QCM sensor chips to enable adhesion of silica beads and lipids as 

the base gold sensor surface is not conducive to either without assitance33. To achieve this 

a thin layer of silica was deposited on purchased QCM chips using PECVD as discussed 

in the methods section. This silica layer significantly increased surface hydrophilicity as 

Figure 4.6. Silica bead deposition on QCM chip, lipid membrane formation over silica 

bead and then alpha-synuclein binding to this curved membrane platform (left to right). 
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can be seen from contact angle images (Figure 4.7). Now that our sensor surface had an 

appropriate base the silica bead surface was fabricated through spin coating 100 μL of 

10mg/mL silica beads at 4000 rpm for 30 seconds. Then we confirmed that the silica beads 

adhered to the silica coated QCM chip surface via scanning electron microscopy finding a 

large portion of the surface was covered in a single layer of silica beads as can be seen in 

Figure 4.8. While surface coverage was not complete this system was found to produce a 

reproducible surface without bead agglomeration which was considered to be more ideal 

Figure 4.7. Contact angle images and measurements of QCM chip before and after silica 

coating demonstrating improved hydrophilicity with the addition of silica. 

Figure 4.8. SEM images of 500 nm beads distributed on silica coated QCM chip.  
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as any agglomeration could cause us to lose precise control of the lipid curvature. 

Following this, lipids were introduced to the sensor and lipid membrane formation was 

observed via QCM frequency shift and dissipation changes with results matching literature 

reports of vesicle fusion and membrane formation34. However, these results were unable 

to elucidate whether lipids formed around the beads into the curved membrane platform 

we desired or on top of the 

beads as a continuous flat 

membrane. To investigate this, 

we formulated a similar 500nm 

silica bead surface on a glass 

microscope slide and then 

formulated lipid membranes 

containing 2% NBD-PE to 

enable fluorescence 

microscopy of the lipid 

membrane. To visualize 

whether lipids were forming as 

a flat or curved membrane system we compiled and averaged z-stack images of the 

fluorescence intensity moving from below to above the silica bead plane. While 

fluorescence microscopy does not have the resolution to resolve the bead structures 

themselves when combining the intensity of many Z-stack images areas of higher intensity 

can be observed which corresponds to the side of a silica bead where a higher number of 

Figure 4.9. Summed intensity of z stack images of 

fluorescent lipid membrane formulated on 500 nm 

beads. 
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fluorescent lipids would be present due to the curved nature of the membrane as is shown 

in Figure 4.9. Now that we had some indication that our silica bead surface was working 

as intended, we endeavored to confirm its curvature through investigating differences in 

binding of a curvature sensing protein to membrane systems with the variable curvature of 

50, 100, and 500 nm beads. 

Measuring Alpha-Syn Preferential Binding to Curved Lipid Substrates via QCM 

To probe the platform’s ability to elucidate curvature sensing proteins we employed an 

IDP alpha-synuclein as a proof of concept. For this curved membrane surfaces of varying 

curvature were formulated as previously demonstrated and characterized and then the 

binding of alpha-syn was measured and compared between these differently curved 

Figure 4.10. Resulting QCM frequency shifts of 50 ug/mL alpha syn binding to POPC 

membranes formed on different sized silica bead surfaces.  
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substrates. A substantial difference between these curved substrates was immediately 

apparent with a flat membrane having less signal associated with alpha-syn binding than 

the curved surfaces, as visible in Figure 4.10. Furthermore, when comparing 50 and 100 

nm beads it was found that more binding was observed for the 50 nm bead indicating not 

just a preference for curved surfaces but highly curved surfaces. This is supported by 

comparison of alpha-syn binding on a flat membrane surface and a curved surface 

formulated on 500 nm beads which showed minimal difference between the two indicating 

that the curvature induced by 500 nm beads is not distinct enough to impart any 

improvement in alpha-syn binding. Also, these results helped alleviate the concern that the 

increased surface area from the beads might have an impact on the binding signal as this 

effect was negligible compared to the curvature effect based on the 500 nm bead results. 

4.4 Conclusion 

We have demonstrated two curved membrane substrates to enable label free analysis 

of curvature sensing proteins using SPR and QCM instrumentation. One substrate provides 

tethered lipid vesicles of variable size and composition enabling detection of differences 

in curvature preference for curvature sensitive protein Bin1. The surface is also 

investigated through modeling of expected vesicle size and ganglioside distribution using 

Monte Carlo methods that can be utilized in modeling any vesicle system. While the QCM 

substrate exhibits solid supported curved membranes based on a silica bead platform. This 

platform was utilized to monitor the curvature specific binding of an IDP, alpha-synuclein. 

These surfaces and techniques together provide a robust method to monitor curvature 

binding interactions and can be employed to investigate the plethora of curvature binding 
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proteins that have and are being identified. Furthermore, the properties of these platforms 

can be easily modified through exchange or addition of lipid species to accurately mimic 

cellular environments. 
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Chapter 5: MALDI-MS Identification of Methicillin Resistant S. Aureus Strain and 

Machine Learning Classification of Bacterial Species 

5.1 Introduction 

Bacterial infections are one of the most common causes of human disease with recent 

reports attributing one in every eight deaths worldwide to bacterial infections1. 

Furthermore, Staphylococcus aureus (S. aureus) infection was found to the be the leading 

bacterial cause of death worldwide. Despite the presence of many effective antibiotic drugs 

these infections continue to impact communities across the globe due to the lack of access 

to antibiotics in many parts of the world2, 3 and to the rise of antibiotic resistant bacterial 

strains4. With the emergence of resistant strains drug selection becomes increasingly 

important as improper prescription can at best be less effective or at worst lead to death 

and expansion of antibiotic resistance5, 6. This antimicrobial resistance is responsible for 

millions of deaths yearly4 and is considered by the world health organization to be one of 

the biggest threats to global health7. One of these antibiotic resistant bacteria, methicillin 

resistant Staphylococcus aureus (MRSA), has seen a rise in many hospital populations8 

and an evolving resistance in recent decades9, 10 two factors that have contributed to its role 

in many deaths. As such, methodologies to rapidly identify bacterial strains and classify 

resistance are key to appropriate treatment1, 4, 11. Unfortunately, current methodologies for 

bacteria identification can be time consuming, complex, and labor intensive, so new 

alternatives are necessary12, 13. Recently matrix assisted laser desorption ionization mass 

spectrometry (MALDI-MS) and polymerase chain reaction (PCR) have appeared as 
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effective methodologies for bacterial identification but require more research and 

advancement to improve accuracy and time to results14.  

Herein we demonstrate an aluminum microarray based MALDI-MS platform for rapid 

analysis of intact bacterial lipid profiles with proof-of-concept differentiation between 

susceptible and resistant of S. aureus bacterial strains. We employ the aluminum plasmonic 

microarrays for MALDI signal enhancement enabling robust signal for lipids and 

metabolites of these bacteria facilitating determination of distinct spectral differences 

between the two strains that can be utilized to classify resistance. Our analysis resulted in 

identification of peaks in the 2400 m/z range that are linked to the phenol-soluble modulin 

(PSM-mec) peptide15 present in many antibiotic resistant S. aureus strains. This peptide 

has been shown to be a highly effective marker for resistant S. aureus strains in various 

other works16. Though our platform found a greater number and intensity of these peaks 

which we believe to be linked to the plasmonic enhanced ionization of the aluminum 

substrate17, 18. Also, machine learning algorithms were applied to tease out further spectral 

differences finding various lipid peaks specific to each strain. Then expanded to compare 

and differentiate these S. aureus strains from various other bacterial species analyzed in 

our lab. Demonstrating the ability to highly accurately differentiate between not only the 

S. aureus strains but also Escherichia coli, Listeria monocytogenes, Salmonella 

typhimurium, Vibrio cholerae, and a mixture of E. coli and L. monocytogenes. Thus, 

building the groundwork for a wide reaching MALDI-MS platform enabling 

lipidomic/metabolomic based bacterial identification.  
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5.2 Experimental Methods 

Materials and Reagents. 

Acetonitrile (ACN), super 2,5 - dihydroxybenzoic acid (sDHB), and lysogeny broth (LB) 

Broth (Miller) medium were purchased from Sigma-Aldrich. Plain BK-7 microscope slides 

as well as antibiotics methicillin, vancomycin, and oxacillin were acquired from Fisher 

Scientific (Hampton, NH). Ultrapure water (>18 MΩ cm-1) was acquired from a Barnstead 

E-Pure water purification system. Matrix solutions of sDHB to a final concentration of 10 

mg/mL were prepared with a (2:1, v/v) mix of acetonitrile and a 1% TFA/water solution. 

Antibiotic stock solutions were prepared in ultrapure water accounting for manufacturer 

measured purity. 

Fabrication of Aluminum MALDI μChips. 

The aluminum microchip arrays were fabricated in the UCR Cleanroom facility following 

previously published procedures19. In short, the arrays were formulated via a photo-

lithographic method. First, AZ5214E photoresist was spun-coated onto glass slides 

followed by a 1-minute bake on a hotplate at 110 °C. Then, the array was patterned onto 

the glass slide using a mask aligner and the chips were baked again before a UV flood 

curing step. After this the photoresist was developed using AZ400K developing solution. 

Next, 150 nm of Al was deposited on the arrays using an electron beam physical vapor 

deposition (EBPVD) system (Temescal, Berkeley, CA). Following this deposition, the 

photoresist was removed using acetone leaving open wells that were then coated in a 

further 15 nm of Al resulting in an array of 600 x 600 μm aluminum wells.  
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Bacterial Strain and Culture Conditions. 

Bacteria isolates of methicillin susceptible Staphylococcus aureus (MSSA) ATCC 12600 

and methicillin resistant S. aureus ATCC 43300 were obtained from the American Type 

Culture Collection (ATCC, Manassas, VA). First-generation bacterial strains were revived 

upon receipt following ATCC recommended growth conditions. Revived bacterial strains 

were grown overnight and aliquoted into vials with equal 250 μL quantities of bacterial 

culture and 40% (v/v) glycerol in water and frozen until further experimental use. For 

experimental purposes bacterial strains were grown overnight to early stationary phase in 

LB Broth (Miller) growth medium within a shaker at 37℃ and 220 rpms. The turbidity of 

bacterial suspensions was used to determine the cell density via an Agilent 

spectrophotometer (Cary 60 UV-Vis) based on the optical density at 600 nm as is well 

documented in the literature20. For MALDI-MS experiments bacteria were harvested by 

three-fold centrifugation at 8000 rpm for 10 min followed by washing with deionized water 

prior to suspension in water to selected concentrations and deposition on MALDI-MS 

substrates.  

Antibiotic Treatment and Susceptibility Tests 

Antibiotic susceptibility was measured using the broth microdilution method21 as is 

recommended by the EUCAST22. First 100 μL of LB was added to all wells of a 96-well 

plate then 100 μL of the selected antibiotic solution with concentration 2x the desired 

highest concentration was added to the left most column and sequentially diluted across 

the plate providing a sequentially 2-fold diluted concentration range (0.0625 – 64 mg/L). 
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Finally, 5uL of bacteria (106 cells/mL) were pipetted into each of these wells. The two left 

most columns were utilized as negative and positive controls respectively by excluding 

them from receiving any antibiotics and the negative wells also did not have any bacteria 

added. Plates were placed into a shaker and bacteria were allowed to grow for 18 h at 37 

°C prior to cell growth measurement via absorbance plate reader at 600 nm. 

MALDI-TOF-MS Sample Preparation and Spectra Acquisition. 

For each experiment 1uL of bacteria sample (~109 cells/mL) was deposited within wells of 

the aluminum microarray allowed to dry and then covered in 1uL of sDHB matrix solution. 

MALDI-MS experiments were then conducted on an AB-Sciex 5800 time-of-flight mass 

spectrometer with a 337nm nitrogen UV laser. Lipid/metabolite fingerprints of bacteria 

were acquired in both positive and negative ion mode with a laser power of 6000 a.u. Each 

spectrum consists of a compilation of 300 laser shots fired over a selected bacteria spot. 

MALDI-MS Data Analysis and Machine Learning 

MALDI-MS data was acquired in the TOF/TOF Series Explorer software version 4.1.0 

(AB Sciex) and then visualized and processed using MMass23 after conversion from t2d to 

mzxml file format. Raw spectra were also fed into a home-built R script for processing, 

peak selection and application in training and testing of machine learning models. These 

selected peak intensities were tabulated for each spectrum and utilized to train various 

machine learning models using the caret24 package including linear discriminant analysis, 

neural networks, support vector machines, random forest, and k nearest neighbor models 

to identify the ideal model for bacterial species classification from the MS data.  
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5.3 Results and Discussion 

Antibiotic Susceptibility of S. aureus Strains 

 We then focused on confirming and measuring the antibiotic susceptibility of the 

two S. aureus strains using broth microdilution method described in the methods section 

with the resulting EC50 values shown in Table 5.1. From these absorbance values, we 

plotted dose response curves for each of the antibiotics against each strain as can be seen 

in Figure 5.1. These results showed a marked increase in resistance to methicillin and 

oxacillin as expected for the 43300 S. aureus strain and no change in susceptibility to 

vancomycin between the two strains. An over ten-fold increase in EC50 (Table 5.1) for 

methicillin was observed for the resistant strain while an eight-fold increase was realized 

for oxacillin, demonstrating the substantial impact on drug effectiveness caused by these 

strain mutations. Furthermore, with a cursory glance a minimum inhibitory concentration 

(MIC) of ~10 mg/L for methicillin and oxacillin placed the resistant strain well over the 4 

mg/L cutoff used to denote antibiotic resistance25. Now that we had quantified the 

Table 5.1. Calculated EC50 values of antibiotics against methicillin susceptible and 

resistant S. aureus. 
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antibiotic susceptibility differences between these S. aureus strains, we transitioned into 

analyzing how these differences translated into their lipid and metabolite profiles.  

 

 

 

 

 

 

Figure 5.1. Dose response curves for vancomycin (blue), methicillin (red), and oxacillin 

(green) treatment against methicillin susceptible S. aureus (top) and resistant (bottom) 

strains. 
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Metabolomics Based Identification of Susceptible and Resistant S. aureus Strains 

Intact S. aureus bacteria were spotted on the array spots of fabricated aluminum 

microarrays coated in matrix and transferred to MALDI instrumentation for analysis of 

Figure 5.2. Comparison of averaged spectra collected from MSSA (blue) and MRSA 

(green) strains. With focus on the 2400-2600 m/z region (bottom) that shows distinct 

differences in the MALDI-MS profiles of the two strains. 
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lipids/metabolites. Ions were collected between 100 and 3000 m/z in both positive and 

negative ion mode though positive mode was selected for further studies due to improved 

resolution and a greater number of identifiable peaks. Then MALDI-MS spectra were 

compared between the two strains at ~109 cells/mL as our previous bacterial MALDI-MS 

studies that have found this as an ideal concentration for analysis26. When comparing 

spectra between the two strains at this cell count major peaks were identifiable in the 500-

1000, 1600-1700, and 2200-2600 m/z regions (Figure 5.2). Upon inspection some clear 

differences were noticed, notably distinct peaks in the 2400-2600 m/z range were only 

observed in the resistant strain. This fit with literature reports finding a singular peak at 

2415 m/z that was highly specific to MRSA resulting in highly confident identification16, 

27, 28. This peak has been associated with an amphipathic alpha-helical peptide PSM-mec 

that is found in some resistant strains within the Staphylococcus cassette chromosome mec 

(SCC-mec) which codes for methicillin resistance29, 30. This peptide has a mass of 2386.834 

Da based on its sequence (MDFTGVITSIIDLIKTCIQAFG) but the N-terminal methionine 

is formylated in cells resulting in the 2415 m/z peak seen in MALDI-MS analysis15. As 

such, it provides a peptide signature for these forms of MRSA which can be utilized to 

identify antibiotic resistance. We observed this peak as seen in Figure 5.2 however we also 

observed a larger number of other peaks in this region that were specific to the resistant 

strain that had not been reported in these works. One of these peaks, 2431 m/z, was also 

observed in work focused on peptide identification of MRSA strains where it was found to 

be present in SCCmec I and II strains31. This confirmed our results as the MRSA strain we 

analyzed in this work is SCCmec type II. Though other peaks notably 2453 and 2469 m/z 
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were observed at higher abundance than either of these previously established markers for 

MRSA. These are believed to also be related to psm-mec but will require a more in-depth 

study. One possibility is that they are sodiated and potassiated versions of the 2431 m/z 

[M+H+] peak as they fit the classic +22 and +38 of these adducts.  Despite this the collected 

MS data demonstrates that our MALDI-MS platform is able to provide robust signal for 

these important peptide marker peaks via ionization of intact whole bacteria. We believe 

that the aluminum plasmonic array plays a role in enhancing the ionization of these 

molecules via a similar process as that identified in our previous work with gold 

microarrays17. However, profile differences in the lower m/z ranges were not as easily 

visually identifiable therefore more in-depth analysis was necessary.  

Machine Learning Classification of S. aureus Strains 

 To piece through the more minute differences in the 600-2000 m/z lipid region we 

employed machine learning methods to help identify the most significant differences. To 

achieve this a home-built r script was written utilizing the maldiquant32 package to process 

raw MALDI-MS spectrum, select, compile, and compare peak intensities across hundreds 

of spectra. First raw spectra obtained from the MALDI instrument software in t2d format 

were converted to mzxml form using a converter available at 

http://www.pepchem.org/download/converter.html. This data was then pulled into R and 

compiled into a spectra list with appended bacterial class information for later machine 

learning steps. Then each spectra’s intensity was smoothed using the moving average 

method followed by baseline correction using the sensitive non-linear iterative peak-

clipping algorithm. Spectral processing was completed with spectral alignments and 

http://www.pepchem.org/download/converter.html
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intensity normalization which was found to significantly improve machine learning 

algorithm results. Then peaks with signal to noise ratios above 10 were selected, binned, 

and filtered out if they did not appear in at least 30 percent of the spectra to limit impact of 

transient peaks. Peaks below 500 m/z were removed as they mostly represented matrix ions 

and therefore were found to provide little aid in effective separation due their addition 

convoluting the machine learning. The intensity values for the remaining peaks were 

compiled into an intensity matrix for each of the included spectra with their bacteria class. 

This information was then fed into chosen machine learning algorithms with a 70 percent 

split for training and the remaining 30 percent utilized as test cases. To limit over training 

and impact of individual spectra on algorithm results 3 time repeated 10-fold cross 
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validation was used. Classification results of individual spectra were then plotted as 

confusion matrices to visualize model accuracy as can be seen in Figure 5.3. As the 

accuracy of models can be variable based on the data selected for training and testing, 

especially when working with smaller datasets, we endeavored to investigate the variability 

Figure 5.3. Classification results of 4 different machine learning models for S. aureus 

bacterial strain using MALDI-MS peak information from the 500-3000 m/z region. 
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of our models. As such, each model was trained 25 times, and the resulting accuracy was 

averaged to provide information about the expected accuracy and variability of model 

results (Table 5.2). This information helps identify the ML model that provides the most 

effective classification of the selected bacterial classes. For example, from these results we 

Figure 5.4. Results of random forest model training and testing using peaks from the 

500-3000 m/z range shown in confusion matrix (left) demonstrating minimal 

misclassification. Also, indication of the most important variables (right) for 

classification showing peaks 2469 and 2431 m/z as top two factors in strain separation. 

Table 5.2. Resulting accuracy and standard deviation of ML models when given S. 

aureus MALDI-MS data from peaks with the 500-3000 or 500-2000 m/z ranges 

indicating algorithm effectiveness at identifying S. aureus strain with and without peaks 

specific to PSM-mec. 
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can see that the neural network model provides the highest accuracy of 90.59 ± 2.38 % for 

differentiation between the two S. aureus strains with minimal variability. Finally, to 

provide a deeper insight into model classification the important variables of the random 

forest model were pulled out based on out-of-bag error providing a list of peaks most 

important for successful strain separation as can be seen in Figure 5.4. These model results 

were also completed for a truncated list of peaks excluding those peaks beyond 2000 m/z 

which were previously shown to be major indicators of MRSA. With the results shown in 

Table 5.2 displaying only a small decrease in accuracy for each of the tested ML 

algorithms. This not only demonstrated that the S. aureus strains could still be separated 

without this but also provided the lipid peaks most crucial to this classification, Figure 5.5. 

Based on the random forest model peaks 733.5, 653.2, 771.5, and 799.5 m/z are found to 

be the most important for classification between the two S. aureus strains. Therefore, these 

peaks stand out as the targets for molecular identification in future work to understand the 

Figure 5.5. Results of random forest modeling on a truncated MALDI-MS peak dataset 

excluding peaks above 2000 m/z.  
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lipid metabolism differences between the susceptible and resistant S. aureus. With these 

results we were able to accurately differentiate between a MRSA and susceptible S. aureus 

from a singular MALDI-MS spectrum even without the PSM-mec peaks showing 

substantial promise as a platform for bacterial identification. But of course, the 

consideration then arose of whether this lipid profile information was sufficient to enable 

bacterial identification from a larger set of possible species.  

Expansion of Machine Learning Classification to Other Bacterial Species 

To demonstrate the potential of applying this lipid profile data to separate a diverse 

range of bacteria we employed MALDI-MS lipidomics data collected across many 

different bacteria. This data was pulled into and processed using the same R script 

previously described with minor modifications to accommodate the larger dataset and 

greater number of classes. These modifications included changing the minimum frequency 

for peak filtering to ensure that peaks specific to an individual bacteria were not lost and 

code alterations to accommodate the greater number of classes/data. The resulting models 

Table 5.3. Average accuracy and standard deviation of the ML algorithms utilized for 

classification of bacterial species/strain, calculated from 25 repeated training and test 

cycles. 
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were still able to accurately distinguish between this greater number of bacterial species in 

most cases as can be seen in Table 5.3. With these model accuracy results one surprising 

difference was the loss of neural network capability especially as it was the model that 

most accurately separated the S. aureus data. This indicated it was not suited to this 

classification task as the number of classes expanded. This could be in part due to the 

greater number of spectra from the S. aureus strains utilized in training limiting its ability 

to identify the other bacteria. However, the random forest model resulted in the most 

accurate classification between these 7 bacterial species/strains and a mixture of E. coli 

and L. monocytogenes. This nearly 90% accuracy with only minimal variability 

demonstrates a highly effective method for bacterial classification. We again employed the 

out-of-bag error from the random forest model to identify important peaks in this 

classification as seen in Figure 5.6. Though the greater number of bacterial species and 

thus peaks convoluted this a bit, the important peaks were found to match with those 

Figure 5.6. Confusion matrix and important variables obtained from random forest 

model training and testing on 8 different bacterial classes.  
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previously found with the S. aureus ML classification. Notably the psm-mec 2469 m/z 

peak was the third most important peak for classification while lipid peaks 849.7 and 899.3 

m/z were first and second respectively which match with machine learning results obtained 

from the six bacterial classes prior to addition of the S. aureus data. While the LDA 

accuracy was far from the most accurate its computation time was by far the fastest, which 

could be valuable when expanding to larger datasets or when time is limited. Furthermore, 

the linear discriminants utilized in LDA are conducive to plotting allowing for visualization 

of how the model is separating the bacterial classes. Therefore, we plotted the top three 

linear discriminant parameters in a 3-dimensional space (Figure 5.7). Interestingly, when 

Figure 5.7. 3D plot of linear discriminant analysis separation of bacterial species.  



149 
 

looking at the plot all species were separated except for the S. aureus strains but this is 

likely due to the limitation of only three linear discriminants while model classification 

takes into account many other linear discriminants.   

5.4 Conclusion 

We have demonstrated an aluminum plasmonic microarray platform for robust MALDI-

MS spectra acquisition from intact MSSA and MRSA bacteria resulting in clear 

identification of peptides peaks specific to the MRSA strain. Machine learning algorithms 

were then employed to streamline the separation of these strains and exhibited the ability 

to accurately classify even without the inclusion of these MRSA specific peptide peaks. 

Furthermore, the important peaks for classification were pulled out and provide 

information about which peptide or lipid peaks should be investigated further. These 

algorithms were then expanded to explore the potential to enable identification of a larger 

range of bacterial species/strains from each other. This resulted in models that could 

accurately classify a bacterial sample from a list of 8 different possibilities with only the 

data from a singular MALDI-MS spectra. This platform can be easily applied to other 

bacterial species to broaden bacterial identification capabilities. 
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Chapter 6: Surface Plasmon Resonance Gas Detection Enabled by Refractive Index 

Pressure Dependance 

6.1 Introduction 

In recent decades hydrogen has emerged as a potential sustainable energy source that 

can play an important role in reducing our reliance on fossil fuels.1 It has been investigated 

for its applications in fuel cell based electric vehicles2, energy storage3, and power 

generation4 as well as various other uses5. Though, for hydrogen to realize its full potential 

new infrastructure needs to be built to accommodate the storage, transport, usage, and 

monitoring of hydrogen which can become prohibitively expensive.6 One consideration to 

alleviate these costs, that has attracted considerable attention, is the doping of hydrogen 

into our current natural gas pipelines to make use of the large-scale infrastructure already 

in place.7 However, due to hydrogen’s small size it is prone to leaking meaning that to 

achieve this without unwarranted danger to human life appropriate monitoring would need 

to be implemented.8 As such, new sensing methodologies for hydrogen are necessary that 

can safely provide real time information about the gas mixture within a pipeline to identify 

leaks as they evolve before they become hazardous. Hydrogen sensors can also provide 

value in a variety of other areas of hydrogen usage such as hydrogen fueled turbines where 

robust sensors are needed to monitor the inputs and outputs of the energy production 

process. While there are currently various commercially available hydrogen sensors. These 

sensors commonly work through catalytic combustion or conductivity measurements 

which suffer from some limitations. Notably, the electrical components required for their 

usage increase the potential of accidental hydrogen ignition especially as the energy 

required for hydrogen ignition (0.02 mJ) is significantly lower than that for other gases.9 
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Also, many of these sensors have limited lifetimes, detection ranges, vulnerability to 

humidity, and limited stability.10, 11 As such, optical hydrogen sensors have appeared as 

attractive alternatives as any electrical components can be separated from the sensing, but 

these sensors are still under explored. One methodology that shows substantial promise is 

surface plasmon resonance (SPR) spectroscopy a highly sensitive, real-time, and label free 

technique.12 Recently SPR setups have been employed for sensing of nitrogen dioxide13, 

methane14, hydrogen sulfide15, and hydrogen16. Demonstrating the feasibility of SPR based 

gas sensors and introducing them as a potential avenue to improve gas sensing 

methodologies. However, the vast majority of SPR applications are in the liquid phase[ref] 

with those in the gas phase generally focusing on singular gases. To truly enable gas based 

SPR sensing new methods or materials that impart gas selectivity are necessary, as without 

selectivity gas mixtures can severely convolute sensor signal. 

Herein we report a real-time optical sensor for hydrogen gas detection based on SPR 

which has also has applicability to sensing of other gases and mixtures. Where small mass 

or refractive index changes can be monitored through changes in light reflection and 

absorption caused by changes in the dielectric adjacent to a thin plasmonic metal surface. 

In this work, we first explore the capability of SPR sensors to detect various percentages 

mixtures of gas phase hydrogen and examine the potential of MOF materials to provide 

selectivity to this SPR based gas phase detection. We then identify a unique relationship 

between pressure and SPR response that relates to differences in the polarizability of gases. 

We further demonstrate the potential to utilize these pressure effects to enable selective 

sensing of gases and gas mixtures without the need for a MOF for gas capture. Moreover, 
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machine learning algorithms were applied to demonstrate feasibility of differentiation even 

between gases (nitrogen, argon, and air) with highly similar refractive indices and 

polarizability. Overall demonstrating the potential for gas phase sensing using SPR 

spectroscopy methods and establishing a unique gas sensing platform based on combined 

SPR and pressure sensors providing the ability to monitor changes in gas mixture and 

pressure in real time. A methodology that can be highly effective in improving gas phase 

SPR analysis across the board.  

6.2 Experimental Methods 

Materials and Reagents.  

Borosilicate glass microscope coverslips (18x18 mm) were purchased from Fisher 

Scientific (Pittsburgh, PA). Ultrapure water (>18 MΩ cm-1) was acquired from a Barnstead 

E-Pure water purification system. Regulators and small canisters of compressed hydrogen, 

nitrogen, methane, and hydrogen/nitrogen gas mixtures were purchased from Gasco 

(Oldsmar, FL). Compressed helium, nitrogen, carbon dioxide, argon, and air were obtained 

from Airgas (Radnor, PA). Metal organic framework crystals composed of zinc metal and 

imidazolate anions (ZIF-8) was acquired from Sigma-Aldrich (St. Louis, MO). 

Fabrication of SPR Sensor Chips.  

Surface plasmon resonance chips were fabricated with modifications from a previously 

published procedure17 to accommodate coverslip glass instead of glass microscope slides. 

To begin, coverslips were cleaned in boiling piranha acid (3:1, H2SO4:H2O2) for 1 hour. 

Then piranha acid was poured off, and coverslips were thoroughly rinsed with ultrapure 
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water. Subsequently, coverslips were individually rinsed with water followed by ethanol 

before drying under nitrogen. Then 2 nm of chromium followed by 48 nm of gold was 

deposited upon the piranha cleaned coverslips via an electron beam physical vapor 

deposition (EBPVD) system (Temescal, Berkeley, CA) at the University of California, 

Riverside Center for Nanoscale Science and Engineering Nanofabrication Facility. Thin 

film gold chips were then directly utilized for SPR spectroscopy or further coated with 

materials to investigate their hydrogen binding capabilities. 

SPR Analysis.  

Gas phase sensing was achieved using a BI-2500 series (Biosensing Instrument, Tempe, 

AZ) equipped with a 670 nm laser light source. The instrument was fitted with a gas tight 

chamber above the sensor chip to enable gas flows to be introduced for spectroscopic 

measurement. For all experiments nitrogen was used as a carrier gas and a control to 

provide a consistent sensor baseline. Flow systems were set up to facilitate gas introduction 

into the sensing chamber and rapid transition between gases as well as outlet of gas into a 

fume hood.  

Pressure Sensor Fabrication.  

To augment SPR analysis a small pressure and temperature sensor was implemented in line 

with the gas flow immediately after the SPR sensor chip. Thus, enabling pressure and 

temperature data to be correlated with SPR spectroscopic shifts. The low-cost Arduino 

pressure sensor was assembled based on a design published by Goertzen et al.18 The sensor 

housing was 3D printed using a Form 3 (Formlabs, Somerville, MA) stereolithography 
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printer using clear resin. The pressure sensor, resistors, capacitors, and solder paste were 

purchased from DigiKey Electronics (Thief River Falls, MN). The board (Adafruit Feather 

M0), pins, and a 3V lithium coin battery were bought from Adafruit (New York, NY). 

Additionally, a micro-USB cable and an SD card obtained from Amazon (Seattle, WA) 

were employed to upload code to the Arduino and for collection of pressure data. For data 

collection an Arduino library[ref], specific to the sensor (MS5803-01BA), was used to pull 

data from the pressure sensor and visualized using Arduino’s serial monitor tool.  

6.3 Results and Discussion 

While SPR methodologies are capable of detecting small changes in refractive 

index within the dielectric close to the sensor surface, when working with gases these 

differences are significantly smaller than those commonly seen in liquid-based sensing. 

Therefore, to first test the theoretical feasibility of measuring differences between 

hydrogen and methane using SPR, characteristic reflective curves were simulated and 

compared to determine if refractive index differences would be detectable. This was 

achieved using WinSpall software based on layers input to match our experimental setup 

Table 6.1. Refractive index values for materials utilized in reflectivity curve modeling. 
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with real (n) and imaginary (k) components of the material refractive index under 670 nm 

light (Table 6.1) obtained from experimental results compiled on refractiveindex.info.19 

The simulation was formulated with layers composed of a BK-7 glass prism, 2 nm of 

chromium20, 48 nm of gold21, and 1 µm of the select gas22-24. The gases modeled here were 

hydrogen, methane, and nitrogen. As hydrogen was the gas we wanted to detect, methane 

is the major component in natural gas pipelines, and nitrogen would act as a carrier gas in 

much of our experimentation. These values were used to model reflectivity curves for each 

gas as can be seen in Figure 6.1. By comparing the minimum angle expected for each gas 

we also calculated expected angular shifts of the reflectivity minimum between gases. For 

example, the minimum angle shift between hydrogen and methane was found to be 0.026° 

which is well within the sensitivity capabilities of SPR instrumentation.25 Furthermore, 

Figure 6.1. Modeled SPR reflectivity curves for hydrogen, nitrogen, and methane using 

parameters to match our experimental setup. 
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nitrogen produced a very similar reflectivity curve to that of methane due to similarities in 

refractive index making it an ideal carrier gas for our studies in addition to being inert and 

readily available. So clearly the difference in refractive index between our gases of interest 

while small is likely enough to enable sensing but that still leaves the question of what limit 

of detection is possible and can gas selectivity be achieved.  

Sensor Chip Fabrication and Characterization 

Metal organic frameworks have been reported for their capabilities to selectively 

bind various gases from including hydrogen making them a potential source of sensor 

selectivity. However, metal organic frameworks on SPR chips have only recently been 

demonstrated and as the surface properties of SPR sensor chips are fundamental to their 

effectiveness in sensing applications careful fabrication and characterization is necessary. 

To this end, SPR chips were fabricated on coverslips as detailed above and characterized 

to ensure they maintained the surface characteristics necessary for effective sensing that 

has been identified for previously fabricated glass slide SPR chips.12, 26 Using atomic force 

Figure 6.2. AFM images of thin film gold chips fabricated on glass coverslips 

demonstrating low surface roughness and high homogeneity essential to SPR sensing.  
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microscopy the gold chips were found to have low surface roughness and a highly 

homogenous surface making them ideal for SPR sensing (Figure 6.2.). Furthermore, 

reflectivity curves obtained from these fabricated chips matched simulated curves quite 

well indicating applicability to gaseous systems. Then metal organic frameworks were 

formulated on the gold sensor surface through drop casting before characterization with 

optical microscopy and scanning electron microscopy (Figure 6.3).  The first formulation 

of the metal organic framework formed into highly heterogenous clusters on the sensor 

surface with very high surface roughness which unfortunately limits MOF surface area 

available within the penetration depth of SPR instrumentation. This high surface 

heterogeneity impacted the consistency and sensitivity of SPR sensing therefore new 

Figure 6.3. Optical microscopy (A and C) and SEM (B and D) images of MOF 

formulation before (A and B) and after (C and D) improved formulation procedures. 
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methods for MOF surface formulation were tested finding significant improvement 

through reduction in MOF concentration and multiple deposition layers. Based on this 

improved MOF surfaces were formulated (Figure 6.3 C and D) enabling SPR sensing to be 

achieved and some hydrogen selectivity was observed as can be seen in Figure 6.4. Despite 

this selectivity the binding of hydrogen within the MOF structure was found to remain for 

over an hour even after a nitrogen flush which severely limits the sensors feasibility for on 

off sensing applications. Some binding of methane was also observed which limits 

possibility of selectively sensing hydrogen. As such, we focused our efforts on finding 

alternative methods to enable hydrogen sensing with SPR instrumentation. 

 

 

Figure 6.4. Binding of hydrogen to the MOF surface showing signal from hydrogen 

remaining for about an hour after hydrogen injection.  
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SPR Hydrogen Sensing 

 To begin testing of SPR based optical sensing of hydrogen we first flowed nitrogen 

through the sensor chamber to achieve an instrumental baseline and then periodically 

introduced various hydrogen/nitrogen mixtures. To account for any pressure effects an 

injection of nitrogen was used as a control and subtracted from any hydrogen injection 

signal. A hydrogen concentration dependent signal relationship was quickly identified and 

used to formulate a calibration curve demonstrating hydrogen detection within nitrogen 

down to 2.5% (Figure 6.5). Furthermore, as detection was achieved in real time changes in 

hydrogen concentration could be identified within seconds and continually monitored. 

While other sensor methodologies can detect hydrogen at much lower concentrations our 

sensor was able to sense across a very large range from 2.5 to 100% hydrogen, something 

that is important in pipeline, turbine, or storage uses. Conventional sensors are commonly 

Figure 6.5. Calibration curve demonstrating detection of hydrogen from 2.5-100% 

hydrogen based on SPR sensor response. 
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focused on prevention and therefore tuned to detect concentrations before they reach 

ignition levels. However, this new SPR optical sensing methodology lends itself to use 

cases where hydrogen levels would be consistently high and therefore monitoring would 

be key. As shown in our simulations the signal difference between hydrogen and methane 

was expected to be higher than that observed for hydrogen and nitrogen. Therefore, we 

also tested whether our sensor could distinguish hydrogen percentages with an added 

methane component. To achieve this our carrier gas was exchanged for a 20% methane 

blend and a similar hydrogen sensing analysis was performed. It quickly became apparent 

that a greater signal shift was detectable for hydrogen with the 20% methane carrier gas 

confirming simulation results. This also had the added benefit of enabling a lower hydrogen 

concentration to be detectable above noise providing identification of hydrogen down to 

1% as can be seen in Figure 6.6. Thus, when working in a natural gas pipeline that is 

Figure 6.6. Calibration curve for hydrogen detection in a 20% methane/nitrogen mix 

indicating detection of lower hydrogen levels due to greater differences in refractive 

index between the gases. 
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composed of predominantly methane this sensor could be expected to be even more 

sensitive to hydrogen changes than what is reported here. All due to a much higher 

refractive index difference between the gases in question. 

Using Pressure Effects to Identify Gases 

While robust signal could be achieved for hydrogen gas using SPR spectroscopy 

the limitation of selectivity was clearly apparent and as the heterogeneity of MOF 

fabrications did not provide consistent selectivity new methodologies were needed. While 

in pipeline systems this sensor could provide robust monitoring when expanding to a more 

complex gas environment with changing variables, being able to attribute signal to a 

specific gas would be necessary. As previously mentioned during our optimization and 

testing, pressure was found to be an important factor in SPR signal that had to be controlled 

for which was easily achieved with a nitrogen injection as a control. However, then the 

Figure 6.7. The impact of tank regulator output pressure on SPR minimum reflectivity 

angle shift.  
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consideration of using its impact to our advantage came up potentially providing a unique 

avenue to provide selectivity to our gas phase SPR sensing system. Through some initial 

testing we found a significant impact of gas pressure on our sensor signal with a change in 

tank output pressure of 10 psi resulting in a 50 mdeg greater SPR angular shift as can be 

seen in Figure 6.7. Though the question became was there a gas specific relationship that 

could be exploited here. To this end, previous work by Sang and Jeon27 that identified 

differences in refractive index with respect to pressure for various gases provided us an 

avenue to gas selectivity. They attribute these to differences in the polarizability of the 

gases as the refractive index of a gas is dependent on the molar refractivity 𝑅𝑛 which is 

based on the molar mass 𝑀 and density ρ of the gas as shown28: 

Figure 6.8. Gas specific changes in SPR angle with tank regulator pressure change. 

Demonstrating distinct slopes for four different gases carbon dioxide  (yellow), nitrogen 

(orange), argon (blue), and helium (grey). 
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 𝑅𝑛 =
𝑀

ρ

𝑛2−1

𝑛2+2
   (6.1) 

 The polarizability 𝑎𝑒 of the gas is also an aspect of the relationship as can be shown in its 

relation to the molar refractivity, modified from Pacák28: 

We tested this within our sensor setup and found that the data (Figure 6.8) matched well 

with the report of refractive index variability based on polarizability with SPR angular shift 

in place of refractive index as SPR shifts without binding events are attributable to bulk 

refractive index changes. 

Therefore, we speculated that if we could incorporate a pressure sensor within our 

SPR instrumentation then the combined data could potentially supply the gas selectivity 

we needed. To this end, we implemented a small inline pressure and temperature sensor, 

controlled by an Arduino, into the flow outlet of the SPR (Figure 6.9) as discussed in the 

methods section.18 This furnished pressure data in real time that was then correlated with 

 𝑎𝑒 =
3𝑅𝑛

4𝜋𝑁𝐴
   (6.2) 

Figure 6.9. (A) Schematic of wiring for Arduino board reprinted from18. (B) Image of 

implemented board, sensor, and 3D printed flow channel making up the pressure sensor. 

(C) Image of pressure sensor component that is smaller than a fingertip. 
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SPR response. However, due to the remarkably sensitivity of SPR to refractive index 

changes we were able to identify differences at much lower pressure changes down to ~11 

mBars. With a maximal pressure change of 177.92 mBar being measured due to the 

limitations of our tubing and sensor chamber. However, with increasing pressure changes 

the separation of gases was much more distinct indicating that this gas sensing system 

would be even more effective in higher pressure systems, like those in pipelines and gas 

turbines. This not only provided the gas selectivity we were searching for to enable 

hydrogen sensing but also enabled selective sensing of essentially any gases with 

discernible differences in refractive index. As such, we investigated the limits of selectivity 

possible with the combined SPR and pressure sensor. To achieve this, we focused on three 

gases with similar refractive index (Nitrogen, Argon, and Air) to test the sensors ability to 

separate these highly similar gas systems. In particular, nitrogen makes up the majority of 

Figure 6.10. Combined SPR angular shift and pressure sensor shift for air, nitrogen, and 

argon demonstrating ability to separate these gases despite their similarities. 
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air and therefore any detectable differences will only come from oxygen, carbon dioxide, 

and other trace gases. Which leads to a refractive index difference of only 0.00000784, a 

remarkably small difference to effectively distinguish. Furthermore, nitrogen and argon are 

both inert gases and have refractive indices of 1.0002811023 and 1.0002654629 respectively 

making them an ideal foundation for testing. As air is 78% nitrogen its refractive index of 

1.0002761030 is also very similar to that of nitrogen and argon resulting in it falling directly 

between them which should make separation of these three gases very difficult. Data was 

collected for each gas across a range of pressure changes and compared as shown in Figure 

6.10. While separation was significantly less than that seen for other gases, they could still 

be easily visually isolated at higher pressure changes >80 mBar. However, at lower 

pressure these differences become muddled requiring other methods to improve and 

automate identification. 
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Streamlining Sensing of Similar Gases via Machine Learning 

To this end, we implemented machine learning algorithms trained with a portion of the 

data from each gas not only to aid in identification but to build the foundation for further 

Figure 6.11. Confusion matrix heatmap of neural network classification results showing 

effective separation between air, argon, and nitrogen based on surface plasmon resonance 

and pressure data. 
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machine learning applications to more complex gas systems. Neural network, random 

forest, support vector machine, linear discriminant analysis and k-nearest neighbor 

machine learning algorithms were all applied to identify the ideal method for gas 

classification. For each, data was split 70:30 for training and testing respectively and fed 

into selected algorithms from the caret31 package in R. Also, repeated cross validation was 

employed to reduce model over training with 3 repeats of 10-fold cross validation. Results 

of model testing predictions were output as confusion matrices and plotted as heatmaps as 

seen in Figure 6.11. Further, prediction accuracy of each model was calculated from 

repeated training and testing cases of randomized data selection and averaged to account 

for variations and provide a computation of model deviation. It can be seen that each model 

resulted in minimal miss classification with miss classification events attributable to the 

lowest pressure data points.  

This foundational machine learning comprises the first step in automating gas detection 

using this unique combination of SPR and pressure data. Thus, demonstrating the ability 

to accurately classify gas identity based on the SPR and pressure data that can be easily 

expanded to implement other gases and classify more complex gas mixtures. This gas 

classification can be identified by eye based on the line of best fit differences but within 

the field with increasingly large datasets machine learning model implementation will 

alleviate the time cost of manual separation and can be interfaced with expanding sensor 

networks to account for a greater number of parameters. 

 



172 
 

6.4 Conclusion 

We have demonstrated the feasibility of utilizing SPR methodologies to develop an 

optical hydrogen gas sensor that can monitor hydrogen across a large range of 1 to 100% 

hydrogen. With the capability of detecting gas changes in real-time. Proving to be an 

effective sensor for hydrogen in applications especially where consistently high hydrogen 

levels are to be expected and continual monitoring is important. We also investigated the 

effect of pressure on SPR gas sensing and employed an inline pressure sensor in 

conjunction with SPR instrumentation to expand the capabilities of gas phase SPR sensing. 

Enabling gas selectivity to be achieved based on unique pressure and refractive index 

relationships for gases based on their polarizability. This is shown to enable differentiation 

of highly similar gasses air, nitrogen, and argon even at low pressures, with higher pressure 

changes resulting in significantly easier separation. This sensing methodology can be easily 

expanded to other gases and mixtures with the potential to impart selective gas sensing 

solely from SPR bulk angular shift and gas pressure measurements. This work also 

indicates the crucial role pressure plays in SPR gas sensing systems, something that should 

be considered in future gas sensing schemes as without appropriately controlling for it data 

could be highly variable. 
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Chapter 7: Conclusion and Future Perspectives 

7.1 Summary of Dissertation Work  

 The work described in this Dissertation focused on the development of new 

methodologies to bypass current limitations of surface plasmonic resonance (SPR) 

sensors. With advancements made in the development, characterization, and application 

of biomimetic lipid membrane platforms, sensor capabilities, and data 

processing/analysis strategies. 

 Three biomimetic lipid platforms are described here, a tethered lipid membrane 

system, a highly antifouling lipid bilayer, and an easily tuned curved membrane platform. 

The tethered lipid system enabled analysis of drug delivery interactions with a fluid lipid 

membrane improving our understanding of these important interactions. The antifouling 

lipid system provided robust protection of sensor substrates from the complex matrix of 

human serum empowering sensor capabilities. While the curved membrane platform 

investigated the preferential binding of Alpha-synuclein to highly curved lipid surfaces.  

 New sensor capabilities were demonstrated in application of quartz crystal 

microbalance (QCM) to analyze curvature binding proteins, expansion of SPR gas phase 

sensing efficacy and for enhancement of matrix assisted laser desorption ionization mass 

spectrometry (MALDI-MS). The formulation of a substrate conducive to assembly of 

curved lipid surfaces was established as an effective sensor for Alpha-synuclein. SPR 

analysis of various gases was achieved based on a relationship between refractive index 

and gas pressure resulting in a robust gas sensor able to quickly distinguish between 
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gases at lower pressures. Plasmonic arrays were fabricated and utilized to analyze and 

distinguish between strains of Staphylococcus aureus that were susceptible or resistant to 

methicillin antibiotics, with the plasmonic arrays demonstrating robust lipid ionization.  

 Data processing strategies were developed to accommodate these platforms and 

sensors enabling differentiation of sensor targets. These novel strategies and code 

developed to facilitate data implementation into machine learning algorithms can also be 

easily applied to other sensor formulations empowering future SPR and MALDI-MS 

research.  

7.2 Future Works 

As the pursuit of knowledge is never over none of these chapters are complete, each 

work resulted in new questions and avenues for study. Here I will discuss the next steps in 

expanding the scope of each project as well as potential future utilizations of the developed 

sensors. 

Biomimetic Tethered Lipid Bilayer 

The PEG tethered lipid bilayer platform can be expanded in three main areas, through 

the application to sensing methodologies, implementation of other membrane components, 

and expansion of use in understanding drug delivery interactions. For the development of 

new sensors one protein systems appears as a clear next step, which is anaplastic lymphoma 

kinase (ALK) which is a membrane bound tyrosine kinase linked to cancer1-3. This can be 

accomplished by detergent based incorporation of transmembrane proteins into unilamellar 

vesicles4-6 or formation of vesicles from native membranes7-9 that can then be fused10 with 



178 
 

our tethered system to provide a cushion between the solid sensor surface and the external 

portions of ALK. To properly mimic the cellular environment other cellular components 

will also need to be incorporated. Notably, cholesterol makes up a large portion of cellular 

bilayers11 and plays and important role in membrane fluidity12-14 and binding interactions15 

therefore its incorporation in the PEG tethered platform is a key next step. Charged lipid 

groups, also play roles in modifying membrane properties16, 17 and have been shown to 

interact with proteins18-20. As such, these additions will not only benefit sensor studies like 

the ALK detailed above but also any biophysical studies of membrane systems through a 

more accurate representation of the cellular environment. Looking towards drug delivery 

and screening a biomimetic platform provides an easy first step to understand the important 

interactions occurring without the need for animal testing. This avenue also benefits from 

work improving the mimicry of the platform through incorporation of other important 

membrane components as they will interact with the delivery mechanism. So far, we have 

explored the interaction of dendrimer micelles with the lipid membrane which can be 

expanded to encompass other drugs and membrane components. However, other delivery 

mechanisms can also be investigated to gain a deeper understanding of how they deliver 

their payload. Notably, lipid vesicles21, 22, nanomaterials23, 24, and cell penetrating 

peptides25 have seen extensive use as drug delivery vehicles and can be studied with this 

membrane system. 

Antifouling Lipid Membrane 

The exploration of the antifouling charged lipid membrane in this dissertation lays the 

foundation for understanding and expanding the capabilities of sensors, as it provides both 
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a biomimetic and antifouling substrate. As such the next steps for this project are two-fold, 

application into sensing systems and expansion of study into the properties involved in the 

antifouling process. Previous work has shown26 that protein A works as a scaffold for 

antibody-based capture of proteins which can easily be applied to sense important protein 

biomarkers in human serum. Due to the antifouling capabilities of this membrane system, 

it provides a key link in reducing false positives in sensors. This can be enabled by work 

using trehalose to enable dehydration of lipid vesicles significantly improving shelf-life if 

used in a lateral flow assay or point of care sensor. Therefore, usage in this capacity as well 

as utilization in SPR imaging array setups can enable a broad array of sensors. However, 

the development of antifouling platforms is far from over as sensor needs change just as 

the biomarker targets change. As such, investigation of other charged lipids27, buffer 

conditions28, 29, changes in protein charge, and how different sensor substrates affect the 

nonspecific interactions at lipid surfaces is not only key to understanding the antifouling 

mechanism but to developing better sensors. 

Curved Membrane 

In chapter 4 a curved membrane platform was developed and applied to mimic curved 

cellular environments that various proteins preferentially bind to. First off due to the 

adaptability of this system other silica particles can easily be implemented in a greater 

variety of silica bead sizes ranging from 15 nm30 to 2 microns31 in size providing a more 

distinct image of the exact curvature that suits these curvature sensing proteins than can be 

achieved with the sizes explored in this work. A deeper understanding of the biophysical 

interactions at play can also be elucidated through the incorporation of other biological 
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components. Notably charged lipids such as 1,2-dioleoyl-sn-glycero-3-

ethylphosphocholine (EPC+) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-

glycerol) (POPG-), as utilized in previous work, would produce significant shifts in the 

overall charge of these membranes which is an aspect of curvature binding proteins that 

has only recently been identified with preference for negatively charged surfaces32, 33. With 

that glycosphingolipids are also considered to play a role in these binding events both due 

to their part in generating curvature34 and their binding interactions with curvature sensing 

proteins35 and should therefore be included in the vesicle preparation process. Each of these 

additions also improves the biomimicry of the substrate which can be further improved 

through the incorporation of cholesterol11, 13, 14 as previously mentioned. Furthermore, the 

membrane rigidity can be modified through a change in formulation by working with free 

floating or tethered vesicles as has been shown in some recent work providing insight into 

curvature sensing protein interactions on malleable surfaces as many of the proteins have 

roles in membrane reshaping.  

Additionally future work should focus on other curved membrane systems beyond the 

alpha-synuclein used to demonstrate the platform’s potential. Notably BIN1 should be 

studied as it has been shown to act as a recruitment site for various other proteins through 

conformational changes that make its auxiliary domains more accessible36. Included with 

these are the CLAP37, Src homology 3 (SH3)36, 38, and MYC-binding domains39. 
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MALDI-MS 

The lipidomics analysis and machine learning based identification of bacterial species 

demonstrated in chapter 5 can be expanded upon via three key avenues, application to 

other bacterial species, usage in lipid-based monitoring of toxicological impacts, or 

implementation in analysis of entirely new organismal classes.  

First, the platform can be applied to investigate other bacterial species to grow the 

library and to demonstrate a greater effective number of bacterial species that can be 

accurately identified. This work on library development is key to the future application of 

this platform for use in clinical settings where hundreds of bacterial species and strains 

need to be distinguished to provide proper medical care. Three bacterial species that are 

prime candidates for the next step in this direction are Acinetobacter baumannii40, 

Pseudomonas aeruginosa41, and Enterobacteriaceae42 which are currently the highest 

priority for the World Health Organization43 and the United States Center for Disease 

Control and Prevention44 due to their multidrug resistance and impact on hospitals. As 

detection of these priority bacterial species not only demonstrates platform feasibility in 

an area of need but can also facilitate research into drug resistance. 

Secondly, the platform can be employed to investigate the impact of toxicants or 

drugs on these bacteria based on resulting changes in their lipid profiles which can then 

be linked to changes in lipid metabolism caused by the compound of interest. We have 

demonstrated this within algae in previous work45 and recently investigated antibiotic 

impact on E. coli46 using MALDI-MS. This can be applied to the S. aureus system to 
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investigate differences in response to antibiotics of susceptible and resistant strains 

providing insight into how MRSA is diminishing methicillin and oxacillin impacts at the 

metabolite level. 

Finally, this platform is not specific to bacteria and can thus be expanded to other 

more complex organisms. One area of interest here is nematodes specifically 

Caenorhabditis elegans (C. elegans), which have been utilized as model organisms for 

decades due to the fact that they are one of the simplest organisms that poses a nervous 

system47. Future work utilizing the MALDI-MS platform can employ metabolomic 

analysis of C. elegans in concrete with the toxicological studies previously mentioned to 

interrogate the impact of toxic compounds on this system and draw parallels to human 

health.  

Gas SPR 

The utilization of SPR for detection of gases is still in its infancy and the work 

demonstrated in chapter 6 of this dissertation is the first step in a long process of continued 

sensor validation and application. In considering the next steps for this project two avenues 

appear, one connected to the original goal of sensing hydrogen in pipeline environments 

and another in exploration of the gas differentiation capabilities identified during the course 

of this work. In regards to the first, some pipelines are high very pressure systems up to 

1400 pounds per square inch gauge (psig) therefore investigation of sensor capacity in both 

the lower 0.25–300 psig systems and these high pressure environments is of key 

importance to demonstrate sensor feasibility48. Further testing of sensor performance in 
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hydrogen and natural gas blends consistent with those expected in pipelines is also needed. 

Both goals are also facilitated by prototype development of small SPR sensors conducive 

to implementation within pipelines. In the second case the sensor has shown effectiveness 

at differentiating between multiple gases with apparent potential to extend to other gases 

as well. Therefore, the next steps here are to test other gases and particularly gas mixtures 

to ensure this methodology remains effective. With that further work investigating carbon 

dioxide (CO2) is needed as the cooling effect caused by using CO2 from a compressed gas 

tank increased variability. 
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Appendix 

A.1 Example Code of Lipid Vesicle Modeling via Monte Carlo Methods 

The code shown below is written in R and executed using RStudio to model lipid 

distribution within lipid vesicles. As well as calculate distance between lipids within 

these modeled vesicles and output resulting distribution results. Comments labeled as 

(##) denoting the purpose of a section of code and (#) for explanation of the purpose of 

individual lines of code. 

## Required libraries 

library("rgl") 

 

## Sensor Parameters 

SensorArea = 42.6 

 

## Parameters of the lipid vesicles in question 

Lipid1_Pct = 99 

Lipid2_Pct = 1 

Lipid1_Mass = 760.091 

Lipid2_Mass = 1602.949 

Vesicle_Diameter = 50 

Vesicle_Radius = Vesicle_Diameter/2 

Bilayer_Thickness = 5 

Lipid_Area = .683 

Lipid_Radius = sqrt(Lipid_Area/pi) 

 

## Simplified calculation of vesicle number and mass based on sensor parameters 
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SensorAreaNM = SensorArea * 1e+12 

VesicleArea = Vesicle_Radius ^ 2 

NumVesicle = SensorAreaNM/VesicleArea 

VesicleMass = (Num_Lipids1*Lipid1_Mass) + (Num_Lipids2*Lipid2_Mass) 

TotalVesMass = VesicleMass * NumVesicle 

Picogram = TotalVesMass / 6.022e+11 

RU = Picogram / SensorArea 

RU 

 

## Calculates number of lipids in a vesicle and number of each lipid that makes up the 

vesicle 

Num_Lipids = ceiling((4*pi*((Vesicle_Diameter/2)^2)+4*pi*(Vesicle_Radius-

Bilayer_Thickness)^2)/Lipid_Area) 

Outer_Lipids = ceiling(4*pi*((Vesicle_Diameter/2)^2)/Lipid_Area) 

Num_Lipids1 = round(Outer_Lipids*(Lipid1_Pct/100)) 

Num_Lipids2 = round(Outer_Lipids*(Lipid2_Pct/100)) 

 

## Builds a base sphere for the lipid vesicle 

spheres3d(0, 0, 0, radius=1, color="white") 

 

## Randomly select locations for lipid 2 

n <- Num_Lipids2 

theta <- runif(n,0,2*pi) 

u <- runif(n,-1,1) 

x <- sqrt(1-u^2)*cos(theta) 

y <- sqrt(1-u^2)*sin(theta) 

z <- u 

 

# Graphs a 3d representation of the lipids distributed on a sphere 
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spheres3d(x, y, z, col="red", radius=(Lipid_Radius/Vesicle_Radius)) 

rglwidget() #opens the 3d representation in R's viewer  

 

iterations = round(50000/n) #reduces the number of iterations based on the number of 

lipids of this type in the vesicle 

ChordList <- c() #initializes ChordList for the loops coming up 

 

## Loop to iterate through thousands of vesicles and pull-out chord length of lipids 

nearest neighbors 

for (i in 1:iterations){ 

  theta <- runif(n,0,2*pi) 

  u <- runif(n,-1,1) 

  x <- sqrt(1-u^2)*cos(theta) 

  y <- sqrt(1-u^2)*sin(theta) 

  z <- u 

  NumValues <- length(x) 

  for (i in 1:NumValues){ 

    x1 <- x[i] 

    y1 <- y[i] 

    z1 <- z[i] 

 

    ChordLength <- c() 

     

    for (i in 1:NumValues){ 

      x2 <- x[i] 

      y2 <- y[i] 

      z2 <- z[i] 

      ChordLengthx <- sqrt((x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2) 

      ChordLength <- c(ChordLength, ChordLengthx) 
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    } 

     

    ChordLength <- min(ChordLength[ChordLength>0]) 

    ChordList <- c(ChordList, ChordLength) 

  } 

} 

 

ChordList <- unique(ChordList) 

ChordList <- ChordList*Vesicle_Radius 

 

ChordListLength <- length(ChordList) 

 

## Convert these chord lengths into arc lengths 

ArcList <- c() 

for (i in 1:ChordListLength){ 

  ArcListx <- Vesicle_Radius*(2*(asin(ChordList[i]/Vesicle_Diameter))) 

  ArcList <- c(ArcList, ArcListx) 

} 

 

## Output a histogram of the arc length data with given parameters 

Title <- "1% GM1 Distribution in 100nm Vesicles" 

hist(ArcList, main = Title, xlab = "Arc Distance (nm)", xlim = c(0,20), ylim = c(0, 3000), 

breaks = 50) 

mean(ArcList) 

max(ArcList) 

 

## Plot all of the lipids within the selected vesicle, can be very intensive with larger 

vesicles 

n <- Num_Lipids1 
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theta <- runif(n,0,2*pi) 

u <- runif(n,-1,1) 

x <- sqrt(1-u^2)*cos(theta) 

y <- sqrt(1-u^2)*sin(theta) 

z <- u 

spheres3d(x, y, z, col="blue", (Lipid_Radius/Vesicle_Radius)) 

rglwidget() 
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A.2 Example Code of MALDI-MS Data Processing and Machine Learning for 

Bacteria Identification 

Code provided below is written in R and executed in RStudio to pull in raw MALDI-MS 

spectra into R for data processing and compilation for implementation into machine 

learning algorithms to build models for bacterial identification. Code also includes 

automated figure output enabling quick analysis of model results. Comments labeled as 

(##) denoting the purpose of a section of code and (#) for explanation of the purpose of 

individual lines of code. 

## List of packages  

packages = c("dplyr", "rfUtilities", "caret", "R.utils", "pheatmap", 

"MALDIquantForeign", "MLeval", "MASS", "MALDIquant", "caretEnsemble", 

"corrplot", "readMzXmlData") 

library(caret) 

## Now load or install&load all 

package.check <- lapply( 

  packages, 

  FUN = function(x) { 

    if (!require(x, character.only = TRUE)) { 

      install.packages(x, dependencies = TRUE) 

      library(x, character.only = TRUE) 

    } 

  } 

) 

## Make sure your data is placed in the correct folder separated into folders by class 

setwd("~/") 

setwd("~/R/Spectra Analysis and ML/Place Data Here")  



195 
 

 

## Sets the number of folders to pull from, the number of classes, and then pulls out the 

folder names to be used as classes 

foldernum = 8 

folders <- list.files(full.names = T, include.dirs = T) #pulls out all of the folder names 

classes <- sub("..", "", folders) #create class column to append to data 

 

## Loop to go through all of the selected class folder and pull out spectral information 

for (x in 1:foldernum){ 

  setwd("~/R/Spectra Analysis and ML/Place Data Here") 

  setwd(folders[x]) #changes working directory to next folder  

  directory <- list.files(pattern="*.mzxml", recursive = T) #pulls out spectra within 

selected folder 

  s1 <- importMzXml(directory) 

  outtest <- exists("s") 

  if(outtest == FALSE){ 

  s <- s1 #combines all the pulled spectra together 

  classifier <- as.character(c(rep(classes[x], length(s1)))) #creates classifier table 

  } 

  s <- c(s,s1) 

  classifier1 <- as.character(c(rep(classes[x], length(s1)))) #creates classifer1 table as 

temporary store to append 

  classifier <- as.character(c(classifier, classifier1)) #combines class names from each 

iteration 

} 

classifier <- as.factor(classifier) #converts classes to factors 

 

## Process and align all the spectra 

spectra <- smoothIntensity(s, method="MovingAverage", halfWindowSize=2) 



196 
 

rm(s) 

gc() 

spectra <- removeBaseline(spectra, method="SNIP", iterations=100) 

spectra <- alignSpectra(spectra, halfWindowSize=20, SNR=4, tolerance=0.002, 

warpingMethod="lowess") 

 

 

## Detect peaks for all spectra and plot result for first spectra 

peaks <- detectPeaks(spectra, method="MAD", halfWindowSize=20, SNR=10) 

 

## Plots and example spectra to make sure it looks good  

plot(spectra[[1]], xlim=c(100, 3000), ylim=c(0, 5000)) #peaks <- trim(peaks, 

range=C(100, 1000)) 

points(peaks[[1]], col="red", pch=4) 

spectra <- calibrateIntensity(spectra, method = "TIC") #normalize intensity 

 

## Equalize similar peaks, remove inconsiastent peaks, combine into dataset of peak(m/z) 

and intensity  

peaks <- binPeaks(peaks, tolerance=0.0005) 

peaks <- filterPeaks(peaks, minFrequency=0.30) 

imatrix <- intensityMatrix(peaks, spectra) 

 

## Sets the minimum and maximum mass to charge ratio of which peaks will be 

considered for machine learning 

minmass <- 500 

maxmass <- 2000 

cols <- as.integer(colnames(imatrix)) 

col_to_keep <- cols > minmass & cols < maxmass 

imatrix <- imatrix[,col_to_keep] 
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## Add classification column to dataset 

dataset <- data.frame(imatrix, classifier, stringsAsFactors = TRUE) 

datasetsave <- dataset 

 

## Split data into training(dataset) and testing(validation) 

validation_index <- createDataPartition(dataset$classifier, p=0.70, list=FALSE) 

validation <- dataset[-validation_index,] 

dataset <- dataset[validation_index,] 

 

## Train control  

control <- trainControl(method="repeatedcv", number=10, repeats=3, savePredictions = 

"final", classProbs = TRUE, index = createFolds(dataset$classifier, 10), allowParallel =  

TRUE) 

 

## Set metric for model success, Kappa can be good for low % of samples in 1 class 

metric <- "Accuracy" 

 

## Train models of chosen type's 

algorithms <- c("rf", "nnet", "kknn", "lda", "svmLinear2") #input the algorithms you 

want to test 

model_list <- caretList(classifier~., data=dataset, metric=metric, trControl=control, 

methodList=algorithms) 

 

## Set output folders and prepare for ML analysis 

setwd("~/") 

setwd("~/R/S Aureus/All Bacteria/Results Output Here") 

graphics.off() 
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## Output results of the training and compare success metrics 

results <- resamples(model_list) 

summary(results) 

pdf("models comparisson.pdf", width = 7, height = 7, onefile = FALSE) #saves results as 

a pdf of given name with given size (in inches) 

dotplot(results) #plot to be saved 

dev.off() #completes the pdf save 

 

## Loop to put together data as figures for each model and save them as PDFs 

for (methodname in algorithms){ 

  ## Predict testing data with chosen model 

  p <- predict(model_list[[methodname]], validation) 

  cm <- confusionMatrix(p, validation$classifier) 

  print(cm) 

   

  ## Output heatmap of prediction results 

  mat <- as.table(cm) 

  pdf(paste(methodname, "heatmap.pdf"), width = 7, height = 7, onefile = F) #saves 

results as a pdf of given name with given size (in inches) 

  map <- pheatmap(mat, cluster_rows = FALSE, cluster_cols = FALSE, display_numbers 

= TRUE, show_colnames = TRUE, show_rownames = TRUE, legend = TRUE, 

fontsize_number = 20) 

  dev.off() 

   

  ## Output correlation plot of prediction results 

  co <- cor(mat) 

  pdf(paste(methodname, "correlation plot.pdf"), width = 7, height = 7, onefile = FALSE) 

#saves results as a pdf of given name with given size (in inches) 

  corrplot(co, method = "circle") 

  dev.off() 
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} 

## Output list of 20 most important variables for classification with chosen model 

pdf("rf important variables.pdf", width = 7, height = 7, onefile = FALSE) 

impvar <- varImp(model_list[["rf"]], scale = TRUE) 

plot(impvar, top = 20) 

dev.off() 

setwd("~/") 

graphics.off() 

 

library(MASS) 

 

## Trains an LDA model using the whole data set 

lda_model <- lda(classifier ~ ., data = datasetsave) 

lda_predict <- predict(lda_model) 

 

## Plotting with plotly 

library(plotly) 

 

## Setting up lda data for plotly 

lda_data <- cbind(datasetsave, lda_predict$x) 

LD1 <- lda_data$LD1 

LD2 <- lda_data$LD2 

LD3 <- lda_data$LD3 

class <- lda_data$classifier 

lda_dat <- data.frame(LD1, LD2, LD3, class, stringsasfactors = TRUE) 

 

## Setting up plot properties 

t1 <- list( 
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  family = "Times New Roman", 

  size = 24, 

  color = "black" 

) 

t2 <- list( 

  family = "Times New Roman", 

  size = 18, 

  color = "black") 

axx <- list(title = "LD2") 

axy <- list(title = "LD1") 

axz <- list(title = "LD3") 

 

## Plotly figure 

fig <- plot_ly(lda_dat, x = LD2, y = LD1, z = LD3, type="scatter3d", mode="markers", 

color=classifier, size=3)%>% 

  layout(title = list(text = "Bacteria LDA", font = t1, y = 0.95), scene = 

list(xaxis=axx,yaxis=axy,zaxis=axz), legend = list(title = list(text = "Bacteria Species"), 

font = t2)) 

fig 

setwd("~/") 

 

## Loop to train each model multiple times providing insight into model variability 

for (i in 1:25){ 

  validation_index <- createDataPartition(datasetsave$classifier, p=0.70, list=FALSE) 

  validation <- datasetsave[-validation_index,] 

  dataset <- datasetsave[validation_index,] 

  control <- trainControl(method="repeatedcv", number=10, repeats=3, savePredictions = 

"final", classProbs = TRUE, index = createFolds(dataset$classifier, 10), allowParallel =  

TRUE) 
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  model_list <- caretList(classifier~., data=dataset, metric=metric, trControl=control, 

methodList=algorithms) 

   

  for (methodname in algorithms){ 

    ## Predict testing data with chosen model 

    p <- predict(model_list[[methodname]], validation) 

    cm <- confusionMatrix(p, validation$classifier) 

     

    ## Accuracy measurement 

    acc1 <- cm[["overall"]][["Accuracy"]] 

    acc <- c(acc,acc1) 

    print(acc) 

  } 

  outtest <- exists("accuracydata") 

  if(outtest == FALSE){ 

    accuracydata <- acc 

  } 

  if(outtest == TRUE){ 

    accuracydata <- data.frame(accuracydata, acc) 

  } 

  acc <- c() 

  acc1 <- c() 

} 

 

## Output a CSV file containing all of the trained model accuracies 

accuracydata <- t(accuracydata) 

accuracydata <- data.frame(accuracy) 

colnames(accuracy) <- (algorithms) 
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average <- c(mean(accuracy$rf), mean(accuracy$nnet), mean(accuracy$kknn), 

mean(accuracy$lda2)) 

average <- t(data.frame(average)) 

colnames(average) <- (algorithms) 

stdev <- c(sd(accuracy$rf), sd(accuracy$nnet), sd(accuracy$kknn), sd(accuracy$lda2)) 

stdev <- t(data.frame(stdev)) 

colnames(stdev) <- (algorithms) 

AccuracyData <- rbind(accuracy, average, stdev) 

setwd("~/R/Spectral Analysis/Results Output Here") 

write.csv(accuracy, "AccuracyData.csv", row.names=TRUE) 

 

 

 

 

  




