
UC San Diego
Technical Reports

Title
Metric Learning to Rank

Permalink
https://escholarship.org/uc/item/2cq4b381

Authors
Mcfee, Brian
Lanckriet, Gert

Publication Date
2010-03-15

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2cq4b381
https://escholarship.org
http://www.cdlib.org/

Metri
 Learning to Rank

Brian M
Fee

bm
fee�
s.u
sd.edu

Department of Computer S
ien
e and Engineering

University of California, San Diego

Gert Lan
kriet

gert�e
e.u
sd.edu

Department of Ele
tri
al and Computer Engineering

University of California, San Diego

Feburary 1, 2010

Abstra
t

We study metri
 learning as a problem of information retrieval. We

present a general metri
 learning algorithm, based on the stru
tural SVM

framework, to learn a metri
 su
h that rankings of data indu
ed by dis-

tan
e from a query
an be optimized against various ranking measures,

su
h as AUC, Pre
ision-at-k, MRR, MAP or NDCG. We demonstrate ex-

perimental results on standard
lassi�
ation data sets, and a large-s
ale

online dating re
ommendation problem.

1 Introdu
tion

In many ma
hine learning tasks, good performan
e hinges upon the de�nition

of similarity between obje
ts. Although Eu
lidean distan
e on raw features pro-

vides a simple and mathemati
ally
onvenient metri
, there is often no reason to

assume that it is optimal for the task at hand. Consequently, many resear
hers

have developed algorithms to automati
ally learn distan
e metri
s in supervised

settings.

With few ex
eptions, these metri
 learning algorithms all follow the same

guiding prin
iple: a point's good neighbors should lie
loser than its bad neigh-

bors. Of
ourse, the exa
t de�nitions of good and bad vary a
ross problem

settings and algorithms, but typi
ally they derive from some
ombination of

proximity and label agreement. In keeping with this prin
iple, metri
 learning

algorithms are often evaluated by testing the a

ura
y of labels predi
ted by

k-nearest neighbors on held out data.

At a high level, we
onsider a metri
 good if, when given a test point q, sort-
ing the training set by in
reasing distan
e from q results in good neighbors at

1

the front of the list, and bad neighbors at the end. Viewed in this light, we
an

ast nearest neighbor predi
tion as a ranking problem, and the predi
ted label

error rate as a loss fun
tion over rankings. Thus, at its
ore, the metri
 learn-

ing problem is a spe
ial
ase of information retrieval in the query-by-example

paradigm.

In re
ent years, many advan
es have been made in the development of learn-

ing algorithms for ranking Joa
hims (2005); Burges et al. (2005); Xu & Li (2007);

Volkovs & Zemel (2009). Unlike the
lassi�
ation problems typi
ally addressed

by metri
 learning, ranking problems generally la
k a single evaluation
riterion.

Rather, a host of di�erent evaluation measures have been proposed, ea
h
ap-

turing a di�erent notion of �
orre
tness.� Be
ause rankings are inherently
om-

binatorial obje
ts, these evaluation measures are often non-di�erentiable with

respe
t to model parameters, and therefore di�
ult to optimize by learning al-

gorithms. Nonetheless, progress has been made, and there are now several algo-

rithmi
 te
hniques for optimizing various ranking evaluation measures Joa
hims

(2005); Chakrabarti et al. (2008); Volkovs & Zemel (2009).

In the present work, we seek to bridge the gap between metri
 learning

and ranking. By adapting te
hniques from information retrieval, we arrive at

a general metri
 learning algorithm whi
h optimizes for the true quantity of

interest: the permutation of data indu
ed by distan
es in the learned metri
.

Conversely, our parameterization of the ranking fun
tion by a distan
e metri

is quite natural for many information retrieval appli
ations, in
luding image

sear
h and multi-media re
ommendation.

The present approa
h, based on stru
tural SVM Tso
hantaridis et al. (2005),

readily supports various ranking evaluation measures under a uni�ed algorithmi

framework. The interpretation of metri
 learning as an information retrieval

problem allows us to apply loss at the level of rankings, rather than pairwise

distan
es, and enables the use of more general notions of similarity than those

used in previous metri
 learning algorithms.

1.1 Related work

There has been a great deal of resear
h devoted to the design of algorithms

for learning an optimal metri
 in supervised settings. Typi
ally, these metri

learning algorithms follow the general s
heme of learning a (preferably low-rank)

linear proje
tion of the data su
h that distan
es to a pre-determined set of �good

neighbors� is minimized, while non-neighbor distan
es are maximized.

Xing et al. (2003)
hoose the good neighbors as all similarly labeled training

points, and solve for the metri
 by semide�nite programming. Distan
es for

similar pairs of points are upper-bounded by a
onstant, and dissimilar-pair

distan
es are maximized. In e�e
t, this attempts to map ea
h
lass into a ball

of �xed radius, but does not
onstrain the separation between
lasses.

Weinberger et al. (2006) de�ne the target neighbors of a point as the k

losest similar points in the original feature spa
e, and for
es positive margins

between target neighbors and all other (dissimilar) points. This relaxes the

onstraint of Xing et al. (2003) that all points of a given
lass must lie
lose

2

−5 0 5

−2

0

2

Original space

−1 0 1

−0.5

0

0.5

LMNN

−1 −0.5 0 0.5 1
−0.2

0

0.2
MLR−MRR

Figure 1: A toy example illustrating the dangers of relying on input features for

determining good neighbors. Top-left: A binary-labeled (�, �) data set in its

native feature spa
e. All dis
riminative information is
ontained in the verti
al

axis, but the s
ale of the horizontal axis
orrupts the sele
tion of good neighbors.

Top-right: LargeMargin Nearest Neighbor (k = 3) sele
ts the verti
al neighbors,
leading to suboptimal performan
e. Bottom: Metri
 learning to rank (MLR)

orre
tly proje
ts onto the verti
al axis.

to ea
h-other, and the algorithm performs well in many real-world s
enarios.

However, as illustrated in Figure 1, the dependen
e on the original feature

spa
e for determining target neighbors
an make the algorithm unsuitable for

problem domains involving noisy or heterogeneous features: a single
orrupted

feature
an dominate the initial distan
e
al
ulations, and lead to sub-optimal

performan
e.

Neighborhood
omponents analysis (NCA) Goldberger et al. (2005) relaxes

the problem by maximizing the expe
ted number of
orre
tly retrieved points

under a sto
hasti
 neighbor sele
tion rule. Although this relaxation makes in-

tuitive sense, the optimization is non-
onvex, and we lose the ability to apply

onstraints to the top-k nearest neighbors, whi
h
an be of great importan
e

in pra
ti
e. Similarly, Globerson & Roweis (2006) optimize sto
hasti
 neighbor

sele
tion while attempting to
ollapse ea
h
lass to a single point. This idea

enfor
es more regularity on the output spa
e than NCA and leads to a
onvex

optimization problem, but the assumption that entire
lasses
an be
ollapsed

to distin
t points rarely holds in pra
ti
e.

The
ore of our method is based on the stru
tural SVM framework Tso
han-

taridis et al. (2005). We provide a brief overview in Se
tion 2, and dis
uss

ranking-spe
i�
 extensions in Se
tion 4.

1.2 Preliminaries

Let X ⊂ R
d
denote the training set (
orpus), with |X | = n. Y will denote the

set of permutations (rankings) of X . For a query q, let X+
q and X−

q denote the

subsets of relevant and irrelevant points in the training set. For a ranking y ∈ Y
and two points i, j ∈ X , we will use i≺yj (i≻yj) to indi
ate that i is pla
ed
before (after) j in y.

3

W � 0 will denote a symmetri
, positive semi-de�nite matrix in R
d×d

.

For i, j ∈ R
d
, we will denote distan
e under the metri
 de�ned by W as

‖i− j‖W =
√

(i− j)TW (i− j). For matri
es A,B ∈ R
d×d

, we will denote their

Frobenius inner produ
t as 〈A,B〉F = tr(ATB). Finally, 1[X] will denote the
0-1 indi
ator fun
tion on the event X .

2 Stru
tural SVM review

Stru
tural SVM
an be viewed as a generalization of multi-
lass SVM Crammer

& Singer (2002), where the set of possible predi
tion out
omes is generalized

from labels to stru
tures, e.g., a parse tree, permutation, sequen
e alignment,

et
. Tso
hantaridis et al. (2005). The multi-
lass SVM formulation of Crammer

& Singer (2002) for
es margins for ea
h training point q ∈ X between the true

label y∗ and all other labels y:

∀y 6= y∗ : wT

y∗q ≥ wT

y q + 1− ξ,

where ξ ≥ 0 is a sla
k variable to allow margin violations on the training set.

Similarly, stru
tural SVM applies margins between the true stru
ture y∗ and all
other possible stru
tures y:

∀y ∈ Y : wTψ(q, y∗) ≥ wTψ(q, y) + ∆(y∗, y)− ξ. (1)

Here, ψ(q, y) is a ve
tor-valued joint feature map whi
h
hara
terizes the rela-

tionship between an input q and an output stru
ture y. (This notation subsumes
the
lass-spe
i�
 dis
riminant ve
tors of multi-
lass SVM.) Unlike
lass labels,

two distin
t stru
tures (y∗, y) may exhibit similar a

ura
y, and the margin

onstraint should re�e
t this. To support more �exible notions of stru
tural

orre
tness, the margin is set to ∆(y∗, y): a non-negative loss fun
tion de�ned

between stru
tures, whi
h is typi
ally bounded in [0, 1].
For a test query q̂ in multi-
lass SVM, the predi
ted label y is that whi
h

maximizes wT

y q̂, i.e., the label with the largest margin over other labels. Anal-

ogously, stru
tural predi
tions are made by �nding the stru
ture y whi
h max-

imizes wTψ(q̂, y). The predi
tion algorithm must be able to e�
iently use the

learned ve
tor w when
omputing the output stru
ture y. As we will see in Se
-
tions 2.2 and 3, this is easily a

omplished in general ranking, and spe
i�
ally

in metri
 learning.

2.1 Optimization

Note that the set Y of possible output stru
tures is generally quite large (e.g.,

all possible permutations of the training set), so enfor
ing all margin
onstraints

in (1) may not be feasible in pra
ti
e. However,
utting planes
an be applied

to e�
iently �nd a small working set of a
tive
onstraints whi
h are su�
ient

to optimize w within some pres
ribed toleran
e Tso
hantaridis et al. (2005).

4

The
ore
omponent of the
utting plane approa
h is the separation ora
le,

whi
h given a �xed w and input point q, outputs the stru
ture y
orresponding
to the margin
onstraint for q whi
h is most violated by w:

y ← argmaxy∈Y w
Tψ(q, y) + ∆(y∗, y). (2)

Intuitively, this
omputes the stru
ture y with simultaneously large loss ∆(y∗, y)
and margin s
ore wTψ(q, y): in short, the weak points of the
urrent model w.
Adding margin
onstraints for these stru
tures y e�
iently dire
ts the opti-

mization toward the global optimum by fo
using on the
onstraints whi
h are

violated the most by the
urrent model.

In summary, in order to apply stru
tural SVM to a learning problem, three

things are required: a de�nition of the feature map ψ, the loss fun
tion ∆,

and an e�
ient algorithm for the separation ora
le. These pro
edures are all of

ourse highly interdependent and domain-spe
i�
. In the next se
tion, we will

des
ribe the prevalent approa
h to solving ranking problems in this setting.

2.2 Ranking with stru
tural SVM

In the
ase of ranking, the most
ommonly used feature map is the partial order

feature Joa
hims (2005):

ψpo(q, y) =
∑

i∈X+
q

∑

j∈X−

q

yij

(

φ(q, i)− φ(q, j)

|X+
q | · |X

−
q |

)

, (3)

where

yij =

{

+1 i ≺y j

−1 i ≻y j
,

and φ(q, i) is a feature map whi
h
hara
terizes the relation between a query

q and point i. Intuitively, for ea
h relevant-irrelevant pair (i, j), the di�eren
e
ve
tor φ(q, i) − φ(q, j) is added if i ≺y j and subtra
ted otherwise. Essentially,

ψpo emphasizes dire
tions in feature spa
e whi
h are in some sense
orrelated

with
orre
t rankings. Sin
e φ only depends on the query and a single point,

rather than the entire list, it is well-suited for in
orporating domain-spe
i�

knowledge and features.

Separation ora
les have been devised for ψpo in
onjun
tion with a wide

variety of ranking evaluation measures Joa
hims (2005); Yue et al. (2007);

Chakrabarti et al. (2008), and we give a brief overview in Se
tion 4.

One attra
tive property of ψpo is that for a �xed w, the ranking y whi
h

maximizes wTψpo(q̂, y) is simply i ∈ X sorted by des
ending wTφ(q̂, i). As we
will show in the next se
tion, this simple predi
tion rule
an be easily adapted

to distan
e-based ranking.

5

3 Metri
 learning to rank

If the query q lies in the same spa
e as the
orpus X , a natural ordering is

produ
ed by in
reasing (squared) distan
e from q: ‖q − i‖2. Sin
e our goal is

to learn an optimal metri
 W , distan
es are
omputed in the learned spa
e and

sorted a

ordingly: ‖q − i‖2W . This
omputation is
hara
terized in terms of

inner produ
ts as follows:

‖q − i‖2W = (q − i)TW (q − i) = tr
(

W (q − i)(q − i)T
)

=
〈

W, (q − i)(q − i)T
〉

F
,

where the se
ond equality follows by the
y
li
 property of the tra
e.

This observation suggests a natural
hoi
e of a feature map:

φM (q, i)
.
= −(q − i)(q − i)T. (4)

(The
hange of sign preserves the ordering used in standard stru
tural SVM.)

To summarize, sorting the
orpus by as
ending ‖q− i‖W is equivalent to sorting

by des
ending 〈W,φM (q, i)〉F . Similarly, by using φM with ψpo, the ordering y
whi
h maximizes the generalized inner produ
t 〈W,ψpo(q, y)〉F is pre
isely X in

as
ending order of distan
e from q under the metri
 de�ned by W .

Thus, by generalizing the ve
tor produ
ts in Equations 1 and 2 to Frobenius

inner produ
ts, we
an derive an algorithm to learn a metri
 optimized for

list-wise ranking loss measures.

3.1 Algorithm

Ideally, we would like to solve for the optimal metri
 W ∗
whi
h maximizes the

margins over all possible rankings for ea
h query. However, sin
e |Y| is super-
exponential in the size of the training set, implementing an exa
t optimization

pro
edure is out of the question with
urrent te
hniques. Instead, we approxi-

mate the full optimization program by using a
utting-plane algorithm.

Spe
i�
ally, our algorithm for learningW is adapted from the 1-Sla
k margin-

res
aling
utting-plane algorithm of Joa
hims et al. (2009). At a high-level, the

algorithm alternates between optimizing the model parameters (in our
ase,W),

and updating the
onstraint set with a new bat
h of rankings (y1, y2, . . . , yn)
(one ranking for ea
h point). The algorithm terminates on
e the empiri
al loss

on the new
onstraint bat
h is within a pres
ribed toleran
e ǫ > 0 of the loss

on the previous set of
onstraints.

The key di�eren
e between the 1-Sla
k approa
h and other similar
utting-

plane te
hniques is that, rather than maintaining a sla
k variable ξq for ea
h q ∈
X , there is a single sla
k variable ξ whi
h is shared a
ross all
onstraint bat
hes,
whi
h are in turn aggregated by averaging over ea
h point in the training set.

As we illustrate in Se
tion 3.2, this enables e�
ient bookkeeping and gradient

al
ulations in the optimization pro
edure.

We introdu
e two modi�
ations to adapt the original algorithm to metri

learning. First, W must be
onstrained to be positive semi-de�nite in order to

6

Algorithm 1 Metri
 Learning to Rank (MLR).

Input: data X , rankings y∗1 , . . . , y
∗
n, sla
k trade-o� C > 0, a

ura
y threshold

ǫ > 0
Output: metri
 W � 0, sla
k variable ξ ≥ 0
1: C ← ∅
2: repeat

3: Solve for the optimal metri
 and sla
k:

(W, ξ)← argminW,ξ f(W) = tr(W) + Cξ

s. t.W � 0

ξ ≥ 0

∀(y1, y2, . . . , yn) ∈ C :

1

n

n
∑

i=1

〈W, δψpo(qi, y
∗
i , yi)〉F ≥

1

n

n
∑

i=1

∆(y∗i , yi)− ξ

4: for i = 1 to n do

5: yi ← argmaxy∈Y ∆(y∗i , y) + 〈W,ψpo(qi, y)〉F
6: end for

7: C ← C ∪ {(y1, . . . , yn)}
8: until

1

n

n
∑

i=1

∆(y∗i , yi)− 〈W, δψpo(qi, y
∗
i , yi)〉F ≤ ξ + ǫ

de�ne a valid metri
. Se
ond, we repla
e the standard quadrati
 regularization

1

2
wTw (or

1

2
tr(WTW)) with tr(W). Intuitively, this trades an ℓ2 penalty on the

eigenvalues of W for an ℓ1 penalty, thereby promoting low-rank solutions.

The general optimization pro
edure is listed as Algorithm 1. For
ompa
t-

ness, we de�ne

δψpo(q, y
∗, y) = ψpo(q, y

∗)− ψpo(q, y).

3.2 Implementation

To solve the optimization problem in Algorithm 1, we implemented a gradient

des
ent solver

1

. After ea
h gradient step, the updated W is proje
ted ba
k onto

the feasible set of PSD matri
es by spe
tral de
omposition.

Although there appears to be a great many feature ve
tors (δψpo) in use in

the algorithm, e�
ient bookkeeping allows us to redu
e the overhead of gradient

1

Our algorithm is implemented in MATLAB, and we will make the sour
e
ode available

upon publi
ation.

7

al
ulations. Note that ξ
an be interpreted as the point-wise maximum of a

set {ξ1, ξ2, . . . }, where ξi
orresponds to the margin
onstraint for the ith bat
h.
Therefore, at any time when ξ > 0, the gradient of the obje
tive f(W)
an

be expressed in terms of a single bat
h (ŷ1, . . . , ŷn) whi
h a
hieves the
urrent

largest margin violation:

∂f

∂W
= I −

C

n

n
∑

i=1

δψpo(qi, y
∗
i , ŷi).

Note that ψpo only appears in Algorithm 1 in the form of averages over

onstraint bat
hes. This indi
ates that it su�
es to maintain only a single d×d
matrix

Ψ =
1

n

n
∑

i=1

δψpo(qi, y
∗
i , yi)

for ea
h bat
h, rather than individual matri
es for ea
h point. Be
ause φM

derives from outer-produ
ts of the data, ea
h ψpo(q, y)
an be fa
tored as

ψpo(q, y) = XS(q, y)XT,

where the
olumns of X
ontain the data, and S(q, y) is a symmetri
 n × n
matrix with

S(q, y) =
∑

i∈X+
q

∑

j∈X−

q

yij

(Aqi −Aqj)

|X+
q | · |X

−
q |
, (5)

Aqx = −(eq − ex)(eq − ex)T,

and ei is the i
th

standard basis ve
tor in R
n
. By linearity, this fa
torization
an

also be
arried through to δψpo(q, y
∗, y) and Ψ.

The summation in Equation 5
an be
omputed more dire
tly by
ounting

the o

urren
es of Aqx with positive and negative sign, and
olle
ting the terms.

This
an be done in linear time by a single pass through y.
By expressing Ψ in fa
tored form, we
an delay all matrix multipli
ations

until the �nal Ψ
omputation. Be
ause the S(q, y)
an be
onstru
ted dire
tly

without expli
itly building the outer-produ
t matri
es Aqi, we e�e
tively redu
e

the number of matrix multipli
ations at ea
h gradient
al
ulation from O(n) to
2.

4 Ranking measures

Here, we give a brief overview of popular information retrieval evaluation
rite-

ria, and how to in
orporate them into the learning algorithm.

Re
all that the separation ora
le (Equation 2) seeks a ranking y whi
h max-
imizes the sum of the dis
riminant s
ore 〈W,ψpo(q, y)〉F and the ranking loss

∆(y∗, y). One
ommon property to all evaluation
riteria under
onsideration is
that they are invariant to permutations
on�ned to the relevant (or irrelevant)

8

sets. As has been previously observed, optimizing over y redu
es to �nding an

optimal interleaving of the relevant and irrelevant sets, ea
h of whi
h has been

pre-sorted by the point-wise dis
riminant s
ore 〈W,φM (q, i)〉F Yue et al. (2007).

Sin
e all measures dis
ussed here take values in [0, 1] (1 being the s
ore for

a perfe
t ranking), we
onsider loss fun
tions of the form

∆(y∗, y) = S
ore(y∗)− S
ore(y) = 1− S
ore(y).

AUC

The area under the ROC
urve (AUC) is a
ommonly used measure whi
h
har-

a
terizes the trade-o� between true positives and false positives as a threshold

parameter is varied. In our
ase, the parameter
orresponds to the number of

items returned (or, predi
ted as relevant). AUC
an equivalently be
al
ulated

by
ounting the portion of in
orre
tly ordered pairs (i.e., j ≺y i, i relevant and
j irrelevant), and subtra
ting from 1. This formulation leads to a simple and

e�
ient separation ora
le, des
ribed by Joa
hims (2005).

Note that AUC is position-independent: an in
orre
t pair-wise ordering at

the bottom of the list impa
ts the s
ore just as mu
h as an error at the top of

the list. In e�e
t, AUC is a global measure of list-wise
ohesion.

Pre
ision-at-k

Pre
ision-at-k (Pre
�k) is the fra
tion of relevant results out of the �rst k re-

turned. Pre
�k is therefore a highly lo
alized evaluation
riterion, and
aptures
the quality of rankings for appli
ations where only the �rst few results matter,

e.g., web sear
h.

The separation ora
le for Pre
�k exploits two fa
ts: there are only k + 1
possible values for Pre
�k (0, 1/k, 2/k, . . . , 1), and for any �xed value, the best

y is
ompletely determined by the ordering indu
ed by dis
riminant s
ores. We

an then evaluate all k+1 interleavings of the data to �nd the y whi
h a
hieves

the maximum. See Joa
hims (2005) for details.

Closely related to Pre
�k is the k-nearest neighbor predi
tion s
ore. In the

binary
lassi�
ation setting, the two are related by

KNN(q, y; k) = 1 [Pre
�k(q, y) > 0.5] ,

and the Pre
�k separation ora
le
an be easily adapted to k-nearest neighbor.
However, in the multi-
lass setting, the interleaving te
hnique fails be
ause the

required fra
tion of relevant points for
orre
t
lassi�
ation depends not only

on the relevan
e or irrelevan
e of ea
h point, but the labels themselves.

In informal experiments, we noti
ed no quantitative di�eren
es in perfor-

man
e between metri
s trained for (binary) KNN and Pre
�k, and we omit

KNN from the experiments in Se
tion 5.

9

Average Pre
ision

Average pre
ision (or Mean Average Pre
ision, MAP) Baeza-Yates & Ribeiro-

Neto (1999) is simply the pre
ision-at-k s
ore of a ranking y, averaged over all

positions k of relevant do
uments:

AP (q, y) =
1

|X+
q |

|X+
q
|+|X−

q
|

∑

k=1

Pre
�k(y)1
[

k ∈ X+
q

]

.

Yue et al. (2007) provides a greedy separation ora
le for average pre
ision that

runs in time O(|X+
q | · |X

−
q |). Our implementation uses a relatively simpler

dynami
 programming approa
h with equivalent asymptoti
 runtime. (Details

are omitted here for brevity.)

Mean Re
ipro
al Rank

Mean re
ipro
al rank (MRR) is the inverse position of the �rst relevant do
-

ument in y, and is therefore well-suited to appli
ations in whi
h only the �rst

result matters.

Like Pre
�k, there is a �nite set of possible s
ore values for MRR (1, 1/2, 1/3, . . . , 1/(1+
|X−

q |)), and for a �xed MRR s
ore, the optimal y is
ompletely determined.

It is similarly straightforward to sear
h over s
ore values for the maximizer.

See Chakrabarti et al. (2008) for a more
omplete treatment of optimizing MRR.

Normalized Dis
ounted Cumulative Gain

Normalized Dis
ounted Cumulative Gain (NDCG) Järvelin & Kekäläinen (2000)

is similar to MRR, but rather than rewarding only the �rst relevant do
ument,

all of the top k do
uments are s
ored at a de
aying dis
ount fa
tor. In the

present setting with binary relevan
e levels, the formulation we adopt is ex-

pressed as:

NDCG(q, y; k) =

∑k

i=1
D(i)1[i ∈ X+

q]
∑k

i=1
D(i)

D(i) =











1 i = 1

1/ log2(i) 2 ≤ i ≤ k

0 i > k

.

Chakrabarti et al. (2008) propose a dynami
 programming algorithm for the

NDCG separation ora
le, whi
h we adapt here.

5 Experiments

To evaluate the MLR algorithm, we performed experiments on both small-s
ale

and large-s
ale data sets, as des
ribed in the next two se
tions. In all experi-

ments, we �xed the a

ura
y threshold at ǫ = 0.01.

10

Table 1: Summary statisti
s of the UCI data sets: dimensionality, training and

test set sizes, and the number of
lasses. IsoLet's training set was further split

into training and validation sets of size 4991 and 1247.

d # Train # Test # Classes

Balan
e 4 500 125 3

Ionosphere 34 281 70 2

WDBC 30 456 113 2

Wine 13 143 35 3

IsoLet 170 6238 1559 26

5.1 Classi�
ation on UCI data

We �rst tested the a

ura
y and dimensionality redu
tion performan
e of our

algorithm on �ve data sets from the UCI repository Asun
ion & Newman (2007):

Balan
e, Ionosphere, WDBC, Wine, and IsoLet. For the �rst four sets, we

generated 50 random 80/20 training and test splits. Ea
h dimension of the data

was z-s
ored by the statisti
s of the training splits.

For IsoLet, we repli
ate the experiment of Weinberger et al. (2006) by gener-

ating 10 random 80/20 splits of the training set for testing and validation, and

then testing on the provided test set. We proje
t by PCA (as
omputed on the

training set) to 170 dimensions, enough to
apture 95% of the varian
e.

Table 1
ontains a summary of the data sets used here.

We trained metri
s on ea
h data set with the �ve variants of MLR: MLR-

AUC, MLR-Pre
�k, MLR-MAP, MLR-MRR, and MLR-NDCG. For
ompar-

ison purposes, we also trained metri
s with Large Margin Nearest Neighbor

(LMNN)Weinberger et al. (2006), Neighborhood Components Analysis (NCA) Gold-

berger et al. (2005), and Metri
 Learning by Collapsing Classes (MLCC) Glober-

son & Roweis (2006).

To evaluate the performan
e of ea
h algorithm, we tested k-nearest neighbor

lassi�
ation a

ura
y in the learned metri
s. Classi�
ation results are presented

in Table 2

2

. With the ex
eption of NCA and MLCC on the Balan
e set, all

results on Balan
e, Ionosphere, WDBC and Wine are within the margin of

error. In general, MLR a
hieves a

ura
y on par with the best algorithms under

omparison, without relying on the input features for sele
ting target neighbors.

Figure 2 illustrates the dimensionality redu
tion properties of the MLR al-

gorithms. In all
ases, MLR a
hieves signi�
ant redu
tions in dimensionality

from the input spa
e,
omparable to the best
ompeting algorithms.

2

LMNN a

ura
y on IsoLet was reported by Weinberger et al. (2006). Dimensionality

results were not reported.

11

Table 2: k-nearest neighbor
lassi�
ation error (%) on learned metri
s. Re-

ported error is
orresponds to the best
hoi
e of C and k.
Algorithm Bal. Ion. Wdb
 Wine Isolet

MLR-AUC 7.9 12.3 2.7 1.4 4.5

MLR-P�k 8.2 12.3 2.9 1.5 4.5

MLR-MAP 6.9 12.3 2.6 1.0 5.5

MLR-MRR 8.2 12.1 2.6 1.5 4.5

MLR-NDCG 8.2 11.9 2.9 1.6 4.4

LMNN 8.8 11.7 2.4 1.7 4.7

NCA 4.6 11.7 2.6 2.7 10.8

MLCC 5.5 12.6 2.1 1.1 4.4

Eu
lidean 10.3 15.3 3.1 3.1 8.1

0 10 20 30 40 50

Balance

Ionosphere

WDBC

Wine

Isolet

Dimensionality

MLR−AUC

MLR−P@k

MLR−MAP

MLR−MRR

MLR−NDCG

LMNN

NCA

MLCC

Euclidean

170

Figure 2: Dimensionality redu
tion for the UCI data sets. Reported dimen-

sionality is the median number of dimensions ne
essary to
apture 95% of the

spe
tral mass of the best-performing W . �Eu
lidean�
orresponds to the native

dimensionality of the data.

5.2 eHarmony data

To evaluate MLR on a large data set in an information retrieval
ontext, we

trained metri
s on mat
hing data provided by eHarmony

3

: an online dating

servi
e whi
h mat
hes users by personality traits.

For our experiments, we fo
used on the following simpli�
ation of the data

and problem: ea
h mat
hing is presented as a pair of users, with a positive

label when the mat
h was su

essful (i.e., users expressed mutual interest),

and negative otherwise. Ea
h user is represented by a ve
tor in R
56

whi
h

des
ribes the user's personality, interests, et
. We
onsider two users mutually

relevant if they are presented as a su

essful mat
h, and irrelevant if the mat
h

is unsu

essful. Irrelevan
e is not assumed for unmat
hed pairs.

Mat
hings were
olle
ted over two
onse
utive time intervals of equal length,

and split into training (interval 1) and testing (interval 2). The training split

ontains approximately 295000 unique users, not all of whi
h de�ne useful

queries: some appear only in positive mat
hings, while others appear only in

negative mat
hings. Sin
e these users provide no dis
riminative data, we omit

3

www.eharmony.
om

12

Table 3: Summary statisti
s of eHarmony mat
hing data.

Mat
hings Unique users Queries

Training 506688 294832 22391

Test 439161 247420 36037

Table 4: Testing a

ura
y and training time for MLR and SVM-MAP on eHar-

mony mat
hing data. Time is reported in CPU-se
onds, and |C| is the number
of
utting-plane bat
hes before
onvergen
e.

Algorithm AUC MAP MRR Time |C|

MLR-AUC 0.612 0.445 0.466 232 7

MLR-MAP 0.624 0.453 0.474 2053 23

MLR-MRR 0.616 0.448 0.469 809 17

SVM-MAP 0.614 0.447 0.467 4968 36

Eu
lidean 0.522 0.394 0.414

them from the set of query users. Note that su
h users are still informative, and

are in
luded in the training set as results to be ranked.

We further redu
e the number of training queries to in
lude only users with

at least 2 su

essful and 5 unsu

essful mat
hings, leaving approximately 22000

training queries. A summary of the data is presented in Table 3.

We trained metri
s with MLR-AUC, MLR-MAP and MLR-MRR. Due to

the small number of minimum positive results for ea
h query, we omit MLR-

P�k and MLR-NDCG from this experiment. Note that be
ause we are in an

information retrieval setting, and not
lassi�
ation, the other metri
 learning

algorithms
ompared in the previous se
tion do not apply. For
omparison, we

train models with SVM-MAP Yue et al. (2007), and feature map φ(q, i) = (q−i).
When training SVM-MAP, we swept over C ∈ {10−2, 10−1, . . . , 105}.

Table 4 shows the a

ura
y and timing results for MLR and SVM-MAP.

The MLR-MAP and MLR-MRR models show slight, but statisti
ally signi�
ant

improvement over the SVM-MAP model. Note that the MLR algorithms train in

signi�
antly less time than SVM-MAP, and require fewer
alls to the separation

ora
le.

Although MLR improves over baseline Eu
lidean distan
e in this retrieval

task, it seems that linear models may not su�
e to
apture
omplex stru
ture

in the data. Generalizing MLR to produ
e non-linear transformations will be

the fo
us of future resear
h.

6 Con
lusion

We have presented a metri
 learning algorithm whi
h optimizes for ranking-

based loss fun
tions. By
asting the problem as an information retrieval task,

13

we fo
us attention on what we believe to be the key quantity of interest: the

permutation of data indu
ed by distan
es.

Referen
es

Asun
ion, A. and Newman, D.J. UCI ma
hine learning repository, 2007. URL

http://www.i
s.u
i.edu/~mlearn/MLRepository.html.

Baeza-Yates, Ri
ardo A. and Ribeiro-Neto, Berthier. Modern Information Re-

trieval. Addison-Wesley Longman Publishing Co., In
., Boston, MA, USA,

1999.

Burges, Chris, Shaked, Tal, Renshaw, Erin, Lazier, Ari, Deeds, Matt, Hamil-

ton, Ni
ole, and Hullender, Greg. Learning to rank using gradient des
ent.

In ICML '05: Pro
eedings of the 22nd international
onferen
e on Ma
hine

learning, pp. 89�96, New York, NY, USA, 2005. ACM.

Chakrabarti, Soumen, Khanna, Rajiv, Sawant, Uma, and Bhatta
haryya,

Chiru. Stru
tured learning for non-smooth ranking losses. In KDD '08: Pro-

eeding of the 14th ACM SIGKDD international
onferen
e on Knowledge

dis
overy and data mining, pp. 88�96, New York, NY, USA, 2008. ACM.

Crammer, Koby and Singer, Yoram. On the algorithmi
 implementation of

multi
lass kernel-based ve
tor ma
hines. J. Ma
h. Learn. Res., 2:265�292,

2002. ISSN 1532-4435.

Globerson, Amir and Roweis, Sam. Metri
 learning by
ollapsing
lasses. In

Weiss, Yair, S
hölkopf, Bernhard, and Platt, John (eds.), Advan
es in Neural

Information Pro
essing Systems 18, pp. 451�458, Cambridge, MA, 2006. MIT

Press.

Goldberger, Ja
ob, Roweis, Sam, Hinton, Geo�rey, and Salakhutdinov, Ruslan.

Neighborhood
omponents analysis. In Saul, Lawren
e K., Weiss, Yair, and

Bottou, Léon (eds.), Advan
es in Neural Information Pro
essing Systems 17,

pp. 513�520, Cambridge, MA, 2005. MIT Press.

Järvelin, Kalervo and Kekäläinen, Jaana. Ir evaluation methods for retrieving

highly relevant do
uments. In SIGIR '00: Pro
eedings of the 23rd annual

international ACM SIGIR
onferen
e on Resear
h and development in infor-

mation retrieval, pp. 41�48, New York, NY, USA, 2000. ACM.

Joa
hims, Thorsten. A support ve
tor method for multivariate performan
e

measures. In ICML '05: Pro
eedings of the 22nd international
onferen
e on

Ma
hine learning, pp. 377�384, New York, NY, USA, 2005. ACM.

Joa
hims, Thorsten, Finley, Thomas, and Yu, Chun-Nam John. Cutting-plane

training of stru
tural svms. Ma
h. Learn., 77(1):27�59, 2009. ISSN 0885-6125.

14

http://www.ics.uci.edu/~mlearn/MLRepository.html

Tso
hantaridis, Ioannis, Joa
hims, Thorsten, Hofmann, Thomas, and Altun,

Yasemin. Large margin methods for stru
tured and interdependent output

variables. J. Ma
h. Learn. Res., 6:1453�1484, 2005. ISSN 1532-4435.

Volkovs, Maksims N. and Zemel, Ri
hard S. Boltzrank: learning to maximize

expe
ted ranking gain. In ICML '09: Pro
eedings of the 26th Annual Inter-

national Conferen
e on Ma
hine Learning, pp. 1089�1096, New York, NY,

USA, 2009. ACM.

Weinberger, Kilian Q., Blitzer, John, and Saul, Lawren
e K. Distan
e met-

ri
 learning for large margin nearest neighbor
lassi�
ation. In Weiss, Yair,

S
hölkopf, Bernhard, and Platt, John (eds.), Advan
es in Neural Information

Pro
essing Systems 18, pp. 451�458, Cambridge, MA, 2006. MIT Press.

Xing, Eri
 P., Ng, Andrew Y., Jordan, Mi
hael I., and Russell, Stuart. Dis-

tan
e metri
 learning, with appli
ation to
lustering with side-information. In

Advan
es in Neural Information Pro
essing Systems 15, pp. 505�512, Cam-

bridge, MA, 2003. MIT Press.

Xu, Jun and Li, Hang. Adarank: a boosting algorithm for information retrieval.

In SIGIR '07: Pro
eedings of the 30th annual international ACM SIGIR
on-

feren
e on Resear
h and development in information retrieval, pp. 391�398,

New York, NY, USA, 2007. ACM.

Yue, Yisong, Finley, Thomas, Radlinski, Filip, and Joa
hims, Thorsten. A

support ve
tor method for optimizing average pre
ision. In SIGIR '07: Pro-

eedings of the 30th annual international ACM SIGIR
onferen
e on Resear
h

and development in information retrieval, pp. 271�278, New York, NY, USA,

2007. ACM.

15

	Introduction
	Related work
	Preliminaries

	Structural SVM review
	Optimization
	Ranking with structural SVM

	Metric learning to rank
	Algorithm
	Implementation

	Ranking measures
	Experiments
	Classification on UCI data
	eHarmony data

	Conclusion

