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ABSTRACT Machine Learning started to provide solutions to various challenges in many fields, including
medicine. The objective assessment of rhinoplasty results has been a challenge since the assessment of beauty
is subjective in nature. This study explores if Machine Learning can be used to accomplish the complex
task of objective evaluating the outcome evaluation and automated scoring for rhinoplasty. We introduce a
methodology to map the aesthetics of visual appearance to the quantified measurements of pre-surgery,
planned outcome, and post-surgery using machine learning. To develop the methodology, we generated
synthetic 3D models utilizing artificial intelligence tools and applied various nasal deformities to simulate
the pre-surgery, planned outcome, and post-surgery scans of rhinoplasty patients. The simulated outcomes
were scored by reviewing the 3D visuals and corresponding measurements to prepare the training data for
machine learning models. AutoGluon AutoML framework is used to generate the best-performing machine
learning model. Machine learning models performed with 82% to 88% accuracy depending on the scoring
method. We also identified the measurements that are highly influential in determining the scores. This is the
first study that correlates the visual appearance and quantitative facial measurements of simulated rhinoplasty
outcomes. The results suggest that an Al-based objective rhinoplasty outcome scoring tool is possible when
machine learning algorithms are trained using consensus scores along with patients’ pre-surgery, planned,
and post-surgery measurements. This study introduces a methodology regarding how to map the aesthetics of
visual appearance to the quantified measurements of pre-surgery, planned outcome, and post-surgery using
machine learning.

INDEX TERMS Artificial intelligence, evaluation, machine learning, plastic surgery, rhinoplasty.

I. INTRODUCTION

The success of rhinoplasty has largely been determined by
patient satisfaction and objective evaluation methods of aes-
thetic outcomes have been lacking. Objective evaluation is a
challenging task since the assessment of beauty is subjective
in nature. An objective, valid, reliable, agreeable, and effec-
tive evaluation tool for the assessment of rhinoplasty would
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be valuable for both surgeons and patients in evaluating rhino-
plasty outcomes [1].

Rhinoplasty outcomes have generally been assessed with
semi-quantitative questionnaires such as FACE-Q, ROE,
[2], [3], [4], or through facial analyses in a quantitative
fashion [5], [6]. There are studies that aimed to evalu-
ate rhinoplasty outcomes utilizing questionnaires for sub-
jective evaluation and facial measurements for objective
evaluation [1], [7], [8], [9], [10], [11]. However, there
was poor correlation and inconsistencies between subjec-
tive and objective evaluations, and it was not possible to
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utilize objective (quantitative) scores to predict the success of
outcomes [12].

In a recent systematic review study, Zijl et al. analyzed
Patient Reported Outcome Measures (PROMs) to evaluate
functional or aesthetic symptoms of patients undergoing
rhinoplasty [13], [14]. and pointed out the importance of
standardized outcomes for both patients and clinicians in
rhinoplasty [13].

Researchers have utilized Artificial Intelligence (AI) to try
and solve problems in many types of plastic surgeries [15],
but there are only a handful of studies that utilize AI for
rhinoplasty [16]. In one of the studies, a propriety Machine
Learning tool was utilized to compare the predicted ages of
pre-surgery and post-surgery to analyze the reversing effect
of rhinoplasty on facial aging [17]. Another study also used
proprietary Al software to predict and compare the age and
attractiveness of pre-surgery and post-surgery photos to judge
if the aesthetic surgery had a positive impact [18]. Other
researchers used deep neural networks to make predictions on
whether or not a rhinoplasty was performed [19]. In a recent
study, Chandaliya and Nain proposed the PlasticGAN frame-
work that is based on the Generative Adversarial Networks
(GAN) 20, to generate images of post-surgery faces [21].

Stepanek et al. aimed to reveal correlations between facial
attractiveness and facial measurements by analyzing the mea-
surements taken on 2D photos. The study described which
measurements could be changed surgically in order to achieve
higher attractiveness scores [22], [23]. Our study has simi-
larities as we are reporting on measurements that affect the
perceived success of rhinoplasty, using machine learning to
determine this information.

It has been suggested Al could assist surgeons in per-
forming an objective assessment of rhinoplasty results [24],
however, this has not been studied previously. In this
study, we utilized machine learning to objectively evaluate
rhinoplasty results by learning from the scores given to rhino-
plasty outcomes by experts and non-experts. The machine
then developed a model to score the outcome of rhinoplasty
and determine the facial measurements most influential in
affecting a successful outcome.

Il. MATERIAL AND METHODS

Machine learning algorithms are trained to develop a model
that encompasses a mathematical equation to map the input
data to its output data. The developed model is then used to
infer the corresponding output when new input data is given to
the model. Machine learning requires quantifiable input data
that affect, correlate, and cause the output.

For our machine learning solution, the target output (pre-
diction) is the assessment score for rhinoplasty surgery.
We accept that the planned outcome is an agreement between
the patient and the surgeon. Therefore, a rhinoplasty assess-
ment score should be high (indicating success) if the planned
and post-surgery outputs are close (close to the output agreed
outcome with the patient) and should be low if they are far
apart (far from what was agreed on).
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Machine learning algorithms require quantifiable input
data that affect, correlate, and cause the output. We con-
sider facial measurements as our quantifiable inputs
(i.e., features of the machine learning algorithms). We use
the pre-surgery, planned, and post-surgery measurements
and use these as the input data for our ML algorithms.
We compute the differences and ratios of the measurements
of planned and post-surgery and the differences between and
ratios of planned and pre-surgery measurements and use these
computed data as the input data for our machine learning
algorithms. We utilize the measurements of the pre-surgery
state as well since new indicators can be generated using the
pre-surgery measurement, such as the ratio of the difference
between post and pre-surgery measurements and the differ-
ence between planned and pre-surgery measurements. The
pre-surgery, planned, and post-surgery measurements were
taken on the 3D models instead of 2D images due to the
advantages of working with 3D models such as having higher
fidelity, being more accurate, having the ability to rotate the
model to examine the point of interest from various angles,
and the possibility of calculating volumes and topographic
distances on the 3D models [25], [26], [27], [28].

We prepared sets of 3D models representing rhinoplasty
patients’ pre-surgery and post-surgery 3D facial scans syn-
thetically. The researchers have shown that synthetic images
can be used successfully to achieve similar performance in
machine learning studies [29]. The details of our methodol-
ogy are given in the following subsections.

A. CREATION OF 3D MODELS

The 3D models for the study are created synthetically, there-
fore there were no human subjects in the study that would
necessitate an Institutional Review Board (IRB) approval.
For synthetic 3D model creation, we started by creating
photos of people using the synthetic face generation website
https://thispersondoesnotexist.com/ [30].

This website generates a photo of a person that does not
really exist. It utilizes StyleGAN2 Face Generator devel-
oped by NVIDIA (NVIDIA Inc. Santa Clara, SA, USA)
researchers [31], [32] which is a type of GAN (Generative
Adversarial Network), a specialized architecture of neural
networks [20].

A recent study that utilizes the same technology shows
that synthesized photos are indistinguishable from real pho-
tos [33]. Another recent study was performed to generate
photo images using the same technology and to offer them
for facial aesthetic research [34].

We generated 24 (13 female, 11 male) front-facing and
neutral (no smile) photos. Since the photos were generated
synthetically using an Al tool, ethnicity cannot be deter-
mined. However, according to the looks of the photos, the race
distribution can be determined as 80% White, 15% Asian, and
5% Black. We wanted to have photos representing various
adult ages therefore we checked the ages of the photos using
online tools at facialage.com and facelytics.io and selected
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TABLE 1. Measurement statistics (mean +/— std) used from facebase.org statistics for 20 and 30 years olds: Cranial base width (CBW), Nasal width (NW),
Nasal height (NH), Nasal protrusion (NP), Maximum cranial width (MCW), Morphological facial height (MFH), and Lower facial height (LFH).

Gender Age MCW CBW
146.98 139.53
female 20 +/-5.03 +/-5.02
146.9 139.87
female 30 +/-495  +/-5.24
153.78 147.78

male 20 +/-4 +/-4.63
152.89 148.88
male 30 +/-451  +/-5.44

MFH LFH NW NH
119.41 67.49 32.29 54.81
+/- 6.49 +/-5.68 +/-2.36 +/-3.66
117.45 66.47 3291 53.4
+/-5.4 +/-4.56 +/-2.58 +/-3.63
128.4 73.5 35.51 57.88
+-6.77 +/-6.01 +/-2.14 +/-3.72
129.85 75.18 36.5 57.32
+/- 6.74 +/- 4.69 +/-2.49 +/-3.95

the photos that were predicted to be between 23 and 59.
We used Reallusion Inc’s Character Creator Software’s Head-
shot plugin to generate 3D models from the photos [35].

FIGURE 1. The example synthetic photos are in the top row. The bottom
row shows a snapshot of the 3D models that correspond to the photos
shown in the top row.

Examples of the generated photos and 3D mod-
els are shown in Figure 1. The images generated at
https://thispersondoesnotexists.com are presented in the top
row. The female on the left is assumed to be 29 years old,
and the male on the right is assumed to be 45 years old.
The bottom row shows a snapshot of the 3D models that
correspond to the photos shown in the top row, generated
using the Reallusion Character Creator Software.

We made sure that the 3D models had measurement
values within realistic limits. We used the Face Analyzer
tool [36], [37] to measure the 3D models and then com-
pare them with the statistics from the 3D Facial Norms

VOLUME 11, 2023

Database [38] listed at Facebase.org [39]. We checked the
3D models against the following measurements: 1) Maxi-
mum Cranial Width, 2) Cranial Base Width, 3) Morpholog-
ical Facial Height, 4) Lower Facial Height, 5) Nasal Width,
6) Nasal Height, and 7) Nasal Protrusion; to make sure each
measurement of a 3D model is within one standard deviation
of the mean value for the supposed age of the 3D model.
The measurement statistics for 20 and 30 years are given in
Table 1. If the measurement is not within the range, the 3D
model is resized to bring its measurement within the range
using Blender 3D Software [40]. At the end of the processes
explained above, we had 24 (13 male and 11 female) synthet-
ically generated 3D models that can substitute a rhinoplasty
patient’s facial 3D model.

B. TAKING THE MEASUREMENTS

Ten measurements (6 distances, two angles, and two
ratios) were selected as the most important based on the
experienced rhinoplasty surgeon rankings and the litera-
ture [1], [28], [41], [42]. These measurements are shown
in Figure 2 from top left to bottom right as 1) Alar Base
Width, 2) Columella Length, 3) Columella Width, 4) Inter-
alar Distance, 5) Nasal Bridge Length, 6) Nasal Tip Pro-
jection, 7) Interalar Angle, 8) Nasal Tip Angle, 9) Nasal
Tip Projection: Goode, and 10) Nasal Width-Length Ratio.
We marked the 22 landmarks on the 3D models that are used
to calculate these ten important measurements using the Face
Analyzer tool. Figure 3 shows the facial landmarks marked
during this process. The landmarks are Alar_Base_Junction -
left (ac_l), Alar_Base_Junction - right (ac_r), Alar Flare -
left (al_l), Alar Flare - right (al_r), Columellar Break Point
(cb), Endocanthion - left (en_I), Endocanthion - right (en_r),
Maxilloanteriorale - left (ma_l), Maxilloanteriorale - right
(ma_r), Maxillofrontale - left (mf_l), Maxillofrontale - right
(mf_r), Nasal Parenthesis - left (np_l), Nasal Parenthesis -
right (np_r), Nasion/Radix (n), Pronasale/Tip (prn), Rhinion
(r), Subnasale - left (sn_I), Subnasale - right (sn_r), Subnasale
(sn), Supratip Break Point (s), Tip Defining Point - left (td_I),
Tip Defining Point - right (td_r).
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FIGURE 2. Measurements selected, from top left to bottom right: 1) Alar base width, 2) Columella length, 3) Columella width, 4) Interalar distance,
5) Nasal bridge length, 6) Nasal tip projection, 7) Interalar angle, 8) Nasal tip angle, 9) Nasal tip projection: Goode, and 10) Nasal width-length ratio.

FIGURE 3. The 22 marked facial feature points are shown on 3D models.
The landmarks are Alar_Base_Junction - left (ac_I), Alar_Base_Junction -
right (ac_r), Alar Flare - left (al_I), Alar Flare - right (al_r), Columellar
Break Point (cb), Endocanthion - left (en_I), Endocanthion - right (en_r),
Macxilloanteriorale - left (ma_I), Maxilloanteriorale - right (ma_r),
Maxillofrontale - left (mf_l), Maxillofrontale - right (mf_r), Nasal
Parenthesis - left (np_I), Nasal Parenthesis - right (np_r), Nasion/Radix (n),
Pronasale/Tip (prn), Rhinion (r), Subnasale - left (sn_I), Subnasale - right
(sn_r), Subnasale (sn), Supratip Break Point (s), Tip Defining Point - left
(td_l), Tip Defining Point - right (td_r).

C. GENERATING DEFORMITIES ON 3D MODELS

We determined nine common deformities for which patients
typically desire a rhinoplasty based on the experience of
the authors who perform rhinoplasties. These nose types are
Crooked, Drooping Tip, Hooked, Hump, Large, Pinched,
Saddle, Snub, and Wide. Figure 4 shows these nine defor-
mities. We developed a morphing software application and
used it to morph the 3D models to have new 3D models with
the selected deformities [43], [44]. It is important to note that
the methodology can be extended with additional types of
deformities.
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The morphing software reads the current locations of land-
marks from an input file and then reads a configuration file
describing how much each landmark location needs to be
shifted. Then the morphing software outputs the morphed 3D
model along with the new locations of the landmarks. For
example, the location of the pronasale (prn) landmark was
x = 258,y = —7.64, z = 111.5 before morphing the
model for Drooping Tip deformity, and it is x = 2.17, y =
—18.28, z = 115.19 after the application of the deformity
using the program. That means there is a 0.31, 10.64, and
3.69-millimeter shift in the x, y, and z coordinates, respec-
tively, for the pronasale (prn) landmark. These updated land-
mark locations are used to calculate the measurements for the
morphed 3D model.

D. ORGANIZING THE 3D MODELS TO FORM THE PRE,
PLANNED, AND POST-SURGERY-SETS

We applied the nine deformities at various magnitudes to each
3D model representing 24 patients and generated 19 different
3D models for each patient (a total of 456 = 24 x 19).
We organized the resulting 3D models to form a set of
pre/planned/post-surgery 3D models as follows:

o We selected a deformed 3D model to represent the pre-
surgery,

o We selected a less deformed or a not deformed model to
represent the planned, and

o« We again selected a less deformed or not deformed
model for representing post-surgery outcome.

For example, we used a 3D model having a crooked defor-
mity as its pre-surgery 3D model, then used the normal (not
deformed) 3D model as its planned 3D model, and then used
the slightly deformed model as its post-surgery outcome.

VOLUME 11, 2023
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FIGURE 4. Nose types used. From top left to bottom right in order: Crooked, Drooping Tip, Hooked, Hump, Large, Pinched, Saddle, Snub, and Wide.

We formed a total of 648 sets of 3D models representing
the pre-surgery, planned, and post-surgery facial scans of
24 rhinoplasty patients.

E. GETTING SCORES TO TRAIN MACHINE LEARNING
ALGORITHMS

324 sets of 3D models were randomly selected from the
648 sets and scored to prepare the training data for the
machine learning models. The set of 3d models was presented
to raters in random order, and each rater gave an outcome
score between 1 to 10. We grouped the raters into two groups:
expert and non-expert. The expert group consisted of two
rhinoplasty surgeons. Non-expert raters were junior college
students pursuing computer science degrees without medical
knowledge.

We developed a web-based software to collect scores for
each set of 3D models. Figure 5 is a screenshot of this web-
based software showing pre/planned/post-surgery 3D models
side by side. The software enabled the raters to rotate, zoom
in/out and move the 3D models in X, y, and z coordinates to
analyze the pre, planned, and post 3D models in detail.

The raters first reviewed the 3D models visually and gave
a ‘look’ score. The software also displayed the measurements
of each 3D model in a table at the bottom of the page.
The table included one row for each measurement and the
columns showed the pre, planned, and post measurements
along with the differences between these measurements and

VOLUME 11, 2023

the ratios of the measurements. The last column presents
the ratio of the differences between post and pre-surgery
measurements over the differences between planned and pre-
surgery measurements. If this ratio is 1, that means the
post-surgery outcome is exactly the same as planned. After
reviewing the data, the raters gave a ‘data’ score. The average
score of raters was computed for each pre/planned/post set
and considered as the consensus.

The consensus scores are used as labels (output) for train-
ing the machine learning algorithms and the input data
included values of the ten measurements for the pre, planned,
and post-surgery 3D models, along with other data gener-
ated by subtracting or finding the ratio of pre, planned, and
post-surgery measurement values such as the ratio of differ-
ences between post and pre-surgery and differences between
planned and pre-surgery. Some of these features are shown
as column headers in the data table presented to the raters in
Figure 5. The complete list of features for each measurement
used as an input to the machine learning training algorithms
are listed in Table 2. We had nine values for each of the
measurements and therefore we had a total of 90 features for
training the machine learning algorithms.

F. RELIABILITY OF EXPERT AND NON-EXPERT SCORES
We utilized the intraclass correlation coefficient (ICC)
method to analyze the inter-rater reliability of scores given
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FIGURE 5. A screenshot of this web-based software for scoring rhinoplasty outcomes.

TABLE 2. Features (attributes) used for each measurement for training
machine learning models.

TABLE 3. The intraclass correlation coefficient (ICC) scores for inter-rater
reliability (N = 324).

Feature Name Description
pre The measurement taken on pre-surgery 3D model
planned The measurement taken on planning 3D model
post The measurement taken on post 3D model

diff:planned-pre
diff:post-pre
ratio:planned/pre
ratio:post/pre
ratio:planned/post
ratio:diff:post-
pre/diff:planned-pre

The difference between planned and pre-surgery
The difference between post and pre-surgery

The ratio of planned and pre-surgery

The ratio of post and pre-surgery

The ratio of planned and post-surgery

The ratio of differences between post and pre-
surgery and differences between planned and pre-

surgery

by the expert and non-expert raters. The inter-rater reliabil-
ity was calculated using a two-rater, consistency, two-way
mixed-effects model [45]. The inter-rater reliability scores
were calculated for both scores given based on the look and
measurements and tested the reliability of scores from two
expert raters, two non-expert raters, and the average of expert
versus non-expert raters. An ICC of less than 0.5 is considered

42140

Expert versus non-expert, scores based on the measurements ~ 0.979

Expert versus non-expert, scores based on the look 0.970
Two expert raters, scores based on the measurements 0.975
Two expert raters, scores based on the look 0.901
Two non-expert raters, scores based on the measurements 0.984
Two non-expert raters, scores based on the look 0.963

as poor, 0.50 to 0.75 as fair, 0.75 to 0.90 as good, and 0.90 to
1.00 as excellent reliability [46]. All the inter-rater reliability
scores are excellent (>0.9) as presented in Table 3.

G. SEARCHING FOR THE BEST MACHINE LEARNING
MODEL USING AUTOGLUON

We utilized the AutoGluon (version 0.5.2) Auto ML frame-
work and Python language (version 3.7.13) on the Colab
environment (colab.research.google.com) for finding the best
machine learning model. Auto Gluon is an open-source
AutoML framework by Amazon (https://auto.gluon.ai/) [47].
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TABLE 4. The performance of machine learning models that were trained using the scores from non-experts given based on the appearance “look” of 3D

models and based on their measurements.

Based on Look
ML Algorithm Test Validation
KNeighborsUnif 0.86 0.84
KNeighborsDist 0.86 0.82
ExtraTreesEntr 0.86 0.84
CatBoost 0.84 0.84
RandomForestGini 0.84 0.80
RandomForestEntr 0.84 0.82
WeightedEnsemble 1.2 0.82 0.89
ExtraTreesGini 0.80 0.87

Based on Measurements

ML Algorithm Test Validation
RandomForestGini 0.88 0.75
RandomForestEntr 0.88 0.75
ExtraTreesGini 0.86 0.77
ExtraTreesEntr 0.86 0.73
CatBoost 0.84 0.80
WeightedEnsemble 1.2 0.84 0.80
KNeighborsUnif 0.82 0.75
KNeighborsDist 0.82 0.77

TABLE 5. The performance of machine learning models that were trained using the scores from experts given based on the appearance of 3D models and

based on their measurements.

Based on Look

ML Algorithm Test Validation
CatBoost 0.82 0.70
ExtraTreesGini 0.82 0.70
ExtraTreesEntr 0.82 0.70
WeightedEnsemble L2 0.82 0.70
KNeighborsDist 0.80 0.68
RandomForestGini 0.80 0.70
RandomForestEntr 0.80 0.70
KNeighborsUnif 0.79 0.64

Based on Measurements

ML Algorithm Test Validation
CatBoost 0.84 0.78
RandomForestEntr 0.84 0.82
RandomForestGini 0.84 0.78
WeightedEnsemble L2 0.84 0.82
KNeighborsUnif 0.82 0.71
KNeighborsDist 0.82 0.71
ExtraTreesEntr 0.82 0.78
ExtraTreesGini 0.82 0.78

AutoGluon ensembles multiple models and stacks them in
multiple layers to find the best-performing model along with
its hyperparameters by experimenting with various machine
learning algorithms such as neural networks, LightGBM
boosted trees, CatBoost boosted trees, and Random Forests.
AutoGluon does not perform cross-validation by default.
We selected AutoGluon since it is shown to perform better
than five widely used AutoML frameworks such as Auto-
WEKA, auto-sklearn, The Tree-based Pipeline Optimiza-
tion Tool (TPOT), H20 AutoML, Google Cloud Platform
AutoML Tables [47] and would fine-tune hyperparameters
better compared to manually tweaking them [48], [49].

We partitioned our dataset into training and test dataset.
80% of the data is used for training, and the rest is used
for testing. Since each rater can assign scores between 1 to
10, this machine learning problem can be considered a
classification problem where we assign each rhinoplasty out-
come into one of ten classes. We utilized the accuracy met-
ric for the performance evaluation of the machine learning
models.

To avoid overfitting during the training, we applied the
early-stopping technique and compared the validation and
test scores to identify the number of training instances when
the models started to overfit. We trained the machine learn-
ing algorithms with expert scores and non-expert scores
separately. We also trained them using the scores given
based on the look and based on the data separately. Hence,
we performed four sets of training utilizing the Auto-
Gluon AutoML framework. To find out which measurements
affect the outcome score the most, we utilized the feature
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importance function that works based on permutation impor-
tance algorithms [50].

IIl. RESULTS

We first ran AutoGluon using the non-expert scores given
based on the ‘look’ (appearance) of the 3D models and
given based on the ‘data’ (measurement values). The model
WeightedEnsemble_L.2 performed the best on the validation
data (89% accuracy), and models KNeighborsUnif, KNeigh-
borsDist, and ExtraTreesEntr performed the best on the test
data (all 86% accuracy) when scores based on ‘look’ were
used as presented in Table 4. The models WeightedEnsem-
ble_L2 and CatBoost performed the best on the valida-
tion data (80% accuracy), and models RandomForestGini
and RandomForestEntr performed the best on the test data
(88% accuracy) when scores based on ‘measurements’ were
used as presented in Table 4.

We then ran the feature importance function of Auto-
Gluon to see which features contribute the most to the best-
performing model’s inference. While the models utilized nine
different input data for each measurement, the most impor-
tant input data were consistently the ratio of two differences
(the difference between post and pre-surgery and the dif-
ference between planned and pre-surgery). We list the top
3 measurements that this ratio affects the model performance
the most in Table 6.

Next, we ran AutoGluon using the expert scores given
based on the ‘look’ and ‘measurements’. Several models
performed 70% accuracy on the validation data and several
models such as CatBoost, ExtraTreesGini, etc. performed the
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TABLE 6. The top 3 measurements that are affecting the performance of
machine learning models trained with the scores from non-experts.

‘When Scores Given Based
on Measurements
Alar Base Width
Interalar Angle
Nasal Width-Length Ratio

When Scores Given
Based on Look
Interalar Distance
Columella Width
Nasal Bridge Length

best on the test data with 82% accuracy when scores based
on ‘look’ were used. The models WeightedEnsemble_L.2
and RandomForestEntr performed the best on validation data
(82% accuracy), and models such as CatBoost, Random-
ForestGini and RandomForestEntr performed the best on the
test data (84% accuracy) when scores based on measurements
were used.

TABLE 7. The top 3 measurements that are affecting the performance of
machine learning models trained with the scores from experts.

‘When Scores Given ‘When Scores Given Based on

Based on Look Measurements
Interalar Distance Nasal Tip Projection
Alar Base Width Alar Base Width
Columella Width Nasal Width-Length Ratio

Next, we ran the feature importance function of Auto-
Gluon to see which features contribute the most to the best-
performing model’s inference. The top 3 most important
measurement data are listed in Table 7.

IV. DISCUSSION

The literature points out the poor correlation between the sub-
jective scores that are based on surveys and objective scores
that are based on measurements and suggests that objective
scores could not be used to predict successful outcomes of
nasal surgeries due to these inconsistencies [12]. We believe
our study fills the gap between the objective and subjective
scores by utilizing a visual input (3D images) for scoring
and by figuring out the mapping between the scores and the
measurements utilizing machine learning.

A machine learning algorithm utilizes the training data and
creates a model that (mathematically) defines the relationship
(equation) between the features (attributes such as the differ-
ence between planned and post measurements) and the labels
(outcome scores). A machine learning model can, at most,
be as accurate as the scores in the training data. If the scores
given by the raters in the training data are not objective, the
scores predicted by the model will not be objective. Personal
opinions, especially on a subjective concept like beauty, will
always exist. We believe we can mitigate subjectivity by
aggregating many opinions to find a consensus. In order to
achieve a more objective score, we computed the consensus
score among the raters by averaging the scores given by them.

The intraclass correlation coefficient (ICC) reliability indi-
cators for the scores were between 0.901 and 0.984, corre-
sponding to the scores from two expert raters based on the
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look and two non-expert raters based on the measurements,
respectively. We noticed that the lowest predictive perfor-
mance was achieved for the training data that has the lowest
reliability. The researchers have pointed out that the reliabil-
ity of the data correlates with predictive performance [51].

We have pre-surgery, planned, and post-surgery values for
each of the ten selected measurements making it 30 input
parameters for machine learning models. However, we uti-
lized feature engineering techniques [52] to develop new
input data that might correlate better with the output label.
For each measurement, we added six new types of data by
computing the differences or rations of the pre/planned/post
measurements, bringing the total feature number to 90. Our
results show that the input data computed by getting the
ratio of differences between post and pre-surgery over the
differences between planned and pre-surgery correlates well
with the output which seems logical.

The measurements Interalar Distance and Columella
Width are highly influential in determining the scores in ML,
algorithms based on appearance, and Alar base Width and
Columella Width are influential when measurements are con-
sidered. While tables 1 and 2, which list the most influential
measurements based on expert and non-expert training data,
have some common measurements, the measurements listed
are not the same. This is expected since expert and non-expert
scores are different. At this point, it is difficult to determine
if the specific measurements noted as being most influential
in this study actually correlate clinically since the planned
and post-operative images were only simulations. In general,
columella width is less clinically important than many of the
other measurements listed, and the influence may be more
influential in simulated images than in actual patients. How-
ever, it is helpful to know that it is possible to determine which
measurements are most influential in determining scores for
future studies.

V. LIMITATIONS AND FUTURE DIRECTIONS

We simulated three types of post-surgery outcomes: the per-
fect outcome, the total failure, and somewhere in between.
However, in practice, it is often that we have patients that are
very close to the planned image except for a small deviation in
one or two areas. Future studies may look to utilize cases with
more minor deviations from the perfect outcome and utilize
real-life simulations and postoperative outcomes.

Utilizing actual patients may correlate with the most influ-
ential measurements in score generation and help surgeons to
focus more on these areas while performing surgery. Gener-
ating the algorithm requires a lot of data, so performing this
study with clinical images may require collaboration.

To mitigate the issue of subjectivity and to reach more
objective results, we aimed to find a consensus on the out-
come scores. Therefore, we aggregated the scores given by
raters. However, the number of raters we had in this study is
not enough to reach a common, publicly agreeable consensus.
A larger group of raters should be utilized to reach a better
consensus on outcome scores.
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This study utilized ten common measurements for rhino-
plasty. Rhinoplasty aims to achieve harmony with the whole
face. Therefore, other anatomic relationships between the
nose and the face should be included. The study can be
repeated using facial measurements and even more distance,
angle, and ratio measurements around the nose.

While this study utilizes 3D models for visualization,
it does not benefit from some of the measurements that can
be performed on 3D models. The study can be extended to
incorporate new measurements such as area and volume.

Finally, the need for new assessment tools that encompass
functional, psycho-relational, and aesthetic aspects has been
pointed out in the literature [52]. The objective assessment
solution we introduce in this study only evaluates the visual
(cosmetics) outcomes of rhinoplasty and cannot be used to
assess an outcome score for functional aspects of rhinoplasty.

VI. CONCLUSION

This study shows that an Al-based objective rhinoplasty
outcome scoring tool is possible when an adequate number
and variety of patients’ pre-surgery, planned outcome, and
post-surgery 3D models are used to train machine learning
algorithms with the consensus scores given by an adequate
number of raters. Once the machine learning algorithms are
trained and a mathematical model is produced, this model can
be utilized to make predictions (assess an outcome score for
rhinoplasty). With the estimated accuracy, a prediction by the
trained model would answer the question: ‘“How would the
raters score the new rhinoplasty outcome when the input data
(measurements of pre, planned, and post-surgery) are given?”’

This is the first study that forms the connection between
the visual appearance of the outcome and quantitative facial
measurements of the outcome. Machine learning algorithms
learn how to map satisfaction, which mostly depends on aes-
thetics of visual appearance, to the quantified measurements
of pre-surgery, planned outcome, and post-surgery.

Moreover, this is the first study to analyze each mea-
surement’s contribution to the outcome scores. As the study
repeated with more raters and measurements, it may suggest
which measurements are more important for a successful
outcome.

Objective assessment tools need to be easy to use, cost-
effective, accurate, reliable and provide repeatable results.
We believe our machine learning study is one of the major
initial steps in having such an evaluation tool for rhinoplasty
and all facial plastic surgeries.
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