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Objective Picture Quality Scale (PQS) For Image
Coding

M. Miyahara, K. Kotani, and V. R. Algazi

Abstract— A new methodology for the determination of
an objective metric for still image coding is reported. This
methodology is applied to obtain a Picture Quality Scale
(PQS) for the coding of achromatic images over the full
range of image quality defined by the subjective Mean Opin-
ion Score (MOS). This Picture Quality Scale takes into ac-
count the properties of visual perception for both global fea-
tures and localized disturbances. PQS closely approximates
the MOS, with a correlation coefficient of more than 0.92, as
compared to 0.57 obtained using the conventional WMSE.
Extensions and applications of the methodology and of the
resulting metric are discussed.

Keywords— Image compression, quality

metrics, psychophysics.

image quality,

I. INTRODUCTION

HE evaluation of picture quality is indispensable in

image coding. Subjective assessment tests are widely
used to evaluate the picture quality of coded images [1],
[2], [3]. However, careful subjective assessments of quality
are experimentally difficult and lengthy, and the results ob-
tained may vary depending on the test conditions. Further,
subjective assessments provide no constructive methods for
performance improvement, and are difficult to use as part
of the design process.

Objective measures of picture quality would not only al-
leviate the difficulties described above, but would also help
expand the field of image coding. This expansion would
result from the systematic determination of objective mea-
sures for the comparison of coded images, and also from
the possibility of successive adjustments to improve or op-
timize the picture quality for a desired quality of service [4].
The objective simulation of performance both with respect
to bit rate and image quality would also lead to a more
systematic design of image coders.

It is important that an objective scale mirror the per-
ceived image quality. For instance, simple distortion scales,
such as the signal to noise ratio (PSNR), or even the
weighted mean square error (WMSE) are good distortion
indicators for random errors, but not for structured or cor-
related errors. But such structured errors are prevalent
in image coders, and degrade local features and perceived
quality much more than do random errors [5]. Hence,
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PSNR and WMSE alone are not suitable objective scales
to evaluate compressed images. There have been many
studies of the construction of objective scales which repre-
sent properties of the human observer [6], [7], [8]. We note
among the early studies, the work of D.J. Sakrison, who
proposed a picture quality scale and gave an integrated
view, for image coding applications, of known perceptual
properties of vision [9]. Other models and applications of
perception to coding have been been reported [10], [11],
[12]. An additional discussion of more recent work on per-
ceptual models and their application to coding performance
evaluation is given later in the paper.

This paper proposes a new methodology for the determi-
nation of objective quality metrics, and applies it to obtain
a Picture Quality Scale (PQS) for the evaluation of coded
achromatic still images. As in previous work that is ex-
tended here [13], the approach is based on the perceptual
properties of human vision and on extensive engineering
experience with the observation of image disturbances due
to image coding.

The properties of perception suggest the transformation
of the images and coding errors into perceptually relevant
signals. First, we transform the image signal into one which
is proportional to the visual perception of luminance us-
ing Weber-Fechner’s Law and the contrast sensitivity for
achromatic images. Secondly, we apply spatial frequency
weighting to the errors. Third, we describe perceived im-
age disturbances and the corresponding objective quality
factors which quantify each image degradation. In this
step, we include visual masking where it is relevant to the
perception of image degradations. Fourth, we describe the
experimental method for obtaining PQS based on these
distortion factors, and we determine the goodness of the
approximation between the obtained PQS and the Mean
Opinion Score (MOS). In the discussion section, limita-
tions, extensions and refinements of the PQS methodology
are considered. Finally, applications of PQS to coder com-
parison and to a systematic image coding design, some of
which have already appeared [14], [15], [16], are considered
briefly.

II. CONSTRUCTION OF A PICTURE QUALITY SCALE

(PQS)

The PQS methodology is illustrated in Figure 1. Given
the original image i(m,n) and a distorted, compressed im-
age i(m,n), we compute local distortion maps {f;(m,n)},
from which the distortion factors {F;} are computed. We
then use regression methods to combine these factors into
a single number representative of the quality of a given im-
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age. The methodology that is presented here applies to
a CRT or other types of electronic displays, as well as to
print. In each case, we assume that the nonlinear charac-
teristic of the image display system has been compensated,
so that the the image signal i(m,n) is equal to the lumi-
nance of the display at each pixel.

In the sections that follow, we discuss in detail the vari-
ous components of this framework, starting with the com-
putation of contrast adjusted error images, and concluding
with explicit formulas for the computation of the PQS fac-
tors and then PQS itself.

A. Luminance Coding Error

We now mathematically account for several components
of a simple model of visual perception. To provide a more
uniform perceptual scale, we transform the images using a
power law

(1)

that approximates Weber-Fechner’s Law for brightness sen-
sitivity, where k is a scaling constant that allows for the
adjustment of the range of the variable . Note that the
exponent 1/2.2 is only one of several approximate values
commonly used [17].

The contrast adjusted error image is then computed as

(2)
where #(m,n) is the contrast adjusted version of 7(m,n).
Most of the distortion factors are defined as functions of
e(m,n).

z(m,n) = k-i(m,n)/??,

e(m,n) = z(m,n) — &£(m,n)

B. Spatial Frequency Weighting of Errors

The contrast sensitivity function of vision suggests a spa-
tial or spatial frequency distortion weighting.

Based in part on a measured contrast sensitivity func-
tion, the spatial frequency response is modeled approxi-
mately by

S(w) = 1.5e70 w2 _ g20%w?

(3)
where

2
0':2,(4):6L0f,f:\/u2—|—1;2, (4)

and u and v are the horizontal and vertical spatial frequen-
cies, respectively, in cycles per degree. As compared to the
contrast sensitivity function (CSF), modeled for instance in
[9], the response of (3) gives more weight to low frequen-
cies, which is critical to the reproduction of edges [18]. We
found that high frequencies also need to be attenuated as
compared the measured CSF of human vision, to account
for the transfer function of the CRT.

At higher spatial frequencies, the frequency response is
anisotropic [19], [20] so that a better model [21] is given by

Sa(u,v) = S(w)O(w, ), (5)

with

1 4 efw=wo) o5 209

O(w7 0) = 14+ eB(w—w,)

; (6)

where § = tan~!(v/u) is the angle with respect to the
horizontal axis,

B =38, fo =11.13 cycle/degree, )
and O(w, ) blends in a cos? 26 anisotropy, fairly quickly,
for frequencies f > f,. The frequency weighted error
ew(m,n), then, is just the contrast adjusted error, filtered
with Sg(u,v).

In our presentation, perceived disturbances are first de-
scribed verbally, for example, as random or structured er-
rors. Next, these disturbances are quantified locally, result-
ing in distortion maps or factor images {f;(m,n)}. A single
numerical value, or distortion factor Fj, is then computed
from each factor image. We now describe the perceived
disturbances and define numerical measures of the corre-
sponding distortion factors {F;}. We make use of five such
factors and then analyze their relative importance.

C. Random Errors and Disturbances

All coding techniques will produce random errors. The
perceived random disturbances will be in the form of in-
cremental noise in slowly varying regions of the image and,
generally, will be not perceived in active areas of the image.
We use integral square measures to compute distortion fac-
tors Iy and F5.

Because the CCIR has adopted a standard to quantify
the effect of noise, we follow that standard in defining
Fy [22].

C.1 Distortion Factor F;

The CCIR television noise weighting standard does not
take into account Weber’s law. Thus, we define

ei(m,n) = i(m,n) — 1(m,n). (8)

This error is used to compute the first factor image,

(9)

where wry (m,n) is the isotropic spatial domain weighting
corresponding to the frequency weighting defined by CCIR
567-1,

fi(m,n) = [e;(m,n) * wTV(m,n)]z,

_ 1 — Vu2 + 02
RN A o

with a 3 dB cutoff frequency f. = 5.56 cycles/degree at
a viewing distance of 4 times picture height (4H), and *
represents convolution.

The distortion factor Fj is then computed as the sum-
mation of the square of the local frequency weighted errors,

Zm,n fl (m’ TL)
2o mn (M, n)

where the sums are computed over all pixels in the M x N
images. Note that Fj, as defined, is normalized by the
weighted energy of the image. It is therefore a normalized
noise to signal ratio.

Wrv(f) (10)

Fy = (11)
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Fig. 1. The construction of PQS.

C.2 Distortion Factor F»

Distortion factor F» includes a more complete single
channel model of visual perception. A correction for We-
ber’s Law (1) and the frequency weighting factor of (5) are
now used. In addition, F» ignores values of e, (m,n) which
are below a perceptual threshold 7. Thus,

(12)

fa(m,n) = Ir(m,n)[e,(m,n) * so(m, n)]z,

and

Fy — Zm,n {2(m, n),

2m,n 13m0y 1)

where Ir(m,n) is an indicator function for a perceptual
threshold of visibility, and 7' = 1.

(13)

D. Structured and Localized Errors and Disturbances

Because the perception of structured patterns is more
acute, and since structured and correlated errors are preva-
lent in coded images, we now define three additional factors
to evaluate the contribution of correlated errors.

D.1 Distortion Factor F3 (End of Block Disturbances)

We are specially sensitive to linear features in images and
therefore to such features in errors as well. Such structured
disturbances are quite apparent in most coders. These dis-
turbances occur in particular at the end of blocks for trans-
form coders, and are due to error discontinuities.

We define distortion factor F3 as a function of two factor
images, one each for the horizontal and vertical block error
discontinuities. Thus,

fan(m,n) = Iy(m,n)A%(m,n) (14)
where

Ap(m,n) = ey(m,n) — ey(m,n + 1) (15)

and Ip(m,n) is an indicator function which selects only
those differences which span horizontal block boundaries.
Now,

Fan = 5= 3 fan(im, ), (16)

where N, = 3, In(m,n) is the number of pixels selected
by the corresponding indicator function, and

F3 = \/ F32h+F32v’

with F3, defined similarly at vertical block boundaries.
Note that more elaborate models for end of block errors
have been proposed recently [23].

(17)

D.2 Distortion Factor Fy (Correlated Errors)

Even if they do not occur at the end of a block, im-
age features and textures with strong spatial correlation
are much more perceptible than random noise. In order
to evaluate structured errors, we make use of their local
spatial correlation. The distortion factor Fj is thus de-
fined as a summation over the entire image of local error
correlations.

We compute locally the factor image

famn) =Y [r(m,n, k1),

(k,))eW

(18)

where the local correlation

1
n—1

[Zew(zaj)ew(z+k’]+l)
LY culin) Senli+ ki1 (19

r(m,n, k1) =

and the sums are computed over the set of pixels where
(2,7) and (i + k,j + 1) both lie in a 5 x 5 window centered
at (m,n) and W is the set of lags to include in the compu-
tation. We include all unique lags with |k|, |I| < 2, except
for (0,0), which is the error variance. Due to symmetry,
only 12 lags are included in the sum. Note that the 0.25
exponent is used to deemphasize the relative magnitude of
the errors, as compared to their correlation or structure.
By summation of the local distortions we obtain the dis-
tortion factor

1
F4 = W 7; f4(m, n) (20)
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D.3 Distortion Factor F; (Errors in the vicinity of high
contrast image transitions)

Two psychophysical effects affect the perception of errors
in the vicinity of high contrast transitions: visual masking,
which refers to the reduced visibility of disturbances in ac-
tive areas, and enhanced visibility of misalignments, even
when they are quite small. Here, we account only for the
masking effect. The second effect, denoted edge busyness
is prevalent for very low bit rate DPCM coders but is not
a major effect for other commonly used coding techniques,
such as those considered in this work.

Although visual masking reduces the visibility of im-
pairments in the vicinity of transitions, coding techniques
will introduce large errors and major visual disturbances
in the same areas. Thus, even though these disturbances
are masked, they will still be most important. Distortion
factor F5 measures all disturbances in the vicinity of high
contrast transitions. In contrast to the other factors, Fy is
based on an analysis of the original image, as well as on
the contrast enhanced error image e, (m, n).

A horizontal masking factor [8]

{70.04Vh (m,n)} (21)

Sk(m,n) =e
is defined in terms of a horizontal local activity function
li(m,n — 1) —i(m,n + 1)]

5 .

Defining the vertical masking factor S,(m,n) similarly, we
compute the masked error at each pixel as

fs(m,n) =

Vi(m,n) = (22)

Ine(m,n)|ew(m,n)| -

(Sn(m,n) + Sy(m,n)),  (23)

where I (m,n) is an indicator function which selects pixels
close to high intensity transitions. Note that the masking
factors can be substantially less than 1 in highly active
regions of the image.

The final factor is now computed as

Fs— NLK S fs(m,n) (24)

where Nk is the number of pixels whose 3 x 3 Kirsch edge
response k(m,n) > K, for a threshold K = 400. The indi-
cator function Ips(m,n) of (23) selects the set of all pixels
within [ = 4 pixels of those pixels detected by the Kirsch
operator. Fy thus measures, with a suitable weight to ac-
count for visual masking [8], these large localized errors.

E. Principal Component Analysis

The distortion factors were defined so as to quantify spe-
cific types of impairments. Clearly, some of the local image
impairments will contribute to several or all factors, and
the factors {Fi,..., F5} will be correlated.

A principal component analysis is carried out to quantify
this correlation between distortion factors. We compute
the covariance matrix

Cp = B{(F — pr)(F — ur)"} (25)

where F is the vector of distortion factors and pp is its
mean.

The matrix of eigenvectors will diagonalize the covari-
ance matrix Cp. The eigenvalues {);} also indicates the
relative contributions of the transformed vectors, or prin-
cipal components, to the total energy of the vector . The
“eigenfactors” are now uncorrelated and, as we shall show,
are more effective and robust in the objective assessment
of image quality.

F. Computation of PQS

We compute the PQS quality metric as a linear combi-
nation of principal components Z; as

J
PQS =by+ Y b;Z;

j=1

(26)

where the b; are the partial regression coefficients which are
computed using Multiple Regression Analysis (MRA) [24]
of PQS given by (26) with the mean opinion scores obtained
experimentally in quality assessment tests.

In order to illustrate visually the five distortion factor im-
ages, they have been evaluated for the image “Lena” and
a low quality (quality parameter = 15) JPEG encoded [25]
version of it. To illustrate the relative spatial contribu-
tions of f;(m,n) to F;, and to differentiate the factors from
one another, we show in Figure 2 the original image and
each of the f;(m,n) suitably magnified. We observe that,
as compared to fi(m,n), fa(m,n) discards a number of
small errors which occur in the flat portions of the image.
f3s(m,n), restricted to block boundaries, is quite high in
active portions of the image and also near high contrast
intensity transitions, where it will be the most visible. The
structured error f4(m,n) compared, to f5(m,n) shows that
structured errors are very common, and that they do not
consistently coincide with image regions where visual mask-
ing occurs.

III. ViSuAL ASSESSMENT TESTS

We now turn to the experimental determination of the
subjective mean opinion score for each of the encoded im-
ages.

A. Methods

The visual or subjective evaluation of image quality has
drawn attention of a number of researchers for many years,
principally in relation to the evaluation of new transmis-
sion or coding schemes, and in the development of advanced
television standards. As it applies to television, an excel-
lent presentation of the complex issues involved has been
given by Allnatt [26]. The standardization committees of
the ISO, and in particular the CCIR, has published recom-
mendations on the assessment of picture quality in televi-
sion. In our work, we follow closely the CCIR 500 recom-
mendations with respect to subjective scales and experi-
mental conditions [2]. Note that we are making use of the
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Fig. 2.

PQS factor images.

original, fl(m!n)! .f2(m7n), \/.f??h(m7n) +f321,(m,n), f4(m;n);
and f5(m,n).

Left to right, then top to bottom:

numerical scores associated with the impairment descrip-
tors, or categories, of Table 1, for the computation of aver-
age MOS scores and regression analysis. This requires that
the subjective numerical scale also provide equal perceptual
intervals. This property holds for the CCIR MOS impair-
ment scale of Table 1 [27]. The general issue of subjective
numerical category scaling as applied to image coding is
reviewed in [28].

In Table I, we show the 5 point (MOS) impairment scale
and in Table II, the conditions for subjective assessment
tests recommended in CCIR 500. The specific conditions
used were as follows:

1. The pictures used were all 256 x 256 pixels and were
viewed at 4 times the picture height (4H).

2. The selected observers, principally graduate students at
JAIST, the Japan Advanced Institute of Science and Tech-
nology, received limited training. The selection of subjects
was based on consistency in the evaluation of picture qual-
ity. The training consisted of the description and illus-
tration of the types of distortions that the subjects would
observe.

‘ Scale ‘ Impairment |

5 Imperceptible
Perceptible, but not annoying
Slightly annoying
Annoying
Very annoying

=1l IRCUIRTN

TABLE I
MOS GRADING SCALE.

Ratio of viewing distance to 4
picture height

Room illumination

Peak luminance on the screen

None
42.5 (cd/m?)

Lowest luminance on the 0.23 (cd/m?)

screen

Time of observation unlimited

Number of observers 9 (expert observers)
TABLE II

CONDITIONS OF THE SUBJECTIVE ASSESSMENT TESTS.

3. The subjects were instructed to grade the image quality
in 1/2 step increments.

A number of coded images were evaluated informally at
various times during the study, with more than 800 coded
image evaluations performed, in the preliminary and final
assessment tests. The results reported are based on the
675 quality evaluations of 75 encoded images by the pool
of nine subjects.

B. Test Pictures

The image impairments represented by the distortion
factors F; and F5 are mainly global distortions, while F3,
Fy, and F5 characterize local distortions. Local distortions
are apparent only in portions of the images and depend on
the density of transitions and flat regions in the images.
Five test images were used that represent a range of char-
acteristics. These images, shown in Figure 3, include the
ITE (Institute of Television Engineers of Japan) test im-
ages “Church”, “Hairband” and “Weather” [29], and the
widely used “Barbara”, and “Cameraman” images.

C. Coders

There are a large variety of coders, such as DPCM, Or-
thogonal Transform Coders (OTC), VQ, subband coders,
etc. We have concentrated on DCT based JPEG, as well as
widely used wavelet and subband coding techniques. The
subband coder used in our experiments is a 28 band decom-
position using Johnston’s 16 tap filters [30] and the wavelet
coder, a 10 band decomposition with 8 tap Daubechies’ fil-
ters [31].
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Fig. 3.

PQS test images. From left to right, then top to bottom:
Church, Hairband, Weather, Barbara, and Cameraman.

D. Determination of MOS

The observers are asked to assign a score A(i, k) to each
encoded image, where A(i, k) is the score given by the it"
observer to image k. Each score in the range 1 to 5, ac-
cording to the impairment scale of Table I, is assigned in
1/2 step increments. For each encoded image, the scores
are averaged to obtain the MOS value for a specific image,

MOSM%z%ﬁiA@M

i=1

(27)

where n denotes the number of observers. Note that the
possibility of assigning a half step has no implication on the
accuracy of the subjective data. We found that observers
like to have the option of half step scoring when they were
uncertain about a full step. Repetition of the experiment
by the same observer may result in a score that may differ
by more than a half step from the previous one.

IV. RESULTS OF EXPERIMENTS

The experiments resulted in a set of five images coded
with one of three types of coders and for the entire range
of quality. A total of seventy five encoded images were
assessed by nine observers as described, and the average
MOS score was computed for each encoded image. The set
of error images were then analyzed.

A. Principal Component Analysis

The set of error images was first used to compute the
distortion factors. From this set of distortion factors, we
compute the covariance matrix Cr of Table ITI. A principal
component analysis of C'r is then carried out. We show in
Table IV, the eigenvectors and eigenvalues of matrix Cp.

Note the very high correlation between F; and Fy. This
is expected, since these factors both evaluate random er-
rors, with some changes in their weighting. The high cor-
relation of F3 with F; and F» is more surprising. Although
the spatial contributions to these factors are distinct, the
high correlation indicates that, when aggregated into a sin-

R F F3 Fy Fy
F; | 1.0000 | 0.9967 | 0.9753 | 0.8391 | 0.5823
F5 | 0.9967 | 1.0000 | 0.9743 | 0.8231 | 0.5682
F3; | 0.9753 | 0.9743 | 1.0000 | 0.8749 | 0.5696
F, | 0.8391 | 0.8231 | 0.8749 | 1.0000 | 0.6714
F5 | 0.5823 | 0.5682 | 0.5696 | 0.6714 | 1.0000
TABLE III

COVARIANCE MATRIX

LA [ | X | A | X
| 419165 | 0.59144 [ 0.19021 | 0.02392 | 0.00278 |
6 | 6 |t ]t | s
0.47500 | -0.24449 | 0.27083 | -0.38709 | 0.70100
0.47198 | -0.26829 | 0.32384 | -0.31044 | -0.70993
0.47526 | -0.24723 | 0.01921 | 0.84271 | 0.04966
0.45058 | 0.10598 | -0.86219 | -0.20065 | -0.04604
0.35030 | 0.89213 | 0.27936 | 0.05793 | -0.00216
TABLE IV

EIGENVALUES AND CORRESPONDING EIGENVECTORS.

gle number, they do track each other as the coding param-
eters change.

The resulting eigenvalues have a wide spread of values,
and the largest 3 eigenvalues amount for 99.5% of the to-
tal energy. The space spanned by the 5 distortion factors
is essentially three dimensional. The eigenvectors £y, {2, {3
provide a useful first transformation of the F; into an effec-
tive principal component representation (Z1, Z2, Z3). To
obtain a numerical distortion value, we carry out a mul-
tiple regression analysis between the principal component
vector and the measured MOS values.

B. Multiple Regression Analysis

The partial regression coefficients by and {b;} for the
three principal components, Z; — Z3, have been evaluated,
so that PQS for any coded image is given by

PQS =5.632 — 0.068Z; — 1.536Z5 — 0.0704Z5 (28)

Note that the PQS, that is derived using principal compo-
nents, can be also be expressed in terms of the distortion
factors, F;.

PQS = 5.797+ 0.035F; + 0.044F; + 0.01F3

~0.132F, — 0.135F (29)

It is important to use the principal components in the
multiple regression analysis and the determination of PQS.
Since the covariance matrix is nearly singular, the results
obtained by multiple regression with the F; or with the
entire set Z; is unstable. Although a slightly better fit of
the specific test data is then obtained, the regression coef-
ficients are not robust, and the results may not be usable
for images outside the test set [32].
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® barbara

O cameraman
+ church

¢ hairband

V weather

Fig. 4. PQS versus MOS scatter diagram.

C. Ewvaluation of PQS

A fairly good agreement between the PQS and MOS is
achieved, as shown in the scatter diagram of Figure 4. Note
that the goodness of fit is better in the middle of the quality
range than at its extremes. This observation is elaborated
in section 6. In order to describe the degree of approxima-
tion of PQS to MOS quantitatively, the correlation coef-
ficient R [24] between PQS and MOS is evaluated. The
correlation coefficient R = 0.928, which is a great improve-
ment when compared to the correlation of R = 0.57 of
the conventional WMSE scale which is calculated using F
alone. We also analyzed the errors in the PQS values about
the regression line. We find that the absolute error is within
0.5 with a 70% probability. These results are quite reliable
and consistent and have been verified by us and other re-
searchers in several additional studies. It has been used in
the comparative evaluation of wavelet coders for alternative
choices of wavelet basis and of quantizers [15]. The PQS
methodology was also used at the high end of the quality
range in comparing wavelet and JPEG coders [33]. We
have found that PQS is very relevant and useful for such
parametric studies. In particular, it captures differences in
image quality between JPEG and wavelet coders that are
missed by the PSNR metric [33]. Some of the limitations
on the use of PQS are expanded in section 6.

D. Generality and Robustness of PQS

We have already discussed the importance of using prin-
cipal component analysis in the determination of PQS.
Other issues related to the generality and robustness of
PQS is its use for image data not in the test set, which
is critical to any application. To assess this feature, the
complete PQS evaluation was computed on each set of 4
images, and the resulting formulas used for the fifth image.
We find that the results with respect to regression coeffi-
cients and correlation with MOS are very close to the values
reported. We also evaluated the effect of the encoding tech-

nique on the results. We find that the PQS evaluation is
only slightly dependent on the specific encoding technique.

V. KEY DISTORTION FACTORS

We have defined the distortion factors F; as measures
of perceived disturbances which are common and basic to
coding techniques. We now consider the interpretation of
the combinations of F;’s into principal components, and
whether each F;, as defined, is a key distortion factor so as
to further remove redundancies or to rank the importance
of the factors in the set {F;}.

A. Characteristics of the Principal Components

The eigenvectors {{;} that were used to compute {Z;}
are indicated earlier. We also found that the characteri-
zation of the overall distortion is concentrated into three
principal components. Let us consider the characteristics
of Zl, lz and Zg.

e Z; may be reasonably named “the amount of error,”
since the entries in the first eigenvector ¢;; in Table IV
are almost equal to each other.

e Z3 may be named “the location of error,” because /52
which measures the contribution of errors in the vicinity of
image edges or transitions is very large (£52=0.89).

e Z3 may be named “the structure of error,” because of
the weight given to the factor Fy in the third eigenvector.

Therefore, it can be said that PQS is a linear combi-
nation of three distortion factors: “the amount of error”,
“the location of error” and “the structure of error”. The
last two factors again emphasize the importance of non
random errors in the quality evaluation of coded images.

B. Contribution of the Distortion Factors

We now evaluate the importance of the distortion factors,
taken singly and in combination. For all sets of combina-
tions of Fj, the correlation coefficients R and R* are shown
in Table V, where R* is the modified R [24] adjusted for
the degrees of freedom. Specifically,

B |R2(n—1)—p
n—p-—1

where n is the total number of coded images in the test
set, and p is the number of factors F; retained. Note
that, as done in the previous section, a principal compo-
nent analysis was performed on the covariance matrix of
the retained coefficients. The largest eigenvalues and cor-
responding eigenvectors were used until their cumulative
value exceeded 99%. We find that the four factors Fy, F,
F3 and F, only span a 2 dimensional space because of the
high correlations among the first three factors.

We also show on Table V the average absolute error dif-
ference between the PQS and the MOS scores assigned to
the encoded images. Table V can be examined in several
ways. First, we rank the importance of the factors taken
in groups. The most important single factor is F5. For two
factors, we would use F; and Fj; for three Fy, F; and F5:
for four F'1, Fy, F, and Fs.

(30)
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| Factors | R | R | E{lerror]} |
1 0.5665 | 0.5582 0.8347
2 0.5373 | 0.5282 0.8510
3 0.5714 | 0.5633 0.8269
4 0.7426 | 0.7384 0.6551
5 | 0.8985 | 0.8971* 0.4268
1 2 0.5547 | 0.5461 0.8418
1 3 0.5729 | 0.5564 0.8289
1 4 0.7499 | 0.7417 0.6362
1 5 | 0.9001 | 0.8972 0.4206
2 3 0.5779 | 0.5616 0.8222
2 4 0.7539 | 0.7459 0.6336
2 5 | 0.8991 | 0.8962 0.4236
3 4 0.7600 | 0.7522 0.6302
3 5 | 0.9015 | 0.8986 0.4144
4 5 0.9180 | 0.9156* 0.3773
1 2 3 0.5716 | 0.5550 0.8265
1 2 4 0.7516 | 0.7435 0.6352
1 2 5 | 0.8996 | 0.8967 0.4220
1 3 4 0.7600 | 0.7522 0.6302
1 3 5 | 0.9015 | 0.8986 0.4144
1 4 5| 0.9271 | 0.9239 0.3536
2 3 4 0.7600 | 0.7522 0.6302
2 3 5 | 0.9015 | 0.8986 0.4144
2 4 5 0.9302 | 0.9271* 0.3460
3 4 5| 0.9279 | 0.9247 0.3551
1 2 3 4 0.7600 | 0.7522 0.6302
1 2 3 5 | 0.9015 | 0.8986 0.4144
1 2 4 5 0.9285 | 0.9253* 0.3501
1 3 4 509279 | 0.9247 0.3551
2 3 4 509279 | 0.9247 0.3551
1 2 3 4 509279 | 0.9247 0.3551

TABLE V

CORRELATION COEFFICIENT BETWEEN PQS AND MOS

The importance of the factor Fj by itself stands out in
the examination of Table V, and suggests that it could be
used as a quality metric by itself. Note, however, that a
study of the relationship between MOS and PQS, when F5
alone is used as a metric, indicates that such a metric could
be used at high quality, but that its performance is much
worse than the PQS, given in (29), at lower quality.

Given that the subjective assessment scores of the test
images has at most precision of 0.5, an average absolute
error of less than 0.35, which turns out to be also approx-
imately the median of the errors, seems adequate. But we
note that the maximum error observed is as high as 0.94
for the best choice of factors, and occurs for the extreme
low end of the quality range. In particular, for Fy used by
itself as a metric, this maximum error can be as high as
1.4.

We found also that the relative contribution of the first
three distortion factors to the PQS value decrease for in-
creasing quality. This observation is consistent with the

common experience that structured errors, principally in
the vicinity of edges, are the only disturbances perceived
for higher bit rates and quality, and in particular, that the
end of block impairments are important only at low qual-
ity. This result also indicates that a PQS metric devised
and applied only for the low end of the image quality range
would lead to different weights and results, as we verified
experimentally.

C. Other Distortion Factors

We have considered briefly other possible distortion fac-
tors which have been identified in practice. The purpose
of such a study was to determine if the inclusion of quan-
titative factors for other known image impairments due to
coders would improve the degree of approximation of PQS
and MOS, and also, possibly, increase the applicability of
PQS.

One such distortion factor would quantify the jagged dis-
tortion of smooth edge contours that is introduced by some
image coding techniques. It is possible to define such a
distortion factor by analyzing locally the discrepancies be-
tween the direction of the image edge and the direction of
the edge in the coded image. We found that such a fac-
tor has a slight effect on one of the images in our test set,
principally at high quality, but does not affect the over-
all results presented. We also observed that a moire type
of disturbance occurs in the scarf portion of the test im-
age “Barbara” at specific quality levels. This effect occurs
in such isolated instances that the overall approach and
results are not affected. However, this additional study
pointed out some of the limitations of our results, and will
be elaborated in the next section.

VI. DiSCUSSION

Since this work was started some years ago, the interest
and importance of visual assessment and of quality met-
rics for image processing and image coding has increased
greatly. In this section, we consider first some of the limi-
tations and promise of the methodology presented here for
applications of recent interest. Second, we discuss the com-
ponents of an overall strategy for systematic advances in
perceptually based image coding.

A. Limitations in Applications

The set of distortion factors that we have defined span
a three dimensional space. Thus, image impairments are
characterized by a three dimensional vector. Multiple re-
gression analysis, a statistical regression technique, has al-
lowed the reduction of this vector to a single number, PQS,
which has a good correlation with MOS. In this statistical
fit, distortion factor contributions may be positive or neg-
ative. If these factor contributions are outside the range
for which the regression was carried out, the resulting PQS
may be invalid. Thus, for very poor quality images, it is
possible to obtain negative values of PQS, a meaningless
result. For the PQS value to be meaningful, one require-
ment is that the weighted contributions of each of the fac-
tors as given in (29) be in the range 1 to 5. From the
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scatter diagram of Figure 4, we observe that PQS provides
the best match to MOS values in the middle of the quality
range. We could improve the performance of PQS by using
a piecewise linear model, or by two separate measures, one
for low to medium quality images and one for medium to
high quality . We have performed a complete analysis for
the lower quality range, and find that the contributions of
the distortion factors are then substantially different than
what we reported for a fit over the entire quality range. The
predictive value of this limited range PQS is also improved.
These observations are related to the choice of subjective
quality assessment scales and performance ranges discussed
next.

B. Visual Assessment Scales and Methods

The visual assessment methods of CCIR 500 were devel-
oped for use in entertainment broadcast television, i.e. of
fairly high quality, and are targeted to non expert viewers
for images and video with low information content. Image
coding applications now have a much wider range. The
subjective 5 point impairment scale for images or video of
CCIR 500 is too broad and not precise enough for many
current applications. For instance, for the video conferenc-
ing of head and shoulder images, acceptable image quality
is much lower than for broadcast television and still im-
age coding. Thus all such encoded images and video will
cluster at the low end of the impairment scale. The same
comment applies to high quality image coding, where the
preservation of critical details is important. Thus, alter-
nate quality scales [26], [28], and a different subjective as-
sessment method, such as using anchor images, are needed.
Note that the MOS scale provides for a single descriptive
or numerical assessment of image quality. Since different
coders, or imaging systems in general, produce different
artifacts, assigning an single global score requires that the
observer set an implicit equivalence of different artifacts
[34]. Recent work considers each image impairment as a
component of a vector, and analyses this multidimensional
subjective space to determine the orthogonality and rela-
tive weights of such impairments in subjective space [35],
[36], [37]. The introduction of adaptive coding techniques,
where the bit rate constraints dynamically modify some of
the quantization parameters, such as in MPEG2, has also
led to the use of a variable and continuous rating of qual-
ity [3].

C. Human Vision Models and Image Quality Metrics

In our work, we have made use of a simple global, or sin-
gle channel, model of visual perception. Much progress has
been made in the development of multichannel models of
visual perception [38], [39], [40] and in the study of the vi-
sual masking thresholds for each of the channels [41]. Such
threshold models have been used by Daly [42] in the deter-
mination of a Visual Distortion Predictor (VDP) that com-
putes the probability of detection of a visible error. These
perceptual models have application to the evaluation of
quality in the processing of very high quality images, where
errors are small and close to threshold. We have compared

PQS to the VDP for high quality image coding. The distor-
tion images predicted by both methods were quite similar
for high quality [43]. Additional quantitative work for high
quality image coding, that combines more complete per-
ceptual models and the PQS methodology, is now under
way. The promise of metrics based strictly on perceptual
models is that they would apply to all types of image im-
pairments, and not only to image coding. The limitation
of such an approach, besides its restricted applicability to
impairments at the visual threshold, is in understanding or
controlling image display and viewing conditions to fit the
models. Note that successful limited use of properties of
visual perception for image processing or encoding applica-
tions have been reported through the years [44], [45], [46],
47, [48], [49], [50]

D. Specializing PQS for a Specific Coding Method

We have proposed a methodology for a “general” PQS
which will give useful results for different types of coders
and images. When the coding method is fixed and the test
image data and the coder are fixed, we can tune the picture
quality scale to that coder and obtain then more accurate
results [13]. Such a specialization is useful for coder design
or adaptive coding parameter adjustment [14].

E. PQS in Color Picture Coding

The PQS methodology has been applied to color pic-
ture coding. For color, the importance of a perceptually
uniform color space leads us to consider color differences
as defined in the Munsell Renotation System which is psy-
chometrically uniform and metric. Then, we can utilize the
color differences instead of e(m, n) for a PQS applicable to
coded color images [51], [52].

VII. APPLICATIONS OF PQS

There a number of applications for a perceptually rele-
vant distortion metric such as PQS. Coding techniques can
now more confidently be compared by checking their PQS
values for the same bit rate, or bit rates for the same im-
age quality. For instance, for wavelet coders, alternatives
in the choice of wavelets, quantization strategies, and error
free coding schemes have been compared [15], [16]. This
comparison make possible a systematic choice of parame-
ters, on the basis of a meaningful measure. The same study
shows that SNR does not help in making such choices.

Optimization of quantization parameters in coders based
on PQS has also been examined [14]. For adaptive coders,
some of the factors, {F;}, can be estimated locally by a de-
coder within the coder. Hence, the objective picture qual-
ity metric PQS that measures the degradation of quality
in the coded picture can then be reduced by adjustments
of the coder parameters [14].

VIII. CONCLUSIONS

We have proposed a methodology for devising a quality
metric for image coding and applied it to the development
of an objective Picture Quality Scale (PQS) for achromatic
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still images. This PQS metric was developed over the en-
tire range of image quality defined by the impairment scale
of CCIR 500. PQS is defined by taking into account known
image impairments due to coding, and by weighting their
quantitative perceptual importance. To do so, we use some
of the properties of visual perception relevant to global im-
age impairments, such as random errors, and emphasize
the perceptual importance of structured and localized er-
rors. The resulting PQS closely approximates the Mean
Opinion Score (MOS), except at the low end of the image
quality range. We have also interpreted the PQS system as
composed of a linear combination of three essential factors
of distortion: the “amount of error”, the “location of error’
and the “structure of error”. We have also discussed some
of the extensions and applications of such an objective pic-
ture quality metric.

Systematic studies of the objective evaluation of images,
as well as their subjective assessment, are difficult and only
now becoming active areas of research [4]. However, the
rapid increase in the range and use of electronic imaging
and coding and their increasing economic importance jus-
tifies renewed attention and specialization of perceptually
relevant image quality metrics as a critical missing compo-
nent for systematic design and for providing the quality of
service needed in professional applications.
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